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Abstract
Vehicles equipped with adaptive cruise control (ACC) systems are expected to improve traffic safety and decrease fuel
consumption. Recent experimental studies have shown that ACC leads to string instability in the case of platooning and
can, therefore, result in higher energy needs compared to a platoon of human-driven vehicles (HDV). However, the impact
of the ACC on fuel consumption in the case of platooning and the global impact of ACC overconsumption in traffic is not
known yet. This study examines the impact of ACC systems on traffic consumption using experimental data and traffic
records. In this study, we inject the speed profiles of ACC and HDV platoons that follow a similar leader trajectory into
an engine bench. Then, we identify the event that leads to an overconsumption in the case of platooning. The results of
the engine bench show that only ACC platoons of six or more vehicles with a short time-gap setting consume more than
HDV platoons. Using HighD and ExiD records, we detect if the events leading to overconsumption often happen in traffic.
The results on HighD and ExiD show that such an event happens once out of 1250 if we divide the time into steps of 15
seconds. This shows that, even if overconsumption exists in specific cases, those cases are actually too rare in traffic to
impact global fuel consumption.
Keywords: adaptive cruise control, fuel consumption, engine bench, traffic dataset.

Introduction

Adaptive cruise control (ACC) is defined as level one out
of five levels of vehicle automation by SAE International
(1). These systems are increasingly prevalent on US and EU
roads, and their market penetration rates should approach
25 % in 2030 (2). Manufacturers claim that their systems,
although designed to increase driver safety and comfort, will
reduce vehicle consumption (3). Penetration rates could grow
faster as a company has developed software that equips any
compatible vehicle with an SAE level 2 system (4). The
software is open source on GitHub (5) and is expected to
become widely used (6, 7).

Some recent studies have collected ACC platooning
trajectories during experiments (8, 9). Further studies based
on these data have analysed the impact of ACC on road
capacity by creating fundamental diagrams (10, 11) and have
found that ACC can decrease road capacity up to 25 % for
a 100 % ACC penetration rate (11). Other studies (9, 12–
14) have shown that ACC vehicles in a platoon tend to create
string instability (15). The system generates a deceleration
overreaction followed by an acceleration overreaction that
propagates to the other vehicles in the platoon, increasing
in magnitude. This deceleration-acceleration overreaction
is not observed in human-driven vehicles (HDV) platoons
following the same trajectory (14). It might reduce traffic

safety levels and increase fuel consumption, contrary to the
manufacturers’ claim.

The specific topic of ACC fuel consumption has been
studied since the beginning of ACC commercialization.
Some early studies determined that ACC, depending on its
algorithm and the chosen setting, would consume between
8 and 28 % less fuel (16). However, this result was based on
assumptions, not experimental data with ACC vehicles. Other
studies have focused on developing eco-driving algorithms
for ACC systems to reduce fuel consumption (17). Some
models (14, 18) were developed based on data collected in
ACC platoon experiments (8) and have found a link between
the string instability produced by ACC platoons and an
increase of the energy that the car needs to progress compared
with HDV platoons (19).

String instability can appear only when vehicles are in a
platooning formation. In any other situation, the time gap
is large enough for at least one ACC vehicle to switch
back to cruise control mode. This would cut the wave of
overreaction and limit the magnitude of string instability. If
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the ACC vehicles are not in a platooning formation, they
will drive at a constant speed. The constant speed is the
condition when the car consumes the least (20). In other
terms, if an ACC is not in car-following mode, it does not
consume more than an HDV vehicle using cruise control.
Furthermore, in the case of only two vehicles in a platoon,
a previous study (8) shows that the overreaction from the
follower is very limited, and it is improbable that this would
significantly impact fuel consumption. Consequently, at least
three vehicles are needed to observe string instability that
would lead to fuel overconsumption compared to the same
formation of HDV vehicles. In the case of a mixed platoon
ACC and HDV, the human drivers will likely cut the string
instability wave in the case of a mixed platoon HDV and
ACC. This would compensate for the impact of ACC vehicles
within the platoon. Based on this hypothesis, we assume for
this study that ACC vehicles hurt fuel consumption if and
only if they are in a platooning formation composed of ACC.

In summary, the previous studies have shown that the ACC
vehicles tend to overreact. In the case of platooning, this
overreaction propagates all over the platoon and leads to
an increase in the need for energy consumption. However,
those results cannot be transposed directly to estimate the
fuel consumption of ACC platoons, as it is not necessarily
a linear function of energy needs. This study aims to estimate
the potential overconsumption more accurately using an
experimental setup and trajectory data. We propose the
framework presented in figure 1 to address this question.

The first step comprises two substeps: in step 1.1, we select
trajectories of ACC and HDV in a platooning experiment on a
test track to pick up the platoons with the most similar leader
profiles. To do so, we use OpenACC data (8). Second, we
inject the trajectories in an engine test bench to determine
the impact of automation on consumption in the case of
platooning. Those two steps, 1.1 and 1.2, are described in
the next part. Third, we identify the specific events that
might trigger a difference in consumption within a trajectory.
Finally, we examine how often these events might happen in
real-life traffic based on traffic datasets. This part uses HighD
and ExiD datasets (21, 22). Steps 2.1 and 2.2 are described in
the third section. A discussion and conclusion part ends the
paper.

Fuel consumption in an engine bench
experiment

Data selection
Speed and acceleration profile, road gradient, vehicle
characteristics, and local weather influence fuel consumption.
To make a fair comparison, we must analyze vehicles
following a platoon leader with a similar speed profile in
the same environment. This requirement is met by a dataset
collected in the experiment on the Zalazone test track during
the OpenACC campaign by the JRC team (8, 12).

The goal was to analyze the impact of long platoons of
ACC vehicles (i.e., 10 to 12 vehicles), with the same leader
trajectories. The vehicles were driven either manually or with
the ACC activated. When the ACC system was activated,
several time gap settings were tested. Each vehicle was a
different make and model, and the vehicle order was changed
between experiments with short, long, and medium time
gaps.

However, even if the vehicles were all of different makes
and models, they were all sedans with roughly the same
shape. The engine from one vehicle to another produces a
similar level of power.

This implies that the engine type influence on consumption
in this experiment is, at most, negligible. Their minimal
headway is, except for a fraction of a second, always larger
than twice the length of an individual car, which means that
vehicles do not benefit from the slipstreaming phenomenon
(23).

The shorter the time gap, the more reactive the response of
the following vehicle. Two different experimental conditions
were tested. In one experiment (condition A), the leader
vehicle imposed significant decelerations and accelerations.
In the second one (condition B), the leader drove as much
as possible at a constant speed, and the speed variations
were only due to the road geometry. An extensive data
description was presented in (12). The comparison of the two
experimental conditions has shown that condition A leads to
emergency braking, which rarely happens in real traffic on
freeways. Thus, we decided to focus on the trajectories in
experimental condition B as their deceleration-acceleration
phases are more likely to be observed in real traffic. The
goal is to select the HDV and ACC trajectories with the most
similar leader speed profile.

We first separated the platoons into groups based on their
mean speed (8m/s, 11m/s, 14.5m/s, and 17.5m/s) and
their setting (HDV, ACC with short time gap setting, ACC
with long time gap setting or ACC platoons with different
settings from one vehicle to another). The data were collected
at 10 Hz through sensors placed inside the vehicles. For each
group (same mean speed and setting), we compared all the
first recorded trajectories and selected the platoon with the
most similar first-recorded trajectories. This first recorded
trajectory corresponds to the first follower, as the leader’s
trajectory is not included in OpenACC.

To do so, we compute for each first-recorded trajectory the
distance with every other first-recorded trajectory that does
not belong to the same platoon group* using the dynamic
time warping algorithm (24). This allowed us to identify a
platoon for each ACC setting with the closest first-recorded
trajectory, leading to the selection of four platoons. Figure 2
presents the speed profiles. In all ACC trajectories, we notice

∗e.g., if the trajectory belongs to a short time gap platoon, we compare it
with either long time gap, mixed time gap or HDV platoons
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Figure 1. Flowchart of the study. Blue boxes indicate the substeps used to determine the consumption of ACC platoons. Green boxes
represent the substeps to determine the frequency of the trajectories used in the bench experiment in motorway traffic.

two large deceleration-acceleration patterns. According to Li
and al. (13) and Ciuffo and al. (14), string instability always
follows these events. String instability can be observed in
all platoons included in the dataset, no matter the order of
the vehicle models. In the case of short-time gap platoons,
the string instability is more important (see 2) and leads to
harsher decelerations and accelerations compared to the other
trajectories. This shows that short time gap ACC platoons
tend to accelerate more than other ACC platoons or HDV
platoons.

Given that the obtained data were partially incomplete (less
than one percent of the points were missing), we interpolated
the missing points using a linear interpolation scheme. Then,
we applied the kernel regression to the data to smoothen
it before testing it on the engine bench. In the test bench,
we used only the follower’s trajectories because the leader’s
trajectory was recorded at a 1Hz rate instead of a 10Hz rate
due to technical limitations, and this sampling rate is too low
for the engine bench.

Engine bench experiment
The principle of the real-time experiment consists of
controlling a real engine in the bench while simulating the
driveline and the resistive force of the vehicle. The engine is

petrol from a Renault Kadjar TCE130, and its characteristics
are presented in table 1.

Table 1. Hardware in a loop engine characteristics that were
used during the experimentation.

Component Characteristics Value
Vehicle weight 1350 kg
engine displacement 1197 cc

max power 96 kW @ 5500 rpm

The engine follows the indicated instructions computed
by the VEHLIB model, a Simulink package created by the
Université Gustave Eiffel (25). In detail, the models work
in power hardware in the loop mode: a simulated vehicle
controller follows the desired speed by choosing the correct
gear number at each time step and sending a throttle value
to the engine controller. An energetic vehicle model runs
in the real-time processor and interacts with the bench.
The VEHLIB library is also used to interface data and the
engine. Sensors placed all over the engine allow one to
record indicators such as engine torque, temperature, fuel
consumption, and fuel density. Engine torque is then re-
injected in real time into the VEHLIB model, which estimates
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Figure 2. Selected platoons for the engine experiment. In the case of the short time gap platoon, the trajectory after t=300s is not
used. The period highlighted in black corresponds to the triggering event described in the subsection ”Identifying the event.”

Figure 3. Protocol used to obtain consumption data using the engine. Each arrow corresponds to the execution of either a simulation
tool or the execution of the hardware in a loop engine.

the vehicle’s speed. This system is detailed in (26, 27). Figure
3 presents a global process overview.

Before launching the experiment and after each break, a
warm-up cycle was imposed on the engine. The goal was to
avoid a situation where the engine would consume more due
to cold components. Before each measurement, the system
was set in control mode to impose speed profiles. Then,
we started the engine and ensured that it was not cold.
When the engine stabilized at its idle speed of around 750
rotations per minute (values of this stabilization speed range
from 730 to 780 rotations per minute), we launched the
measurement system, and immediately after, we imposed the
speed profile. After each experiment, we saved the following

measurements: time, speed, gearbox position, fuel rate, and
fuel density. Each output was saved at a 10 Hz rate (the real-
time loop runs at 100kHz). To ensure that the results are
not dependent on the engine conditions, each trajectory was
tested three times in the engine.

After experimenting with all the trajectories in the engine,
we compared the global speed profiles of the initial data and
the speed generated by the engine. For example, Figure 4
shows the speed profile from the original data compared with
the engine’s speed generated for the 6th vehicle of the long
time gap ACC platoon.
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Figure 4. Comparison of the engine generated speed and the
OpenACC recorded speed. The trajectory corresponds to the
sixth vehicle of the long-time gap ACC platoon. The results are
similar for all reproduced trajectories.

Experimental results
Consistency of the engine’s results Before examining the
physical meaning of our results, we checked that the engine
results from one repetition to another are similar. Small
fluctuations from one experiment to another are expected
because the value of the engine speed at stabilized idle
speed can slightly change between repetitions. To study these
fluctuations, we calculated the mean consumption per 100 km
during the entire cycle for each recorded experiment using the
following conservation law:

consumption100 km = 100 ∗
∫ tmax

t0
Fr(t) dt∫ tmax

t0
v(t) dt

.
1

Fd
(1)

where Fr(t) is the fuel rate at time t, Fd is the mean value
of the fuel density during the measurement, and v(t) is the
vehicle speed at time t.

We then compare this consumption with the mean
consumption for the three repetitions for the same trajectory
by computing the relative distance between the mean
value of the three repetitions and the individual value of
each repetition. The mean difference of the absolute value
between measurements is 0.84 % (median = 0.67 %). The
maximal distance between one individual measurement and
the corresponding mean is 0.17L/100km, corresponding to
a three % difference. The results show that the differences
between measurements are small enough to be confident in
the measurement process.

Consumption results Figure 5 shows the consumption
results in litres per 100 km for each repetition versus the
position in the platoon. A different colour represents each
platoon type.
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Figure 5. Scatter plot of the consumption of each tested
trajectory by the position in the platoon. Each dot corresponds to
one repetition. The colour indicates the platoon type.

The first observation is that the consumption increases
with the position in the platoon, regardless of the platoon
type. However, the increment seems higher for the short time
gap platoon than the other platoons. Before the 6th vehicle
position, there is no clear overconsumption from one platoon
to another as the vehicle that consumes the most is either
the short-time gap platoon vehicle (positions 2 and 3) or the
long-time gap platoon vehicle (positions 4 and 5). From the
2nd to 4th position in the platoon, the consumption difference
between the measurement with the highest consumption and
the one with the lowest consumption is lower than or equal
to 0.5L/100km. However, after the 6th vehicle position, the
vehicles belonging to the short time-gap platoon consume
at least 0.5 L/100km more than the vehicles belonging to
any other platoon. The difference between the measurement
with the highest consumption and the one with the smallest
consumption is equal to or higher than 0.7L/100 km. We
observe two outliers in those results: the 9th vehicle in the
short time gap platoon and the 11th in the long time gap
platoon. They tend to consume less than the previous vehicle,
even if they are at the end of the platoon.

This is the consequence of the specific speed profiles
of those two vehicles, showing no overreaction compared
to their previous vehicles (see the corresponding vehicles’
trajectories in Figure 2).

The results show that, in the case of five vehicles or less,
we cannot identify any difference in consumption between
platoon types. However, if their position in the platoon is
equal to or larger than six, then the short time gap ACC
vehicles tend to consume more than the HDV. For the vehicles
belonging to the other types, there is no clear correlation
between the position in the platoon and the difference
in consumption compared with the HDV. The scatter plot
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indicates a potential linear relation between consumption and
the position in the platoon. This linear relation rate differs
from one type of platoon to another.

Linear mixed-effect model We then test the hypothesis of a
linear relation between the position within the platoon and
the consumption for each platoon type. We are interested
in detecting differences in impact across platoons. For
each trajectory, we collected three repetitions in the test-
bench experiment. To capture potential correlations between
repetitions, we estimated a linear mixed-effect model. The
linear mixed-effect model equation is as follows:

Y =α+ β · positionHDV

+ (α+ αlong) + (β + βlong) · positionlong

+ (α+ αmixed) + (β + βmixed) · positionmixed

+ (α+ αshort) + (β + βshort) · positionshort
+ γ + ϵ

(2)

α is the intercept for the HDV platoon used as the model’s
reference. β is the slope of the HDV platoon. α+ αi is the
intercept for one ACC platoon (i is the type of platoon), βi

is the slope for one platoon, γ captures the impact of the
trajectory-specific error term taken from a normal distribution
with mean zero and standard deviation µ, ϵ captures the
effects of the observation-specific error term taken from a
normal distribution with mean zero and standard deviation
κ.

We perform a likelihood ratio test to understand if the
trajectory-specific error term had a significant effect. The
obtained p-value is 4.5× 10−24. The result shows that the
observations significantly correlate across repetitions for the
same trajectory (see table 2).

The long-time gap platoon is used as a reference category.
If we compare the HDV results of the confidence interval of
the β values with the mixed and HDV platoons, we see that
there is no significant difference. This shows that the HDV
is not significantly different from the mixed or long-time
gap platoon regressions. Conversely, the same table 2 shows
that the confidence interval of the short time gap β does not
overlap with any of the other regressions. This shows that
the parameter is significantly different compared to the three
others.

Figure 6 presents the regression model and the confidence
interval estimated with the bootstrap method. It shows that
after the fifth vehicle in the platoon, the confidence interval
for the short-time gap platoon does not overlap with the
confidence intervals of any other platoon type.

In conclusion, a platoon that only contains ACC vehicles
with a short time gap of at least five vehicles consumes
significantly more than any other type of platoon of the same
size. This finding agrees with previous studies highlighting
the relation between short time gap setting and the magnitude
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Figure 6. Linear mixed effect model that links the consumption
as a function of the position in the platoon for each different
platoon type. The solid line indicates the marginal mean. The
coloured ribbon shows the 95% confidence interval computed
using the bootstrap method.

of string instability (28). Indeed, vehicles in a short time
gap setting ACC platoons tend to accelerate more due to
considerable instability. As a consequence, the amount of fuel
needed increases. These findings are based on data collected
in a test-track experiment, where a significant deceleration of
the leader triggered string instability. To have an overview of
the overconsumption of ACC, we need to analyze how often
such events might happen in actual traffic conditions.

Event occurrence based on trajectory
dataset

Selection of the events
The results in the test test bench experiment showed that, in
the case of platooning, short time gap ACC vehicles lead to
significant overconsumption when they are the only type of
vehicle in the platoon. In short time-gap platoon trajectories,
two deceleration-acceleration events by the leader lead to a
string instability as the one described by Wilson (15). The
deceleration-acceleration events between the first and the
ninth follower lead to an eight m/s minimal speed difference
in the first event and a ten m/s speed difference in the second
event. Such deceleration-acceleration events are not seen in
any other trajectory. This leads some authors to suppose that
the deceleration-acceleration patterns that produce the string
instability are also the event creating the overconsumption
(14). The work presented in this part of the paper aims to
identify whether the events we studied with the engine test
bench test are frequent in real-world traffic.

In the OpenACC data used in the previous part, the leader
trajectories were recorded at 1Hz and were noisy due to
the sampling rate. Therefore, we used the first follower
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Table 2. Results of the linear mixed-effect model that links the consumption as a function of the position in the platoon for each
different platoon type. The final log-likelihood is obtained using the ML estimation method. The parameters are estimated using the
REML method. The results are displayed with the HDV platoon used as a reference category for intercept and slope.

Model statistics
No. Observations 99
No. Groups 33
Group size 3
Final log-likelihood: 72.16
Parameter value Std. Err. z P > |z| [0.025 0.975]
Slope (reference HDV) 0.101 0.031 3.211 0.001 0.039 0.162
Slope long platoon -0.007 0.040 -0.166 0.869 -0.086 0.073
Slope mixed platoon 0.008 0.043 0.174 0.862 -0.077 0.092
Slope short platoon 0.198 0.042 4.670 0.000 0.115 0.281
Intercept(reference HDV) 4.478 0.193 23.192 0.000 4.100 4.857
Intercept long platoon 0.281 0.261 1.079 0.281 -0.230 0.792
Intercept mixed platoon 0.089 0.270 0.330 0.741 -0.439 0.617
Intercept short platoon -0.370 0.269 -1.377 0.169 -0.897 0.157
Group Variance 0.048 0.236
Residuals 0.0048

speed profile to define the event leading to string instability
and overconsumption. Looking at the speed profiles, we
noticed that the string instability is always preceded by a
deceleration-acceleration with a ∆v > 2.5m /s of the first
follower. We define this pattern as the triggering event that
leads to string instability and overconsumption, as shown in
(14). The triggering event is defined when three conditions
are met:

• The follower shows a higher acceleration and
deceleration compared to the leader;

• The deceleration leads to a reduction of the first
follower speed of 2.5 m/s over a few seconds,
immediately followed by an acceleration of 100 % to
150 % more important than the deceleration;

• This pattern is then followed by a string instability that
involves the entire platoon.

We observe two events corresponding to the above
definition for each first follower trajectory in each ACC
platoon within the OpenACC subset we used (see periods
highlighted in black in Figure 3).

Mathematically, we can define the above triggering event
as follows. Let E be a deceleration-acceleration event and
E∗ be the set of the triggering events that correspond to the
description underneath (note that numerical values are based
on the observation of the data):

E ∈ E∗ ⇔ ∃ t0, t1, t2 (3)

where

• t2 − t0 < 15s
• v(t1) = min(v(t))∀t ∈ [t0, t0 + 100]
• v(t2) = max(v(t))∀t ∈ [t0, t0 + 100]
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Figure 7. One example of the triggering event that led to the
string instability wave. t0 indicates the beginning of the event, t1
indicates the time of the minimal speed within the event, and t2
indicates the end of the event.

Figure 7 shows an example of a triggering event and
illustrates the mathematical definition.

We selected the events corresponding to the above
definition in the three ACC platoons’ first follower
trajectories used in the engine test bench. On average,
we have a triggering event with a deceleration phase that
leads to ∆v1 = −2.4m/s speed difference followed by an
acceleration phase with a ∆v2 = 3.5m/s speed difference
and a total duration of ∆T = 11.6s.

The following section will only consider the triggering
events that lead to string instability. That corresponds to the
six triggering events related to the ACC platoons.
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Trajectory dataset description
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Figure 8. Histogram of the mean recorded speed for each
vehicle in HighD and ExiD datasets. Each bar corresponds to
the mean speed of one vehicle trajectory within one dataset or
the other. The red line is the limit we set to consider that a
trajectory belongs to a congested scene.

We use the trajectories in the HighD (21) and ExiD
datasets (22) to determine how often the triggering events
described in the above section happen in real traffic. These
two datasets were collected in German Autobahns using
drones by a team from Ika and the University of Aachen.
They captured highway scenes in the two directions on
400m sections. The trajectories were extracted from the
video recordings using a neural network. 9.63× 108 hours
of trajectories were collected. The datasets include records
of both free-flow and congested traffic conditions. The data
contain each vehicle’s timestep, position, speed, acceleration,
current lane, time and distance gap, and time to collision.
Trajectories were recorded on motorway sections near Koln
and Dusseldorf. While HighD trajectories were recorded on
motorway straight sections, ExiD trajectories were collected
in highway merging and diverging geometries. Figure 8
presents the mean speed distribution of each vehicle record
of the two datasets.

As major acceleration and deceleration are very uncom-
mon in the case of free-flow traffic records, we decided to
limit our comparison to the congested traffic conditions in
these two datasets. We define a traffic condition as congested
if the mean speed is under 20 m/s, corresponding to a 45
% speed reduction compared to the recommended speed.
After applying the condition on the mean speed, we are left
with two HighD records to explore out of 59 and 20 ExiD
records out of 54. The mean rate of the selected scenes varies
from 4.6m/s to 17m/s. These scenes record 1.59× 108h of
total travel time. Using these records, we determined the
percentage of time when a triggering event occurred.

Events identification result
We determine how often such deceleration-acceleration, like
the ones in the OpenACC triggering events, happens in
congested traffic by analyzing the speed profiles in the

selected scenes. For each speed profile, we compare on a
period of [t0, t0 + 15 s] the dynamic time warping (DTW)
distance (24) between each triggering event and the speed
profile during the period. We then compare the mean DTW
distance between the HighD speed profile and each of the
six triggering events (as presented in ) to the reference
distance, calculated based on the mean distance between the
six triggering events as shown in section . We use a moving
window of a 15s length as described in Figure 9.

Time [s]

Sp
ee

d 
[m

/s
]

 
Moving window

DTW match

Figure 9. Used algorithm to detect if a 15s sample of the speed
profile of one vehicle taken from HighD or ExiD is similar to the
triggering event. The size of the moving window is 15s, and the
displacement for each iteration is 2s.

The method presented in Figure 9 gives us the ratio
between the temporal periods when a triggering event
happens and the total travel time.

We apply this method to the 22 records corresponding to
the congested situations. We found 12, 686 h out of 1.59×
108h corresponding to triggering events. This leads to a ratio
of 7.98× 10−5 between the total duration of the recordings
and the cumulated duration of all the triggering events. This
highlights that such events are infrequent within motorway
traffic.

We compared the findings to previous studies to
understand the impacts on global traffic consumption.
According to a study (29) that used original NGSIM data
(30), the mean consumption in congestion in a motorway
with only HDV is 14.7 L/100km (keep in mind that the values
are taken from a 2008 study and might be lower nowadays).
We supposed that the mean consumption value corresponds
to the consumption of the first follower. Note that this is an
overestimation. The first vehicle of a platoon will necessarily
consume less than the average consumption as it is not subject
to triggering. We extrapolated the consumption of an ACC
platoon, supposing that from one vehicle in a platoon to
another vehicle, the ratio Consumptionvehi

Consumptionvehi−1
is the same as in
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our engine bench experimentation results. We then supposed
that each vehicle was part of a 10-vehicle ACC platoon
and that each vehicle had a short time-gap setting, a very
pessimistic hypothesis in terms of consumption. Even with
such a pessimistic hypothesis, the percentage increase in fuel
consumption equals 1.7× 10−5%.

Discussion and conclusion
In this paper, we studied the impact of ACC vehicles on
consumption. To do so, we used a two-step framework. First,
we studied ACC overconsumption in the case of platooning
using OpenACC data (8) in an engine bench. Second, we
determined what event could cause such overconsumption
and computed how often such an event happens in real traffic
using HighD and ExiD datasets.

The results of the engine bench show that ACC vehicles
with a short time gap setting consume more than HDV
in the case of platoons with five or more vehicles. The
difference in consumption increases with the length of
the platoon. However, the event we identified as the
origin of overconsumption (i.e., an acceleration-deceleration
triggering event) is too rare to produce any noteworthy
overconsumption globally, as it occurs 0.08 % of the time. If
the platoon consumption results are observed in real traffic,
the global overconsumption will be only 1.7× 10−5%.

Notably, the impact of the position in the platoon on
consumption is similar between ACC with long or mixed time
gaps platoons and HDV. The mixed platoon comprises three
short time gap ACC vehicles, two long time gap ACC, and
three short time gap ACC. We could have expected, given
this composition, that the consumption of the vehicles within
this platoon would have been higher than the ones of the long
time gap platoon. Yet, this is not the case. Adding two long
time gap ACC in a platoon mainly composed of short time
gap ACC is sufficient to reduce the consumption to the one
of a platoon entirely consisting of long time gap ACC.

Those results highlight that the main issue for overcon-
sumption in ACC traffic is the long platoons of short time
gap setting vehicles.

We tried to find a potential link between vehicle model
and impact on consumption. However, we could not clearly
identify differences between the responses of different makes
and models. This element should be further investigated
in future research as we could not address it due to the
experimental design.

The findings in this study must be interpreted with caution.
We assumed that ACC vehicles consume more when facing
string instability and consume the same as HDV vehicles
in any other situation. Since this scenario presents the most
probable circumstance for witnessing a brutal acceleration of
ACC, it’s likely the sole instance. The data were collected
on a single test track, which might limit the generalizability
of the findings. The part of the OpenACC dataset we
used was collected on a test track with curves, while the

HighD and ExiD dataset was collected on straight segments
of the motorway mainline. As the primary use case of
ACC is the motorway mainline, this is representative of
the traffic situations where ACC vehicles are most often
used nowadays. However, if ACC usage were extended to
motorway ramps and rural roads with curves, we might
observe a different proportion of triggering event occurrence.
Concurrently, the penetration rate of ACC within the HighD
and ExiD datasets is expected to be 5%. In case of a global
increase in the penetration rate, the occurrence of triggering
events might change.

The engine in the test bench experiment was less potent
than the engines in the vehicles used to collect the speed
profiles in the test track (12). This means that the test
bench’s engine needed more energy to reach the same torque,
leading to overestimating the consumption values. However,
the comparison across experimental conditions is expected to
be similar with a different engine.

The results have important implications for practice and
future research. Since ACC platoons consume more than
HDV only when all ACC vehicles use a short time gap
setting, a specific regulation could be introduced to increase
the minimal time gap one can choose in certain traffic
situations. Furthermore, a policy to reduce the size of the
short time gap platoons on the road as much as possible could
also help avoid such situations. To do so, we could create
an algorithm that produces a large time gap after two harsh
decelerations. This would break the long platoon formation
and avoid overconsumption.

Beyond the consumption impact, the string instability
observed in OpenACC data is a potential issue for
traffic safety. Such an event produces harsher and harsher
deceleration within the platoon. Therefore, it can trigger
a rear-end collision in extreme cases. Some studies that
analyzed trajectories right before crashes in motorways (31)
have shown that a deceleration harsher than −2.7m/s2 in a
congested section led to an increase in the crash probability
(1 crash every 88 harsh breaking recording during a one hour
period in one kilometre). In the OpenACC data, we observed
three vehicles that execute such a deceleration in the short
time gap and mixed time gap platoon and one vehicle in the
long time gap platoon. In the case of mainly HDV traffic, we
have a 1/1250 probability (by per 15-second intervals) of a
triggering event. This means that each vehicle in a congested
situation for a period of 15 minutes has a 1/20 probability
of overreacting and executing a triggering event. However,
with the increase in ACC penetration rate, this value might
increase, resulting in a higher crash probability. Future work
will focus on assessing the impact of ACC on traffic safety.
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