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ABSTRACT
In this article, we examine a Networked Control System (NCS) in which the plant and the controller
communicate over a network subject to a certain communication constraint. The plant is described
by discrete-time nonlinear dynamics subject to bounded disturbances. Due to an overloaded com-
munication network, we assume that the control signal and the information from the plant (the
measured output signal) cannot be transmitted simultaneously and are subject to a multiplexing
constraint. The goal is to design a switching strategy that allows us to sequentially communicate
given these constraints while optimizing a quadratic cost over a finite horizon. Consequently, we
proceed by emulation and assume that a controller that satisfies performance requirements is already
provided. The resulting optimization problem is observed to be an integer programming problem
that is generally NP-complete, i.e., the complexity is exponential in the time horizon considered. To
overcome this issue, we provide a different perspective on this problem than what has been presented
by the community before. Our main contribution is to reformulate the problem with all its constraints
to a form that renders it amenable to apply the discrete-time Pontryagin Maximum Principle to get the
necessary conditions for the optimality of the control action sequence. These necessary conditions
are then solved numerically by a multiple-shooting method. To validate the approach, we present
some illustrative numerical experiments on an inverted pendulum. Different setups are considered
and numerically analyzed: usage of a predictor when the output is not transmitted and usage of the
previous value of the output when the new value is not transmitted, with or without the choice of
non-transmission.

1. Introduction
With recent advancements in communication technolo-

gies, Networked Control Systems (NCS) are finding appli-
cations in the Internet of Things (IoT) and cyber-physical
systems; see [1], [2]. However, the increasing use of NCS
in large-scale applications comes with challenges in com-
munication and control. Major obstacles in communication
are resource constraints, packet loss, time delays, etc. (see
for instance [3, 4]). In this context, we study an NCS where
both the sensor signals and the control commands are com-
municated over the same network with the constraint that
communication may occur only in one way at any given time
instant. Our goal is to determine the optimal sequence of
communication decisions over a given finite time horizon
such that a quadratic control and communication cost is
minimized.

The literature on NCS is rich, going from stability anal-
ysis and optimal control to optimal scheduling while con-
sidering different constraints on communication and control.
Early work on optimal scheduling of transmission of obser-
vation can be found in [5]. A general framework of an NCS
with multiple sensors sending signals to a controller through
a network was proposed in [6]. An optimum stochastic
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control method is employed to design the optimum policy.
A resource-constrained linear system with noise is studied
by imposing constraints on the transmission of observations
in different ways [7, 8]. The objective of finding an opti-
mal policy for observation transmission is achieved using
a certainties equivalence control method. Event-based state
estimation is examined in [9], where multiple sensors send
sporadic information to the predictor. The event triggering
is based on the variance of the observations coming from
sensors. A joint decision-making task of optimal control
and scheduling under the delay-dependent cost is considered
in [10]. The authors find a value function-based solution
to the optimal control and a mixed-integer programming-
based solution to the optimal scheduling. Another work on
a joint control and networking problem is studied in [11],
with decisions on sampling, control, and scheduling to be
taken. The problem is tackled by decomposing control and
networking problems, which are solved using a certainty
equivalence controller, and a dual optimization method,
respectively. The aforementioned articles consider that only
observations are transmitted through the network with dif-
ferent constraints. However, these articles do not consider
the possibility of the control being transmitted through the
network. A stochastic NCS with two different architectures
based on the location of the controller with respect to the
actuator and sensor is considered in [12]. The controller is
triggered by a stopping criteria on the observation, which is
then used for scheduling. In [12], only one way of communi-
cation is done through the network, i.e. control is transmitted
to the actuator, or observation is transmitted from the sensor
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to the controller. Transmission in both ways through the
network is not considered. An NCS with varying time in-
tervals and transmission delays is considered in [13]. In this
work, the authors have derived bounds on delays for a stable
system, and the stability analysis is done using Lyapunov’s
method. This result focuses more on the stability analysis
and does not discuss optimality. In a wireless communica-
tion network, energy is utilized in several layers [4]. This
makes optimum utilization of the network capabilities while
ensuring the quality of control important. One such work
considers the packet loss probability as a function of allo-
cated transmission power [14]. The joint objective of control
and communication is achieved by separating standard LQR
and Markov process minimization, respectively. In a similar
problem with packet loss, [15] provides an energy-efficient
approach for communication in an NCS. First, the authors
give conditions for stabilizing time-triggered policy using
stochastic allowable transmission intervals. Then a commu-
nication policy is designed that optimizes the energy while
obeying the stability requirements.

In contrast to the aforementioned works, we consider a
communication constraint arising out of a shared communi-
cation network. At any instant, the network has three choices:
(i) transmit control, (ii) transmit observation or (iii) do not
transmit any signal. Under these constraints, the objective
is to optimize these choices to minimize a quadratic cost
involving the control and communication costs. The contri-
butions of this article are as follows:

1. We present a general framework of an NCS where the
plant has uncertainties or bias, and the communication
from the controller to the plant, and from the plant
to the controller is over the same communication
network. We use a predictor that calculates the state
of the plant, in the absence of observations, using
an approximate model. We consider a quadratic cost
which has three terms corresponding to the plant state,
the control effort, and the communication effort.

2. The resulting optimization is an integer programming
problem, with the optimization variable being the
communication decision vector over a given time hori-
zon. Since this problem is NP-complete, we recast
the problem as an optimal control problem by con-
sidering an augmented state and providing a solution
using the discrete-time Pontryagin Maximum Princi-
ple (DPMP). This allows us to derive the necessary
conditions of optimality. A numerical solution of the
two-point boundary value problem arising out of the
necessary conditions is obtained using the multiple-
shooting method. In Section 4, we show that this
method performs better than an exhaustive search
method in terms of computation time.

The rest of the article is organized as follows. In Section
2, the framework is presented, and the problem formulation
is stated. Section 3 is dedicated to providing the necessary
conditions of optimality using the DPMP. The results are

validated through numerical simulation in Section 4. Finally,
concluding remarks and future work are stated in Section 5.

2. Problem Formulation
In this section, we set up a system with four key parts: a

plant, a controller, a predictor, and a communication network
that links the plant and controller. Our presentation will take
the following sequence:

• First, we describe the plant and a feedback controller
obtained by emulation, i.e., designed to stabilize the
plant without considering the communication net-
work.

• Then, we introduce the communication network and
constraints in place and discuss the subsequent changes
that this brings about in the controller design and the
closed-loop dynamics. At this stage, we also introduce
a local predictor for the plant dynamics that provides
estimates when the network is not able to provide any
information from the plant side.

2.1. Plant and Controller Model
Consider a discrete-time nonlinear plant described by
xk+1 = f (xk, uk) for all k ∈ {0, 1, 2,…} (1)

where xk ∈ ℝn is the state, and uk ∈ ℝp is the control at the
actuator at the kth instant respectively. f ∶ ℝn×ℝp → ℝn is a
smoothmap governing the dynamics of the system. Consider
a closed-loop feedback controller given by:

uk = g(xk) for all k ∈ {0, 1, 2,…} (2)
where xk is the state feedback received by the controller at
the kth instant. Note that the controller (2) is a controller
for the plant (1) designed by emulation, i.e., it is obtained
without considering any network.

Controller
g(xk)

Plant
f (xk, uk)

uk

xk

Figure 1: Schematic of the plant and the controller without
the network

Assumption 1. The controller (2) stabilizes the system (1)
asymptotically.

Please note that the design of the controller may not be
related to stability but to other closed-loop performance cri-
teria. We emphasize that our interest here lies in a networked
system over a finite time horizon N , and a corresponding
cost. Consequently, the controller can be designed to opti-
mize the cost over the finite horizon without ensuring any
stability guarantees. We denote [N] ∶= {0, 1, 2, ..., N} and
[N]⋆ ∶= {1, 2, ..., N}. Next, we introduce the communica-
tion model and then give a complete model of the overall
system.
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2.2. Communication Constraints
Figure 2 is a schematic of our setup. As can be seen,

there are four subsystems in place - the plant, the controller,
the network and the predictor.The controller communicates
to the plant via the network, and the plant sends the state
information to the predictor via the network. We consider
the following limitations on the network. The network has
three choices at any instant:

i) it can transmit a control command from the controller
to the plant or,

ii) it can transmit the observation from the plant to the
predictor or,

iii) it does not communicate at all.
These three choices are encapsulated in the form of a switch
variable qk that takes values in a discrete set

S ∶= {−1, 0, 1} (3)
where,

qk ∶=

⎧

⎪

⎨

⎪

⎩

1 if the control is transmitted;
−1 if the observation is transmitted;
0 if there is no communication.

(4)

Remark 1. The admissible set of switch positions S is dis-
crete, i.e., not convex, and it is challenging to solve an
optimization problem over a non-convex set.

The multiplexing constraint described by (4) can be
expressed algebraically as,

qk(1 − qk)
(

1 + qk
)

= 0 for all k ∈ [N]. (5)
It is indeed straightforward to see that the equality qk(1 −
qk)(1 + qk) = 0 holds only when qk ∈ {−1, 0, 1}. Alterna-
tively, one of the three choices from {−1, 0, 1} implies that
the algebraic equality holds.
Remark 2. Note that the multiplexing constraint, in the
form (4), cannot be incorporated as a constraint in the formu-
lation of the discrete optimal control problem. The existing
solution machinery is not able to handle this. To dovetail this
constraint into a form that is amenable to the discrete optimal
control machinery, we convert the constraint to an algebraic
equality of the form (5).

Based on the switching, we can write the transmitted
quantities as follows. The transmitted control information
through the network can be written as,

ũk ∶=

{

uk if qk = 1;
ũk−1 otherwise. (6)

2.3. State Update in the Controller Dynamics
In reality, there may be time intervals when the commu-

nication network does not convey any information from the
plant. In such a scenario, it is advantageous to have a local,
approximate model of the plant, which would help obtain
a coarse estimate of the state based on a predicted estimate
devoid of information update [16]. With this in mind, we
introduce an element in the system called a predictor. In
our framework, the predictor has an approximate model of
the system. The function of the predictor is to update the
state as per the approximate model of the system when
the observation signal is not transmitted and transmit the
actual state if available. The approximate model can be
found using data-driven approaches or system identification
methods [17, 18], and is of the form: f̂ ∶ ℝn × ℝp → ℝn

such that, in a neighborhood of interest U × V ⊂ ℝn × ℝp,
there exists a finitely small � > 0, such that

‖

‖

‖

f̂ (y, v) − f (y, v)‖‖
‖

≤ � for all (y, v) ∈ U × V . (7)
This framework helps the controller to use the available
information and send a prediction

x̂k ∶=

{

xk if qk = −1;
f̂ (x̂k−1, ũk−1) otherwise (8)

for all k ∈ [N − 1]. The algorithm we propose presents
the necessary conditions for an optimal communication se-
quence for the N stages, accounts for all the constraints,
and minimizes a quadratic performance measure (presented
shortly ahead.) This measure of performance enforces a
trade-off between the growth in the predictor error and
sufficient transmission of information from the plant over the
finite stages. With this framework of the NCS shown in the

Controller
g(x̂k)

Predictor
{

f̂ (x̂k−1, ũk−1)
xk

Network

Plant
f (xk, ũk)

uk

x̂k

ũk

xk

qk = 1

qk = −1

qk = 0

Figure 2: Schematic of a Networked Control System with a
predictor in the loop

Fig 2 and described by (1)-(8), we derive overall dynamics
of the system. Please note that (6) and (8) are written as
cases based on certain conditions of the switch position. We
incorporate the different cases of (6) and (8) in the following
unified framework. Now the overall system dynamics can be
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written as,
xk+1 = f (xk, ũk)

ũk =
1
2
[qk

(

1 + qk
)

uk +
(

2 + qk
) (

1 − qk
)

ũk−1]

uk = g(x̂k)

x̂k = −
1
2
qk(1 − qk)xk

+
(

1 −
qk
2

)

(

1 + qk
) (

f̂ (x̂k−1, ũk−1)
)

(9)

for all k ∈ [N − 1]. We provide a detailed derivation in
Appendix A, which shows the second equation of (9) and (6)
are equivalent. Similarly, the fourth equation of (9) and (8)
are equivalent. For ease of notation, define a concatenated
state �k ∶=

(

xk ũk−1 x̂k−1
)T and the switch qk acts as thedecision variable. Then, the dynamics for the concatenated

state can be written as,
�k+1 = F

(

�k, qk
) (10)

where,

F
(

�k, qk
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

f (xk, ũk)
1
2

(

qk(1 + qk)g(x̂k) + (2 + qk)(1 − qk)ũk−1
)

−qk
2
(1 − qk)f (xk−1, ũk−1) +…

…(1 −
qk
2
)(1 + qk)f̂ (x̂k−1, ũk−1)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for all k ∈ [N−1], with initial conditions �0 =
(

x0 0 x0
)T ,

where x0 is a user defined initial condition.
2.4. Problem Statement

Given the three dynamic blocks described in the previous
section - the communication network, the predictor, and the
plant - we formulate a measure of performance that weighs
the usage of the network resource as well. The switching
sequence is obtained by minimizing an objective function
of the form:

min
{qk}N−1k=0

N−1
∑

k=0
Jk

(

�k, qk
)

+ JN
(

�N
)

subject to
⎧

⎪

⎨

⎪

⎩

dynamics (10)
qk ∈ S for all k ∈ [N − 1]
�0 = �in

(P1)

where
i) Jk ∶ ℝ2n+p×ℝ → ℝ denotes the cost incurred at each

stage and is given by
Jk

(

�k, qk
)

∶= �Tk A�k + �q
T
k qk

for all k ∈ [N − 1] with A = diag (Q R 0n×n
).

ii) Q ∈ ℝn×n is a symmetric positive semi-definite
matrix.

iii) R ∈ ℝp×p is a symmetric positive definite matrix.
iv) � ∈ ℝ≥0 is a non-negative scalar weighting factor.
v) JN ∶ ℝ2n+p ×ℝ → ℝ denotes the cost incurred at the

last stage and is given by
JN

(

�N
)

∶= �TNB�N

with B = diag (Q 0p×p 0n×n
).

vi) �in is the user defined initial condition.

3. Main Result
The problem statement given by (P1), however, is not in

a standard form of the optimal control problem as defined by
Boltyanskii [19]. The main obstacle, as stated in Remark 1,
is the admissible switching action set is discrete. To apply
Boltyanskii’s method of tents (tent - tangent convex cone) to
establish the necessary conditions for optimality, we recast
the problem (P1) into a form that is amenable to the solution
proposed by Boltyanskii. To do so, we use an approach
motivated by [20]. First, we define a set

S̄ ∶= [−a, a] for a fixed a ∈ [1,∞[ (11)
and a map Φ ∶ S̄ → ℝ such that,

Φ(q) ∶= ‖(q − 1)q(q + 1)‖2 (12)
where q ∈ S̄. We introduce an augmented state �k ∈ ℝ
for all k ∈ [N]. Define the governing dynamics of the
augmented state as

�k+1 = �k + Φ(qk) for all k ∈ [N − 1]. (13)

Lemma 1. For the dynamics defined in (13) and an initial
condition �0 = 0, qk ∈ S for all k ∈ [N − 1] if and only if
�N = 0, where S is given by (3).
PROOF. (⟹ ) Given the dynamics (13), �0 = 0, and �N =
0, then

�N = �0 +
N−1
∑

k=0
Φ(qk)

⟹

N−1
∑

k=0
Φ(qk) = 0

⟹ Φ(qk) = 0 for all k ∈ [N − 1]
⟹ qk ∈ S for all k ∈ [N − 1].

(14)

(⟸ ) Given the initial condition �0 = 0, and qk ∈ S for
all k ∈ [N − 1], then using the dynamics (13) it is clear that
�N = 0.
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The problem is recast using Lemma 1, and the equivalent
optimal control problem is as follows.

min
{qk}N−1k=0

N−1
∑

k=0
Jk

(

�k, qk
)

+ JN
(

�N
)

subject to

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dynamics (10)
dynamics (13)
qk ∈ S̄ for all k ∈ [N − 1]
(�0, �0) = (�in, 0)
�N = 0

(P2)

Here concatenated state �k is augmented with another state
variable �k, and the adjoint pk is augmented with �k.
3.1. Necessary conditions for optimality
Theorem 1. Let

(

q̊k
)N−1
k=0 be an optimal switching sequence

for (P2) and (�̊k
)N−1
k=0 be the corresponding state trajectory.

For � ∈ {−1, 0} and � ∈ ℝ, define the Hamiltonian

[N − 1] ×
(

ℝ2n+p
)⋆ ×ℝ2n+p ×ℝ ∋

(

t, p, �, q
)

⟼

�,� (t, p, �, q) ∶= �Jt(�, q) +
⟨

p, F
(

�, q
)⟩

+ ⟨�, Φ(q)⟩ ∈ ℝ.
(15)

Then there exists adjoint trajectories
(

pk
)N−1
k=0 ∈

(

ℝ2n+p
)⋆

such that the following conditions hold:

(NC-1) the non-triviality condition:
the adjoint variables

(

pk
)N−1
k=0 and the scalar � do not vanish

simultaneously;

(NC-2) the state and the adjoint dynamics:

state: �̊k+1 = p�,� (k, p, �̊k, q̊k)

adjoints: pk−1 = ��,� (k, p, �̊k, q̊k);

(NC-3) the transversality condition:

pN−1 = ��JN (�̊N );

(NC-4) the Hamiltonian non-positive gradient condi-
tion:

⟨

q�,� (k, p, �̊k, q̊k), q − q̊k
⟩

≤ 0 for all q ∈ ΩS̄
(

q̊k
)

where ΩS̄
(

q̊k
)

is the support cone of S̄ at with apex at q̊k.

PROOF. We establish the necessary conditions for the opti-
mal control problem (P2) where the multiplexing constraint
has been modified as an augmented state with boundary
conditions. Define the Hamiltonian,

[N − 1] ×
(

ℝ2n+p
)⋆ × (ℝ)⋆ ×ℝ2n+p ×ℝ ×ℝ ∋

(

t, p, �, �, �, q
)

⟼ �(t, p, �, �, �, q) ∶=
�Jt(�, q) +

⟨

p, F
(

�, q
)⟩

+ ⟨�, � + Φ(q)⟩ ∈ ℝ.

(16)

Let (q̊k
)N−1
k=0 be an optimal switching sequence for (P2) and

(

�̊k, �̊k
)N−1
k=0 be the corresponding state and augmented state

trajectories. For � ∈ {−1, 0} and the Hamiltonian (16), there
exists adjoint trajectories (

pk, �k
)N−1
k=0 ∈

(

ℝ2n+p ×ℝ
)⋆

such that the following conditions hold:
(nc-1) the non-triviality condition:

the adjoint variables (pk
)N−1
k=0 , �k and the scalar � do not

vanish simultaneously;
(nc-2) the state and the adjoint dynamics:

state:
{

�̊k+1 = p�(k, p, �, �̊k, �̊k, q̊k)
�̊k+1 = ��(k, p, �, �̊k, �̊k, q̊k)

adjoints:
{

pk−1 = ��(k, p, �, �̊k, �̊k, q̊k)
�k−1 = ��(k, p, �, �̊k, �̊k, q̊k)

(nc-3) the transversality condition:
pN−1 = ��JN (�̊N );

(nc-4) the Hamiltonian non-positive gradient condition:
⟨

q�(k, p, �, �̊k, �̊k, q̊k), q − q̊k
⟩

≤ 0 for all q ∈ ΩS̄
(

q̊k
)

where ΩS̄
(

q̊k
) is the support cone of S̄ at with apex at q̊k.

Boltyanskii’s method of tents requires the existence of a
local approximation of the feasible set. The maps f , and Jkdefined earlier are smooth, which ensures the existence of a
local conical approximation of the feasible set. From (nc-2),
it is evident that the �k remains constant since

�k−1 = ��(k, p, �, �̊k, �̊k, q̊k) = �k

for all k ∈ [N]⋆. This means the necessary conditions
obtained using the Hamiltonian (15) do not depend on the
�. The necessary conditions (NC-1) - (NC-4) obtained in
Theorem 1, are equivalent of the necessary conditions (nc-1)
-(nc-4).

To complete the proof, we prove that admissible trajecto-
ries in (P1) are admissible in (P2) and admissible trajectories
in (P2) are admissible in (P1). Let 
 ∶= (

�k, qk
)N−1
k=0 be an

admissible trajectory in (P1). Augment the trajectory with
�k = 0 for all k ∈ [N−1], then from Lemma 1 the trajectory

̃ =

(

�k, qk, 0
)N−1
k=0 is admissible in (P2). Let a trajectory be

�̃ ∶=
(

�k, qk, �k
)N−1
k=0 , then from Lemma 1 the trajectory �̃

is admissible in (P2) only when �k = 0 for all k ∈ [N − 1].
Now for a trajectory �̃ = (

�k, qk, 0
)N−1
k=0 admissible in (P2),

there exists a corresponding trajectory � =
(

�k, qk
)N−1
k=0admissible in (P1). Hence, we establish a bijection.

3.2. Solution of the Necessary Conditions
We established the necessary conditions of optimality

in the preceding subsection, which results in a two-point
boundary value problem (TPBVP). Here, the aim is to find
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a trajectory that satisfies the necessary conditions (nc-1) -
(nc-4) with given initial and final conditions. We solve the
TPBVP iteratively using the multiple shooting method [21].

We define a shooting variable,

s ∶=
(

(

�k
)N
k=1

(

�k
)N
k=1

(

pk
)N
k=1

(

�k
)N
k=1

)T (17)

and a shooting function

�(s) ∶=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⋮
�k+1 −p�(k, p, �, �k, �k, qk)
�k+1 −��(k, p, �, �k, �k, qk)
pk−1 −��(k, p, �, �k, �k, qk)
�k−1 −��(k, p, �, �k, �k, qk)

⋮
pN−1 − ��JN (�N )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(18)

with boundary conditions �0 = �in, �0 = 0, and �N = 0. We
obtain the qk, required in (18) using the condition (nc-4). Thesolution of the nonlinear equation

�(s) = 0 (19)
is the optimal trajectory. The solution of a system of nonlin-
ear equations (19) is obtained using fsolve function of the
optimization toolbox from MATLAB [22].

From (18), it is clear that the number of nonlinear equa-
tions to be solved scales linearly with the number of time
stages, given the dimension of the state space is constant.
Similarly, the number of nonlinear equations to be solved
scales linearly with the dimension of the state space, given
the number of time stages is constant. In short, the compu-
tational complexity is (nN), where n is the dimension of
the state space andN is the number of time stages. Whereas
an exhaustive search method has an exponential complexity
(3N ). The function fsolve requires an initial guess s(0) of
the solution, and the solution is sensitive to the choice of the
initial guess. The initial guess is chosen empirically, which
poses a challenge.

4. Numerical Experiments
In this section, we validate our main result by a nu-

merical experiment on an inverted pendulum. The state and
system dynamics as per the notation defined in (9) are:

xk ∶=
(

�k, !k
)T and

f (xk, ũk) ∶=
(

�k + ℎ!k
!k + ℎ

ml
J sin �k −

ml
J ũk cos �k + b

)

.
(20)

Here, �k is the angle of suspension, !k is the angular
velocity, and ũk is the transmitted control at kth instant. The
mass of the pendulum bob is denoted by m, the length of the
rod is l, J is the inertia, and b is a bias. The relation between
control generated by the controller (uk) and the transmitted
control (ũk) is given in (9). Further, the control is given by,

uk = K(Ek − Ed)!̂k cos �̂k (21)

Parameter Value

step size (ℎ) 0.1 s
no. of steps (N) 100
mass of the bob (m) 9 kg
length of the rod (l) 1 m
moment of inertia (J ) 1 kg m2

initial conditions (�0, !0) (� + 0.8, 0)
controller gain (K) 0.3
weighting parameter (�) 0.5
bias (b) 0.8

Table 1
Numerical experiment parameters

where K is the controller gain and x̂k ∶=
(

�̂k, !̂k
)T repre-

sent the predicted state at the kth instant. The energy is given
byEk = 1

2J!̂
2
k+mgl(cos �̂k−1) andEd is the energy in thedesired state. Here, we use an established control law that

stabilizes the inverted pendulum without bias to its upright
position [23]. The predictor dynamics corresponding to (9)
are given as,

f̂ (x̂k, ũk) ∶=

(

�̂k + ℎ!̂k
!̂k + ℎ

ml
J sin �̂k −

ml
J ũk cos �̂k

)

. (22)

We choose the total cost as
J = Jsc + Jcomm (23)

where,

Jsc ∶=
N−1
∑

k=0
(�k − �)TQ(�k − �) + !TkQ!k + ũ

T
kRũk

Jcomm ∶=
N−1
∑

k=0
qTk qk

(24)
such that it penalizes the pendulum when it is farther from
the upward equilibrium. Unless specified otherwise, the sys-
tem parameters are chosen as given in the following Table 1.
Within this section, we delve into the following key aspects:
(Obj1) A comparative performance analysis with and with-

out the predictor integrated into the loop.
(Obj2) A study of available communication choices and

their implications.
(Obj3) Examination of the varying impact of the weighting

factor (�).
(Obj4) An assessment of the time and computational com-

plexities of our approach vis-à-vis an exhaustive
search method.
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Figure 3: Setup 1 - top: actual and calculated angular posi-
tion, middle: actual and transmitted control, bottom: optimal
switching signal

4.1. Setup 1: Predictor in the Loop
First, we study a general setup discussed in the article.

The predictor is integrated into the loop, and it updates the
state information based on the latest observation available.
The pendulum is perturbed from its upward equilibrium
initially. For the initial 20 steps, we see in Fig. 3 that the
difference between the actual state and the equilibrium posi-
tion is significant. Thus for these steps, we observe that the
control command is transmitted more than the observation.
After 40 steps, the pendulum oscillates in a narrow range
near the equilibrium due to the inherited nature of the control
law (21), which is observed by [23].
4.2. Setup 2: Without the Predictor

In this setup, we discard the predictor from the loop and
assume that when the observation is unavailable, we use the
latest observation available. Then the observation is updated
as,

x̂k ∶=

{

xk if qk = −1;
x̂k−1 otherwise. (25)

The rest of the derivations were modified accordingly. In
this case, consider the same three communication choices
as in the previous case. Here, the controller does not have
the latest information of the states at the plant, and the
control command is a function of the delayed observation.
Moreover, the intelligence provided by the predictor is also
missing. This results in more significant oscillation, as ob-
served in Fig. 4.
4.3. Setup 3: Two choices of Communication

We consider the system with the predictor in the loop in
this setup. But the policy designer has two choices: i) send
the control command or ii) receive the measured signal. The
problem formulation and solution need some modification
since the choice of qk is restricted to −1 (receive the feed-
back) or 1 (send the control command). In Fig. 5, we find a
similar result to the first setup, i.e., the control command is
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Figure 4: Setup 2 - top: actual and calculated angular posi-
tion, middle: actual and transmitted control, bottom: optimal
switching signal
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Figure 5: Setup 3 - top: actual and calculated angular posi-
tion, middle: actual and transmitted control, bottom: optimal
switching signal

Setup 1 Setup 2 Setup 3

total cost 44.43 207.88 69.81
Jsc 22.93 178.88 19.81
Jcomm 43 58 100

Table 2
Performance comparison of all setups with � = 0.5

transmitted more in the first 40 steps. This indicates the op-
timal switching policy emphasizes regulating the pendulum
position near the equilibrium.
4.4. Discussion

With setups explained in the preceding subsections, we
tabulate different costs for all setups in Table 2, and we
present our observations (Obs1) - (Obs4).
(Obs1) Performace of setup 2without a predictor in the loop
is poor compared to setup 1 with a predictor, in terms of
all costs. This indicates that the regulation is poorer and the
communication requirement is higher.
(Obs2) In setup 3, the network is constantly communicating
either way, still setup 1 performs better in terms of total
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# of steps
Computation time

(in sec) Cost
exhaustive
method

proposed
method

exhaustive
method

proposed
method

5 6.45 2.57 9.37 9.41
6 24.69 2.7 11.82 12.01
7 87 2.84 13.40 13.52

Table 3
Comparison of time complexity and total cost between exhaus-
tive search vs. proposed method

costs. Since the network is communicating at all times, the
performance in terms of quadratic cost is better in setup
3. However, for that, the availability of the communication
channel at all times is required.
(Obs3) We use setup 1 and vary the weighting factor (�)
in the total cost. Fig. 6 shows that when the weight of the

40 42 44 46 48 50 52 54
20

30

40

50

60

70

80

90

100

110

Figure 6: Trade-off between control cost and communication
cost while varying �

communication cost (Jcomm) is high, there is less communi-
cation. As we decrease the weight of communication, we ob-
serve that the number of communication instances increases.
This establishes a trade-off between better regulation and
the number of communication instances. It is important to
note the communication cost is discrete, therefore we do not
observe a point, corresponding to � = 0.5, that does not fit
the curve exactly.
(Obs4) We employ an exhaustive search method to compare
our results of setup 1 with it. In the exhaustive search
method, we search among all possible combinations of
switching sequences and note the outcomes. Since we have
three choices of the switch position, the number of possibili-
ties is 3N , which is an exponential increase with the number
of time steps. This is evident in the Table 3. Whereas the
computation time in our proposed method does not scale as
fast. Also, we tabulate the total cost in both methods, which
is almost the same, and the minor variation can be attributed
to the numerical approximation.

5. Conclusions
In this article, we proposed a general framework of an

NCS with a communication channel shared for the trans-
mission of the control and the observation. The problem of
optimal scheduling of the transmission was tackled using
DPMP by reformulating the problem using an augmented
state. The empirical validation, conducted on a nonlinear
system - the inverted pendulum, reaffirmed the theoretical
conclusions. Notably, our proposed approach outperformed
an exhaustive search method in terms of computational
efficiency.

An extension of the problem can be considered where
there are multiple channels in both ways of communication
with different delays, and the goal is to find the optimal
scheduling policy. Another avenue of future work is to
design a joint policy for optimal control and optimal schedul-
ing.

Appendix A. Derivation of Overall System
Dynamics

The system description is given in (1)-(8) and is com-
bined in (9) as follows. In (9), the first and the third equations
are written as they appear in (1) and (2), respectively. From
(6), the transmitted control can be expressed algebraically
as,

ũk =
qk(1 + qk)

2
uk +

(1 − qk)
2

ũk−1 +
(1 − qk)(1 + qk)

2
ũk−1

=
qk(1 + qk)

2
uk +

(1 − qk)(2 + qk)
2

ũk−1

= 1
2
(

qk
(

1 + qk
)

uk +
(

2 + qk
) (

1 − qk
)

ũk−1
)

.

(26)
As the switch position varies among three positions given by
qk ∈ {−1, 0, 1}, we verify that conditions given in (6) hold.
If qk = 1, then the first term in the first equality becomes ukand the rest two go to zero. If q = −1, then the second term
in the first equality becomes ũk−1, and the rest two terms
go to zero. Similarly, if qk = 0, then the first term goes
to zero, and the rest two terms become 1

2 ũk−1. Hence (6) isverified. Similarly, from (8) the prediction can be expressed
as follows,

x̂k =
−qk(1 − qk)

2
xk +

(1 + qk)
2

f̂ (x̂k−1, ũk−1)

+
(1 − qk)(1 + qk)

2
f̂ (x̂k−1, ũk−1)

= −1
2
qk(1 − qk)xk

+
(

1 −
qk
2

)

(

1 + qk
)

f̂ (x̂k−1, ũk−1).

(27)

If qk = −1, then the first term in the first equality becomes
xk, and the rest two terms go to zero. If qk = 1, then the
second term in the first equality goes to f̂ (x̂k−1, ũk−1), andthe rest two terms go to zero. If q = 0, then the first term goes
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to zero and the rest two terms each go to 1
2 f̂ (x̂k−1, ũk−1).Thereby verifying the conditions of (8).

Equation (9) is re-written by replacing ũk = g(x̂k) as

xk+1 = f (xk, ũk)

ũk =
1
2
[qk

(

1 + qk
)

g(x̂k) +
(

2 + qk
) (

1 − qk
)

ũk−1]

x̂k = −
1
2
qk(1 − qk)xk

+
(

1 −
qk
2

)

(

1 + qk
) (

f̂ (x̂k−1, ũk−1)
)

(28)
The above equation can be written in a compact form as (10)
using the concatenated state �k.
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