
HAL Id: hal-04577220
https://hal.science/hal-04577220

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fourier Analysis Meets Runtime Analysis: Precise
Runtimes on Plateaus

Benjamin Doerr, Andrew James Kelley

To cite this version:
Benjamin Doerr, Andrew James Kelley. Fourier Analysis Meets Runtime Analysis: Precise Runtimes
on Plateaus. Algorithmica, In press, �10.1007/s00453-024-01232-5�. �hal-04577220�

https://hal.science/hal-04577220
https://hal.archives-ouvertes.fr

ar
X

iv
:2

30
2.

08
02

1v
3

 [
cs

.N
E

]
 2

 M
ay

 2
02

3

Fourier Analysis Meets Runtime Analysis:

Precise Runtimes on Plateaus

Benjamin Doerr, Andrew James Kelley

May 3, 2023

Abstract

We propose a new method based on discrete Fourier analysis to
analyze the time evolutionary algorithms spend on plateaus. This im-
mediately gives a concise proof of the classic estimate of the expected
runtime of the (1 + 1) evolutionary algorithm on the Needle problem
due to Garnier, Kallel, and Schoenauer (1999).

We also use this method to analyze the runtime of the (1 + 1)
evolutionary algorithm on a benchmark consisting of n/ℓ plateaus of
effective size 2ℓ−1 which have to be optimized sequentially in a Leadin-
gOnes fashion.

Using our new method, we determine the precise expected runtime
both for static and fitness-dependent mutation rates. We also deter-
mine the asymptotically optimal static and fitness-dependent muta-
tion rates. For ℓ = o(n), the optimal static mutation rate is ap-
proximately 1.59/n. The optimal fitness dependent mutation rate,
when the first k fitness-relevant bits have been found, is asymptoti-
cally 1/(k+1). These results, so far only proven for the single-instance
problem LeadingOnes, thus hold for a much broader class of problems.
We expect similar extensions to be true for other important results on
LeadingOnes. We are also optimistic that our Fourier analysis ap-
proach can be applied to other plateau problems as well.

1 Introduction

The mathematical runtime analysis of evolutionary algorithms (EAs) and
other randomized search heuristics has made great progress in the last twenty
years [AD11,DN20, Jan13,NW10]. Starting with simple algorithms like the
(1 + 1) EA on basic benchmark problems like OneMax, the area has quickly

1

http://arxiv.org/abs/2302.08021v3

advanced to the analysis of complex evolutionary algorithms, estimation-of-
distribution algorithms, ant colony optimizers, and many other heuristics,
and this for the optimization of combinatorial optimization problems, of
multi-objective problems, or in the presence of noise.

A closer look at the field reveals that we know quite well how to analyze
optimization processes where a certain, steady progress is made. Here meth-
ods such as the fitness level method [Weg01], the expected weight decrease
method [NW07], or drift analysis [HY01] often allowed researchers to prove
tight runtime guarantees, and often in (what now appears as) a straightfor-
ward way.

The situation is very different when search heuristics encounter plateaus
of constant fitness. Here the above mentioned methods cannot be applied
(or only via the use of nontrivial and problem-specific potential functions).
A good example for such difficulties is the analysis of Garnier, Kallel, and
Schoenauer [GKS99] on how the (1 + 1) EA optimizes the Needle problem.
The (1 + 1) EA is arguable the simplest EA and the Needle problem is
clearly the simplest (not easiest) problem with a pleateau – the whole search
space apart from the unique optimum is one large plateau of constant fitness.
Despite this purported simplicity, a relatively technical proof was needed to
prove the natural result that the (1 + 1) EA takes exponential time to find
the optimum of the Needle problem; the paper proves a remarkably tight
bound, tight including the leading constant, but no simpler proof is known
for when only the asymptotic order of the runtime is sought for.

The reason for these difficulties is the absence of a natural measure of
progress. One would hope that for a problem like Needle the high degree
of symmetry could be exploited, but so far this has not been done successfully.
The difficulty is as follows. To best exploit the symmetry, one would assume
that the algorithm runs indefinitely and one would ignore the selection, that
is, the offspring is always accepted even when it has a lower fitness than the
parent. Note that this happens only when the current solution is already
the optimum, and consequently, the first hitting time of the optimum is the
same as for the original optimization process on the Needle problem. Now
it is true that at all times the random solution of the (1 + 1) EA is uniformly
distributed on the search space, but this still does not easily lead to runtime
guarantees due to the dependencies between the iterations. Hence additional
mixing time arguments would be necessary.

In this work, we develop a novel approach to this plateau problem that
uses discrete Fourier analysis. To the best of our knowledge, this is the
first time that discrete Fourier analysis is used in the runtime analysis of a
randomized search heuristic. We leave the technical details to Section 3 and

2

state here only that we are optimistic that this approach, while nonstandard
in this field, is easy to understand and apply.

For the optimization process of the (1 + 1) EA (with general mutation
rate p) on the Needle problem, our approach determines the precise ex-
pected runtime to be

E[T] =
n
∑

j=1

(

n

j

)

1

1− (1− 2p)j
.

This extends the previous best result [GKS99] to arbitrary mutation rate.
Also, not too important but nice to have, our result determines the exact
expected runtime, whereas the result of [GKS99] is precise only up to (1 ±
o(1)) factors. We note that in [GKS99, Lemma 3.8] also a convergence in
distribution was shown. We do not prove any such result. Since the proof
of [GKS99, Lemma 3.8] appears relatively independent of the determination
of the expected runtime in [GKS99, Lemma 3.7], we would speculate that
similar arguments can also be used to enrich our result with a statement on
the distribution of the runtime, but we do not attempt this in this work.

We apply our method also to a generalization of the LeadingOnes

problem. The LeadingOnes benchmark, first proposed in [Rud97], is
one of the most prominent benchmarks in the theory of evolutionary algo-
rithms. It was the first example to show that, different from what is claimed
in [Müh92], not all unimodal problems are solved by the (1 + 1) EA in time
O(n log n) [Dro02]. It was also the first example for which a fitness-dependent
mutation rate was proven to be superior to any static mutation rate [BDN10].
Also for this benchmark, several classic hyperheuristics were shown to not
work properly and suitable generalizations were developed [LOW17].

While it is thus clear that the LeadingOnes benchmark had a significant
impact on the theory of randomized search heuristics, it is also clear that
all these results are based on a problem consisting of a single instance per
problem size n (as opposed to other problems regarded in the theory of EAs
such as pseudo-Boolean linear functions [DJW02] and various types of Jump

functions [DJW02,Jan15,BBD21,DZ21,Wit23] or combinatorial optimization
problems such as minimum spanning trees [NW07], single-source or all-pairs
shortest paths [STW04,DHK12], or Eulerian cycles [Neu08]). This raises the
question to what extent the insights gained from the analyses on Leading-

Ones generalize.
As a first step to answer this question, we propose the Block-

LeadingOnes benchmark, which counts from left to right the number of
contiguous blocks of fixed length ℓ that only contain ones (mathematically
simpler, we have BlockLeadingOnes(x) = ⌊LeadingOnes(x)/ℓ⌋ for all

3

x ∈ {0, 1}n). This problem can be seen as a LeadingOnes problem of
length n/ℓ where each bit position is replaced by a block of length ℓ, which
contributes a one to the original LeadingOnes problem if and only if all ℓ
bits are equal to one (we note that the RoyalRoad problem [MFH92] is con-
structed in this fashion from the OneMax problem). As we shall show in this
work, many results previously proven for the LeadingOnes problem also
hold in an analogous fashion for the broader class of BlockLeadingOnes

functions.
We note that the BlockLeadingOnes benchmark is essentially equal to

the Royal Staircase benchmark introduced in [vNC01], the difference being an
additive term of one (which can be relevant when using fitness-proportionate
selection). We also note that the BlockLeadingOnes problem with block
length ℓ = 2 has appeared as one of many problems in the experimental
study [DYH+20]. Due to the very different settings – fitness-proportionate
selection in [vNC01] and the small block length, leading to effective plateaus
of size three, in [DYH+20] – we could not distill from these works any greater
insights on how simple elitist EAs cope with plateaus of constant fitness.

As is easy to see, the BlockLeadingOnes problem has nontrivial
plateaus. We note that already the LeadingOnes problem has large
plateaus of constant fitness, namely the fitness levels

L′
i = {x ∈ {0, 1}n | LeadingOnes(x) = i}

= {x ∈ {0, 1}n | (∀j ∈ [1..i] : xj = 1) ∧ xi+1 = 0},

i ∈ [0..n−2], but these are not critical as the plateau can be left to an individ-
ual with higher fitness by flipping a single bit. For the BlockLeadingOnes

problem with block length ℓ, the fitness levels

Li = {x ∈ {0, 1}n | BlockLeadingOnes(x) = i}
= {x ∈ {0, 1}n | (∀j ∈ [1..iℓ] : xj = 1)∧

(∃j ∈ [iℓ + 1..(i + 1)ℓ] : xj = 0)},

i ∈ [0..n/ℓ−1], form nontrivial plateaus in the sense that the closest improv-
ing solution might be ℓ Hamming steps away. These plateaus pose significant
difficulties when attempting a runtime analysis for the BlockLeadingOnes

problem, in particular, when aiming for runtime bounds that are tight in-
cluding the leading constant. So it was these difficulties that led us to find
some way to exploit the symmetric nature of the plateau, which was the key
behind the Fourier approach used in this paper, and with this approach we
derive the following results for the BlockLeadingOnes problem.

The optimal fitness-dependent mutation rate, p(k), when the first k
bits are locked in is asymptotic to 1/(k + 1) if ℓ is constant with respect

4

to n. If ℓ = ω(1), then with fitness m and letting k = mℓ, we have

limℓ→∞ p(mℓ)/(ℓ−1(
√

1 + 2/m − 1)) = 1. When using the optimal fitness-
dependent mutation rate, the expected runtime of BlockLeadingOnes

is asymptotic to eb2ℓn2/(2ℓ), where b = 2−ℓ−1∑ℓ
j=1

(

ℓ
j

)

1
j
, and for large ℓ,

b ≈ 1/ℓ. When using a static mutation rate of c/n, the runtime is asymp-
totic to b2ℓn2(ec − 1)c−2ℓ−1, which has the optimal mutation rate of about
1.59/n, giving a runtime asymptotic to αb2ℓn2/ℓ for α ≈ 1.54.

This work is organized as follows. We briefly describe the most rele-
vant previous works in the subsequent section. In Section 3, we introduce
our analysis methods based on Fourier analysis. As a first simple appli-
cation of this method, we give a new and simple analysis of the runtime
of the (1 + 1) EA with arbitrary mutation rate on Needle in Section 4.
In Section 5, we conduct a runtime analysis of the (1 + 1) EA on Block-

LeadingOnes, and determine optimal static and dynamic mutation rates.
The conclusion in the last section summarizes our work and points out what
could be the next steps in this research direction.

2 Previous Works

We now briefly describe the most relevant previous works which are runtime
analyses of evolutionary algorithms. In particular, we mention works (i) on
problems with nontrivial plateaus and (ii) the LeadingOnes problem.

As noticed already in the introduction, the vast majority of mathemat-
ical runtime analyses of evolutionary algorithms regard problems without
significant plateaus of constant fitness. For these, the typical way the EA
progresses is by finding solutions with strictly better fitness, and this al-
lows one to obtain upper bounds (and sometimes also lower bounds) for
the expected runtime via adding waiting times for suitable improvements
(fitness level method [Weg01, Sud13, Wit14, LS14, DK21a] or via analyzing
the expected progress with regard to a suitable progress measure (drift
analysis [HY01,OW11,DJW12,DG13,DK21b,LW21]).

Much less is known on how to analyze evolutionary optimization processes
that need to traverse large plateaus of constant fitness. In their seminal work
– the first paper determining runtimes precise including the leading constant
and the first runtime analysis for an EA on a problem with a nontrivial
plateau – Garnier, Kallel, and Schoenauer [GKS99] determine the precise
(apart from lower order terms) runtime of the (1 + 1) EA on the OneMax

and Needle problems (this lattter result is phrased as optimization without
selection, but this is equivalent to saying that one optimizes the Needle

function). In this language, the main result for the Needle problem is that

5

the (1 + 1) EA with mutation rate p = c/n, c a constant, when initialized
with an arbitrary search point different from optimum, finds the optimum of
the Needle problem in an expected number of (1± o(1))2n 1

1−e−c iterations.
This result is proven via a careful and somewhat technical analysis of the
Markov chain on the Hamming levels of the hypercube {0, 1}n. With deeper
arguments from the theory of Markov processes, the authors also show that
the runtime normalized by the expectation converges in distribution to an
exponential distribution with mean 1. The proof of this result [GKS99,
Lemma 3.8] is sketched only.

With similar, slightly simpler arguments, Wegener and Witt [WW05]
analyzed the runtime of the (1 + 1) EA on monotone polynomials (without
making the leading constant of the runtime precise). This result can be used
to show that the (1 + 1) EA optimizes Royal Road functions with block size d
in time Θ(2d n

d
log(n

d
+ 1)) (implicit in [WW05], explicit in [DSW13]).

The paper [vNC01] on the Royal Staircase function (essentially Block-

LeadingOnes) uses a non-elitist genetic algorithm without crossover and
with fitness-proportionate selection, but they do mention crossover in their
Section 7. Figure 3 of [vNC01] shows, unsurprisingly, that the optimal mu-
tation rate for their GA is less than that of the (1 + 1) EA; this is because
mutation can cause a non-elitist approach to move to lower fitness individ-
uals. For an application of a modified Royal Staircase function to biology,
see [ES21]

The only work, to the best of our knowledge, that explicitly uses mix-
ing time arguments, is the analysis of the (1 + λ) EA on Royal Road func-
tions [DK13]. Since the main technical challenge there is posed by the large
offspring population size, whereas we discuss a single-trajectory heuristic, we
give no further details.

In [AD21], the Plateauk problem is defined, which has as plateau a
Hamming ball of radius k around the all-ones string (the global optimum).
It was shown that the runtime of the (1 + 1) EA on Plateauk is the size
of the plateau times the waiting time to flip between 1 and k bits. In
the present paper (after Lemma 5.9), we mention that plateaus in Block-

LeadingOnes have a completely analogous runtime, despite the different
shape of the plateaus.

We note in passing that there are three more runtime results for the
Plateau problem, all very distant from our work. In [Ere20], a runtime
analysis of non-elitist population-based algorithms on the Plateau bench-
mark was conducted. The result on sub-jump functions in [Doe21b] and the
result on weakly monotonic functions in [Doe21a], as pointed out in these
works, also include Plateau functions as special cases. Since both works
do not employ methods specific to plateaus, we do not discuss them further.

6

In several analyses, thin plateaus showed up, on which the behavior of
the EA can be described via an unbiased Markov chain on an interval of the
integers. Such Markov chains are relatively well understood, and various ar-
guments can be used to show that the expected time to reach a desired point
in such a chain is at most quadratic in the length of the interval in which this
Markov chain lives. Such arguments were used, e.g., to analyze the runtime of
the (1 + 1) EA on the problems of computing maximum matchings [GW03]
or Eulerian cycles [Neu08]. Artificial example problems with such one-
dimensional plateaus have been analyzed in [JW01,BFH+07,FHN09,FHN10].

The LeadingOnes problem was first proposed by Rudolph [Rud97] as an
example of a unimodal function having a runtime higher than the O(n log n)
observed before on OneMax [Müh92]. Rudolph proves that the runtime
of the (1 + 1) EA on LeadingOnes is O(n2), the matching lower bound of
Ω(n2) was first shown in [DJW02].

After the results for OneMax and Needle in [GKS99], the Leading-

Ones problem is the third problem for which precise (that is, including
the leading constant) runtime bounds could be shown. In two independent
works [BDN10,Sud13], the runtime of the (1 + 1) EA with mutation rate 0 <
p ≤ 1

2
on LeadingOnes was shown to be exactly 1

2
p−2((1−p)−n+1−(1−p)).

This result implies that the optimal mutation rate is approximately 1.59
n

(lead-
ing to an expected runtime of approximately 0.77n2), slightly above the stan-
dard recommendation of 1

n
(leading to an expected runtime of approximately

0.86n2).
In [BDN10], it was also proven (and for the first time for a classic bench-

mark) that the optimal mutation rate can change during the optimization
process and that exploiting this can lead to constant-factor runtime gains.
If the mutation rate pi = 1

i+1
is used when the current fitness is equal to i,

then the expected runtime reduces to (e/4)(n2 + n) ≈ 0.68n2. These fitness-
dependent mutation rates are optimal.

The precise understanding of this changing optimal mutation rate mo-
tivated several research works on automatically adjusting the mutation
strength during the run of an algorithm. Lissovoi, Oliveto, and War-
wicker [LOW20] used the analysis method of [BDN10] to analyze the perfor-
mance of simple hyperheuristics flipping one or two bits. In a sense, the algo-
rithm regarded is again the (1 + 1) EA which has access to the two mutation
operators that flip exactly one or exactly two random bits. They show that
the best runtime obtainable in this framework is 1

4
(1+ln 2)n2+O(n) ≈ 0.42n2,

which is by a constant factor faster than the 1
2
n2 runtime resulting from al-

ways flipping one bit, which is the classic randomized local search heuristic.
Interestingly, they show that several classic hyperheuristics such as Per-

mutation, Greedy, and RandomGradient perform worse and have a

7

runtime of 1
2

ln(3)n2 + o(n2) ≈ 0.55n2. From their proofs, the authors
of [LOW20] distill a reason for the weak performance of the RandomGra-

dient heuristic and improve it significantly. If the current low-level heuristic
(here, the mutation operator) is not changed as soon as no improvement is
found, but only if for some longer time τ ∈ ω(n) ∩ o(n log n) no improve-
ment is found, then this generalized RandomGradient heuristic achieves
the asymptotically optimal (among all uses of one-bit and two-bit flips) ex-
pected runtime of 1

4
(1 + ln 2)n2 + O(n) ≈ 0.42n2. Similar results were shown

for larger numbers of low-level heuristics, we refer to [LOW20] for the details.
The learning period τ can be chosen in a self-adjusting fashion [DLOW18],
rendering the hyperheuristic an essentially parameter-free algorithm.

Also with the standard bit-wise mutation operator automated parameter
choices have been investigated. Following an experimental study [DW18], the
runtime analysis [DDL21] studies the effect of adjusting the mutation rate
of the standard bit-wise mutation operator in the (1 + 1) EA via a one-fifth
rule. More precisely, it shows that when using a 1/s-rule and a cautious
multiplicative update factor F = 1 + o(1), this self-adjusting algorithm man-

ages to keep the mutation rate at (1 ± o(1)) ln(s)
f(x)

, where f(x) is the current

fitness value. This is only by a constant factor of ln(s) off the optimal fitness-
dependent mutation rate determined in [BDN10]. In particular, a 1/e-success
rule determines the asymptotically optimal mutation rates and leads to the
asymptotically optimal expected runtime for the (1 + 1) EA with bit-wise
mutation.

These results show that significant insights were gained from studying the
LeadingOnes benchmark. It appears likely that similar results hold more
broadly than just for this one function. However, no such result exists so far.
The most likely reason for this is the lack of other benchmarks in which a typ-
ical optimization process shows some steady progress towards the optimum.
We note that when optimizing OneMax, the most prominent benchmark,
almost all of the optimization time is spent on the last lower-order fraction
of the fitness levels, hence often the parameters optimal for these are also
asymptotically optimal for the whole process. Even more extreme is the situ-
ation for the Jump benchmark, where the runtime is dominated by the time
taken by the last fitness improvement and hence this alone determines the
asymptotically optimal mutation rate [DLMN17].

We note that another variant of the LeadingOnes benchmark, the
DeceptiveLeadingBlocks problem, was proposed in [LN19]. Here also
blocks, always of length two, have to be optimized in a sequential fashion,
but each block is deceiving in the sense that a block value of 11 gives the
best fitness contribution, one of 00 the second best, and the other two the

8

worst. We believe that this problem also could be an interesting object
of study for the topics studied on LeadingOnes so far. However, with
the larger number of local optima, this might rather be a benchmark to
study how randomized search heuristics cope with local optima. In fact,
in [WZD21] it was shown that the (1 + 1) EA has a significantly worse per-
formance on this problem than the Metropolis algorithm [MRR+53] and the
significance-based estimation-of-distribution algorithm [DK20]. For this rea-
son, we expect BlockLeadingOnes to be a more interesting object of study
to understand how EAs cope with plateaus of constant fitness.

Fourier analysis has been used before in analyzing EAs. The authors
of [CSWA15] use it to calculate the moments of the fitness distribution
of offspring after applying mutation. For real-valued functions defined on
{1, 2, . . . , q}n that have bounded epistasis, the moments of their frequency
distribution were calculated in [SCW13]. A connection between the Fourier
transform and genetic algorithms was also shown in [VW98]. See also
[RVW04], where it is shown that the usefulness of a Fourier approach in-
timately depends on having a mutation operator that comes from an abelian
group (instead of a non-abelian group, such as the set of all permutations on
n ≥ 3 letters). However, to the best of our understanding, Fourier analysis
has not been used so far to analyze the runtime of an EA.

3 Using Fourier Analysis

This paper only assumes the reader knows a few elementary facts about what
in mathematics is called a group, more specifically what an abelian group is
(i.e. a commutative group). All groups considered in this paper are abelian.

Let Xt be a random walk on the group G with identity 0. For g ∈ G,
we define E0[τg] as the expectation of the hitting time of the element g given
that we start at 0:

E0[τg] = E[min{t | Xt = g, given X0 = 0}].

In this section, we first describe the relevant random walk and then briefly
review a few facts about groups, homomorphisms, and Fourier analysis. We
then state and use our main tool: Theorem 3.1, used to prove Theorem 3.3.

Let µ be a probability distribution on a group G. Then µ defines a random
walk on G, where for u, w ∈ G, the random walk goes from u to u + w with
probability µ(w). The random walk we are interested in is to define µ as
follows. For w ∈ G = Zℓ

2, we have

µ(w) = p|w|(1− p)ℓ−|w|,

9

where p is some fixed probability with p ∈ (0, 1), and where |w| is the 1 norm
of v (i.e. |w| = ∑ℓ

i=1 wi). Notice that the resulting random walk is precisely
the random walk where each bit is flipped independently with probability p,
which is what is happening in the evolutionary algorithm considered in this
paper.

Recall that the order of an element g of a group is the smallest positive
integer n such that gn = 1, if the group is written multiplicatively (and
replace gn = 1 with g + · · ·+ g = 0, with n g’s, if it is written additively).

We next briefly review homomorphisms. Let G be an (abelian) group
written additively, and let H be a group written multiplicatively. Then a
homomorphism from G to H is just a function ϕ : G→ H such that

ϕ(a + b) = ϕ(a)ϕ(b) for all a, b ∈ G.

For instance every exponential function ϕ(x) = bx, with b > 0, is a homomor-
phism from the additive group of all real numbers (R, +) to the multiplicative
group of all positive real numbers: (R>0, ·).

A character ϕ : G→ C∗ of an abelian group G is a homomorphism from
G to C∗, the multiplicative group of nonzero complex numbers. If g ∈ G has
order 2 or 1, then ϕ(g) is a complex number whose square is 1, in which case
ϕ(g) ∈ {1,−1}.

We will only consider characters of abelian groups G in which each ele-
ment has order 2 or 1. So in this paper, a character of G is just a homomor-
phism

ϕ : G→ {1,−1}.
In fact, G will be the group Zℓ

2, the Cartesian product of Z2 = {0, 1} with
itself ℓ times (where ℓ is some positive integer), where addition is modulo 2.
For x ∈ Zℓ

2, we denote its ith bit by xi (1-indexed). Every character of Zℓ
2 is

of the form ρv, where v ∈ Z
ℓ
2 and where we define ρv(w) for w ∈ Z

ℓ
2 by

ρv(w) = (−1)
∑

ℓ

i=1
viwi.

These are the 2ℓ characters of Zℓ
2, one for each v.

We denote by Ĝ the set of all characters of G. For any function µ defined
on an abelian group G (taking on real values), we have that the Fourier
transform of µ is a function from Ĝ to C, given by

µ̂(ρ) =
∑

w∈G

µ(w)ρ(w),

where z is the complex conjugate of z. When G is the group Zℓ
2, any character

ρ takes on only real values, and hence,

µ̂(ρ) =
∑

w∈G

µ(w)ρ(w).

10

For additional background on Fourier analysis on finite abelian groups, see
for instance [Gar12].

The following is a special case of Theorem 3.1 from [Zha23].

Theorem 3.1. Let G be the abelian group Z
ℓ
2 with 2ℓ = m, and let

ρ0, ρ1, . . . , ρm−1 be the characters of G, with ρ0 being the trivial character
ρ0 : G → {1}. Let µ be a probability distribution on G, and consider the
random walk on G generated by µ (where the walk goes from g to g + h with
probability µ(h)). Then

E0[τg] =
m−1
∑

i=1

1− ρi(g)

1− µ̂(ρi)
.

To exploit Theorem 3.1, we need to understand the Fourier transform µ̂
of µ. The following lemma is very similar to Proposition 3.6 of [VW98].

Lemma 3.2. Let v ∈ G = Zℓ
2. Let µ̂, µ, and ρv be as in earlier this section.

Then
µ̂(ρv) = (1− 2p)|v|.

Proof. Let |v| = k. Then

µ̂(ρv) =
∑

w∈Zℓ

2

µ(w)ρv(w) =
∑

w∈Zℓ

2

µ(w)ρv(w)

=
∑

w∈Zℓ

2

p|w|(1− p)ℓ−|w|(−1)
∑

ℓ

i=1
viwi.

Since this sum ranges over all w ∈ Zℓ
2, by symmetry we may assume that it

is the first k bits of v that are ones, with the rest being 0. We have then that

µ̂(ρv) =
∑

w∈Zℓ

2

p|w|(1− p)ℓ−|w|(−1)
∑

k

i=1
wi .

Writing w as the concatenation of a bitstring wa of length k and wb of length
ℓ− k, we find that

µ̂(ρv) =
∑

wa∈Zk

2

∑

wb∈Z
ℓ−k

2

p|wa|+|wb|(1− p)k+ℓ−k−(|wa|+|wb|)(−1)|wa|

=
∑

wa∈Zk

2

p|wa|(1− p)k−|wa|(−1)|wa|B,

where
B =

∑

wb∈Z
ℓ−k

2

p|wb|(1− p)ℓ−k−|wb|.

11

By the binomial theorem we have

B =
ℓ−k
∑

j=0

(

ℓ− k

j

)

pj(1− p)ℓ−k−j = (p + 1− p)ℓ−k = 1.

Using the binomial theorem a second time, we compute

µ̂(ρv) =
∑

wa∈Zk

2

p|wa|(1− p)k−|wa|(−1)|wa|

=
∑

wa∈Zk

2

(−p)|wa|(1− p)k−|wa|

=
k
∑

j=0

(

k

j

)

(−p)j(1− p)k−j

= (1− 2p)k,

which proves the result.

The heart of the following theorem is Theorem 3.1.

Theorem 3.3. The exact expected hitting time of 1ℓ (the all 1’s string) given
that we start from a uniform distribution on Z

ℓ
2 is

E[T] =
ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− 2p)j
.

Proof. We will see that this follows from Theorem 3.1 and Lemma 3.2. First,
note that for all a, b, c ∈ G we have Ea[τb] = Ea+c[τb+c]. Therefore,

E[T] =
1

2ℓ

∑

v∈Zℓ

2

Ev[τ1ℓ] =
1

2ℓ

∑

v∈Zℓ

2

Ev+v[τ1ℓ+v] =
1

2ℓ

∑

w∈Zℓ

2

E0[τw],

and notice E0[τ0] = 0. By Theorem 3.1 and Lemma 3.2,

E[T] =
1

2ℓ

∑

w∈Zℓ

2

w 6=0

E0[τw]

=
1

2ℓ

∑

w∈Zℓ

2

w 6=0

∑

v∈Zℓ

2

v 6=0

1− ρv(w)

1− µ̂(ρv)

=
1

2ℓ

∑

w

∑

v

1− (−1)
∑

ℓ

i=1
viwi

1− (1− 2p)|v|

=
1

2ℓ

∑

v

∑

w

1− (−1)
∑

ℓ

i=1
viwi

1− (1− 2p)|v|
.

12

Pulling out what does not depend on w gives

E[T] =
1

2ℓ

∑

v∈Zℓ

2

v 6=0

1

1− (1− 2p)|v|

∑

w∈Zℓ

2

w 6=0

(

1− (−1)
∑

ℓ

i=1
viwi

)

.

A summand for w is nonzero precisely if v and w share an odd number of
1’s. There are 2|v|−1 · 2ℓ−|v| such summands each equal to 2. We thus obtain

E[T] =
1

2ℓ

∑

v∈Zℓ

2

v 6=0

1

1− (1− 2p)|v|
· 2|v|−1 · 2ℓ−|v| · 2

=
1

2ℓ

∑

v∈Zℓ

2

v 6=0

2ℓ

1− (1− 2p)|v|

=
∑

v∈Zℓ

2

v 6=0

1

1− (1− 2p)|v|

=
ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− 2p)j
.

Proposition 3.4. Let T be as in Theorem 3.3, and let T ′ be the expected
hitting time of 1ℓ (the all 1’s string) given that we start from a uniform
distribution on the 2ℓ − 1 elements of Zℓ

2 − {1ℓ}. Then

E[T ′] =
2ℓ

2ℓ − 1
E[T].

Therefore,

E[T] =
2ℓ

2ℓ − 1

ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− 2p)j
.

Proof. This follows from the proof of Theorem 3.3 together with the fact
that

E[T ′] =
1

2ℓ − 1

∑

w∈Zℓ

2

w 6=0

E0[τw].

13

4 Analysis of the Needle Problem

In this section, we sketch a simple proof of the classic result on the runtime
of the (1 + 1) EA on the Needle problem, proven in [GKS99]. There, the
mutation rate p is replaced with c/ℓ, where c > 0 is constant. Corollary 4.1 is
a consequence of Theorem 3.3, and note that Corollary 4.1 implies the part of
Proposition 3.1 in [GKS99] about E[T], which is the runtime on the Needle

problem for the (1+1) EA with bit mutation c/ℓ. The rest of Proposition 3.1
in [GKS99] (which is about random local search) can be proven with modified
versions of Lemma 3.2 and Theorem 3.3 and using Lemma 5.10.

Algorithm 1: The (1+1) Evolutionary Algorithm for maximiz-
ing a given objective function f : {0, 1}n → R. Here, the mutation
operator is to flip each bit independently with probability p. The
classic (1 + 1) EA uses a mutation rate of p = 1

n
.

1 Choose x ∈ {0, 1}n uniformly at random;
2 for t = 1, 2, 3, . . . do
3 y ← mutate(x);
4 if f(y) ≥ f(x) then x← y;

Corollary 4.1. Fix a constant c > 0. Then

lim
ℓ→∞

2−ℓ
ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− c
ℓ/2

)j
=

1

1− e−c
.

We first prove a lemma (and then use two more stated afterwards).

Lemma 4.2. For all α ∈ (0, 1), we have

lim
ℓ→∞

(1+α)ℓ/2
∑

j=(1−α)ℓ/2

(

ℓ

j

)

2−ℓ = 1,

where we assume j is integral by appropriately taking the ceiling or floor.

Proof. This follows easily from the Central Limit Theorem, and alternatively,
it follows easily from the additive Chernoff bound (Theorem 1.10.7 from
[Doe20]).

Indeed, let Xℓ be a binomial random variable that is a sum of ℓ (in-
dependent) Bernoulli trials, each with probability 1/2 of success. Then

14

Pr(Xℓ = j) =
(

ℓ
j

)

2−ℓ. Let Φ be the standard normal distribution, and
let a ≤ b. Then the Central Limit Theorem gives us this:

lim
ℓ→∞

Pr

(

ℓ

2
− a

√
ℓ

2
≤ Xℓ ≤

ℓ

2
+ b

√
ℓ

2

)

=
∫ b

a
Φ(x)dx.

Pick any α ∈ (0, 1). We have the following:

j=(1+α)ℓ/2
∑

j=(1−α)ℓ/2

(

ℓ

j

)

2−ℓ = Pr

(

ℓ

2
− αℓ

2
≤ Xℓ ≤

ℓ

2
+

αℓ

2

)

.

The present result follows because ℓ (and hence αℓ/2) is ω(
√

ℓ).

Proof of Corollary 4.1. Let g(ℓ, j) =
1

1− (1− 2c/ℓ)j
. Note that for fixed ℓ,

we have that g(ℓ, j) is a decreasing function of j. For a < b, define Sℓ(a, b)
as

Sℓ(a, b) = 2−ℓ
b
∑

j=a

(

ℓ

j

)

g(ℓ, j).

Let α ∈ (0, 1). Since g(ℓ, j) is decreasing in j, by the symmetry of the bino-

mial coefficients, a consequence of (1) below is that lim
ℓ→∞

Sℓ

(

(1 + α)
ℓ

2
, ℓ

)

= 0.

The present result will follow once we have proved the following two things:

lim
ℓ→∞

Sℓ

(

0, (1− α)
ℓ

2

)

= 0 (1)

and
1

1− e−c(1+α)
≤ lim

ℓ→∞
Sℓ

(

(1− α)
ℓ

2
, (1 + α)

ℓ

2

)

≤ 1

1− e−c(1−α)
. (2)

For a positive integer a, let f(a) =
∑a

j=0

(

ℓ
j

)

. By Lemma 4.3, we have

f

(

(1− α)
ℓ

2

)

≤
(

ℓ

(1− α) ℓ
2

)

ℓ− ((1− α)ℓ/2− 1)

ℓ− (2(1− α)ℓ/2− 1)

≤
(

ℓ

(1− α) ℓ
2

)

1 + α + 2/ℓ

2α + 2/ℓ
.

By Lemma 4.4, we have that

(

ℓ

(1− α) ℓ
2

)

equals

(1 + o(1))

√

√

√

√

ℓ

2π(1− α) ℓ
2
(1 + α) ℓ

2

(

ℓ

(1− α)ℓ/2

)(1−α)ℓ/2(
ℓ

(1 + α)ℓ/2

)(1+α)ℓ/2

= (1 + o(1))2ℓcℓ/2

√

2

π(1− α2)ℓ
, where c =

1

(1− α)1−α(1 + α)1+α
.

15

Basic Calculus shows that c ∈ (0, 1).

Since g(ℓ, j) ≤ g(ℓ, 0) =
ℓ

2c
, we have

Sℓ(0, (1− α)ℓ/2) ≤ 2−ℓ ℓ

2c
f

(

(1− α)
ℓ

2

)

≤ ℓ

2c
(1 + o(1))cℓ/2

√

2

π(1− α2)ℓ

1 + α + 2/ℓ

2α + 2/ℓ
,

which approaches 0 as ℓ → ∞ because of the exponential cℓ/2. This proves
(1) above.

Let a = (1− α)ℓ/2 and b = (1 + α)ℓ/2, and let j ∈ (a, b). We have

g(ℓ, b) ≤ g(ℓ, j) ≤ g(ℓ, a), (3)

and we also have

lim
ℓ→∞

g(ℓ, b) = lim
ℓ→∞

1

1− (1− c
ℓ/2

)(1+α)ℓ/2
=

1

1− e−c(1+α)

lim
ℓ→∞

g(ℓ, a) = lim
ℓ→∞

1

1− (1− c
ℓ/2

)(1−α)ℓ/2
=

1

1− e−c(1−α)
.

By (3), we have

b
∑

j=a

(

ℓ

j

)

2−ℓg(ℓ, b) ≤ Sℓ(a, b) ≤
b
∑

j=a

(

ℓ

j

)

2−ℓg(ℓ, a).

Then (2) follows from the above two limits of g and Lemma 4.2.

Lemma 4.3. Let k and ℓ be positive integers with k < ℓ/2. Then

k
∑

j=0

(

ℓ

j

)

≤
(

ℓ

k

)

ℓ− (k − 1)

ℓ− (2k − 1)
.

This lemma is elementary and well known. See mathoverflow.1

Lemma 4.4. Suppose k and n− k approach infinity as n→∞. Then
(

n

k

)

= (1 + o(1))

√

n

2πk(n− k)

(

n

k

)k(n

n− k

)n−k

.

This follows from Stirling’s formula.

1https://mathoverflow.net/questions/17202/sum-of-the-first-k-binomial-coefficients-for-fixed-n

16

https://mathoverflow.net/questions/17202/sum-of-the-first-k-binomial-coefficients-for-fixed-n

5 The BlockLeadingOnes Problem

In this section, we regard the BlockLeadingOnes problem as a natural
extension of the LeadingOnes problem. Using our general method, we
prove precise bounds for the runtime of the (1 + 1) EA, both with static and
dynamic mutation rates, on this benchmark. We use these to determine the
asymptotically optimal static and dynamic mutation rates.

5.1 Definition of the BlockLeadingOnes Problem

The BlockLeadingOnes problem consists of a sequence of blocks of ℓ bits
each, which have to be optimized sequentially in a LeadingOnes fashion;
the next block is only relevant for the fitness if all previous blocks have
already been optimized. Each block is a plateau contributing constant zero
fitness except when all bits are one, when it contributes one to the fitness (if
all previous blocks are optimized).

More formally, let the block length ℓ be an integer that divides the problem
size n. Let x ∈ {0, 1}n. Define yi to be 1 if all the bits of x in the ith block are
1 and 0 otherwise; in other words, let yi =

∏iℓ
j=(i−1)ℓ+1 xj . Then the fitness

of x is defined by

BlockLeadingOnes(x) =
n/ℓ
∑

m=1

m
∏

i=1

yi.

This is equivalent to the definition given in the introduction:
BlockLeadingOnes(x) = ⌊LeadingOnes(x)/ℓ⌋. For ℓ = 1, we
obtain the classic LeadingOnes problem.

In what follows, we allow ℓ to depend on n. We assume ℓ = o(n) from
Theorem 5.2 on. The case ℓ = n is the classic Needle problem dealt with
earlier. Other choices for ℓ = Θ(n) are ignored because in the proof of
Theorem 5.2, we want to exploit that (1 − c/n)ℓ → 1 as n → ∞ when c is
constant and ℓ = o(n).

5.2 Our Results

Theorem 5.1. Let T be the runtime of the (1 + 1) EA on the Block-

LeadingOnes problem when using mutation rate pm when the current fitness
is m. Then

E[T] =
n/ℓ−1
∑

m=0





1

(1− pm)mℓ





ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− 2pm)j







.

17

When using a static mutation rate of p, this simplifies to

(1− p)−n+ℓ − (1− p)ℓ

1− (1− p)ℓ

ℓ
∑

j=1

(

ℓ

j

)

1

1− (1− 2p)j
.

Note that the proof of Theorem 5.1 applies even for ℓ = 1 and so gives
a new proof of Theorem 3 in [BDN10] that says the expected runtime on
LeadingOnes is

1

2p2
((1− p)−n−1 − (1− p)).

Theorem 5.2. Let T be the runtime of the (1 + 1) EA with static mutation
rate c/n on the BlockLeadingOnes problem. Here, c > 0 is constant.

Define b as 2−ℓ−1∑ℓ
j=1

(

ℓ
j

)

1
j
, and let a = 2−1 − 2−ℓ−1 − b. Assume ℓ = o(n).

Then

E[T] = (1 + o(1))
n2ℓ

ℓ

(

bn

c2
+

a

c

)

(ec − 1).

Note that an approximation for
∑ℓ

j=1

(

ℓ
j

)

1
j

and hence b is given in
Lemma 5.10. To get the expected runtime for the standard bit mutation
1/n, just plug in c = 1 into Theorem 5.2. Also, note that Theorem 5.7 (be-
low) and Theorem 5.2 are consistent with Theorems 5 & 6 and Theorem 3
respectively from [BDN10], where ℓ = 1 (in which case b = 1/4 and a = 0).

Theorem 5.3. Let p be the static mutation rate of the (1 + 1) EA that min-
imizes its runtime on the BlockLeadingOnes problem. Let λ be the value
of x that minimizes the function g(x) = (ex − 1)/x2 for x > 0. Assume
ℓ = o(n). Then p = (1 + o(1))λ

n
.

Note that this is exactly the same optimal static mutation rate as for
LeadingOnes problem; see [BDN10].

Corollary 5.4. Let T be the runtime of the BlockLeadingOnes problem
using the optimal static mutation rate given in Theorem 5.3. Let b be as in
Theorem 5.2, and let α = minx>0(e

x−1)x−2 ≈ 1.54. Assume ℓ = o(n). Then

E[T] = (1 + o(1))α · b2
ℓ

ℓ
n2.

If ℓ = ω(1), then

E[T] = (1 + o(1))α · 2ℓ

ℓ2
n2.

Proof. The first part follows from Theorems 5.2 and 5.3. Also, by Lemma
5.10, ℓ = ω(1) implies that b = ℓ−1(1 + o(1)).

18

Corollary 5.5. By an appropriate choice of ℓ, the expected runtime T of the
(1 + 1) EA on BlockLeadingOnes using the optimal static mutation rate
can have any growth rate that is ω(n2) and 2o(n). In other words, let h(n) be
a function such that h(n) = ω(n2) and h(n) = 2o(n). Then ℓ can be chosen
so that

lim
n→∞

E[T]

h(n)
= 1.

Further, choosing ℓ to be constant, we can make the expected runtime Θ(n2),
with various choices for the hidden constant(s).

Note that the same result as Corollary 5.5 is true for the runtime when
using a fitness-dependent mutation rate. Also, note that the upper limit of
2o(n) is due to our assumption that ℓ = o(n); one could assume ℓ = Θ(n),
but this is not considered in this paper (apart from §4 where ℓ = n).

Let k = ℓ · BlockLeadingOnes(x), where x is the current individual;
so k denotes the number of bits locked in by the elitist (1 + 1) EA on an
n-bit problem.

In order to make sense of Theorem 5.6, we need to be able to let n
approach infinity (for otherwise, ℓ and the fitness m are bounded). To do
that, note from Lemma 5.8 below that the expected optimization time of
a block does not directly depend on n (but only on p, ℓ, and k). In other
words, the expected optimization time of one block is a function of p, ℓ, and
k alone and not at all on n. Hence, we may freely let m approach infinity,
and similarly for any appropriate ℓ.

Theorem 5.6. Let pm denote the optimal mutation rate to optimize the next
block, given the current individual has fitness m. Assume ℓ = o(n). Then

lim
ℓ→∞

pm

ℓ−1(
√

1 + 2/m− 1)
= 1.

Also, as m→∞, for k = mℓ we have

pm = (1 + o(1))
1

k
.

Theorem 5.7. Let T be the runtime of the (1 + 1) EA on the Block-

LeadingOnes problem, where we use the optimal fitness-dependent muta-
tion rate pm. Let b be as in Theorem 5.2. Assume ℓ = o(n). Then

E[T] = (1 + o(1))
e

2
· b2

ℓ

ℓ
n2.

19

Note that it is actually easier to prove the exact expression in Theorem 5.1
than the estimate of the optimal runtime in Theorem 5.7. Also, a consequence
of Theorem 5.7 and Corollary 5.4 is that the runtime when using the optimal
fitness-dependent rate(s) is about 0.88 of the runtime when using the optimal
static mutation rate (just like LeadingOnes). Indeed, note that (e/2)/α ≈
0.88, where α is as in Corollary 5.4.

5.3 Estimating the Runtime on One Block

In this section, we give a relatively simple expression for the amount of time
spent on the next, unoptimized block. Already, Proposition 3.4 gives an
exact expression for this, but we need to put it in a form that reveals more
clearly how p affects its size. After doing this in Lemma 5.9, we then show
how similar the expected runtime on one plateau in BlockLeadingOnes

is to the plateau in [AD21]. We then show how to estimate a certain sum
that appears in Lemma 5.9.

Let Tk denote the runtime of optimizing the next block after having locked
in exactly the first k bits, and so assume that the next block is not already
optimized.

Lemma 5.8. Let Tk be as in the previous paragraph, and let T ′ be as in
Proposition 3.4. Then

E[Tk] =
E[T ′]

(1− p)k
, (∗)

where p is the mutation rate used on this next block.

Proof. Any step in which any of the first k bits is flipped will result in an
individual of lower fitness, which will be discarded. This result follows since
the probability that none of the first k bits is flipped is (1− p)k.

Lemma 5.9. Let the function s be as in Lemma 5.10. We have

E[Tk] =
2ℓ

2ℓ − 1
· 2ℓ

(1− p)k

[

b

p
+ a + O(p)

]

,

where

a =
1

2
− 1 + s(ℓ)

2ℓ+1
, and b =

s(ℓ)

2ℓ+1
.

Proof. This follows from Proposition 3.4 and Lemma 5.8 by using the Taylor

series for
1

1− (1− 2x)j
. Indeed, the Taylor series gives us this:

1

1− (1− 2x)j
=

1

2jx
+

1

2
− 1

2j
+ O(x).

20

Let A = 2ℓ

2ℓ−1
. Using the above Taylor series, Lemma 5.8 and Proposition 3.4

imply that

E[Tk] =
A

(1− p)k

ℓ
∑

j=1

(

ℓ

j

)[

1

2jp
+

1

2
− 1

2j
+ O(p)

]

=
A

(1− p)k





1

2p

ℓ
∑

j=1

(

ℓ

j

)

1

j
+

1

2

ℓ
∑

j=1

(

ℓ

j

)

− 1

2

ℓ
∑

j=1

(

ℓ

j

)

1

j
+

ℓ
∑

j=1

(

ℓ

j

)

O(p)





=
A

(1− p)k

[

s(ℓ)

2p
+

2ℓ − 1

2
− s(ℓ)

2
+ (2ℓ − 1)O(p)

]

=
A

(1− p)k

[

s(ℓ)/2

p
+ 2ℓ−1 − 1 + s(ℓ)

2
+ (2ℓ − 1)O(p)

]

,

which gives this result once we factor out 2ℓ.

Let β be the probability of accepting an offspring with at least one bit
flipped in the next unoptimized block. We claim that a consequence of
Lemma 5.9 is that for large ℓ and for k ≥ 1, roughly speaking, E[Tk] is
approximately

effective size of the plateau

β
, (∗)

which is very similar to the main result of [AD21]. The plateau has exactly
(2ℓ − 1)(2n−k−ℓ) elements in it, and there are 2n−k−ℓ elements that improve
the fitness. So the effective size of the plateau is 2ℓ− 1 ≈ 2ℓ. So (∗) becomes
2ℓ/β, and so the value analogous to [AD21] would be

2ℓ

(1− p)k(1− (1− p)ℓ)
,

which we now show is what E[Tk] is approximately. We may simplify by
applying a Taylor series expansion on part of it:

2ℓ

(1− p)k(1− (1− p)ℓ)
=

2ℓ

(1− p)k

[

1

ℓp
+

ℓ− 1

2ℓ
+ O(p)

]

. (∗∗)

Similarly, by Lemma 5.9 we have

E[Tk] ≈ 2ℓ

(1− p)k

[

b

p
+ a + O(p)

]

=
2ℓ

(1− p)k

[

b′

ℓp
+ a + O(p)

]

,

21

where b′ = bℓ = ℓs(ℓ)2−ℓ−1 and a = 1/2−2−ℓ−1− b. Since ℓ is assumed to be
large, by Lemma 5.10, we have ℓs(ℓ)2−ℓ−1 ≈ 1 + c/ℓ for some c ≈ 1. We’ve
shown b′ ≈ 1 + c/ℓ for some c ≈ 1 and a little simplifying shows that for
large ℓ, we also have a ≈ 1/2− 0− 1/ℓ = (ℓ− 2)/(2ℓ). We have thus shown
that E[Tk] is approximately (∗∗).

5.3.1 Approximating a Certain Sum

In this section, we show how to approximate the sum s(m) defined in
Lemma 5.10. We need this result because s(ℓ) shows up in the key
Lemma 5.9.

Lemma 5.10. Define the functions s(m) and f(m) via

s(m) =
m
∑

j=1

(

m

j

)

1

j
, and f(m) =

2m+1

m
.

For all constants c > 1, for all large m, we have

1 +
1

m
≤ s(m)

f(m)
≤ 1 +

c

m
.

Proof. This result is proved by Propositions 5.13 and 5.14.

To prove Lemma 5.10 in the two propositions below, we first need a few
lemmas.

Lemma 5.11. Let s(m) be as in Lemma 5.10. Then

s(m) =
m
∑

j=1

2j − 1

j
.

Proof. Let h(x) =
m
∑

j=1

(

m

j

)

xj

j
, and so h(1) = s(m). We have that

h′(x) =
m
∑

j=1

(

m

j

)

xj−1 =
1

x

m
∑

j=1

(

m

j

)

xj ,

which by the binomial theorem equals

1

x
[(x + 1)m − 1],

22

which equals
∑m−1

j=0 (1 + x)j because
∑m−1

j=0 yj = (ym − 1)/(y − 1). So then,

h′(x) =
∑m−1

j=0 (1 + x)j. Using that h(0) = 0, integrating gives

h(x) =
m−1
∑

j=0

(1 + x)j+1 − 1

j + 1
=

m
∑

j=1

(1 + x)j − 1

j
,

and plugging in x = 1 finishes the proof of this lemma.

Lemma 5.12. For all integers m ≥ 0, we have

2m+2 ≥ m(m− 1).

Lemma 5.12 can be checked for m = 0, 1, 2, 3 and can easily be proved by
induction for m ≥ 4.

We next prove the lower bound in Lemma 5.10:

Proposition 5.13. Let s(m) be as in Lemmas 5.10 and 5.11. For all large
m,

s(m) ≥ 2m+1

m

(

1 +
1

m

)

.

Proof. Let c be such that

s(t) + c ≥ 2t+1

t

(

1 +
1

t− 1

)

, for some positive integer t.

Then we claim that

s(m) + c ≥ 2m+1

m

(

1 +
1

m− 1

)

, for all m ≥ t, (∗)

which we will prove by induction on m. Assume (∗) holds for some m ≥ t.
We have by Lemma 5.11 that

s(m + 1) + c = s(m) + c +
2m+1 − 1

m + 1

≥ 2m+1

m

(

1 +
1

m− 1

)

+
2m+1 − 1

m + 1
.

We just need to show the following:

2m+1

m

(

1 +
1

m− 1

)

+
2m+1 − 1

m + 1
≥ 2m+2

m + 1

(

1 +
1

m

)

. (∗∗)

23

But using 1 + 1/(m − 1) = m/(m − 1) and simplifying/rearranging shows
that (∗∗) is equivalent to

2m+1

m− 1
≥ 2m+1 + 1

m + 1
+

2m+2

m(m + 1)
,

which is equivalent to each of the following inequalities:

1

m− 1
≥ 1

m + 1
+

2

m(m + 1)
+

1

(m + 1)2m+1

2

(m− 1)(m + 1)
≥ 2

m(m + 1)
+

1

(m + 1)2m+1

2

m− 1
− 2

m
≥ 1

2m+1

2

m(m + 1)
≥ 1

2m+1

2m+2 ≥ m(m− 1),

which is true by Lemma 5.12 and so proves (∗).
Let m ≥ t. Then (∗) implies that

s(m) ≥ 2m+1

m

(

1 +
1

m− 1
− cm

2m+1

)

,

and so we will be finished once we show that for sufficiently large m that

1

m− 1
− cm

2m+1
≥ 1

m
.

But this last inequality is equivalent to this:

1

m(m− 1)
≥ cm

2m+1
,

which in turn is equivalent to 2m+1 ≥ cm2(m − 1), which does hold for all
large m.

Note that in the proof of the previous lemma, c = 0 works for t = 7, and
so s(m) ≥ 2m+1

m
(1 + 1

m−1
) for all m ≥ 7.

Proposition 5.14. Let s(m) be as in Lemmas 5.10 and 5.11. For all c > 1,
we have that for all large m,

s(m) ≤ 2m+1

m

(

1 +
c

m

)

.

24

Proof. Let c > 1. Assume t is the minimum m such that 1 ≤ c ·
(

m−2
m+2

)

, which

exists since c > 1 and limm→∞
m−2
m+2

= 1. Suppose c0 is such that

s(t)− c0 ≤
2t+1

t

(

1 +
c

t + 1

)

.

We claim that

s(m)− c0 ≤
2m+1

m

(

1 +
c

m + 1

)

for m ≥ t. (∗)

Just like Proposition 5.13, we again proceed by induction on m. Assume (∗)
holds for some m ≥ t. Then by Lemma 5.11,

s(m + 1)− c0 = s(m)− c0 +
2m+1 − 1

m + 1

≤ 2m+1

m

(

1 +
c

m + 1

)

+
2m+1 − 1

m + 1
.

We just need to show the following:

2m+1

m

(

1 +
c

m + 1

)

+
2m+1 − 1

m + 1
≤ 2m+2

m + 1

(

1 +
c

m + 2

)

.

So it is sufficient to prove the following:

2m+1

m

(

1 +
c

m + 1

)

+
2m+1

m + 1
≤ 2m+2

m + 1

(

1 +
c

m + 2

)

.

This last inequality is equivalent to

2m+1

m

(

1 +
c

m + 1

)

≤ 2m+1

m + 1
+

c2m+2

(m + 1)(m + 2)
,

and multiplying by (m + 1)/2m+1, this is equivalent to

m + 1

m

(

1 +
c

m + 1

)

≤ 1 +
2c

m + 2
.

This is equivalent to

1 +
1

m
+

c

m
≤ 1 +

2c

m + 2
,

or

1 ≤ c
(

m− 2

m + 2

)

,

which is true because m ≥ t and 1 ≤ c ·
(

t−2
t+2

)

. We have thus proved (∗).

25

Therefore,

s(m) ≤ 2m+1

m

(

1 +
c

m + 1
+

c0m

2m+1

)

.

We will be finished with the proof of the current result once we show that
for sufficiently large m that

c

m + 1
+

c0m

2m+1
≤ c

m
,

but this last inequality is equivalent to

c0m

2m+1
≤ c

m(m + 1)
,

which is equivalent to c0m
2(m+1) ≤ c2m+1, which is true for all large m.

5.4 The Optimal Static Mutation Rate

In this section, we prove Theorems 5.1, 5.2, and 5.3 and Corollary 5.5. To
begin, we need a couple of lemmas, but first we mention a subtlety.

Definition 5.15. Suppose N is the exact number of steps it takes to optimize
the first k bits. Define T ′

k as the number of additional steps beyond N until
the the next block is optimized which might be 0 steps since the moment
the first k bits are all 1’s, then it might happen that simultaneously, the next
ℓ bits also happen to all be 1.

Lemma 5.16. Let T ′
k be as in Definition 5.15. Let Tk be as in Lemma 5.8,

and let T be as in Theorem 3.3. Then

E[T ′
k] =

E[T]

(1− p)k
, and so E[T ′

k] =
2ℓ − 1

2ℓ
E[Tk] =

2ℓ

(1− p)k

[

b

p
+ a + O(p)

]

,

where a and b are from Lemma 5.9.

A proof of the first part of Lemma 5.16 is almost identical to that of
Lemma 5.8, and the rest follows from Lemma 5.9.

Proof of Theorem 5.1. Let T ′
k be as in Definition 5.15. For fitness m, by

the first part of Lemma 5.16 we have E[T ′
mℓ] = E[T]/(1− pm)mℓ. Note that

T =
∑n/ℓ−1

m=0 T ′
mℓ, and so by linearity of expectation, we are done with the first

part by summing the above expression for E[T ′
mℓ] and using Thoerem 3.3. To

prove the formula for the static mutation rate p, just use that
∑k−1

m=0 xm =
(xk − 1)/(x− 1).

26

Lemma 5.17. Let a and b be as in Lemma 5.9, namely that

a =
1

2
− 1 + s(ℓ)

2ℓ+1
, and b =

s(ℓ)

2ℓ+1
.

The expected runtime, T , of the BlockLeadingOnes problem when using
a constant mutation rate of p is

E[T] = 2ℓ

(

b

p
+ a + O(p)

)

(1− p)−n+ℓ − (1− p)ℓ

1− (1− p)ℓ
.

Proof. Let T ′
k be as in Definition 5.15. Then T =

∑n/ℓ−1
m=0 T ′

mℓ. So by linearity
of expectation and Lemmas 5.9 and 5.16, we have

E[T] =
n/ℓ−1
∑

m=0

E[T ′
mℓ]

=
n/ℓ−1
∑

m=0

2ℓ

(1− p)mℓ

[

b

p
+ a + O(p)

]

= 2ℓ

[

b

p
+ a + O(p)

] n/ℓ−1
∑

m=0

(

1

1− p

)mℓ

= 2ℓ

(

b

p
+ a + O(p)

)

(1− p)−n+ℓ − (1− p)ℓ

1− (1− p)ℓ
.

Proof of Theorem 5.2. Using Taylor series,

(

1− c

n

)ℓ

= 1− ℓc

n
+ O

(

ℓ2

n2
c

)

.

Since ℓ = o(n), we have (1− c/n)ℓ → 1. So, (1− p)−n+ℓ = (1− c/n)−n+ℓ =
(1 + o(1))ec. So by Lemma 5.17, and we have

E[T] = 2ℓ

(

bn

c
+ a + O(c/n)

)

(1− c/n)−n+ℓ − (1− c/n)ℓ

1− (1− c/n)ℓ

= 2ℓ

(

bn

c
+ a + O

(

c

n

)

)

(1 + o(1))ec − 1 + ℓc/n + O(ℓ2c2/n2)

1− 1 + ℓc/n + O(ℓ2c2/n2)

=
n2ℓ

ℓ

(

bn

c2
+

a

c
+ O

(

1

n

)

)

(1 + o(1))ec − 1 + ℓc/n + O(ℓ2c2/n2)

1 + O(ℓc/n)
.

27

Let g(c, n) =
n2ℓ

ℓ

(

bn

c2
+

a

c
+ O

(

1

n

)

)

. So then,

E[T] = g(c, n)

(

(1 + o(1))ec − 1 + ℓc/n

1 + O(ℓc/n)
+

O(ℓ2c2/n2)

1 + O(ℓc/n)

)

= g(c, n)

(

(1 + o(1))ec − 1 + ℓc/n

1 + O(ℓc/n)
+ o(1)

)

= (1 + o(1))g(c, n)
(1 + o(1))ec − 1 + ℓc/n

1 + O(ℓc/n)
.

But since
1

1 + O(ℓc/n)
= 1 + o(1), we have

E[T] = (1 + o(1))g(c, n)((1 + o(1))ec − 1 + ℓc/n).

But g(c, n) =
n2ℓ

ℓ

(

bn

c2
+

a

c
+ o(1)

)

, and so

E[T] = (1 + o(1))
n2ℓ

ℓ

(

bn

c2
+

a

c
+ o(1)

)

((1 + o(1))ec − 1 + ℓc/n),

which equals this:

(1 + o(1))
n2ℓ

ℓ

(

bn

c2
+

a

c

)

((1 + o(1))ec − 1 + ℓc/n).

But since ℓ = o(n), we have ℓc/n = o(1), and so we get

E[T] = (1 + o(1))
n2ℓ

ℓ

(

bn

c2
+

a

c

)

((1 + o(1))ec − 1 + o(1))

= (1 + o(1))
n2ℓ

ℓ

(

bn

c2
+

a

c

)

(ec − 1)

Lemma 5.18. Let a and b be as in Lemmas 5.9 and 5.17. Define gn(x) and
hn(x) as follows:

gn(x) =
2ℓbn2

ℓx2
(ex − 1), and

hn(x) =
n2ℓ

ℓ

(

bn

x2
+

a

x

)

(ex − 1).

Then we have

lim
n→∞

hn(x)

gn(x)
= 1.

28

Proof. This follows from very basic Calculus, knowing that a and b do not
depend on n. Specifically,

hn(x)

gn(x)
=

(n2ℓ/ℓ)(bn/x2 + a/x)(ex − 1)

(2ℓbn2/(ℓx2))(ex − 1)
=

bn/x2 + a/x

bn/x2
=

b/x2 + a/(nx)

b/x2

→ b/x2

b/x2
= 1.

Proof of Theorem 5.3. Let hn(x) and gn(x) be as in Lemma 5.18. By Theo-
rem 5.2, we need only to optimize the function(s) hn(x). But by Lemma 5.18,

we may use Lemma 5.24 so that we need only optimize gn(x) = 2ℓbn2

ℓx2 (ex−1).
To optimize this, we need only optimize this function:

g(x) =
ex − 1

x2
.

Proof of Corollary 5.5. As we will see, this follows from Corollary 5.4. The
last statement of Corollary 5.5 should be clear from Corollary 5.4. So assume
ℓ = ω(1).

By Corollary 5.4,

E[T] = (1 + o(1))
α2ℓ

ℓ2
· n2,

where α ≈ 1.54. Let h(n) be a function such that h(n) = ω(n2) and h(n) =
2o(n). Define g(n) as g(n) = h(n)/n2. Then g(n) = ω(1) and g(n) = 2o(n).
We will be done once we show that there is an appropriate choice of ℓ such
that α2ℓ/ℓ2 = g(n).

Define f(m) as

f(m) =
α2m

m2
,

and note that since f(m) is an increasing function for m > 2/ ln(2), then it
has an inverse on that interval, which we denote f−1. Define ℓ as

ℓ = f−1(g(n)). (∗)

Then by definition of f , we have f(ℓ) = α2ℓ/ℓ2 and by definition of the
inverse, we have f(ℓ) = g(n), and hence we get α2ℓ/ℓ2 = g(n), but we are
not quite done yet.

29

Recall that we have proved Corollary 5.4 under the standing assumption
of this paper that ℓ = o(n). Hence, all we need to do now is show that
the choice (∗) is an appropriate choice of ℓ, namely that for such ℓ, we have
ℓ = o(n). Indeed, since g(n) = 2o(n), note that (∗) implies that f(ℓ) = 2o(n),
or c2ℓ/ℓ2 = 2o(n), which is the same as saying 2ℓ/ℓ2 = 2o(n), but 2ℓ/ℓ2 =
2ℓ−2 log2(ℓ), and so 2ℓ−2 log2(ℓ) = 2o(n), which implies that ℓ− 2 log2(ℓ) = o(n).
But ℓ− 2 log2(ℓ) > ℓ/2 for all large ℓ and so we get ℓ/2 = o(n), which is the
same as saying ℓ = o(n), which completes this proof.

5.5 Optimal Fitness-dependent Mutation Rate

5.5.1 Erasing the O(p) Term in Lemma 5.9

The main point of this subsection is to show that when minimizing E[Tk]
based on the choice of p, we can just erase the O(p) term and carry on.
The other purpose of this section is the easier job of minimizing the simpler
resulting function(s).

Definition 5.19. Let a and b be as in Lemma 5.9: using s from Lemma
5.10,

a =
1

2
− 1 + s(ℓ)

2ℓ+1
, and b =

s(ℓ)

2ℓ+1
.

Define f̂ , f̃ , and g as follows:

f̂(x, k) =
1

(1− x/k)k

[

bk

x
+ a + O

(

x

k

)

]

f̃(x, k) = ex

[

bk

x
+ a

]

g(x) = ex
[

m

x
+

1

2

]

where m ≥ 1 is an integer and the constant hidden in the O(x) notation is
independent of k, and define p̂(k), p̃(k), and ρ by

p̂(k) = argminx∈(0,∞) f̂(x, k), and

p̃(k) = argminx∈(0,∞) f̃(x, k), and

ρ = argminx∈(0,∞) g(x).

Lemma 5.20. Let f̂ and f̃ be as in Definition 5.19. For all (real) x we have

lim
k→∞

f̂(x, k)

f̃(x, k)
= 1.

30

Proof. This follows from basic Caluclus. Indeed, choose any x. Then

lim
k→∞

1

(1− x/k)k
=

1

e−x
= ex,

and also,

lim
k→∞

(b/x)k + a + O(x/k)

(b/x)k + a
= 1.

Lemma 5.21. Let f̂ and g be as in Definition 5.19. Let k = mℓ, where m
is some fixed positive integer. Then

lim
ℓ→∞

f̂(x, mℓ)

g(x)
= 1.

Proof. Recall the definition of a and b from Definition 5.19. By Lemma 5.10,
we have

lim
ℓ→∞

s(ℓ)

2ℓ+1/ℓ
= 1. (∗)

Therefore, bk = bmℓ =
mℓs(ℓ)

2ℓ+1
implies that

lim
ℓ→∞

bk = lim
ℓ→∞

bmℓ = lim
ℓ→∞

mℓs(ℓ)

2ℓ+1
= m.

Also, (∗) implies that s(ℓ)2−ℓ−1 → 0, which implies that

a =
1

2
− (1 + s(ℓ))2−ℓ−1 → 1

2
, as ℓ→∞.

Using this and the limit of bmℓ, together with lim
ℓ→∞

(1− x/(mℓ))−mℓ = ex,

we get

lim
ℓ→∞

f̂(x, mℓ)

g(x)
= lim

ℓ→∞

(1− x/(mℓ))−mℓ[bmℓ/x + a + O(x/(mℓ))]

ex[m/x + 1/2]

=
m/x + 1/2

m/x + 1/2

= 1.

31

Lemma 5.22. Let a, b, f̃ and p̃(k) be as in Definition 5.19. If k > 0 then

p̃(k) =
bk

2a



−1 +

√

1 +
4a

bk



.

Further, given any fixed ℓ, we have

lim
k→∞

p̃(k) = 1.

Proof. This follows from standard Calculus. Let β = bk. So f̃ = ex(β/x+a).
We have

f̃ ′(x) = ex

(

β

x
+ a− β

x2

)

=
ex

x2

(

ax2 + βx− β
)

.

We have then that f̃ is minimized at the largest root of ax2 + βx− β. (This
is because f̃ ′ is negative before that root and positive afterwards.) Hence,
the quadratic formula gives

p̃(k) =
−β +

√
β2 + 4aβ

2a

=
β

2a

(

−1 +
√

1 + 4a/β
)

=
bk

2a



−1 +

√

1 +
4a

bk





which proves the first part of this result.
Next, since ℓ is constant (with respect to k), then that implies that a and

b are constant. We use that the tangent line to
√

1 + 2x at x = 0 is 1 + x.
So since 4a/(bk)→ 0 as k →∞, we have

lim
k→∞

p̃(k) = lim
k→∞

bk

2a



−1 +

√

1 +
4a

bk





= lim
k→∞

bk

2a

(

−1 + 1 +
2a

bk

)

= 1.

Lemma 5.23. Let g and ρ be as in Definition 5.19. If m > 0 then

ρ = m(−1 +
√

1 + 2/m).

32

Proof. This also follows from basic Calculus and is very similar to the proof
of the first part of Lemma 5.22.

The idea of the following lemma is that for appropriate functions hk and
gk, in order to find where hk achieves its minimum, we need only find where gk

achieves its minimum. We will use Lemma 5.24 later on with gk(x) = f̃(x, k).

Lemma 5.24. Suppose hk and gk are functions such that for all x,

lim
k→∞

hk(x)

gk(x)
= 1.

Let α and ρ be such that for some δ with 0 < δ < 1 we have

gk(ρ)

gk(α)
≤ δ, for all large k.

Then we have that for all large k,

hk(ρ) < hk(α).

Proof. We have
hk(ρ)

hk(α)
=

hk(ρ)

gk(ρ)
· gk(ρ)

gk(α)
· gk(α)

hk(α)
,

the first and last fractions of which approach 1 while the middle fraction

is bounded by δ for all large k. Hence, for all large k, we have
hk(ρ)

hk(α)
< 1,

proving the result.

Lemma 5.25. Let f̃ be as in Definition 5.19. Fix any ε > 0. Then there
exists a δ (depending on ε) with 0 < δ < 1 such that for all large k,

f̃(1, k)

f̃(1 + ε, k)
≤ δ and

f̃(1, k)

f̃(1− ε, k)
≤ δ.

Proof. We prove the first inequality, as the second one is almost identical.
We have that as k →∞,

f̃(1, k)

f̃(1 + ε, k)
=

e(bk + a)

e1+ε(bk/(1 + ε) + a)
−→ eb

e1+εb/(1 + ε)
= (1 + ε)e−ε.

But the function R(x) = (1 + x)e−x has a unique global maximum at x = 0
with R(0) = 1. That proves the first inequality. After finding a δ0 for the
first inequality and a δ1 for the second one, we can define δ as the max of δ0

and δ1.

33

5.5.2 Proving Theorems 5.6 and 5.7

Proof of Theorem 5.6. Let p(k) denote the optimal mutation rate to optimize
the next block, given the current individual has fitness m and k = mℓ. So
p(k) = pm, and k > 0 since m > 0.

By Lemma 5.9 and plugging in x/k for p, to minimize E[Tk], we need only

minimize f̂(x, k), and what is more,

p(k) =
p̂(k)

k
. (∗)

First assume ℓ is fixed. By Lemmas 5.20 and 5.25 and the second part of
Lemma 5.22, we may use Lemma 5.24 to get that for all ε > 0,

f̂(1, k) ≤ f̂(1 + ε, k) for all large k, and

f̂(1, k) ≤ f̂(1− ε, k) for all large k.

Therefore, lim
k→∞

p̂(k) = 1, and so (∗) gives that

lim
k→∞

p(k)

1/k
= lim

k→∞
kp(k) = lim

k→∞
p̂(k) = 1.

If m→∞, then k →∞. Thus pm = p(k) = (1 + o(1)) · 1/k.
Next, let k = mℓ for some positive integer m, and let ℓ→∞. Let g and

ρ be as in Definition 5.19. By Lemma 5.23, we have

ρ = m(−1 +
√

1 + 2/m).

Let ε > 0. Since g is a single, fixed function, the unique minimum of g at ρ
implies that there is a δ with 0 < δ < 1 such that

g(ρ)

g(ρ + ε)
≤ δ, and

g(ρ)

g(ρ− ε)
≤ δ.

Indeed, we can take δ = max
(

g(ρ)
g(ρ+ε)

, g(ρ)
g(ρ−ε)

)

. These inequalities, together

with Lemma 5.21 imply by Lemma 5.24 (where we take each function gk to
be g) that

f̂(ρ, mℓ) ≤ f̂(ρ + ε, mℓ), for all large ℓ, and

f̂(ρ, mℓ) ≤ f̂(ρ− ε, mℓ), for all large ℓ.

34

Therefore, lim
ℓ→∞

p̂(mℓ) = ρ. Also, (∗) gives us that

pm = p(k) = p(mℓ) =
p̂(mℓ)

mℓ
.

This last equality and lim
ℓ→∞

p̂(mℓ) = ρ imply that

lim
ℓ→∞

pm

ℓ−1(
√

1 + 2/m− 1)
= lim

ℓ→∞

p̂(mℓ)/(mℓ)

ℓ−1(
√

1 + 2/m− 1)
= lim

ℓ→∞

p̂(mℓ)

ρ
= 1.

We next work on what the total expected runtime is on the entire Block-

LeadingOnes problem when using the optimal fitness-dependent mutation
rate.

Lemma 5.26. Let a, b, and f̃ be as in Definition 5.19, and let T ′
k be as in

Definition 5.15. Then taking asymptotics as k →∞,

min
x

f̃(x, k) = (1 + o(1))e(bk + a).

Consequently, taking the minimum over (fitness-dependent) mutation rates
p,

min
p

E[T ′
k] = (1 + o(1))2ℓe(bk + a).

Proof. Recall p̃(k) from Definition 5.19. Lemma 5.22 says limk→∞ p̃(k) = 1,
and hence p̃(k) = 1 + o(1). Therefore,

min
x

f̃(x, k) = f̃(p̃(k), k) = f̃(1 + o(1), k) = e1+o(1)(bk/(1 + o(1)) + a)

= (1 + o(1))e(bk + a).

By Lemma 5.20, we have that

min
x

f̂(x, k) = min
x

f̃(x, k),

and so
min

x
f̂(x, k) = (1 + o(1))e(bk + a).

By Lemma 5.16, we have

min
p

E[T ′
k] = 2ℓ min

x
f̂(x, k) = (1 + o(1))2ℓe(bk + a).

35

Proof of Theorem 5.7. Let T ′
k be as in Definition 5.15, but here, k = mℓ

for non-negative integers m. Then T =
∑n/ℓ−1

m=0 T ′
mℓ, using T ′

k from Defini-
tion 5.15.

So by linearity of expectation and Lemma 5.26, we have

E[T] =
n/ℓ−1
∑

m=0

E[T ′
mℓ]

=
n/ℓ−1
∑

m=0

(1 + o(1))2ℓe(bmℓ + a)

=
n/ℓ−1
∑

m=log(n/ℓ)

(1 + o(1))2ℓe(bmℓ + a) + O(log(n/ℓ))2ℓe(b log(n/ℓ)ℓ + a)

Let S be the term on the right: S = O(log(n/ℓ))2ℓe(b log(n/ℓ)ℓ + a), and

let M =
n/ℓ−1
∑

m=log(n/ℓ)

m =
(n/ℓ− 1)(n/ℓ)

2
− log(n/ℓ)(log(n/ℓ) + 1)

2
. So then, we

have that

E[T] = (1 + o(1))ebℓ2ℓM + (1 + o(1))ea2ℓO(n/ℓ) + S.

Notice that M = n2/(2ℓ2) + O(n/ℓ), and so

E[T] = (1 + o(1))
e

2
· b2ℓn2

ℓ
+ ebℓ2ℓO(n/ℓ) + ea2ℓO(n/ℓ) + S,

and each of the right-most three terms grows asymptotically slower than the
first one and so can be absorbed in the (1 + o(1)) to get our result:

E[T] = (1 + o(1))
e

2
· b2

ℓn2

ℓ
.

6 Conclusion

In this work, we proposed a general method to analyze the time EAs need
in order to leave plateaus. Using arguments from discrete Fourier analysis,
we obtained exact expressions for these times. Naturally, our method is
restricted to plateaus with certain symmetry properties, and this restriction
is inherent to discrete Fourier analysis.

In this first work using this method, we restricted ourselves to the
(1 + 1) EA with general mutation rate. We are optimistic that our method

36

can also be applied to other simple single-trajectory search heuristics. What
is a more interesting question for future research is how EAs with nontrivial
population sizes can be analyzed. We note that in this direction, so far only
the results [DK13,Ere20] exist, which both cannot determine the leading con-
stant of the runtime. In [vNC01], a precise bound is stated, but it relies on
the unproven assumption “we can assume that in each generation there is an
equal and independent probability that epoch n will end by creating a fitness
n + 1 string that spreads through the population” [page 92]. Consequently,
how to prove a precise runtime estimate for the (1 + λ) EA optimizing the
Needle problem, is clearly a question that waits to be answered.

A second obvious direction for future work is to investigate how other
important insights obtained previously on the LeadingOnes benchmark
extend to the BlockLeadingOnes problem. One particularly interesting
topic could be the recent works on hyperheuristics. Since, as shown in this
work, the BlockLeadingOnes benchmark contains instances from a broad
range of runtimes, it would be interesting to see if the hyperheuristics that
show an excellent performance on the LeadingOnes problem keep their
good performance also on the broader BlockLeadingOnes benchmark,
where longer times without an improvement must be tolerated.

Acknowledgments

We would like to thank Marcin Mazur for help with the statement and proof
of Lemma 5.10. We also would like to thank the reviewers for their help-
ful comments, in particular, pointing us to several previous works we were
not aware of. This work was supported by a public grant as part of the In-
vestissements d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx
LMH.

References

[AD11] Anne Auger and Benjamin Doerr, editors. Theory of Randomized
Search Heuristics. World Scientific Publishing, 2011.

[AD21] Denis Antipov and Benjamin Doerr. Precise runtime analysis for
plateau functions. ACM Transactions on Evolutionary Learning
and Optimization, 1:13:1–13:28, 2021.

37

[BBD21] Henry Bambury, Antoine Bultel, and Benjamin Doerr. General-
ized jump functions. In Genetic and Evolutionary Computation
Conference, GECCO 2021, pages 1124–1132. ACM, 2021.

[BDN10] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal
fixed and adaptive mutation rates for the LeadingOnes problem.
In Parallel Problem Solving from Nature, PPSN 2010, pages 1–
10. Springer, 2010.

[BFH+07] Dimo Brockhoff, Tobias Friedrich, Nils Hebbinghaus, Christian
Klein, Frank Neumann, and Eckart Zitzler. Do additional ob-
jectives make a problem harder? In Genetic and Evolutionary
Computation Conference, GECCO 2007, pages 765–772. ACM,
2007.

[CSWA15] Francisco Chicano, Andrew M. Sutton, L. Darrell Whitley, and
Enrique Alba. Fitness probability distribution of bit-flip muta-
tion. Evolutionary computation, 23:217–248, 2015.

[DDL21] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-
adjusting mutation rates with provably optimal success rules.
Algorithmica, 83:3108–3147, 2021.

[DG13] Benjamin Doerr and Leslie A. Goldberg. Adaptive drift analysis.
Algorithmica, 65:224–250, 2013.

[DHK12] Benjamin Doerr, Edda Happ, and Christian Klein. Crossover
can provably be useful in evolutionary computation. Theoretical
Computer Science, 425:17–33, 2012.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the
analysis of the (1+1) evolutionary algorithm. Theoretical Com-
puter Science, 276:51–81, 2002.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multi-
plicative drift analysis. Algorithmica, 64:673–697, 2012.

[DK13] Benjamin Doerr and Marvin Künnemann. Royal road functions
and the (1 + λ) evolutionary algorithm: Almost no speed-up
from larger offspring populations. In Congress on Evolutionary
Computation, CEC 2013, pages 424–431. IEEE, 2013.

[DK20] Benjamin Doerr and Martin S. Krejca. Significance-based
estimation-of-distribution algorithms. IEEE Transactions on
Evolutionary Computation, 24:1025–1034, 2020.

38

[DK21a] Benjamin Doerr and Timo Kötzing. Lower bounds from fitness
levels made easy. In Genetic and Evolutionary Computation Con-
ference, GECCO 2021, pages 1142–1150. ACM, 2021.

[DK21b] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift. Al-
gorithmica, 83, 2021.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy
Nguyen. Fast genetic algorithms. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 777–784. ACM,
2017.

[DLOW18] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and
John Alasdair Warwicker. On the runtime analysis of selec-
tion hyper-heuristics with adaptive learning periods. In Genetic
and Evolutionary Computation Conference, GECCO 2018, pages
1015–1022. ACM, 2018.

[DN20] Benjamin Doerr and Frank Neumann, editors. Theory
of Evolutionary Computation—Recent Developments in
Discrete Optimization. Springer, 2020. Also available at
http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr neumann book.html.

[Doe20] Benjamin Doerr. Probabilistic tools for the analysis of random-
ized optimization heuristics. In Benjamin Doerr and Frank Neu-
mann, editors, Theory of Evolutionary Computation: Recent De-
velopments in Discrete Optimization, pages 1–87. Springer, 2020.
Also available at https://arxiv.org/abs/1801.06733.

[Doe21a] Benjamin Doerr. Exponential upper bounds for the runtime
of randomized search heuristics. Theoretical Computer Science,
851:24–38, 2021.

[Doe21b] Benjamin Doerr. The runtime of the compact genetic algorithm
on Jump functions. Algorithmica, 83:3059–3107, 2021.

[Dro02] Stefan Droste. Analysis of the (1+1) EA for a dynamically chang-
ing OneMax-variant. In Congress on Evolutionary Computation,
CEC 2002, pages 55–60. IEEE, 2002.

[DSW13] Benjamin Doerr, Dirk Sudholt, and Carsten Witt. When do
evolutionary algorithms optimize separable functions in parallel?
In Foundations of Genetic Algorithms, FOGA 2013, pages 48–59.
ACM, 2013.

39

http://www.lix.polytechnique.fr/Labo/Benjamin.Doerr/doerr_neumann_book.html
https://arxiv.org/abs/1801.06733

[DW18] Carola Doerr and Markus Wagner. Simple on-the-fly parame-
ter selection mechanisms for two classical discrete black-box op-
timization benchmark problems. In Genetic and Evolutionary
Computation Conference, GECCO 2018, pages 943–950. ACM,
2018.

[DYH+20] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M.
Shir, and Thomas Bäck. Benchmarking discrete optimization
heuristics with iohprofiler. Applied Soft Computing, 88:106027,
2020.

[DZ21] Benjamin Doerr and Weijie Zheng. Theoretical analyses of multi-
objective evolutionary algorithms on multi-modal objectives. In
Conference on Artificial Intelligence, AAAI 2021, pages 12293–
12301. AAAI Press, 2021.

[Ere20] Anton V. Eremeev. On non-elitist evolutionary algorithms opti-
mizing fitness functions with a plateau. In Mathematical Opti-
mization Theory and Operations Research, MOTOR 2020, pages
329–342. Springer, 2020.

[ES21] Anton V. Eremeev and Alexander V. Spirov. Modeling selex
for regulatory regions using royal road and royal staircase fitness
functions. Biosystems, 200:104312, 2021.

[FHN09] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann. Com-
parison of simple diversity mechanisms on plateau functions.
Theoretical Computer Science, 410:2455–2462, 2009.

[FHN10] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann.
Plateaus can be harder in multi-objective optimization. Theo-
retical Computer Science, 411:854–864, 2010.

[Gar12] Paul Garrett. Fourier analysis on fi-
nite abelian groups. Preprint. Available at
https://www-users.cse.umn.edu/∼garrett/m/mfms/notes c/fin ab fourier.pdf,
2012.

[GKS99] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary Computation,
7:173–203, 1999.

40

https://www-users.cse.umn.edu/~garrett/m/mfms/notes_c/fin_ab_fourier.pdf

[GW03] Oliver Giel and Ingo Wegener. Evolutionary algorithms and
the maximum matching problem. In Symposium on Theoreti-
cal Aspects of Computer Science, STACS 2003, pages 415–426.
Springer, 2003.

[HY01] Jun He and Xin Yao. Drift analysis and average time complex-
ity of evolutionary algorithms. Artificial Intelligence, 127:51–81,
2001.

[Jan13] Thomas Jansen. Analyzing Evolutionary Algorithms – The Com-
puter Science Perspective. Springer, 2013.

[Jan15] Thomas Jansen. On the black-box complexity of example func-
tions: the real jump function. In Foundations of Genetic Algo-
rithms, FOGA 2015, pages 16–24. ACM, 2015.

[JW01] Thomas Jansen and Ingo Wegener. Evolutionary algorithms -
how to cope with plateaus of constant fitness and when to reject
strings of the same fitness. IEEE Transactions on Evolutionary
Computation, 5:589–599, 2001.

[LN19] Per Kristian Lehre and Phan Trung Hai Nguyen. On the limita-
tions of the univariate marginal distribution algorithm to decep-
tion and where bivariate EDAs might help. In Foundations of
Genetic Algorithms, FOGA 2019, pages 154–168. ACM, 2019.

[LOW17] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.
On the runtime analysis of generalised selection hyper-heuristics
for pseudo-Boolean optimisation. In Genetic and Evolutionary
Computation Conference, GECCO 2017, pages 849–856. ACM,
2017.

[LOW20] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker.
Simple hyper-heuristics control the neighbourhood size of ran-
domised local search optimally for LeadingOnes. Evolutionary
Computation, 28:437–461, 2020.

[LS14] Jörg Lässig and Dirk Sudholt. General upper bounds on the
runtime of parallel evolutionary algorithms. Evolutionary Com-
putation, 22:405–437, 2014.

[LW21] Per Kristian Lehre and Carsten Witt. Tail bounds on hit-
ting times of randomized search heuristics using variable drift

41

analysis. Combinatorics, Probability and Computing, 30:550–569,
2021.

[MFH92] Melanie Mitchell, Stephanie Forrest, and John H. Holland. The
royal road for genetic algorithms: fitness landscapes and GA per-
formance. In Proc. of the First European Conference on Artificial
Life, pages 245–254. MIT Press, 1992.

[MRR+53] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, Augusta H. Teller, and Edward Teller. Equation
of state calculations by fast computing machines. The Journal
of Chemical Physics, 21:1087–1092, 1953.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: muta-
tion and hillclimbing. In Parallel Problem Solving from Nature,
PPSN 1992, pages 15–26. Elsevier, 1992.

[Neu08] Frank Neumann. Expected runtimes of evolutionary algorithms
for the Eulerian cycle problem. Computers & OR, 35:2750–2759,
2008.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search,
evolutionary algorithms, and the minimum spanning tree prob-
lem. Theoretical Computer Science, 378:32–40, 2007.

[NW10] Frank Neumann and Carsten Witt. Bioinspired Computation in
Combinatorial Optimization – Algorithms and Their Computa-
tional Complexity. Springer, 2010.

[OW11] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for
proving lower bounds in evolutionary computation. Algorithmica,
59:369–386, 2011.

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algo-
rithms. Verlag Dr. Kovǎc, 1997.

[RVW04] Jonathan E. Rowe, Michael D. Vose, and Alden H. Wright. Struc-
tural search spaces and genetic operators. Evolutionary Compu-
tation, 12:461–493, 2004.

[SCW13] Andrew M. Sutton, Francisco Chicano, and L. Darrell Whit-
ley. Fitness function distributions over generalized search neigh-
borhoods in the q-ary hypercube. Evolutionary Computation,
21:561–590, 2013.

42

[STW04] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. The
analysis of evolutionary algorithms on sorting and shortest paths
problems. Journal of Mathematical Modelling and Algorithms,
3:349–366, 2004.

[Sud13] Dirk Sudholt. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on Evolu-
tionary Computation, 17:418–435, 2013.

[vNC01] Erik van Nimwegen and James P. Crutchfield. Optimizing
epochal evolutionary search: population-size dependent theory.
Machine Learning, 45:77–114, 2001.

[VW98] Michael D. Vose and Alden H. Wright. The simple genetic al-
gorithm and the walsh transform: Part i, theory. Evolutionary
Computation, 6:253–273, 1998.

[Weg01] Ingo Wegener. Theoretical aspects of evolutionary algorithms.
In Automata, Languages and Programming, ICALP 2001, pages
64–78. Springer, 2001.

[Wit14] Carsten Witt. Fitness levels with tail bounds for the analysis
of randomized search heuristics. Information Processing Letters,
114:38–41, 2014.

[Wit23] Carsten Witt. How majority-vote crossover and estimation-of-
distribution algorithms cope with fitness valleys. Theoretical
Computer Science, 940:18–42, 2023.

[WW05] Ingo Wegener and Carsten Witt. On the optimization of mono-
tone polynomials by simple randomized search heuristics. Com-
binatorics, Probability & Computing, 14:225–247, 2005.

[WZD21] Shouda Wang, Weijie Zheng, and Benjamin Doerr. Choosing the
right algorithm with hints from complexity theory. In Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2021,
pages 1697–1703. ijcai.org, 2021.

[Zha23] Christopher Zhang. Formulas for hitting times and cover times
for random walks on groups. CoRR, abs/2302.01963, 2023.

43

	1 Introduction
	2 Previous Works
	3 Using Fourier Analysis
	4 Analysis of the Needle Problem
	5 The BlockLeadingOnes Problem
	5.1 Definition of the BlockLeadingOnes Problem
	5.2 Our Results
	5.3 Estimating the Runtime on One Block
	5.3.1 Approximating a Certain Sum

	5.4 The Optimal Static Mutation Rate
	5.5 Optimal Fitness-dependent Mutation Rate
	5.5.1 Erasing the O(p) Term in Lemma 5.9
	5.5.2 Proving Theorems 5.6 and 5.7

	6 Conclusion

