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Abstract: In this paper, we introduce an online safe learning-based Model Predictive Control (MPC)
approach. This approach, which we call the ”compatible model approach”, consists of building two
models of the system. The first is a piecewise interval-valued over-approximation of the system, and the
second is a single-valued piecewise multi-affine estimation of the system’s dynamics. The first model is
used to find the set of safe actions at each state, whereas the second is used to choose -out of those safe
actions- the input that minimizes a given cost function. For the first model, we use the -assumed known-
bounds on the derivative of the dynamics to update the model. The second model should be contained
in the first to ensure the feasibility of the MPC scheme everywhere (Hence, the name compatible). Both
models can be updated online. We are able to do that because each new transition updates the models
locally. We present a test case where we train a mobile robot at low speeds, then navigate it in an
environment while avoiding obstacles and collecting new data to learn its dynamics at high speeds.

Keywords: Bounded derivative systems, data-driven control, symbolic control, abstraction, online
learning.

1. INTRODUCTION

In the rapidly evolving field of control theory, data-driven
approaches are increasingly favored due to their adeptness
at managing complex nonlinear dynamics, which are often
challenging to model or completely unknown. However, a
significant impediment to their broader adoption, particularly
in safety-critical applications, is the lack of guaranteed safety.
In order to facilitate their broader adoption, considerable efforts
have been dedicated to ensuring the safety of these approaches,
particularly in safety-critical applications (Hewing et al., 2020,
and references therein). This paper presents our contribution
to this ongoing endeavor: a learning-based Model Predictive
Control (MPC) scheme that comes with guaranteed safety. A
significant body of work has been dedicated to this endeavor.
For instance, (Berberich et al. (2020)) and (Zhang et al. (2022))
have made notable contributions towards enhancing safety and
robustness in learning-based MPC. Similar to this work, the
study by (Aswani et al. (2013)) proposed the use of two models
to represent the system, one for ensuring safety and the other
for minimizing a cost function, with the latter being updated
online. We also use two models, but with different structures,
and we do not impose any linearity assumptions on the system.

In this paper, we introduce a safe learning-based MPC scheme
that can be updated online. The scheme consists of building
two models of the system. The first is a piecewise interval-
valued over-approximation of the system, and the second
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is a single-valued piecewise multi-affine estimation of the
system’s dynamics. This estimation is compatible with the
over-approximation, meaning that it is contained in the over-
approximation. The first model is used to find the set of safe
actions at each state, whereas the second is used to choose
the input that minimizes a given cost function. To build the
first model, we use the bounds on the derivatives of the dy-
namics to find -from data- a piecewise interval-valued over-
approximation. By construction, the over-approximation con-
tains the true unknown dynamics. This model is not but a step
to finding a finite-state representation of the system (Abstrac-
tion). With this data-driven abstraction, we can use discrete
control synthesis techniques to find control action fulfilling var-
ious complex requirements (Tabuada (2009)) and (Belta et al.
(2017)). Essential to our case is the safety requirement. By
implementing a fixed point algorithm, we can automatically
reach the set of safe actions at each state of the system. In
recent years, much work has been done to find data-driven
abstractions. In (Kazemi et al. (2022)), abstractions are com-
puted using the growth bound of the system calculated from
a finite number of trajectories. Trajectories of unknown sys-
tems are collected in (Lavaei and Frazzoli (2022)), and a sce-
nario optimization program is used to construct an alternating
bisimulation function with probabilistic guarantees. Also, in
(Lavaei et al. (2023)), stochastic bisimulation functions are
used to capture the distance between trajectories of an unknown
stochastic system and those of a finite Markov decision pro-
cess. In (Devonport et al. (2021)), guarantees for the learned
abstraction were provided using the Probably Approximately
Correct (PAC) statistical framework. What distinguishes the
introduced over-approximation model in this work from the



previously mentioned works is that it guarantees to contain
the system’s dynamics, whereas the previous works offer prob-
abilistic guarantees. In (Sadraddini and Belta (2018)), robust
over-approximations are calculated using the system’s Lips-
chitz constant, but the approach can only deal with a small
number of points.

After finding the set of safe actions at each state, we use the
single-valued estimation to choose the best control action out
of the safe ones that minimize a given cost function. In previous
work (Makdesi et al. (2023b)), we build a data-driven two-
model approach to find a safe learning-based MPC controller.
The two models were calculated offline after sampling a set of
data from the system. This work introduces models that can be
updated online while the system is working. To do that, we use
the new data collected from the system to update the models
locally. Other than the ability to update the models online, the
introduced models are different from the ones in (Makdesi et al.
(2023b)) in how we find the over-approximation and the com-
patible estimation. Instead of using the bounds on the deriva-
tives of the dynamics to transform the data into a monotone-
like case, we find the interval hull of the growth cones built
from the data points and the bounds on the derivatives. Those
growth cones were used by (Milanese and Novara (2004)) for
the identification of nonlinear systems, and by Canale et al.
(2014) to find data-driven MPC controllers. Because we find
the interval-valued over-approximation on predefined partitions
of the input and state spaces, we can deal with way more data
points than (Milanese and Novara (2004)) and (Canale et al.
(2014)). To find locally-computed compatible estimations, we
implement a stochastic gradient descent-like algorithm.

The paper is organized as follows. In Section 2, we formulate
the problem we are trying to solve. Section 3 deals with finding
the system’s over-approximation and using it to find the set of
safe inputs. In Section 4, we introduce the safe learning-based
scheme and the class of functions we use to estimate the true
unknown dynamics. We showcase the validity of our approach
with a test case about a mobile robot in Section 5.

Notations

Given two vectors z1,z2 ∈ Rn, we define the partial order ⪯
on Rn to be z1 ⪯ z2 if and only if zi

1 ≤ zi
2 for all i = 1, . . . ,n.

[z1,z2] = {z ∈ Rn| z1 ⪯ z ⪯ x2} defines a closed interval of
Rn. We define max(z1,z2), or min(z1,z2), to be the vector
z whose components are zi = max(zi

1,z
i
2), or zi = min(zi

1,z
i
2)

respectively. Minkowski addition is denoted by ⊕ and defined
as follows: A⊕ B = {a + b | a ∈ A,b ∈ B}. Meanwhile, the
Minkowski subtraction is denoted by ⊖ and defined as follows:
A⊖B = (Ac⊕ (−B)c)c where Ac is the complement of A and
−B is the set of vectors −b for all b ∈ B.

2. PROBLEM FORMULATION

Given X ⊆ Rnx , U ⊆ Rnu , D ⊆ Rnx , let us consider a discrete-
time nonlinear system of the form:

x(t +1) = f (x(t),u(t))+d(t) (1)
where x ∈ X ,u ∈U,d ∈ D are the state, input, and disturbance.
f : X×U→ X is an unknown nonlinear function. The unknown
function f has bounded derivatives, and the set of disturbances
D = [d,d], is a bounded interval with known bounds d,d ∈Rnx

and such that 0 ∈W .

Let us assume we are given a set of data generated from the
dynamic system (1):

D = {(xk,uk,x′k) | x′k ∈ f (xk,uk)+D,k ∈K}
where K is a finite set of indices. There are different ways
to collect the data set D . One way is to randomly sample
the system’s dynamics using independent samples. This can
be done easily if one can use a black box model of (1) to
generate independent simulations. However, our approach does
not require the use of independent samples. Instead, we can
collect the data by recording the evolution of the true system
over a given period. In that case, we would have x′k = xk+1.

In (Makdesi et al. (2023b)), a learning-based MPC scheme
was introduced. The scheme depends on building two models
of the system offline, and it is capable of enforcing a strong
safety requirement such that the system’s state always stays safe
x(t) ∈ Xs,∀t ∈ N, where Xs ⊆ X is a safe set.

First, a set of safe inputs is found using a data-driven over-
approximation of the system’s dynamics
Definition 1. An over-approximation of the dynamics defined
in (1) is a set-valued map F : X×U ⇒ X that satisfies

f (x,u)+D⊆ F(x,u),∀x ∈ X ,∀u ∈U. (2)

This set-valued over-approximation is used to find a safety
controller CF using either set-theoretic methods (Blanchini and
Miani (2008)) or symbolic control (Tabuada (2009)).
Definition 2. A safety controller CF for the safe set Xs and the
map F is a set-valued map CF : X ⇒U satisfying

• dom(CF)⊆ Xs,
• ∀x ∈ dom(CF),∀u ∈CF(x),F(x,u)⊆ dom(CF),

where dom(CF) = {x ∈ X |CF(x) ̸= /0} is the domain of CF .

We use safety controllers to attribute a set of allowed inputs to
each state x∈ dom(CF). Then, a single-valued estimation of the
true function is built to find the input that minimizes a receding
horizon cost function out of all the possible safe inputs.
Definition 3. An estimation f̂ : X×U → X of the true function
f is said to be compatible with the over-approximation F if

f̂ (x,u)+D⊆ F(x,u),∀x ∈ X ,∀u ∈U. (3)

The following theorem shows how to use the set of safe inputs
found using the data-driven over-approximation and a compat-
ible estimation to implement a learning-based MPC program
that meets the strict safety requirements while enforcing a more
relaxed performance requirement.
Theorem 1. Makdesi et al. (2023b) Given a stage costs Jk : X×
U → R, k ∈ {1, . . . ,N − 1} and a terminal cost JN : X → R,
starting from x(0) ∈ dom(CF), consider the trajectory of (1)
with u(t) = u(0|t) where u(0|t) is obtained by solving the
optimisation problem below:

min
u(0|t),...u(N−1|t)

N−1

∑
i=0

Ji(x(i|t),u(i|t))+ JN(x(N|t))

subject to x(i+1|t) = f̂ (x(i|t),u(i|t)),
∀i ∈ {0, . . . ,N−1}

x(i|t) ∈ Xs, ∀i ∈ {0, . . . ,N}
u(0|t) ∈CF(x(t))
x(0|t) = x(t)

(4)

Then, for all t ∈N, x(t) ∈ Xs and (4) admits a feasible solution,
i.e. the closed-loop system is safe and well-posed.



In this paper, we are interested in finding a safe learning-
based MPC scheme that can be updated online. We assume
that we are given a set of data D sampled from the system
(1). We also assume that we are given the bounds on the
derivatives of the dynamics and the bounds on the disturbance.
We want to find approaches that can be used to build the over-
approximation and the compatible estimation offline to be used
in implementing a safe learning-based MPC scheme according
to Theorem 1. When the system is working, we want to be able
to update the models online using the new data collected from
the system to enlarge the set of safe inputs and improve the
performance of the controller.

3. DATA-DRIVEN SAFETY CONTROLLERS

In this chapter, we will introduce an algorithm to build
an over-approximation of an unknown function. The over-
approximation we introduce is a piecewise interval-valued map
defined on a predefined partition of the inputs and states spaces.
This piecewise interval-valued map is well suited for building
a finite-state representation of the system and, subsequently, a
safety controller.

Let Z ⊆ Rnz , Y ⊆ Rny , D⊆ Rny and f : Z→ Y is defined as
y = f (z)+d (5)

where z ∈ Z,y ∈ Y, and d ∈ D = [d,d]. The unknown function
f has bounded derivatives, i.e.

∂ f i

∂ z j (z) ∈ [γ
i j
,γ i j], i ∈ {1, . . . ,ny}, j ∈ {1, . . . ,nz}.

It is straightforward to implement the results of finding the over-
approximation of the function in (5) to study systems defined
in (1) by choosing Z = X ×U and z = (x,u). A set of data
is sampled from the unknown function D = {(zk,yk) | yk ∈
f (zk)+D,k ∈K}
Remark 1. In (Makdesi et al. (2023a)), a data set consisting
of i.i.d. samples is utilized to estimate the bounds on the
derivatives of the function f and the bounds on the disturbance
D with probabilistic guarantees.

3.1 Building the over-approximation

In this section, we will introduce an algorithm to build an over-
approximation of the function f defined in (5).

Let us start by defining the partition of the input space Z.
For simplicity, we assume that Z = [z,z]. For each coordinate
i ∈ {1, . . . ,nz}, let be given finite partition (Zri)ri∈Ri of the
interval [zi,zi] where Ri = {0, . . . ,Ki} and

zi
0 = [zi,ζ i

1),
zi

ri = [ζ i
ri ,ζ

i
ri+1), ri = 1, . . . ,Ki−1,

zi
Ki = [ζ i

Ki ,zi],

where zi < ζ i
1 < · · · < ζ i

Ki < zi. We define R = R1× ·· ·×Rnz ,
and let the finite rectangular partition (Zr)r∈R of Z be given for
r= (r1, . . . ,rnz) by Zr = Z1

r1×·· ·×Znz
rnz . We denote by zr, zr the

lower and upper bounds of the intervals Zr. When talking about
the states and inputs separately, we will use (Xq)q∈Q,(Up)p∈P
for the partition of the states and inputs spaces.
We also consider a quantization function φ : Z→ R associated
to the finite partitions (Zr)r∈R and defined as

∀z ∈ Z ∀r ∈ R, φ(z) = r ⇐⇒ z ∈ Zr. (6)
The quantization function φ only goal is to aggregate the input

Fig. 1. The figure shows the over-approximation of f on the
cells Zr. The over-approximation is done by finding the
value of the growth cone at the vertices of the cells. Lines
1 through 4 are found using the bounds on the derivatives
of the function f and the bounds on the disturbance D.

space points inside a set Zr to a single symbol r. This will
allow us to define a finite-state representation of the unknown
function.

Let Vr be the set of vertices of the interval Zr, we define the
interval-valued over-approximation map F : Z ⇒ Rny to be a
map F(r) = [F(r),F(r)], where the upper and lower values are
defined by their components F i,F i, i ∈ {1, . . . ,ny} as follows

F i
(r) = min

k∈K

(
max
v∈Vr

(
yi

k +d
i−di +mi

T (zk,v) · (v− zk)
))

(7)

F i(r) = max
k∈K

(
min
v∈Vr

(
yi

k +di−d
i
+mi

T (zk,v) · (v− zk)
))

(8)

m j
i =

{
γ

i j
if z j

k > v j,

γ i j if z j
k < v j.

m j
i =

{
γ i j if z j

k > v j,

γ
i j

if z j
k < v j.

Proposition 1. The map F ◦φ : Z ⇒ Rny over-approximate the
unknown function (5).

The computation of the over-approximation can be done one
data point at a time, making it suitable for online computation.
The main limitation of applying this method online is the par-
tition size. If the partition is too large, the computation of the
over-approximation will be too slow. To overcome this limita-
tion, we introduce next a locally updated over-approximation
that offers a trade-off between the speed of computation and
the conservatism of the over-approximation.

Let Rw(r) = {r′ ∈ R | max(r− rw,0n) ⪯ r′ ⪯ min(r+ rw,K),
rw,rw ∈ R} define the window where we want to update
the over-approximation. We define the locally-computed over-
approximation Fw : Z ⇒ Rny as follows: For all i ∈ {1, . . . ,ny}

F i
w(r) = min

k∈K (r)

(
max
vl∈Vr

(
y j

k +d
j−d j +mi · (zk−vl)

))
(9)

F i
w(r) = max

k∈K (r)

(
max
vl∈Vr

(
y j

k +d j−d
j
+mi · (zk−vl)

))
(10)

K (r) = {k ∈K | zk ∈ Zr⋆ ,r⋆ ∈ Rw(r)}
Proposition 2. The map Fw ◦φ : Z ⇒Rnx over-approximate the
system (1)

3.2 The safety controller

As mentioned earlier, the over-approximation map is used
to build a finite-state model. This model is built using the
predefined partition and the calculated over-approximation. We
begin by defining a tool to describe the finite-state model.
Definition 4. A transition system T is a tuple T = (X ,U,∆,
Y,H), where X is a set of states, U is a set of inputs, ∆ : X×U ⇒



X is a transition relation, Y is a set of outputs, and H : X →Y is
an output map.

Transition systems are useful for describing the behavior of
both continuous and discrete systems, for example, we define
transition systems Tsys = (X ,U,∆sys,Y,H) associated to (1)
where the set of states X and inputs U are the same as in
(1). The transition relation ∆sys is defined for all x ∈ X , for all
u ∈ U by ∆sys(x,u) = f (x,u) +D. The set of outputs Y , and
the output map H can be defined in different ways depending
on the application. We define a symbolic transition system
Tsymb = (Q,P,∆symb, Y,Hsymb) where the set of states and inputs
are given by the partitions index sets Q and P, and the transition
relation ∆symb is defined as follows, for all q ∈ Q, for all p ∈ P

∆symb(q,p) =
{

q′ ∈ Q| (Fw(q,p))∩Xq′ ̸= /0
}
. (11)

We define the set of outputs to be Y = Q and the output map
Hsymb to be the identity map. In (Makdesi et al. (2023a)), it is
shown that a symbolic transition system Tsymb (the finite-state
model) built using an interval-valued over-approximation like
Fw and quantized like in (11) alternatingly simulates the true
system, or in other words, it is an abstraction of the transition
system Tsys.
Proposition 3. (see (Makdesi et al., 2023a, Theorem 3)).
Let Tsys be defined for the set of outputs Y = Q and the output
map H : X → Q, given by

∀x ∈ X , ∀q ∈ Q, H(x) = q ⇐⇒ x ∈ Xq. (12)

Then, Tsymb ⪯AS Tsys.

This means that any controller synthesized for the finite-state
model can be refined to work on the true system. Most rele-
vant to our work is safety; we can find the safety controller
C∆symb : Q ⇒ P and the control invariant set Xinv for the finite-
state model using a fixed point algorithm by iteratively re-
moving unsafe actions. Although this type of algorithm can
automatically find the safety controller, it is meant to be carried
out offline as it is computationally prohibitive to do online.
Algorithm 1 shows how to update the control invariant set and
the safety controller. This is done by checking all the cells in
the neighboring window of the data point and adding the cells
that become safe to the control invariant set. All the safe actions
in the neighboring cells are also added to the safety controller.
Algorithm 1 will not be able to find all the safe actions and cells
based on the new data point. To do that, we need to go through
all the cells and actions in the partition. However, this algorithm
is computationally less expensive than the fixed-point algorithm
and can be done online.

Algorithm 1: Update the control invariant set and the safety
controller
Input : Fw, Xinv, C∆symb

Output: Xinv, C∆symb

foreach q ∈ Qw do
foreach p ∈ Pw do

if Fw(q,p)⊆ Xinv then
Xinv← Xinv∪q;
C∆symb(q)←CF(q)∪p;

end
end

end

4. SAFE LEARNING-BASED MPC

The previous section introduced a data-driven approach to
synthesizing safety controllers. This section shows how to build
a single-valued estimation of dynamics. First, let us define the
type of estimation we will work with.

4.1 Piecewise multi-affine functions

We use the class of piecewise multi-affine functions to build
compatible estimations.
Definition 5. A multi-affine function g : Z → Rm, Z ⊆ Rn is a
function of the form

g(z1, . . . ,zn) = ∑
i1,...,in∈{0,1}

ci1,...,in(z
1)i1 . . .(zn)in (13)

where ci1,...,in ∈ Rm for all i1, . . . , in ∈ {0,1}

In the case where Z is an interval; Z = [z,z], z,z ∈ Rn, we
denote the set of vertices of this interval by

V =
n

∏
i=1
{zi,zi}.

Let ξi : {zi,zi}→ {0,1} for all i ∈ {1, . . . ,n} denote the indica-
tor function

ξi(zi) = 0 ξi(zi) = 1 ∀i ∈ {1, . . . ,n}.
Proposition 4. (see (Belta and Habets, 2006, Proposition 1)).
Let Z ⊆ Z̃ be an n-dimensional interval, g : Z̃ → Rm a multi-
affine function such that, for all the vertices v = (v1, . . . ,vn)∈V
of Z, we have g(v1, . . . ,vn) = yv. Then, for all z = (z1, . . . ,zn) ∈
Z̃ the function g is uniquely given by

g(z) = ∑
v∈V

n

∏
i=1

(
zi− zi

zi− zi

)ξi(vi)( zi− zi

zi− zi

)1−ξi(vi)

yv. (14)

Although the claim in (Belta and Habets, 2006, Proposition 1)
is only for the case when Z = Z̃, nothing in the proof prevents
making this generalization. Proposition 4 allows us to estimate
a multi-affine function by estimating the function’s values on
the vertices of a given interval included in its domain.
Lemma 1. (see (Belta and Habets, 2006, Lemma 2)).
Let s ∈ Rm and b ∈ R. Then, sT g(z) ▷◁ b for all z ∈ Z if and
only if sT g(v) ▷◁ b, for all v ∈ V , where ▷◁ stands for any of
<,≤,=,≥,> .

Given a partition (Zr)r∈R of the interval Z ⊆ Rn , we denote
the vertices of an interval Zr by Vr. A function g : Z → Rm is
piecewise multi-affine if for all r∈R the function is multi-affine
on Zr.
Proposition 5. (see (Makdesi et al., 2023b, Proposition 4)). If a
piecewise multi-affine function g : Z→Rm is continuous on the
grid points of the partition (Zr)r∈R:

lim
z→v

g(z) = g(v) ∀r ∈ R,v ∈Vr

then g is continuous for all z ∈ Z.

As a consequence of Proposition 5, estimating the values of
a piecewise multi-affine function on the vertices of a given
partition will result in a continuous function.

4.2 Compatible estimation

After introducing the piecewise multi-affine functions, we will
now discuss how to use them to find estimations of the true



functions on the predefined partition. A regression problem to
find such a compatible piecewise multi-affine function offline
using all the collected data points was introduced in (Makdesi
et al. (2023b)). Like the over-approximation, the same argu-
ment about the invalidity of this approach online is still relevant
here. Therefore, we developed an online scheme to update the
estimation locally.

Let f̂ : Z → Rny be a piecewise multi-affine function. Given
a data transition (zk,yk) ∈ D , we found in the previous step,
using binary search, that zk ∈ Zr(k). We want to update the
value of this function on the vertices of all the cells in the
neighborhood that contain the data point, namely inside the
window Rw introduced earlier. For all r′ ∈ Rw(r(k)) we have

yk = f̂r′(zk)+ e(zk) (15)
Where f̂r′ is the multi-affine function defined on the interval
Zr′ , and e(zk) is the residual of the estimation. Proposition 4
states that function f̂r′ can be written as a linear combination of
its value on the vertices of the interval Zr′ .

f̂r′(zk) = ∑
v∈Vr′

βv,r′(zk)ŷv.

where βv,r′ represent the linear coefficients, and ŷv is the value
of the estimation function on the vertex v. Let us denote the set
of all vertices of all the cells r′ ∈ Rw(r) by

V (k) =
⋃

r′∈Rw(r)
Vr′ .

The set V (k) is finite and thus can be numbered V =
{v1, . . . ,vnw}, where nw is the number of all vertices of all the
cells r′ ∈ Rw(r(k)). For every j ∈ {1, . . . ,nx}, We aggregate
all the components of the function’s estimation on the vertices
of the window (i.e. ŷ j

v, for all v ∈ V (k)) in a single vector
Ψ j(k) ∈ Rnw . Then, the set of equations in (15) can be written
in the matrix form as follows

χ j(k) = A(k) ·Ψ j(k)+E j(k)

where χ j(k) ∈ R|Rw| is a vector containing |Rw| replications of
y j

k, A(k)∈Rnw×|Rw| is coefficients matrix, and E j(k)∈R|Rw| the
vector of residuals.
Given the diagonal weights’ matrix H. We want to minimize
the sum of the weighted square of errors
S(Ψ j(k)) = ET

j (k) ·H ·E j(k) = (χ j(k)−A(k) ·Ψ j(k))T ·
H · (χ j(k)−A(k) ·Ψ j(k))

= χ
T
j (k) ·H ·χ j(k)−2 (AT (k) ·H ·χ j(k))T ·Ψ j(k)+

Ψ
T
j (k) ·AT (k) ·H ·A(k) ·Ψ j(k)

We will minimize S by implementing a stochastic gradient
descent-like method

Ψ j(k) := Ψ j(k)−η(k)∇S(Ψ j(k))
Where

∇S(Φ j(k)) = 2AT (k) ·H ·A(k) ·Ψ j(k)−2 AT (k) ·H ·χ j(k)

To ensure that the estimation f̂ is compatible with the over-
approximation, a final step is carried out to project the estima-
tion onto the over-approximation. For all i ∈ {1, . . . ,nw}

Ψ
i
j(k) := PFw(r)⊖D (Ψ j(k)) ,r ∈ Rvi (16)

Where Rvi is the set of cells that contain vi i.e. for all r ∈
Rvi ,vi ∈Vr.
Proposition 6. Given the partitions (Xq)q∈Q, (Up)p∈P of X and
U , the piecewise multi-affine estimation function f̂ updated
locally as in (16) is compatible with the over-approximation Fw

(a) The over-approximation of the
dynamics of ẋ

(b) The over-approximation of the
dynamics of ẏ

(c) The over-approximation of the
dynamics of θ̇

Fig. 2. Over-approximation of the bicycle dynamics. The true
unknown functions are shown in solid

5. CASE STUDY

In this section, we present a path-planning problem where a
mobile robot needs to navigate a given environment and reach
four distinct regions while avoiding obstacles. We sampled a set
of data from the vehicle dynamics at low speed. After that, We
found the set of safe controllers and the estimation of dynamics.
We then ran the system at those settings and collected new data
points online. We chose a cost function that favors moving as
fast as possible to learn the robot’s dynamics at high speed. We
do all of that while always ensuring safety. We consider the
unicycle models defined by the following equations

ẋ = v · cos(θ)+d1

ẏ = v · sin(θ)+d2

θ̇ =
v
L

tan(δ )+d3

(17)

Where x,y are the vehicle coordinates, θ is the heading angle,
and L is the length of the vehicle. The system is discretized us-
ing the Euler method with a discretization time dT = 0.2s. We
chose the value L = 0.1 m. Velocity is denoted v, and the steer-
ing angle δ . Velocity and steering angle are the control inputs.
We chose for the states, inputs, and disturbance intervals the fol-
lowing θ ∈ [−π,π],δ ∈ [−π

4 ,
π

4 ],v ∈ (0,2],d ∈ [−0.05,0.05]3,
and partitioned those intervals uniformly into 40 cells each.

To find the over-approximation, we sampled |K| = 104 data
transitions. Only low speeds from the interval v ∈ (0,1] were
chosen. We chose a window of size 11× 11 (several window
sizes were tested, and this one made the trade-off between
the speed of computation from one side and the conservatism
of the over-approximation and the ”smoothness” of the esti-
mation from the other side). The average time to update the
over-approximation of each component was t = 1.7ms. Fig-
ure 2 shows the learned over-approximation of the dynam-
ics. Although we sampled data points with speeds v ≤ 1, the
proposed technique allows for finding over-approximation for
speeds v > 1, albeit more conservative, as seen in Figure 2. The
environment where the robot operates, which can be seen in
Figure 4, is a 5×5 m area. It was partitioned into 50×50 cells



(a) The single-valued estimation of
the dynamics of θ̇ ( ˆ̇

θ ) from the data
collected offline

(b) The single-valued estimation of
the dynamics of θ̇ ( ˆ̇

θ ) After it was
updated using data points collected
online

Fig. 3. Estimation with piecewise multi-affine functions
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Fig. 4. The trajectory of the mobile robot visiting all four areas
ten times

(i.e., x and y are partitioned into 50 cells each). The calculated
over-approximation was used to find the maximal control in-
variant, and the set of safe controllers at each cell. The time
it took to find the finite-state model and calculate the safety
controller was t = 424s. Also, compatible estimations were
calculated using the data collected offline, as seen in Figure 3a.
The average time to update the estimation of each component
was t = 80ms. A Gaussian weights matrix H was used, and the
decreasing learning rate η(k) = step

k was used. (The best results
were obtained using step= 10−3). Everything till now was done
offline. We then ran the experiment, which consisted of making
the robot visit the four colored areas in the order (red, yellow,
green, blue) as fast as possible. This was done using the cost
function J = ∑

N
i=1 ||x(i|t)− x f ||+ 1

v(i|t) , where x f is the center
of the colored areas, and it is changed to the next destination the
moment the robot touches a given area. We collected the data
online and updated the models, as can be seen in Figure 3. We
were able to learn the dynamics of the system for higher speed
that we did not sample for the offline stage. Most importantly,
we did all of that while always ensuring safety.

6. CONCLUSION

In this paper, we introduced a novel approach to safe online
learning-based MPC. Two models are learned online. The first
is an over-approximation of the system and is meant to find the
set of safe controllers. The second is a single-valued estimation
of the dynamics and is used to minimize a given cost function.
A case study showcasing the ability of the approach to learn the
system’s dynamics safely was carried out. Although promising
results, more work should be done to improve the learning

process. For example, we want to examine the question of
exploration vs. exploitation.
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