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From microscopic to macroscopic scale dynamics: mean field,

hydrodynamic and graph limits

Thierry Paul∗ Emmanuel Trélat†

Abstract

Considering deterministic finite particle systems, we elaborate on various ways to pass
to the limit as the number of agents tends to infinity, either by mean field limit, deriving
the Vlasov equation, or by hydrodynamic or graph limit, obtaining the Euler equation. We
provide convergence estimates. We also show how to pass from Liouville to Vlasov or to Euler
by taking adequate moments. Our results encompass and generalize a number of known results
of the literature.
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1 Introduction

1.1 Setting

Multi-agent collective models have regained an increasing interest over the last years, due in partic-
ular to their connections with mean field and continuum / graph limit equations. At the microscopic
scale, such models consist of considering particles or agents evolving according to the dynamics

ξ̇i(t) =
1

N

N∑
j=1

GNij (t, ξi(t), ξj(t)), i ∈ {1, . . . , N}, (1)

for some (large) number of agents N ∈ IN∗ where, for every i ∈ {1, . . . , N}, ξi(t) ∈ IRd (for
some d ∈ IN∗) stands for various parameters describing the behavior of the ith agent and GNij :

IR× IRd × IRd → IRd is a mapping modeling the interaction between the ith and jth agents. Note
that, here and throughout the paper, we focus on deterministic systems.

Dynamics of the form (1) are used in a wide range of very different problems, ranging from
the study of flocking and swarming in biology, of modeling traffic flows, to dynamics evolution in
social sciences, in quantum systems, in fluid mechanics (see, e.g., [2, 4, 7, 17, 18, 21, 24, 35, 38, 42,
43, 56, 57, 75, 76], just to mention a few of a vast literature).

Among classes of multi-agent systems, we point out the Hegselmann–Krause (opinion propa-
gation) systems (see [42]) that have the striking property of exhibiting features nowadays grouped
under the common denomination of self-organization: their large-time asymptotic behavior shows
consensus phenomena, namely an alignment of all values ξi(t) to a single one. These models
correspond to GNij (t, ξi, ξj) = σij(ξj − ξi), i.e., their dynamics is

ξ̇i(t) =
1

N

N∑
j=1

σij(ξj(t)− ξi(t)) (2)

where (σij)16i,j6N is a N -by-N matrix whose spectral properties may cause the above-mentioned
asymptotic behavior.

The large N limit of systems (1), (2) has been extensively studied over the last years. In [55]
the author shows how to pass to the continuum limit in nonlocally coupled dynamical networks
by using the concept of graph limit. This concept has also been used recently in [28] to obtain
discrete-to-continuum convergence results with error estimates in the Wasserstein distance. We
also mention the recent articles [5, 8, 13, 44]. In a nutshell, the graph limit allows one to pass
to the limit from the general system of agents (1) to an integro-differential equation, which we
call continuum / graph limit equation, by interpreting the right-hand side of (1) as a Riemann
sum. Then, obtaining the limit equation is seen as passing to the limit in a Riemann sum and
thus obtaining a continuous integral. This is what has been done in [5, 8, 14] for the opinion
propagation model G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ), leading to the graph limit equation

∂ty(t, x) =

∫
Ω

σ(x, x′)(y(t, x′)− y(t, x)) dx′

where σ(xi, xj) = σij for some points xj ∈ Ω.

Another important class of systems (1) concerns particles ξi = (pi, qi) ∈ IRd × IRd, either
Hamiltonian in which case G may take the form

G(ξi, ξj) =

(
pi

∇V (qi − qj)

)
(3)
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for some potential V , or of Cucker–Smale type in which case we have

G(ξi, ξj) =

(
pi

a(‖qi − qj‖)(pj − pi)

)
(4)

for some influence function a.
The difference between general systems (1) and the particular systems (3) and (4) is that for

the latter the mapping Gij does not depend on i and j, that is on the “labels” of the agents.
A consequence is that, in the usual literature, the associated evolution equation preserves the
indistinguishability of the particles, a feature often considered as fundamental for the large N
limit of particle systems. One of the objectives of the present article is to show how to extend
the standard mean field methods to the non-indistinguishable setting, simply by endowing to the
index i the status of a parameter, treated as a new state variable of zero dynamics.

The systematic study of large N limit of particle systems has a long and glorious history,
starting with Hartree (see [40]) in the late 20’s for quantum systems, and then Vlasov in the 40’s
(see [79]) who derived the eponymous kinetic equation (here, we present it in a form suitable for
our purposes), called Vlasov equation,

∂tµt + divξ(X [µt]µt) = 0 with X [µ](ξ) =

∫
G(ξ, ξ′) dµ(ξ′). (5)

There are two classical ways for deriving (5). A first consists of using the concept of empirical

measure µet (ξ) = 1
N

∑N
i=1 δ(ξ − ξi(t)), which is a solution for (5), and then of taking the mean

field limit. A second consists of using marginals of the solution of the Liouville equation associated
to the particle system, namely the equation satisfied by the pushforward of probability measures
on IRdN under the flow generated by the particle system. In the latter case one shows that the
first marginal of this pushforward, which is a probability measure on IR2d, satisfies at the limit
N → +∞ the Vlasov equation (5). The last step of this process, called the hydrodynamic limit,
starts from the observation that (5) preserves the structure µt(ξ) = µt(q, p) = ν(t, q)δ(p− y(t, q))
leading to the so-called Euler system of equations satisfied by the pair (ν, y).

One of the main steps in the developments of the present article is to highlight that, after having
derived the Vlasov equation associated to (1) thanks to the trick consisting of parametrizing the
status of the index i as already mentioned, the associated Euler equation (not a system anymore
because the extra dynamical variables i remain at rest and thus give no kinetic part in the Euler
system) coincides with the continuum / graph limit equation associated to (1) – a nontrivial fact,
even at the conceptual level as discussed in Section 5.5 of the paper.

This article is devoted to unifying and generalizing, to some extent, the classical ways to pass
to the limit in families of finite particle systems. The mean field limit, even for distinguishable
particles, leads to the Vlasov equation. The hydrodynamic limit leads to the Euler equation.
The Liouville equation is a lift of the particle system in a space of probability measures. We
analyze in detail the various relationships between particle system, Vlasov, Liouville and Euler
equations, showing how to pass from one to another and deriving, under appropriate assumptions,
some general convergence estimates. While some of the results are classical (or straightforward
extensions of known results), most of them are new and we hope that the overall study may serve
to unify different viewpoints.

Let us point out a difference of methodology between the present paper and several previous
works concerning the case of indistinguishable particles: we do not estimate propagation of cou-
plings but we rather use direct estimates of the particles and Vlasov flows thanks to the use of a
convenient Wasserstein distance. This allows us to obtain, as a by-product of our main results,
quantitative mean field limits for more general vector fields than in (3) and (4).
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1.2 Microscopic viewpoint: family of particle systems

Let d ∈ IN∗ be fixed. Throughout the paper, we consider an arbitrary norm ‖ · ‖ on IRd. At the
microscopic level, given any N ∈ IN∗, we consider a system of N interacting “particles” or “agents”
ξNi (t) ∈ IRd, called the particle system (or multiagent system), of dynamics

ξ̇Ni (t) =
1

N

N∑
j=1

GNij
(
t, ξNi (t), ξNj (t)

)
, i ∈ {1, . . . , N} (6)

where GNij : IR× IRd × IRd → IRd stands for the interaction between the particles i and j. The dot
stands for the time derivative. The most usual case, widely treated in the existing literature, is
when GNij = G: in this case, the particles are indistinguishable (or, exchangeable in the probabilistic

language), reflecting the fact that the dynamics are invariant under permutations of the ξNi . We
show here that there is no difficulty to treat the more general situation where the particles are
distinguishable and the interactions depend on the agents. In (6), GNij depends on i, j,N .

Throughout the paper, we make the following crucial assumption:

(G) There exist a complete metric space (Ω,dΩ) and a continuous mapping

G : IR× Ω× Ω× IRd × IRd → IRd

(t, x, x′, ξ, ξ′) 7→ G(t, x, x′, ξ, ξ′)

locally Lipschitz with respect to (ξ, ξ′) uniformly with respect to (t, x, x′) on any compact
subset of IR× Ω× Ω, such that, for every N ∈ IN∗, there exist xN1 , . . . , x

N
N in Ω such that

G
(
t, xNi , x

N
j , ξ, ξ

′) = GNij (t, ξ, ξ
′) ∀t ∈ IR ∀ξ, ξ′ ∈ IRd ∀i, j ∈ {1, . . . , N}. (7)

Under Assumption (G), for every N ∈ IN∗ the particle system (6) is equivalently written as

ẋNi (t) = 0

ξ̇Ni (t) =
1

N

N∑
j=1

G
(
t, xNi , x

N
j , ξ

N
i (t), ξNj (t)

)
, i ∈ {1, . . . , N}

(8)

The variables xNi ∈ Ω are parameters, and a usual way to treat parameters in differential equations
is to treat them as state variables whose dynamics are zero, whence the dynamics ẋNi (t) = 0 above.
For each index i, the variable xNi can be seen as the “label” (type, name, color) of the agent i,
used to distinguish it from the others.

Assumption (G) (in particular, (7)) is a kind a continuous interpolation of the mappings GNij .
The continuity assumption includes the idea of the existence of a limit system as N → +∞. In
some sense, this assumption is unavoidable: indeed, if G were not required to be continuous, then
completely different systems (6) could be considered as N varies and then no limit (at least, in
a strong sense) for large N could exist. Note anyway that, interestingly, the authors of [44] do
not assume (G), but in order to pass to the mean field limit they make another assumption of
uniform boundedness on their dynamics in order to have a weak star limit. However at the limit
the distinguishability of particles is lost. In contrast, in our paper we want to obtain strong (mean
field, hydrodynamic, graph) limits and to preserve distinguishability at the limit.

Note that Assumption (G) implies that the Lipschitz constants of the mappings GNij are uni-
formly bounded (with respect to i, j,N) on any compact.
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In Assumption (G), the complete metric space Ω used for the parameters xNi is arbitrary. For
instance we can take Ω = [0, 1], but we allow for more general sets, in view of deriving on Ω some
interesting classes of PDEs (see Section 7.1).

The choice of the possible values of the xNi is not imposed in Assumption (G). If one wishes
moreover to fix some precise points xNi , such as the natural ones xNi = i

N when Ω = [0, 1], often
used in numerical analysis, then having (7) satisfied requires some compatibility conditions on the
mappings GNij .

In the above framework, the classical case studied in the existing literature, where particles are
indistinguishable, is when the mapping G does not depend on (x, x′).

Setting XN = (xN1 , . . . , x
N
N ) ∈ ΩN , the system (8) can also be written in the form

Ξ̇N (t) = Y N
(
t,XN ,ΞN (t)

)
(9)

where ΞN (t) = (ξN1 (t), . . . , ξNN (t)). Here and in what follows, the time-dependent vector field
Y N (t,X, ·) on (IRd)N , depending on the parameter X ∈ ΩN , is defined by

Y N (t,X, ·) =
(
Y N1 (t,X, ·), . . . , Y NN (t,X, ·)

)
(10)

with

Y Ni (t,X,Ξ) =
1

N

N∑
j=1

G(t, xi, xj , ξi, ξj) ∀i ∈ {1, . . . , N} (11)

for all t ∈ IR, X = (x1, . . . , xN ) ∈ ΩN and Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N . We denote by (ΦN (t,X, ·))t∈I
(I ⊂ IR) the local-in-time flow of diffeomorphisms of IRdN generated by the time-dependent vector
field Y N (t,X, ·): this flow, called the particle flow, is parametrized by X ∈ ΩN . We have ΞN (t) =
ΦN (t,XN ,ΞN (0)) for every t ∈ I.

Lemma 1.1. [Uniform maximal time] For any compact subset K of Ω×IRd, there exists Tmax(K) ∈
(0,+∞] such that, for any N ∈ IN∗, for any (X,Ξ(0)) ∈ KN ,1 there exists a unique solution
t 7→ ΞN (t) = ΦN (t,XN ,ΞN (0)) of (9) on [0, Tmax(K)), of parameter XN and of initial condition
ΞN (0) at t = 0, and of class C 1 with respect to t. Moreover, for any T ∈ [0, Tmax(K)), the set
ΦN ([0, T ]×KN ) is contained in a compact subset of IRd depending on T but not on N .

Lemma 1.1 shows that, given a compact set K of initial conditions, the time Tmax(K) is uniform
with respect toN ∈ IN∗, and that, given any T ∈ (0, Tmax(K)), any solution of (9) on [0, T ], starting
in K at t = 0, is contained in a compact set that depends on T but not on N .

Lemma 1.1 straightforwardly follows from the usual proof of the Picard-Lindelöf (Cauchy-
Lipschitz) theorem by a fixed point argument (see [39, Chapter II]), using Assumption (G), noting
that, for every T > 0, on [0, T ]×KN the vector field Y N is uniformly bounded with respect to N
and is Lipschitz with respect to Ξ uniformly with respect to (t,X) on any compact, with a Lipschitz
constant that is uniform with respect to N . Note that, for a given N ∈ IN∗, the maximal time of
definition of the solution t 7→ ΦN (t,X,Ξ(0)) may be larger than Tmax(K); what is important in
the lemma is the uniform bound below with respect to N .

Of course, if G is globally Lipschitz with respect to (ξ, ξ′) ∈ IRd × IRd, uniformly with respect
to (t, x, x′) on any compact subset of [0,+∞) × Ω × Ω, then Tmax(K) = +∞ for any compact
K ⊂ Ω× IRd. But our framework is more general and allows for superlinearities.

We next give some examples covered by this general framework.

1With a slight abuse of notation, (XN ,ΞN (0)) ∈ KN means that (xNi , ξ
N
i (0)) ∈ K for every i ∈ {1, . . . , N}.
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1.3 Examples

First-order systems. General first-order systems of the form

ξ̇Ni (t) = FNi (t, ξNi (t)) +
1

N

N∑
j=1

KN
ij (t, ξNi (t), ξNj (t)), i ∈ {1, . . . , N}, (12)

can be written as (6) with GNij (t, ξ, ξ
′) = Fi(t, ξ)+KN

ij (t, ξ, ξ′). Assumption (G) is satisfied if there

exist a set Ω and sufficiently regular mappings F and K such that F (t, xNi , x
N
j , ξ, ξ

′) = FNi (t, ξ)

and K(t, xNi , x
N
j , ξ, ξ

′) = KN
ij (t, ξ, ξ′) as in (7).

– A first meaningful example is the linear Hegselmann–Krause first-order consensus system (see
[42]), modeling for instance the propagation of opinions (studied in [14]), of dynamics

ξ̇Ni (t) =
1

N

N∑
j=1

σNij
(
ξNj (t)− ξNi (t)

)
, i ∈ {1, . . . , N}, (13)

with constant interaction coefficients σNij > 0 (not necessarily symmetric). Assumption (G) re-
quires that there exist a set Ω (for example, but not necessarily, Ω = [0, 1]) and a continuous
function σ on Ω2 such that, for every N ∈ IN∗, there exist distinct points xN1 , . . . , x

N
N in Ω such that

σ(xNi , x
N
j ) = σNij . The graph interpretation, which is particularly relevant here, will be commented

in Section 2. We have then G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′−ξ) for all (t, x, x′, ξ, ξ′) ∈ IR×Ω2×(IRd)2.
More general models can be considered, with interaction coefficients σij depending on t and on

the ξi (see the survey [57] and see the recent Transformers particle model studied in [34]).

– A second interesting example is the Kuramoto model

ξ̇Ni (t) = αNi +
1

N

N∑
j=1

σNij sin(ξNj (t)− ξNi (t)), i ∈ {1, . . . , N}, (14)

where d = 1, ξNi (t) ∈ IR is the phase of the oscillator i, αNi ∈ IR is its frequency and σNij ∈ IR is an
interaction coefficient between oscillators i and j. This system was introduced in [49] in view of
studying synchronization of interacting oscillators. To write the particle system (14) in the form
(8), now two parameters (labels) are required for each particle, one standing for the frequency and
the other for the interaction as in the previous example. We set Ω = IR × [0, 1] and for every
x ∈ Ω we denote by x = (α, β) ∈ Ω the two coordinates of x. Assumption (G) is satisfied if there
exists a continuous function σ on [0, 1]2 satisfying σ(βNi , β

N
j ) = σij as in (7), and we have then

G(t, x, x′, ξ, ξ′) = α+ σ(β, β′)(ξ′ − ξ) (where x = (α, β) and x′ = (α′, β′)).

– Consider again the general system (12), but where now FNi = F and KN
ij = K do not depend

on i, j,N , with F,K ∈ C 1(IRd, IRd). In this case (12) becomes

ξ̇Ni (t) = F (ξNi (t)) +
1

N

N∑
j=1

K(ξNi (t)− ξNj (t)), i ∈ {1, . . . , N}, (15)

which is a much used particle model (see [43]). Assumption (G) is satisfied and G(t, x, x′, ξ, ξ′) =
F (ξ) +K(ξ − ξ′), not depending on (t, x, x′): this is an indistinguishable case. Often, K = −∇V
where V is an interaction potential (that we consider here to be regular).
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Second-order systems. Setting d = 2r and denoting ξ = (q, p) ∈ IRr×IRr, general second-order
systems of the form

q̇Ni (t) = pNi (t), ṗNi (t) =
1

N

N∑
j=1

bNij (t, q
N
i (t), pNi (t), qNj (t), pNj (t)), i ∈ {1, . . . , N}, (16)

can be written as (6) with GNij (t, ξ, ξ
′) = (p, bNij (t, ξ, ξ

′)). Assumption (G) is satisfied if there exist

a set Ω and a sufficiently regular mapping b interpolating all mapping bNij as stated in (7), i.e.,

b(t, xNi , x
N
j , ξ, ξ

′) = bNij (t, ξ, ξ
′).

Here, q is a position and p is a speed or a momentum. It is important to note that the variable
q should not be confused with the variable x ∈ Ω that is used here to designate the label of a
particle.

– A famous example of second-order dynamics is the Cucker–Smale model (see [24])

q̇Ni (t) = pNi (t), ṗNi (t) =
1

N

N∑
j=1

a(‖qNj (t)− qNi (t)‖)(pNj (t)− pNi (t)), i ∈ {1, . . . , N}, (17)

where a ∈ C 1(IR). Assumption (G) is satisfied with G = (Gq, Gp) where Gq(t, x, x
′, ξ, ξ′) = p and

Gp(t, x, x
′, ξ, ξ′) = a(‖q′−q‖)(p′−p), not depending on (t, x, x′): this is an indistinguishable case.

Many variants of that model are covered by our framework, for instance the potential a may
depend on i and j, and other terms can be added to the dynamics of pi, for instance self-propulsion
and attraction-repulsion forces (like in [17]); in this case, defining a set Ω is required.

– Many second-order particle systems studied in the literature, coming from the Newton law for
N particules, are of the form (16) with bNij (t, ξ, ξ

′) = K(ξ, ξ′), not depending on i, j,N , with

K ∈ C 1(IRd, IRd), yielding

q̇Ni (t) = pNi (t), ṗNi (t) =
1

N

N∑
j=1

K(qNi (t), qNj (t)), i ∈ {1, . . . , N}. (18)

Assumption (G) is satisfied with G(t, x, x′, ξ, ξ′) = (p,K(q, q′)), not depending on (t, x, x′): this
is an indistinguishable case. Note that, when K = −∇V for some potential function, the
above particle system stands for the classical N−body problem in Hamiltonian form (see next for
more general Hamiltonian cases), with the Hamiltonian function given by H(q1, p1, . . . , qN , pN ) =
1
2

∑N
j=1 ‖pj‖2 + 1

N

∑N
j=1 V (qi, qj).

Hamiltonian systems. Still with d = 2r and ξ = (q, p) ∈ IRr× IRr, given any N ∈ IN∗, consider
the Hamiltonian function

HN (q1, p1, . . . , qN , pN ) =

N∑
j=1

hNj (qj , pj) +
1

N

N∑
j,k=1

hNjk(qj , pj , qk, pk) (19)

for some C 1 functions hNj and hNjk. The Hamiltonian system of N particles, given by q̇i = ∂H
∂pi

,

ṗi = −∂H∂qi for i ∈ {1, . . . , N}, can be written as (6) with

GNij (t, ξ, ξ
′) =

(
∂2h

N
i (q, p) + ∂2h

N
ij (q, p, q

′, p′) + ∂4h
N
ji(q

′, p′, q, p)

−∂1h
N
i (q, p)− ∂1h

N
ij (q, p, q

′, p′)− ∂3h
N
ji(q

′, p′, q, p)

)

8



where ∂k denotes the partial derivative with respect to the kth-variable.
Having Assumption (G) satisfied requires at least that the Hamiltonians hNj and hNjk be uni-

formly (wrt j, k,N) locally Lipschitz. Note that the Hamiltonian HN defined by (19) involves
sums of “single” (noninteracting) and of “pairwise” Hamiltonians, but not of “triplewise” or more.

Many classical Hamiltonian systems of N particles are written as above with Hamiltonians
not depending on j, k,N , for instance in quantum mechanics (see [35]) or in differential geometry.
An example, where Assumption (G) is satisfied, used to model systems of fermions confined in
a magnetic field, is when hNj (qj , pj) = V (qj) + 1

2‖pj − A(qj)‖2 for some confining potential V ∈
C 1(IRd) and some magnetic potential vector A ∈ C 1(IRd, IRd), and hjk(qj , pj , qk, pk) = W (‖qj−qk‖)
for some pairwise interaction potential W ∈ C 1(IRd). In this case, we have

G(t, x, x′, ξ, ξ′) =
(
p−A(q),−∇V (q) + dA(q).(p−A(q))− ∂1W (q, q′)− ∂2W (q′, q)

)
. (20)

Remark 1.1 (On the wording “indistinguishability”). In the literature, a dynamical system ż(t) =
X(t, z(t)) in IRn is said to be “indistinguishable”, or “exchangeable” in the probabilistic wording,
if it is invariant under permutations in the following sense: given any z0 ∈ IRn, denoting by
t 7→ z(t, z0) the unique solution on some interval I of the system such that z(0, z0) = z0, we have
z(t, σ(z0)) = σ(z(t, z0)) for every t ∈ I, for every permutation σ ∈ Sn. Equivalently, the vector
field X is invariant under the action of the permutation, i.e., σ∗X(t, ·) = X(t, ·) for every t.

(1) General particle systems in IRdN of the form (6) are not indistinguishable in general because
the interaction mapping GNij depends on i and j (but they are indistinguishable if GNij = G): the
dynamics are not invariant under permutations σ ∈ SdN acting on Ξ = (ξ1, . . . , ξN ). This is the
standard wording used in the literature to describe the distinguishability or indistinguishability of
systems of particles, and we will follow this wording throughout the article.

(2) In Section 1.2 we have introduced a set of labels x ∈ Ω, distinguishing particles, and we have
done the fundamental assumption (G). In this context, the particle system (6) (which is, in general,
distinguishable) has been rewritten as (8) or equivalently as (9), by augmenting the state space to
ΩN × IRdN . But then, in this augmented form, the system (9) is always indistinguishable in the
sense that it is invariant under permutations σ ∈ SdN acting simultaneously on X = (x1, . . . , xN )
and on Ξ = (ξ1, . . . , ξN ). Hence, in some way, we recover indistinguishability in the new state
space ΩN × IRdN .

Despite the slight ambiguity, throughout the paper, we will continue to use the wording de-
scribed in (1).

1.4 Objectives, and structure of the article

When N becomes larger and larger, we want to pass to the limit in some sense.

A first possibility is to pass to the continuum limit in (8) by interpreting the right-hand side
of (8) as a Riemann sum, and use the Riemann integral. This procedure is sometimes called
graph limit and the result is an integro-differential equation that we call the continuum / graph
limit equation. This is done in Section 2, where we show how to pass from the microscopic to
the macroscopic scale, i.e., to pass “from particle to continuum / graph limit” by graph limit.
Theorems 2.2 and 2.3 quantify some convergence estimates in L∞ norm as N → +∞.

Another possibility is to replace the set of particles with a nonnegative Radon measure. Two
classical viewpoints are the Lagrangian and the Eulerian one. The Lagrangian viewpoint consists
of keeping the trajectories of (8), taking the mean field limit by embedding trajectories with an
empirical measure on Ω×IRd to solutions of the Vlasov equation (or continuity equation) in Ω×IRd.
This is done in Section 3. The Eulerian viewpoint consists of using the flow of diffeomorphisms
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of Y to propagate an initial measure in the big space ΩN × IRdN , thus obtaining the Liouville
equation in ΩN × IRdN . This is done in Section 4.

More precisely, Section 3 focuses on the passage from microscopic to mesoscopic scale: we
show how to pass “from particle to Vlasov” by mean field limit. In Theorem 3.1, we establish
existence, uniqueness and stability properties for the Vlasov equation for distinguishable particles,
generalizing the famous Dobrushin estimates. We explain the relationship between the particle
system and the Vlasov equation.

In Section 4, following the Eulerian viewpoint, we lift particles to probability measures on a big
product space and we elaborate on the Liouville equation associated with the particle system. We
show in Theorems 4.1 and 4.2 how to derive Vlasov from Liouville by taking marginals and passing
to the limit (propagation of chaos), with estimates in Wasserstein distance. We also discuss how
Euler can be derived from Liouville by taking adequate moments.

Section 5 is devoted to showing how to pass from the mesoscopic to the macroscopic scale:
we show how to derive the Euler equation from the Vlasov equation, by the procedure usually
called hydrodynamic limit, mainly consisting of taking the moment of order 1 of the solution of
the Vlasov equation. Proposition 5.2 in that section is concerned with the well known monokinetic
approach, but we also investigate the moment of order 2, yielding some consensus results.

In all sections, we also give corollaries in the indistinguishable case, thus recovering some well
known results. But this article is not only a survey: we generalize many known results, sometimes
to a wide extent, in a hopefully general and unifying context.

Note that, throughout this paper, the interaction mapping G is assumed to be continuous; in
other words, we treat regular interaction mappings. This already covers a large number of examples,
although many of the interaction mappings for applications are singular, like the Poisson kernel,
point vortices, etc (see, e.g., [43]). For singular kernels, passing to the limit can be a real challenge
(see [10, 25, 29, 33, 35, 41, 74]) and requires other mathematical techniques. One of them is to cut
off the interaction mapping around its singularities, by introducing an additional cut-off parameter
ε tending to 0 (a bit like in Section 7.1 where we give the idea of how to approach unbounded
operators) but then one has to deal with a double limit, ε → 0 and N → +∞. This raises other
difficulties and challenged, not addressed here. In this article, we only consider regular kernels,
showing in a unified framework the various ways to pass to the limit and the relationships between
them.

Note also that, in this paper, we consider deterministic finite systems of particles. Stochastic
models and their various limits are outside of the scope of the present article.

Section 6 provides a synthetic summarize of all relationships that we have unraveled. In par-
ticular, Figure 1 illustrates the various two-ways passages between particle (microscopic) ODEs
systems, the continuum / graph limit, Euler (macroscopic) equations, the Vlasov (mesoscopic,
mean field) equation, and the Liouville (microscopic again) equation. This section can even be
read as a motivating preliminary before going ahead.

In order to state all subsequent results, we recall in Section 1.5 hereafter some notations and
concepts that we use throughout, in particular some background on Wasserstein distances, on
disintegration of measures, and the concept of tagged partition that is classically used in general
Riemann integration theory.

We gather in Appendix A a number of useful results on the Wasserstein distance, empirical and
(so-called) semi-empirical measures. Appendix B is devoted to proving some of the main theorems.

1.5 General notations

Let E be a Polish space, endowed with a distance dE .
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Hölder and Lipschitz mappings. Let U be a subset of E. Let k ∈ IN∗ and let ‖ · ‖ be a
norm on IRk. Given any α ∈ (0, 1], we denote by C 0,α(U, IRk) the set of all continuous mappings
g ∈ C 0(U, IRk) that are α-Hölder continuous (with respect to the norm ‖ ‖), meaning that

Holα(g) = sup
y,y′∈U
y 6=y′

‖g(y)− g(y′)‖
dE(y, y′)α

< +∞.

When α = 1, we speak of a Lipschitz mapping and we denote Lip(g) = Hol1(g). When U is
compact, C 0,α(U, IRk) is a Banach space endowed with the norm

‖g‖C 0,α(U,IRk) = max
y∈U
‖g(y)‖+ Holα(g).

When k = 1 and α = 1, we denote Lip(U) = C 0,1(U, IR).

Probability Radon measures. We denote by P(E) the set of nonnegative probability Radon
measures on E. We also consider Pc(E), Pac(E), where the subscript c means “with compact
support” and the superscript ac means “absolutely continuous with respect to a Lebesgue measure”
(in the case where E is equipped with a Lebesgue measure), and for every p > 1 the set Pp(E) stands
for the set of all µ ∈ P(E) that have a finite moment of order p, i.e.,

∫
E

dE(y0, y)p dµ(y) < +∞
where y0 ∈ E is arbitrary. Given any Borel mapping φ : E → F where F is another Polish space
and given any µ ∈ P(E), the image (or pushforward) of µ under φ is φ∗µ = µ ◦ φ−1.

We denote by C 0(E) the set of continuous functions on E and by C 0
c (E) the set of continuous

functions of compact support on E. When E is a smooth manifold, we adopt similar notations
for the set C∞(E) of smooth functions on E. We recall that the topological dual (C 0

c (E))′ (resp.,
(C 0(E))′) is the set of all Radon measures on E (resp., with compact support). Endowed with the
total variation norm ‖ ‖TV which is the dual norm, it is a Banach space.

Throughout the paper, δ? is the Dirac measure at ?.

Wasserstein distance. Given any p > 1, the Wasserstein distance Wp(µ1, µ2) of order p between
two probability measures µ1, µ2 ∈ P(E), with respect to the distance dE , is defined as the infimum
of the Monge-Kantorovich cost

∫
E2 dE(y1, y2)p dΠ(y1, y2) over the set of probability measures Π ∈

P(E2) coupling µ1 with µ2, i.e., whose marginals on the two copies of E are µ1 and µ2:

Wp(µ1, µ2) = inf

{(∫
E2

dE(y1, y2)p dΠ(y1, y2)

)1/p

| Π ∈ P(E2), (π1)∗Π = µ1, (π2)∗Π = µ2

}
(21)

where π1 : E2 → E and π2 : E2 → E are the canonical projections defined by π1(y1, y2) = y1 and
π2(y1, y2) = y2 for all (y1, y2) ∈ E × E. Equivalently,

Wp(µ1, µ2) = inf

{(
EdE(Y1, Y2)p

)1/p

| law(Y1) = µ1, law(Y2) = µ2

}
(22)

where the infimum is taken over all possible random variables Y1 and Y2 (defined on a same
probability space, with values in E) having the laws µ1 and µ2 respectively. Then, Wp is a
distance on Pp(E), which metrizes the weak convergence in Pp(E) in the following sense: given
µ ∈ Pp(E) and given a sequence (µj)j∈IN∗ in Pp(E), we have Wp(µj , µ)→ 0 as j → +∞ if and only
if
∫
E
f dµj →

∫
E
f dµ for every continuous bounded function f on E and

∫
E

dE(y0, y)p dµj(y) →∫
E

dE(y0, y)p dµ(y) as j → +∞ for some (and thus any) y0 ∈ E (see [73, Chapter 5, Section 5.2]
or [78, Theorem 6.9]), if and only if

∫
E
f dµj →

∫
E
f dµ for every continuous function f on E such
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that |f(y)| 6 C(1 + dE(y0, y)p) for every y ∈ E, for some C > 0 and some (and thus any) y0 ∈ E
(see [77, Theorem 7.12]). It can be noted that, given any subset K ⊂ E of finite diameter, we have

1 6 p1 6 p2 ⇒ Wp1
(µ1, µ2) 6Wp2

(µ1, µ2) 6 diamE(K)1−p1/p2Wp1
(µ1, µ2)p1/p2 (23)

for all µ1, µ2 ∈ Pc(E) of compact support contained in K (see [73, Chapter 5]), where diamE(K)
is the supremum of all dE(y, y′) over all possible y, y′ ∈ K.

For p = 1, the duality formula for the Kantorovich-Rubinstein distance (see [78, Chapter 5])
gives the equivalent definition

W1(µ1, µ2) = sup

{∫
E

f d(µ1 − µ2) | f ∈ Lip(E), Lip(f) 6 1

}
, (24)

valid for all µ1, µ2 ∈ P1(E).
For p = +∞, we set W∞(µ1, µ2) = limp→+∞Wp(µ1, µ2) (see [73, Chapter 5, Section 5.5.1]).
Note that the infimum in (21), as well as in (22), is a minimum (i.e., there exists an optimal

coupling) and that the supremum in (24) is a maximum (see [78, Chapters 4 and 5] or [73, Chapter
3, Section 3.1.1]).

Disintegration. In this paper, we are going to consider measures on Ω × IRd, for d ∈ IN∗ (and
on Ωk × (IRd)k for k ∈ IN∗), where (Ω,dΩ) is a complete metric space and IRd is endowed with an
arbitrary norm ‖ · ‖. We endow Ω × IRd with the distance dΩ×IRd = dΩ + dIRd where dIRd is the

distance on IRd induced by the norm ‖ · ‖.
Denoting by π : Ω× IRd → Ω the canonical projection, given any µ ∈ P(Ω× IRd), in the sequel

we will always denote by ν the nonnegative probability Radon measure on Ω defined as the image
(pushforward) of µ under π,

ν = π∗µ = µ ◦ π−1, (25)

that is also the marginal of µ on Ω. Note that, since π is continuous, supp(ν) = π(supp(µ)). By
disintegration of µ with respect to ν, there exists a family (µx)x∈Ω of probability Radon measures
on IRd (uniquely defined ν-almost everywhere) such that µ =

∫
Ω
µx dν(x), i.e.,∫

Ω×IRd
h(x, ξ) dµ(x, ξ) =

∫
Ω

∫
IRd
h(x, ξ) dµx(ξ) dν(x)

for every Borel measurable function h : Ω×IRd → [0,+∞) (see, e.g., [11]). Moreover, we set µx = 0
whenever x ∈ Ω \ supp(ν).

When Ω is a smooth manifold, if µ ∈ Pac(Ω × IRd) with a density f ∈ L1(Ω × IRd), i.e.,
dµ
dx dξ (x, ξ) = f(x, ξ), then ν is absolutely continuous, of density dν

dx (x) =
∫

IRd
f(x, ξ) dξ, and for

ν-almost every x ∈ Ω the probability measure µx has the density dµx
dξ (ξ) = f(x,ξ)∫

IRd
f(x,ξ′) dξ′

.

Given any µ1, µ2 ∈ P1(Ω× IRd) having the same marginal ν on Ω, we define

L1
νWp(µ

1, µ2) =

∫
Ω

Wp(µ
1
x, µ

2
x) dν(x). (26)

Obviously, L1
νWp is a distance on the subset denoted Pνp (Ω×IRd) of elements of Pp(Ω×IRd) having

the same marginal ν. Note that W1(µ1, µ2) 6 L1
νW1(µ1, µ2) for all µ1, µ2 ∈ Pν1 (Ω× IRd).2

2Indeed,
∫
Ω×IRd f d(µ1 − µ2) =

∫
Ω

∫
IRd f(x, ξ) d(µ1

x − µ2
x) dν(x) 6

∫
Ω Lip(f(x, ·))W1(µ1

x, µ
2
x) dν(x) for every

f ∈ Lip(Ω× IRd), and if Lip(f) 6 1 then Lip(f(x, ·)) 6 1 for every x ∈ Ω. Then, take the supremum over all f .
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Tagged partitions. Let ν ∈ P(Ω). We say that (AN , XN )N∈IN∗ is a family of tagged partitions
of Ω associated with ν if AN = (ΩN1 , . . . ,Ω

N
N ) is a N -tuple of disjoint subsets ΩNi ⊂ Ω such that

Ω =

N⋃
i=1

ΩNi with ν(ΩNi ) =
1

N
and diamΩ(ΩNi ) 6

CΩ

Nr
∀i ∈ {1, . . . , N}, (27)

for some CΩ > 0 and r > 0 not depending on N , and XN = (xN1 , . . . , x
N
N ) is a N -tuple of points

xNi ∈ ΩNi . Here, diamΩ(ΩNi ) is the supremum of all dΩ(x, x′) over all possible x, x′ ∈ ΩNi .
Families of tagged partitions always exist when Ω is a compact n-dimensional smooth manifold

having a boundary or not and ν is a Lebesgue measure on Ω, with r = 1/n. For instance, when
Ω = [0, 1], we take ΩNi = [aNi , a

N
i+1) for some subdivision 0 = aN1 < aN2 < · · · < aNN+1 = 1

satisfying (27); when dν(x) = dx, a natural choice is aNi = i−1
N , and xNi = aNi or

aNi +aNi+1

2 , for
every i ∈ {1, . . . , N} (and then CΩ = 1 and r = 1 in this case). When Ω is a compact domain of
IRn, a family of tagged partitions is obtained by considering a family of meshes, as classically done
in numerical analysis, with r = 1/n.

The concept of tagged partition is used in Riemann (and more generally, Henstock-Kurzweil)
integration theory. We refer to [32] for (much more) general results. A real-valued function f on
Ω, of compact support, is said to be ν-Riemann integrable if it is bounded, ν-measurable, and if,
for any family (AN , XN )N∈IN∗ of tagged partitions, we have

N∑
i=1

∫
ΩNi

|f(x)− f(xNi )| dν(x) = o(1) (28)

and thus ∫
Ω

f dν =
1

N

N∑
i=1

f(xNi ) + o(1) (29)

as N → +∞. A function f of essential compact support on Ω is ν-Riemann integrable if and only
if f is bounded and continuous ν-almost everywhere on Ω.
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2 From microscopic to macroscopic scale: the continuum /
graph limit

In this section we explore the point of view of Riemann sums, in order to derive error estimates
mainly resulting from the discrepancy between an integral and a Riemann sum, building on the
concept of graph limit introduced in [55].

2.1 Continuum / graph limit equation

Given any ν ∈ P(Ω), we define the nonlinear operator A : IR×L∞ν (Ω, IRd)→ L∞ν (Ω, IRd) (depending
on ν) by

A(t, y)(x) =

∫
Ω

G(t, x, x′, y(x), y(x′)) dν(x′) (30)
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(recall that G satisfies Assumption (G)) for every t ∈ IR and for every y ∈ L∞ν (Ω, IRd). We consider
the continuum / graph limit equation

∂ty(t, ·) = A(t, y(t, ·)) (31)

It is a nonlinear (nonlocal) integro-differential equation.
We will see in Section 5 the interpretation of y(t, x) as a “velocity field” (moment of order 1 of

the solution of the Vlasov equation).

Theorem 2.1 (Existence and uniqueness for the continuum / graph limit equation (31)). Assume
that Ω is compact. Let ν ∈ P(Ω) and let y0 ∈ L∞ν (Ω, IRd). We denote by K ′ = ess.im(y0) its
essential range (it is a compact subset of IRd) and we set K = Ω ×K ′ (compact). There exists a
unique solution t 7→ y(t, ·) ∈ L∞ν (Ω, IRd) on [0, Tmax(K)) (where Tmax(K) is given by Lemma 1.1)
of the nonlinear continuum / graph limit equation (31) such that y(0, ·) = y0(·), of class C 1 with
respect to t.

Moreover, if y0 ∈ C 0(Ω, IRd) then y(t, ·) ∈ C 0(Ω, IRd) for every t ∈ [0, Tmax(K)).

Local-in-time existence and uniqueness for the continuum / graph limit equation (31) straight-
forwardly follow from the Picard-Lindelöf (Cauchy-Lipschitz) theorem applied in the Banach space
L∞ν (Ω, IRd), but we prefer to see Theorem 2.1 as a consequence of Theorem 3.1 (existence and
uniqueness for Vlasov equations) and of Proposition 5.2 (monokinetic measures), as it will be
made precise in Remark 5.2 in Section 5.2.3. For the last statement of Theorem 2.1, we also refer
to Theorem 2.2 and to its proof (see Appendix B.1) for possible variants.

Remark 2.1. When Ω is not compact, the above result remains true provided that there exists
a compact subset Ω1 of Ω such that G(t, x, x′, ξ, ξ′) = 0 for every x ∈ Ω \ Ω1 and all (t, x′, ξ, ξ′) ∈
IR×Ω×IRd×IRd, and the initial condition y0 for the Euler equation satisfies y0(x) = 0 for ν-almost
every x ∈ Ω \ Ω1. Indeed, in this case the solution of the continuum / graph limit equation is
supported in Ω1. Alternatively, we can also assume that supp(ν) ⊂ Ω1.

Remark 2.2. When G does not depend on (x, x′) (and thus, particles are indistinguishable), it
makes sense anyway to consider the continuum limit equation (31), with a solution y(t, x) depending
on x ∈ Ω. Although the particles are indistinguishable, the set of labels Ω may be seen as a way to
“enforce” distinguishability at the level of the Euler equation, by assigning to each particle a label
that is an element of Ω. As we will see in Section 2.3, such continuum limit equations do not seem
to have been studied in the literature in the indistinguishable case. Note that distinguishability
is made possible because we take an initial condition y0(·) depending on x ∈ Ω in a nontrivial
way. In contrast, if y0(·) ≡ y0 ∈ IRd is constant, then y(t, ·) ≡ y(t) ∈ IRd does not depend on x
(this follows from Remark B.1 in Appendix B.1) and the continuum limit equation becomes the
differential equation ẏ(t) = G(t, y(t), y(t)) in IRd, which is much less meaningful.

Remark 2.3 (“Empirically embedding” the particle system to the continuum / graph limit equa-

tion). In this remark, we assume that ν = νeXN = 1
N

∑N
j=1 δxNj . The operator A defined by

(30) is then given by A(t, y)(x) = 1
N

∑N
j=1G(t, x, xNj , y(x), y(xNj )) for every t ∈ IR and every

y ∈ L∞ν (Ω, IRd). Consequently:

• If t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) is a solution of the particle system (8) then, defining y(t, x) =
ξNi (t) if x = xNi for i ∈ {1, . . . , N} and 0 otherwise, t 7→ y(t, ·) is a solution of the continuum /
graph limit equation (31).

• Conversely, if t 7→ y(t, ·) is a solution of the continuum / graph limit equation (31) then, defining
ξNi (t) = y(t, xNi ) for i ∈ {1, . . . , N}, t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) is a solution of the particle
system (8). Note however that we may have y(t, x) 6= 0 for x /∈ {xN1 , . . . , xNN}. This is a kind of
projection.
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The above empirical embedding is not very interesting. It is of much greater interest to fix
a probability measure ν ∈ P(Ω) and to approach the solutions of the continuum / graph limit
equation, in some sense, by solutions of the particle system. The rough idea is to approximate the
integral in the continuum / graph limit equation

∂ty(t, x) =

∫
Ω

G(t, x, x′, y(t, x), y(t, x′)) dν(x′)

by a Riemann sum, so that

∂ty(t, xNi ) ' 1

N

N∑
j=1

G(t, xNi , x
N
j , y(t, xNi ), y(t, xNj ))

for N sufficiently large, and then, comparing with (8), it is expected that ξNi (t) ' y(t, xNi ) for
every i ∈ {1, . . . , N}, where t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) is solution of the particle system (8),
for appropriate initial conditions. This is done in detail in Section 2.2 hereafter.

The application of the Riemann sum theorem is actually at the core of the notion of graph limit
used in [55] to pass to the continuum limit in nonlocally coupled dynamical networks (see also the
recent papers [5, 8, 13, 14, 28, 44]). Obtaining error estimates is then quite easy by developing
standard numerical analysis arguments, which consist of estimating the discrepancy between an
integral and approximating Riemann sums. This is the contents of the proofs of Theorems 2.2 and
2.3 hereafter.

The terminology “graph limit” refers to the graph interpretation of some classes of particle
systems, like, very typically, the opinion propagation model given in Example 13 (see Section 2.3
for its graph limit): in this example, for any N ∈ IN∗, to the matrix of coefficients σNij is associated
a directed graph whose vertices are the indices i ∈ {1, . . . , N} and which has an edge from i to j
if σNij > 0. In this context, under Assumption (G), the function σ which satisfies σ(xNi , x

N
j ) = σNij

is referred to as a graphon and is the “continuum limit” of the graph as N → +∞. This is why
the continuum / graph limit equation can also be called the graph limit of the system of particles.
In [54, 55], for appropriate choices of interaction coefficients, the system (13) is interpreted as a
nonlinear heat equation on a graph. The graph interpretation may be particularly relevant when
wanting to prove, for instance, consensus results by exploiting the connectivity properties of the
graph, as in [14]; we also mention [28] for exploiting the graph structure and [44] for the related
mean field context. We stress anyway that, as said above, from the analysis point of view, taking
the graph limit mainly consists of taking the limit in a Riemann sum, as in (29). This is thanks
to this “numerical analysis” viewpoint that we can easily derive general error estimates, as shown
hereafter.

2.2 Convergence estimates for the continuum / graph limit

Throughout this section, we assume that Ω is compact. Let ν ∈ P(Ω). We consider the general
nonlinear continuum / graph limit equation (31), with the nonlinear operator A defined by (30).
Recall that G satisfies Assumption (G).

We also assume that there exists a family (AN , XN )N∈IN∗ of tagged partitions associated with
ν satisfying (27) (see Section 1.5), with AN = (ΩN1 , . . . ,Ω

N
N ) and XN = (xN1 , . . . , x

N
N ). We have

the following two theorems.

Theorem 2.2. Let y0 be a bounded and ν-almost everywhere continuous function on Ω (thus,
ν-Riemann integrable), with values in IRd.
On the one part, we consider the unique solution t 7→ y(t, ·) ∈ L∞(Ω, IRd) on [0, Tmax(K)) of
the (nonlinear) continuum / graph limit equation (31) such that y(0, ·) = y0(·), where K = Ω ×
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ess.im(y0) (compact) and ess.im(y0) ⊂ IRd is the essential range of y0.
On the other, for any N ∈ IN∗, we consider the unique solution t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈
IRdN on [0, Tmax(K)) of the particle system (8) such that ξNi (0) = y0(xNi ) for every i ∈ {1, . . . , N},
and we set

yN (t, x) =

N∑
i=1

ξNi (t)1ΩNi
(x) ∀(t, x) ∈ IR× Ω (32)

where 1ΩNi
is the characteristic function of ΩNi , defined by 1ΩNi

(x) = 1 if x ∈ ΩNi and 0 otherwise.

• For every t ∈ [0, Tmax(K)), y(t, ·) is bounded and continuous ν-almost everywhere on Ω, with
the same continuity set as y0, and

‖y(t, ·)− yN (t, ·)‖L∞(Ω,IRd) = o(1) (33)

as N → +∞, where the remainder term o(1) is uniform with respect to t on any compact interval
of [0, Tmax(K)). In particular,

max
i∈{1,...,N}

‖y(t, xNi )− ξNi (t)‖ = o(1). (34)

• Assume that there exists α ∈ (0, 1] such that y0 ∈ C 0,α(Ω, IRd) and G is locally α-Hölder contin-
uous with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any compact). Then, for every
t ∈ [0, Tmax(K)), we have y(t, ·) ∈ C 0,α(Ω, IRd) with

Holα(y(t, ·)) 6 etLy(t) (1 + Holα(y(0, ·))) (35)

and, for every N ∈ IN∗,

max
i∈{1,...,N}

‖y(t, xNi )− ξNi (t)‖ 6 CαΩ
Nrα

(
1 + Holα(y0)

)
e2tLNy (t) (36)

and actually,

‖y(t, ·)− yN (t, ·)‖L∞(Ω,IRd) 6 2
CαΩ
Nrα

(
1 + Holα(y0)

)
e2tLNy (t) (37)

where CΩ is given by (27). The constant LNy (t) in (36) and (37) is defined by

LNy (t) = max
06τ6t

Holα(G(τ, ·, ·, ·, ·)|Ω2×SNy (τ)2) + max
x,x′∈Ω
06τ6t

Lip(G(τ, x, x′, ·, ·)|SNy (τ)2) (38)

where SNy (τ) ⊂ IRd is the (compact) convex closure of all y(τ, x) for x ∈ Ω and all ξNi (τ) for

i ∈ {1, . . . , N}. The constant Ly(t) in (35) is defined as LNy (t) but with SNy (τ) replaced by Sy(τ)

that is the convex closure of all y(τ, x) for x ∈ Ω, i.e., like SNy (τ) but without the ξNi (τ). We have

Ly(t) 6 LNy (t).

Theorem 2.2 is proved in Appendix B.1. Note that, by Lemma 1.1, given any T ∈ [0, Tmax(K)),
the sets SNy (t) and thus the scalars LNy (t) are uniformly bounded with respect to t ∈ [0, T ] and to
N ∈ IN∗.

Remark 2.4. Having in mind Remark 2.1, Theorem 2.2 can be extended to the case where Ω is
not compact, under the following additional assumptions:

• the family of tagged partitions is such that the points xNi remain in a compact subset of Ω;
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• the initial condition y0 is of compact essential support;

• the set SNy (τ) ⊂ Ω × IRd is defined as the compact closure of all (x, y(τ, x)) for x ∈
ess supp(y(τ, ·)) (essential support) and all (xNi , ξ

N
i (τ)) for i ∈ {1, . . . , N}.

The above assumptions imply that y(t, ·) is of compact essential support, for every t > 0, and that
LNy (t) is well defined.

Theorem 2.3. Let K ′ be a compact subset of IRd. Given any N ∈ IN∗, let ΞN0 ∈ (K ′)N . We set
K = Ω×K ′.

On the one part, we consider the unique solution t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈ IRdN on
[0, Tmax(K)) of the particle system (8) such that ΞN (0) = ΞN0 , and we define yN (t, x) by (32).

On the other part, we consider the unique solution t 7→ yN (t, ·) ∈ L∞(Ω, IRd) on [0, Tmax(K))
of the continuum / graph limit equation (31) such that yN (0, ·) = yN (0, ·) (i.e., yN (0, x) = ξNi (0)
if x ∈ ΩNi ). Then, for every t ∈ [0, Tmax(K)),

‖yN (t, ·)− yN (t, ·)‖L∞(Ω,IRd) = o(1) (39)

as N → +∞, where the remainder term o(1) is uniform with respect to t on any compact interval of
[0, Tmax(K)). If moreover G is locally α-Hölder continuous with respect to (x, x′, ξ, ξ′) (uniformly
with respect to t on any compact), then, for every N ∈ IN∗ and every t ∈ [0, Tmax(K)),

‖yN (t, ·)− yN (t, ·)‖L∞(Ω,IRd) 6 2
CαΩ
Nrα

e2tLNyN
(t) ∀t > 0, (40)

where LNyN (t) is defined by (38) (with y replaced by yN ).

Theorem 2.3 is proved in Appendix B.2. Note that, by Lemma 1.1, given any T ∈ [0, Tmax(K)),
the scalars LNyN (t) are uniformly bounded with respect to t ∈ [0, T ] and to N ∈ IN∗.

Note that, in particular, taking x = xi in (40), we have

max
i∈{1,...,N}

‖yN (t, xNi )− ξNi (t)‖ 6 2
CαΩ
Nrα

e2tLNyN
(t),

which improves the estimates obtained in [5].

Remark 2.5. The trivial case where y0(·) ≡ y0 ∈ IRd, mentioned in Remark 2.2, corresponds in
the framework of Theorems 2.2 and 2.3 to taking ξNi (0) not depending on i (equivalently, ξNi (t)
not depending on i, for every t), which is the case where all particles coincide.

2.3 Examples

Let us follow some of the examples of particle systems given in Section 1.3 and give their continuum
/ graph limit equation.

– For the Hegselmann–Krause (opinion propagation) model (13), under Assumption (G) we have
G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ) and the continuum / graph limit equation is

∂ty(t, x) =

∫
Ω

σ(x, x′)(y(t, x′)− y(t, x)) dν(x′). (41)

In this case, the operator A (defined by (30)) is linear and is given by (Ay)(x) =
∫

Ω
σ(x, x′)(y(x′)−

y(x)) dν(x′) for every y ∈ L∞ν (Ω, IRd) (see [8]). Extended to L2
ν(Ω, IRd), it is a Hilbert-Schmidt

operator. The spectral study of A has been done in [14] (with ν the Lebesgue measure) in view of
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deriving consensus results. The graph interpretation is particularly meaningful on this example,
and the function σ (assumed to exist) is called a graphon (see [6] for a recent study and see [13]
for a time-varying case).

– For the Kuramoto particle system (14), under Assumption (G) we have Ω = IR × [0, 1] and
G(t, x, x′, ξ, ξ′) = α + σ(β, β′)(ξ′ − ξ) (where x = (α, β) and x′ = (α′, β′)), and the continuum /
graph limit equation is

∂ty(t, x) = α+

∫
Ω

σ(β, β′) sin(y(t, x′)− y(t, x)) dν(x′).

The graph limit operator at the right-hand side of the above equation is introduced in [22] although,
in that reference, the authors focus on the study of the mean field limit (see Section 3.3).

– For the first-order system (15), we have G(t, x, x′, ξ, ξ′) = F (ξ) + K(ξ − ξ′) and the continuum
/ graph limit equation is

∂ty(t, x) = F (y(t, x)) +

∫
Ω

K(y(t, x)− y(t, x′)) dν(x′). (42)

In this case, the operator A (defined by (30)) is nonlinear, nonlocal, and does not depend on t.
The equation (42) seems to be new and has not been studied in the literature.

– For the Cucker–Smale dynamics (17), setting y = (y1, y2) ∈ IRr × IRr, the continuum / graph
limit equation is

∂ty1(t, x) = y2(t, x),

∂ty2(t, x) =

∫
Ω

a(‖y1(t, x′)− y1(t, x)‖)(y2(t, x′)− y2(t, x)) dν(x′).
(43)

As before, the equation (43) seems to be new. As discussed in Remark 2.2, thanks to the set
Ω we have in some sense “enforced” distinguishability. If one takes an initial condition that is
constant with respect to x then y1(t, x) = y1(t) and y2(t, x) = y2(x) do not depend on x and we
have ẏ1(t) = y2(t) and ẏ2(t) = 0, which is the familiar fact that the derivative of the average of
positions is the average velocity, and the average velocity is constant.

The Cucker–Smale dynamics (17) is a second-order system. For second-order dynamics, we
will see in Section 5.6 later a different definition of Euler equation which gives rise to interesting
(and already known and studied) dynamics.

– For the (indistinguishable) second-order dynamics (18), similarly to the Cucker–Smale example,
the continuum limit equation is

∂ty1(t, x) = y2(t, x),

∂ty2(t, x) =

∫
Ω

K(y1(t, x), y1(t, x′)) dν(x′).

3 From microscopic to mesoscopic scale I: mean field through
empirical measures (from ODEs to Vlasov)

Within the Lagrangian viewpoint, the N particles at time t are embedded as Dirac masses to
the space of Radon measures, and their corresponding average, the empirical measure, converges
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by the so-called mean field limit procedure, as N → +∞, to a probability Radon measure µ(t)
on Ω × IRd satisfying the Vlasov equation. When µ(t) is absolutely continuous with respect to a
Lebesgue measure, its density f(t, x, ξ) is the density of particles having the parameter x at ξ at
time t.

3.1 Vlasov equation

Given any µ ∈ Pc(Ω×IRd), we define ν = π∗µ by (25) (marginal of µ on Ω) and we define the mean
field, also called interaction kernel, as the non-local time-dependent one-parameter (the parameter
is x ∈ Ω) vector field on IRd given by

X [µ](t, x, ξ) =

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµ(x′, ξ′)

=

∫
Ω

∫
IRd
G(t, x, x′, ξ, ξ′) dµx′(ξ

′) dν(x′) ∀(t, x, ξ) ∈ IR× Ω× IRd

(44)

(recall thatG satisfies Assumption (G)). Note that X [µ](t, x, ξ) is the expectation ofG(t, x, x′, ξ, ξ′)
with respect to the measure µ, performed with respect to (x′, ξ′) ∈ Ω× IRd (see Appendix A.6 for
more details and consequences of that definition).

We consider the Vlasov (or continuity) equation

∂tµ+ divξ(X [µ]µ) = 0 (45)

where the divergence3 acts only with respect to ξ. It is a nonlocal transport equation because the
velocity field X [µ] defined by (44) is nonlocal.

Remark 3.1. Given any solution t 7→ µ(t) on [0, T ] of the Vlasov equation (45) (see further for
the rigorous definition of a solution), the total mass µ(t)(Ω× IRd) is constant with respect to t, i.e.,
µ(t) is a probability measure for every t ∈ [0, T ]. Also, the marginal ν = π∗µ(t) does not depend
on t, because the Vlasov equation can be written as ∂tµ+LX [µ]µ = 0 with the Lie derivative acting
with respect to the variable ξ, and we have π∗LX [µ] = 0.

Disintegrating µt = µ(t) as µt =
∫

Ω
µt,x dν(x) with respect to its marginal ν = π∗µt on Ω (which

does not depend on t by Remark 3.1), by uniqueness ν-almost everywhere of the disintegration,
(45) is equivalent to

∂tµt,x + divξ(X [µt](t, x, ·)µt,x) = 0 (46)

for ν-almost every x ∈ Ω. Note that the time evolution of µt,x depends on the whole µ0 and not
only on µ0,x, since X [µt] involves an integral over all possible x′ ∈ Ω.

Therefore, the Vlasov equation (45) can be thought of as an infinite number (if Ω has an
infinite number of elements) of coupled Vlasov equations (46). The most standard case studied in
the literature corresponds to a measure µ not depending on x.

Given any interval I ⊂ IR, let C 0(I,Pc(Ω× IRd)) be the Banach space of continuous mappings
t ∈ I 7→ µ(t) ∈ Pc(Ω × IRd), with Pc(Ω × IRd) endowed with the weak topology (metrized by the
Wasserstein distance Wp, for any p ∈ [1,+∞), as recalled in Section 1.5).

We define C 0
comp(I,Pc(Ω× IRd)) as the set of all µ ∈ C 0(I,Pc(Ω× IRd)) that are equi-compactly

supported on any compact interval of I, meaning that for any t1, t2 ∈ I, there exists a compact
subset K ⊂ Ω × IRd such that supp(µ(t)) ⊂ K for every t ∈ [t1, t2]. There exist elements of

3Recall that div(Xµ) = LXµ (Lie derivative of the measure µ) is the measure defined by 〈LXµ, f〉 = −〈µ,LX f〉 =
−

∫
IRd X .∇f dµ for every f ∈ C∞c (IRd).
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C 0(I,Pc(Ω×IRd)) that are not equi-compactly supported on any compact interval of I (for instance,
if I = [0, T ], take µ(t) = (1− e−1/t)δ0 + e−1/tδ1/t).

In view of obtaining existence and uniqueness of solutions of the Vlasov equation (45), we
consider the following concept of solution. Assuming that 0 ∈ I, by definition, a solution t 7→ µ(t)
of (45) on I such that µ(0) = µ0 ∈ Pc(Ω× IRd) is an element µ ∈ C 0

comp(I,Pc(Ω× IRd)) such that,

denoting µt = µ(t),4 for every g ∈ C∞c (Ω× IRd), the function t 7→
∫
g dµt is absolutely continuous

on I and∫
Ω×IRd

g(x, ξ) dµt(x, ξ) =

∫
Ω×IRd

g(x, ξ) dµ0(x, ξ)

+

∫ t

0

∫
Ω×IRd

∫
Ω×IRd

〈∇ξg(x, ξ), G(τ, x, x′, ξ, ξ′)〉 dµτ (x′, ξ′) dµτ (x, ξ) dτ (47)

for almost every t ∈ I.

Theorem 3.1. [Existence, uniqueness and stability properties for the Vlasov equation (45)]
Recalling Assumption (G), let p ∈ [1,+∞) be arbitrary.

(A) Given any µ0 ∈ Pc(Ω× IRd), setting T0 = Tmax(supp(µ0)) (given by Lemma 1.1), there exists
a unique solution µ ∈ C 0

comp([0, T0),Pc(Ω × IRd)) of the Vlasov equation (45) (in the sense
(47)) such that µ(0) = µ0. Moreover, t 7→ µ(t) is locally Lipschitz with respect to t for the
distance Wp, and we have

µ(t) = ϕµ0
(t)∗µ0, (48)

which is a notation meaning that µt,x = ϕµ0
(t, x, ·)∗µ0,x for every t ∈ [0, T0) and ν-almost

every x ∈ Ω, and where t 7→ ϕµ0(t, x, ·) is the unique solution (Vlasov flow) of

∂tϕµ0(t, x, ·) = X [µ(t)](t, x, ·) ◦ ϕµ0(t, x, ·) (49)

such that ϕµ0
(0, x, ·) = idIRd for ν-almost every x ∈ Ω. Moreover, if µ0 ∈ Pacc (Ω× IRd) then

µ(t) ∈ Pacc (Ω× IRd) for every t ∈ [0, T0). Furthermore:

(A1) Any solution of (45) depends continuously on its initial condition µ(0) ∈ Pc(Ω × IRd)
for the weak topology in the following sense: given any compact subset K ⊂ Ω × IRd,
given any µ(0) ∈ Pc(Ω × IRd) such that supp(µ(0)) ⊂ K, given any (equi-compactly
supported) sequence of measures µk(0) ∈ Pc(Ω × IRd) such that supp(µk(0)) ⊂ K for
every k ∈ IN∗, if µk(0) converges weakly to µ(0) (equivalently, Wp(µ

k(0), µ(0))→ 0) as
k → +∞, then µk(t) converges weakly to µ(t) (equivalently, Wp(µ

k(t), µ(t)) → 0) as
k → +∞, uniformly on any compact interval of [0, Tmax(K)).

(A2) For all solutions µ1, µ2 ∈ C 0
comp([0, T ],Pc(Ω× IRd)) of (45) (for some T > 0) such that

µ1(0), µ2(0) ∈ Pνc (Ω× IRd) have the same marginal ν on Ω, setting5

Sµ1,µ2(τ) = supp(ν)×
(
ϕµ1

0
(τ, supp(µ1

0) ∪ supp(µ2
0)) ∪ supp(µ2(τ))

)
and defining

Cµ1,µ2(t) = exp

(
2

∫ t

0

ess sup
(x,ξ),(x′,ξ′)∈Sµ1,µ2 (τ)

‖(∂ξG, ∂ξ′G)(τ, x, x′, ξ, ξ′)‖ dτ
)
, (50)

4Note that, seeing µ as a measure on I × Ω × IRd, the marginal of µ on I is the Lebesgue measure and the
disintegration of µ is µ =

∫
I µt dt.

5Note that Sµ1,µ2 (t) is compact, that ϕµ1
0
(t, supp(µ1

0)) = supp(µ1
t ) and supp(µ1(t)) ∪ supp(µ2(t)) ⊂ Sµ1,µ2 (t).
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we have

L1
νWp(µ

1(t), µ2(t)) 6 Cµ1,µ2(t)L1
νWp(µ

1(0), µ2(0)) ∀t ∈ [0, T ] (51)

(where L1
νWp is defined by (26)).

(B) Assume moreover that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) uniformly with respect
to t on any compact interval. For all solutions µ1(·), µ2(·) ∈ C 0

comp([0, T ],Pc(Ω×IRd)) of (45)
(for some T > 0), setting

Sµ1,µ2(τ) =
(
supp(ν1) ∪ supp(ν2)

)
×
(
ϕµ1

0
(τ, supp(µ1

0) ∪ supp(µ2
0)) ∪ supp(µ2(τ))

)
and defining

Cµ1,µ2(t) = exp

(
2

∫ t

0

Lip(G(τ, ·, ·, ·, ·)|Sµ1,µ2 (τ)2) dτ

)
, (52)

we have
Wp(µ

1(t), µ2(t)) 6 Cµ1,µ2(t)Wp(µ
1(0), µ2(0)) ∀t ∈ [0, T ]. (53)

Theorem 3.1 is proved in Appendix B.3. The statement (B) of Theorem 3.1 is a slight extension,
with parameter x, of [68, Theorem 2.3] (see also [65, 66, 67]) where it is assumed that G is globally
Lipschitz. Without parameter x, we recover the famous stability estimate obtained by Dobrushin
in [27] (see Corollary 3.1 further). The statement (A) seems to be new. Note that, in (A2), the
initial measures µ1(0) and µ2(0) are required to have the same marginal (and thus, equivalently,
µ1(t) and µ2(t) have the same marginal for any t). On the contrary, in (A1) and in (B), the
measures under consideration are not assumed to have the same marginal. In (A1), the weak
convergence µk(0) ⇀ µ(0) implies the weak convergence νk ⇀ ν of marginals but it is wrong in
general that µkx(0) ⇀ µx(0) for x ∈ Ω.

In the statement (B), the assumption that G is locally Lipschitz with respect to (x, x′, ξ, ξ′)
is much stronger than (G): in Example 13 (resp., Example 17) this requires σ (resp., a) to be
locally Lipschitz. In general, requiring that G be locally Lipschitz with respect to (x, x′) is not
a natural assumption for the particle system (8). Note that, under this stronger assumption, the
unique solution µ(·) in (A) is locally Lipschitz with respect to t for the Wasserstein distance W1.

Finally, in the usual statements existing in the literature, G is assumed to be globally Lipschitz.
Here, under the weaker assumption (G), we have a maximal time of definition of µ depending on
the compact support of µ0, according to Lemma 1.1. Note that, when G is bounded, we can
consider in Theorem 3.1 measures that are not of compact support.

Particular case where G does not depend on (x, x′). When G does not depend on (x, x′),
particles are indistinguishable: this is the classical case that has been much studied in the existing
literature. Let us show how this can be recovered from our more general framework. Given any
measure µ ∈ P(Ω × IRd), we define µ̄ ∈ P(IRd) as the image of µ under the projection of Ω × IRd

onto IRd, that is,∫
IRd
f(ξ) dµ̄(ξ) =

∫
Ω×IRd

f(ξ) dµ(x, ξ) =

∫
Ω

∫
IRd
f(ξ) dµx(ξ) dν(x) (54)

for every Borel measurable function f : IRd → [0,+∞). Since G does not depend on (x, x′), the
mean field X [µ] defined by (44) does not depend on x and we have X [µ](t, x, ξ) = X̄ [µ̄](t, ξ) where
the mean field X̄ [µ̄] is defined by

X̄ [µ̄](t, ξ) =

∫
IRd
G(t, ξ, ξ′) dµ̄(ξ) ∀(t, ξ) ∈ IR× IRd. (55)
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Accordingly, since the projection onto IRd commutes with ∂t and with the divergence with respect
to ξ, it follows that, if t 7→ µ(t) is a solution of the Vlasov equation (45) then t 7→ µ̄(t) is the
solution of the Vlasov equation (without dependence on x)

∂tµ̄+ div(X̄ [µ̄]µ̄) = 0. (56)

We have the following corollary of Theorem 3.1, already well known in the existing literature
(famous Dobrushin estimate, see [27]).

Corollary 3.1. Let p ∈ [1,+∞) be arbitrary. Given any µ̄0 ∈ Pc(IRd), there exists a unique
solution µ̄ ∈ C 0

comp([0, Tmax(supp(µ̄0))),Pc(IRd)) of the Vlasov equation (56), locally Lipschitz with
respect to t for the distance Wp, such that µ̄(0) = µ̄0, and we have

µ̄(t) = ϕµ̄0(t, ·)∗µ̄0

where t 7→ ϕµ̄0
(t, ·) is the unique solution of ∂tϕµ̄0

(t, ·) = X̄ [µ(t)](t, ·)◦ϕµ̄0
(t, ·) such that ϕµ̄0

(0, ·) =

idIRd . Moreover, if µ̄0 ∈ Pacc (IRd) then µ̄(t) ∈ Pacc (IRd) for every t ∈ IR. Furthermore, we have

Wp(µ̄
1(t), µ̄2(t)) 6 Cµ̄1,µ̄2(t)Wp(µ̄

1(0), µ̄2(0)) ∀t ∈ [0, T ] (57)

for all solutions µ̄1(·) and µ̄2(·) of (56) on [0, T ] (for some T > 0) such that µ̄1(0), µ̄2(0) ∈ Pc(IRd).
Here, Cµ̄1,µ̄2(t) is defined by (50) or (52) (without dependence on x).

Proof. Let ν̄ be an arbitrary probability measure on Ω. Given any µ̄ ∈ P(IRd), we define µ ∈
P(Ω × IRd) by µ = ν̄ ⊗ µ̄: the marginal of µ on Ω is ν̄ and the disintegration of µ =

∫
Ω
µx dν̄(x)

with respect to ν̄ is given by µx = µ̄ if x ∈ supp(ν̄) and µx = 0 if x ∈ Ω \ supp(ν̄).
This embedding allows us to recover Corollary 3.1 as a consequence of Theorem 3.1. Indeed,

obviously, µ̄(·) is solution of the Vlasov equation (56) without dependence on x if and only if
µ(·) = ν̄ ⊗ µ̄(·) is solution of the Vlasov equation (45). This gives the first part of the corollary.

To obtain (57), it suffices to take ν̄ = δx̄ for some x̄ ∈ Ω and to note that Wp(µ̄
1, µ̄2) =

Wp(ν̄ ⊗ µ̄1, ν̄ ⊗ µ̄2). Then, (57) follows from (51) or from (53).

3.2 Relationship between the particle system and the Vlasov equation

For every N ∈ IN∗, given any XN = (xN1 , . . . , x
N
N ) ∈ ΩN and any ΞN = (ξN1 , . . . , ξ

N
N ) ∈ IRdN , we

define the empirical measure µe(XN ,ΞN ) ∈ P(Ω× IRd) corresponding to (XN ,ΞN ) by

µe(XN ,ΞN ) =
1

N

N∑
i=1

δxNi ⊗ δξNi . (58)

The disintegration of µe(XN ,ΞN ) with respect to its marginal νeΞN = π∗µ
e
(XN ,ΞN ) = 1

N

∑N
i=1 δxNi

on Ω (that is itself an empirical measure corresponding to XN ) gives the family of conditional
measures defined by (µe(XN ,ΞN ))x = δξNi if x = xNi and 0 otherwise.

The relationship between the particle system (8) and the Vlasov equation (45) is given by the
result below. To simplify the notation, hereafter we denote µeN = µe(XN ,ΞN ) and νeN = νeΞN .

Proposition 3.1. If t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈ IRdN is a solution on [0, T ] (for some
T > 0) of the particle system (9) with parameter XN = (xN1 , . . . , x

N
N ) ∈ ΩN , then

t 7→ µeN (t) = ϕµeN (0)(t)∗ µ
e
N (0) =

1

N

N∑
i=1

δxNi ⊗ δξNi (t)
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is a solution of the Vlasov equation (45) on [0, T ]. The converse is true if all xNi are distinct and
all ξNi (t) are distinct.

Actually, t 7→ ΞN (t) is solution on [0, T ] of (9) with parameter XN if and only if

ξNi (t) = ϕµeN (0)

(
t, xNi , ξ

N
i (0)

)
∀t ∈ [0, T ] ∀i ∈ {1, . . . , N}. (59)

Proof. The Vlasov equation (45) is written as ∂tµ + LX [µ]µ = 0 with the Lie derivative act-
ing with respect to the variable ξ. Hence, setting XN (t) = (xN1 (t), . . . , xNN (t)) and ΞN (t) =
(ξN1 (t), . . . , ξNN (t)), the mapping t 7→ µeN (t) is a solution of the Vlasov equation (45) if and only if,
for any g ∈ C∞c (Ω× IRd), we have 〈∂tµeN + LX [µeN ]µ

e
N , g〉 = 0, i.e.,

0 =
1

N

N∑
i=1

(
d

dt
g(xNi (t), ξNi (t))− ∂ξg(xNi (t), ξNi (t)).

1

N

N∑
j=1

G(t, xNi (t), xNj (t), ξNi (t), ξNj (t))

)

which is satisfied if t 7→ (XN ,ΞN (t)) is solution of (8). If all xNi are distinct and all ξNi (t) are
distinct, the converse is obtained by taking g localized around (xNi , ξ

N
i (t)).

To obtain the second part of the proposition, we note that

X [µeN ](t, x, ξ) =
1

N

N∑
j=1

G(t, x, xNj , ξ, ξ
N
j )

and thus X [µeN ](t, xNi , ξ
N
i ) = Yi(t,X

N ,ΞN ) for every i ∈ {1, . . . , N}. Therefore, (9) is equiv-

alent to ξ̇Ni (t) = X [µeN (t)](t, xNi , ξ
N
i (t)) for every i ∈ {1, . . . , N}. Besides, by definition of

t 7→ ϕµeN (0)(t, x
N
i , ·) (given in (A) in Theorem 3.1), we have

∂tϕµeN (0)(t, x
N
i , ξ

N
i (0)) = X [µeN (t)](t, xNi , ϕµeN (0)(t, x

N
i , ξ

N
i (0)))

with ϕµeN (0)(0, x
N
i , ξ

N
i (0)) = ξNi (0). Then, (59) follows by Cauchy uniqueness.

As a consequence of the statements (A1) and (B) of Theorem 3.1 and of Proposition 3.1, we
have the following corollary (the last part of which is already well known in the indistinguishable
case).

Corollary 3.2. Let K be a compact subset of Ω×IRd. Let p ∈ [1,+∞) be arbitrary. Let µ0 ∈ Pc(K)
and let t 7→ µ(t) = ϕµ0

(t, ·, ·)∗µ0 be the solution on [0, Tmax(K)) of the Vlasov equation (45) such
that µ(0) = µ0. Besides, for every N ∈ IN∗, let (XN ,ΞN0 ) ∈ KN be such that the empirical measure

µeN (0) = 1
N

∑N
i=1 δxNi ⊗ δξNi (0) converges weakly (equivalently, in Wasserstein distance Wp) to µ0

as N → +∞ (see Appendix A.3 for general results). For every N ∈ IN∗, let t 7→ ΞN (t) be the
solution on [0, Tmax(K)) of the particle system (9) with parameter XN such that ΞN (0) = ΞN0 .

Then, the empirical measure µeN (t) = 1
N

∑N
i=1 δxNi ⊗ δξNi (t) converges weakly (equivalently, in

Wasserstein distance Wp) to µ(t) as N → +∞, uniformly with respect to t on any compact interval
of [0, Tmax(K)).

If moreover G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any
compact), then

Wp(µ(t), µeN (t)) 6 Cµ,µeN (t)Wp(µ0, µ
e
N (0))

for every t ∈ [0, Tmax(K)) (with Cµ,µeN (t) defined by (50)).

Lemmas A.15 and A.16 in Appendix A.3 provide general results ensuring that Wp(µ0, µ
e
N (0))→

0 as N → +∞, and Lemma A.17 gives an estimate of convergence, at rate 1
Nr/p

, within the
framework of tagged partitions.
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Remark 3.2. Alternatively, instead of empirical measures, we may also consider semi-empirical
measures: setting

(µ0)seXN =
1

N

N∑
i=1

δxNi ⊗ µ0,xNi
,

the unique solution t 7→ µ̃N (t) = ϕ(µ0)se
XN

(t, ·, ·)∗(µ0)seXN of the Vlasov equation (45) such that

µ̃N (0) = (µ0)seXN is of the form µ̃N (t) = 1
N

∑N
i=1 δxNi ⊗ µ̃

N
t,xNi

(it differs from the semi-empirical

measure µ(t)seXN = 1
N

∑N
i=1 δxNi ⊗ µt,xNi ). Its marginal on Ω is the empirical measure νeXN =

1
N

∑N
i=1 δxNi .

Lemma A.19 in Appendix A.4.2 provides results on the convergence of Wp(µ0, (µ0)seXN ) to 0,
as well as estimates with a rate of convergence under appropriate assumptions.

3.3 Examples

We follow up with examples given in Sections 1.3 (particle systems) and 2.3 (Euler equation).

– For the Hegselmann–Krause (opinion propagation) system (13), under Assumption (G) the mean
field (not depending on t) is

X [µ](x, ξ) =

∫
Ω×IRd

σ(x, x′)(ξ′ − ξ) dµ(x′, ξ′) ∀(x, ξ) ∈ Ω× IRd. (60)

The Vlasov equation has been derived and studied in [8, 64] (see also [14, Section 5.2]).

– For the Kuramoto particle system (14), under Assumption (G) the mean field (not depending
on t) is given by

X [µ](x, ξ) = α+

∫
Ω×IRd

σ(x, x′) sin(ξ′ − ξ) dµ(x′, ξ′) ∀(x, ξ) ∈ Ω× IRd.

The corresponding Vlasov equation was proposed in [72] as being a formal mean field limit of (14).
The rigorous mean field limit, called the Kuramoto-Sakaguchi equation, was established in [50] in
the case where σ is constant, by following the classical fixed point arguments of [61, 75]. The general
(network) case is treated in [22, 48] and the Vlasov equation associated to the above mean field
with the general function σ, is studied in that reference in view of extending the synchronization
theory to spatially structured networks. The Vlasov equation [22, Eq. (16)] is of the form (46),
i.e., it consists of an infinite number of coupled Vlasov equations, parametrized (and coupled) by
x = (α, β).

– For the first-order system (15), the mean field does not depend on (t, x) and is given by

X [µ](x, ξ) = F (ξ) +

∫
Ω

∫
IRd
K(ξ − ξ′) dµx′(ξ′) dν(x′) = F (ξ) +

∫
Ω

K ? µx′(ξ) dν(x′)

= F (ξ) +

∫
IRd
K(ξ − ξ′) dµ̄(ξ) = F (ξ) +K ? µ̄(ξ) = X̄ [µ̄](ξ) ∀(x, ξ) ∈ Ω× IRd

where µ̄ is defined by (54) and X̄ [µ̄] by (55). The Vlasov equation ∂tµ̄+ div((F +K ? µ̄)µ̄) = 0 is
used in mathematical biology to model aggregation phenomena (see [18, 19, 26]), in the study of
neural networks (see [71]) or, when K is a singular kernel, in fluid mechanics (see [46, 74]).
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– For the Cucker–Smale model (17), the mean field does not depend on (t, x) and is given by

X [µ](x, ξ) =

(
p∫

Ω×IRr×IRr
a(‖q − q′‖)(p′ − p) dµ(x′, ξ′)

)
=

(
p∫

IRr×IRr
a(‖q − q′‖)(p′ − p) dµ̄(ξ′)

)
= X̄ [µ̄](ξ) ∀(x, ξ) ∈ Ω× IR2r

where we recall that ξ = (q, p) and ξ′ = (q′, p′). The kinetic Cucker–Smale equation satisfied by
µ̄ has been derived in [38, 58]. Convergence to flocking has been studied in [20, 37].

– For the second-order model (18), similarly to the Cucker–Smale example, is given by

X̄ [µ̄](ξ) =

(
p∫

IRr×IRr
K(q, q′) dµ̄(ξ′)

)
∀ξ ∈ IR2r.

– As an example of a Hamiltonian system, the mean field associated with the mapping (20) is

X̄ [µ](ξ) =

(
p−A(q)

−∇V (q) + dA(q).(p−A(q))−
∫

IRr×IRr

(
∂1W (q, q′) + ∂2W (q′, q)

)
dµ̄(ξ′)

)
for every ξ ∈ IR2r.

4 From microscopic to mesoscopic scale II: mean field by
lifting the particle system (from Liouville to Vlasov)

4.1 Liouville equation

The Eulerian viewpoint consists of propagating, for any parameter X ∈ ΩN , an initial probability
measure in IRdN under the flow of diffeomorphisms ΦN (t,X, ·) of IRdN generated by the time-
dependent vector field Y N (t,X, ·) defined by (10).

Given N ∈ IN∗ fixed, we consider the (N -body) Liouville equation associated with the time-
dependent vector field Y N defined by (10), depending on the parameter XN ∈ ΩN , given by

∂tρ
N + divΞ(Y NρN ) = 0 (61)

This is a usual transport equation on IRdN , parametrized by XN ∈ ΩN , where the divergence is
considered with respect to Ξ = (ξ1, . . . , ξN ), and we thus have the following standard result. Here,
it is understood that ρN (t) is a probability Radon measure on (Ω× IRd)N ' ΩN × IRdN .

Proposition 4.1. Let K be a compact subset of Ω × IRd. Let ρN0 ∈ Pc(ΩN × IRdN ) be such that
all marginals of ρN0 on any copy of Ω × IRd are supported in the same compact K. There exists
a unique solution t 7→ ρN (t) of the Liouville equation (61) in C 0([0, Tmax(K)),Pc(ΩN × IRdN )),
locally Lipschitz with respect to t for the distance L1

θW1 (where θ is defined below), such that
ρN (0) = ρN0 , given by

ρN (t) = ΦN (t)∗ρ
N
0 (62)

i.e., ρN (t) is the image (pushforward) of ρN0 under the particle flow.
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The notation (62) is slightly abusive. To explain it, let us make precise some notations and
in particular the disintegration procedure. Given any measure ρ ∈ P(ΩN × IRdN ), denoting by
π⊗N : ΩN × IRdN → ΩN the canonical projection, we will always denote by θ the probability
Radon measure on ΩN given by θ = (π⊗N )∗ρ (image of ρ under π⊗N ), that is the marginal of ρ
on ΩN . By disintegration of ρ with respect to θ, there exists a family (ρX)X∈ΩN of probability
Radon measures on IRdN such that ρ =

∫
ΩN

ρX dθ(X).
With these notations, ρNt = ρN (t) is disintegrated as ρNt =

∫
ΩN

ρNt,X dθ
N (X) with respect to its

marginal θN = (π⊗N )∗ρ
N (t) on ΩN . The marginal θN does not depend on t because (61) can be

written as ∂tρ
N + LY Nρ

N = 0, with the Lie derivative acting with respect to the variable ξ, and
we have (π⊗N )∗LY N = 0. Finally, (62) means that

ρNt,X = (ΦNt,X)∗ρ
N
0,X

for every t ∈ [0, Tmax(K)) and for θN -almost every X ∈ ΩN .

Remark 4.1. If ρN0 = δXN ⊗ δΞN0 for some (XN ,ΞN0 ) ∈ KN then ρN (t) = δXN ⊗ δΞN (t) where

t 7→ ΞN (t) is the solution on [0, Tmax(K)) of the particle system (9) with parameter XN such that
ΞN (0) = ΞN0 . In other words, the solutions of the particle system are naturally embedded as Dirac
measures solutions of the Liouville system.

Hence, in some sense, the Liouville equation contains all possible solutions of the particle system.
But it contains more: considering the particle system (9), instead of taking a deterministic initial
condition ΞN (0) = ΞN0 ∈ IRdN , one may want to take a distribution of initial conditions, for instance
one may want to consider all possible initial conditions that are distributed around ΞN0 according
to a Gaussian law, in order to take into account noise or uncertainties in the initial conditions.
In such a way, the Liouville equation (61) has a probabilistic interpretation with respect to the
particle system (8).

If the probability measure ρN (t) on ΩN × IRdN has a density fN , then fN (t,X,Ξ) represents
the density of particles having the positions X = (x1, . . . , xN ) ∈ ΩN and respective momenta
Ξ = (ξ1, . . . , ξN ) ∈ IRdN . This is in contrast with the mean field procedure that consists of taking
the large N limit of the average over all particles but one. In the next section we show how to
derive Vlasov from Liouville by taking marginals.

4.2 Deriving Vlasov from Liouville by taking marginals, propagation of
chaos

Compared with µ(t) that is a probability measure on Ω × IRd, ρN (t) is a probability measure on
(Ω× IRd)N ' ΩN × IRdN . It is thus tempting to search for a relationship between µ(t) and ρN (t)
by taking marginals of ρN (t). This is what has been done in [76], in [43, 46] or in [35, 36] in the
different context of quantum mechanics. Adapted to the present situation, the method developed
in [36], which provides an explicit rate of convergence, consists of proving that the marginals of the
solutions ρ(t) of (61) are close, in Wasserstein topology, to solutions µ(t) of the Vlasov equation
(45), as established hereafter.

As we are going to see, this can be done by taking adequate initial conditions ρN0 for the
Liouville equation (61). We have to perform a symmetrization under permutations for the initial
condition ρN0 and also for the corresponding solution ρN (t), not only with respect to Ξ but also
with respect to the parameter variable X. Note that the symmetrization is not preserved by the
flow, so we have to consider the symmetrization ρN (t)s at any time t.

Given any ρ ∈ P(ΩN × IRdN ), we define the measure ρs ∈ P(ΩN × IRdN ), called the sym-
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metrization under permutations of ρ (see Appendix A.1.2), by∫
ΩN×IRdN

f(X,Ξ) dρs(X,Ξ) =
1

N !

∑
σ∈SN

∫
ΩN×IRdN

f(σ ·X,σ · Ξ) dρ(X,Ξ)

for every f ∈ C 0
c (ΩN × IRdN ), where σ ·X = (xσ(1), . . . , xσ(N)) and σ · Ξ = (ξσ(1), . . . , ξσ(N)) for

all X ∈ ΩN and Ξ ∈ IRdN , and where SN is the group of permutations of N elements.
Now, given any k ∈ {1, . . . , N}, we denote by ρsN :k the kth-order marginal of ρs (not to be

confused with the symmetrization under permutations of the marginal, which we do not use),
which is, by definition, the image of ρs under the projection of ΩN × IRdN onto the product
Ωk × IRdk of the k first copies of Ω with the k first copies of IRd.

Since we are going to compute Wasserstein distances in (Ω × IRd)k ' Ωk × IRdk, we have to
choose a distance in that space. Recall that Ω×IRd is equipped with the distance dΩ×IRd = dΩ+dIRd

where dIRd is the distance on IRd induced by the norm ‖ · ‖ (which is arbitrary). Let q ∈ [1,+∞] be
arbitrary. Given any k ∈ IN∗, we endow (Ω× IRd)k with the `q distance based on dΩ×IRd , defined
by

d
[q]

(Ω×IRd)k
((X,Ξ), (X ′,Ξ′)) =

∥∥(dΩ×IRd((x1, ξ1), (x′1, ξ
′
1)), . . . ,dΩ×IRd((xk, ξk), (x′k, ξ

′
k)))

∥∥
`q

=


( k∑
i=1

(dΩ(xi, x
′
i) + ‖ξi − ξ′i‖)

q
)1/q

if q ∈ [1,+∞)

max
16i6k

(dΩ(xi, x
′
i) + ‖ξi − ξ′i‖) if q = +∞

(63)

for all X = (x1, . . . , xk) and X ′ = (x′1, . . . , x
′
k) in Ωk and for all Ξ = (ξ1, . . . , ξk) and Ξ′ =

(ξ′1, . . . , ξ
′
k) in IRdk. Note that, when k = 1, we have d

[q]

Ω×IRd
= d

[1]

Ω×IRd
= dΩ + dIRd .

Given any p, q ∈ [1,+∞], we denote by W
[q]
p the Wasserstein distance Wp on P(Ωk × (IRd)k)

with respect to the distance d
[q]

(Ω×IRd)k
.

We refer to the beginning of Appendix A.1 and in particular to Remark A.1 for comments
on the importance of choosing a distance on the product space (Ω × IRd)k and for remarks on

the Wasserstein distance W
[q]
p . In particular, by (88), we have W

[q2]
p 6 W

[q1]
p 6 k

1
q1
− 1
q2 W

[q2]
p if

1 6 q1 6 q2 6 +∞ for any p ∈ [1,+∞].

In this section, we establish two ways for deriving Vlasov from Liouville by taking marginals.
Let µ0 ∈ Pc(Ω× IRd), disintegrated as µ0 =

∫
Ω
µ0,x dν(x) with respect to its marginal ν = π∗µ0

on Ω. Setting T0 = Tmax(supp(µ0)) (as given by Lemma 1.1), we consider the unique solution
t 7→ µ(t) = ϕµ0

(t)∗µ0 in C 0
comp([0, T0),Pc(Ω×IRd)) of the Vlasov equation (45) such that µ(0) = µ0,

as given by Theorem 3.1. Recall that µt,x = ϕµ0
(t, x, ·)∗µ0,x for ν-almost every x ∈ Ω.

Hereafter, we propose two possible choices of ρN0 ∈ Pc(ΩN × IRdN ), generating by Proposition
4.1 the solution ρN (t) = ΦN (t)∗ρ

N
0 of the Liouville equation (61) from which we recover at the

larger N limit the solution µ(t) of the Vlasov equation (45) by taking marginals.
In Theorem 4.1, we take ρN0 Dirac; in Theorem 4.2, we take ρN0 “semi-Dirac”. In both cases, we

prove that ρN (t)sN :k converges to µ(t)⊗k as N → +∞ and we establish convergence estimates in

Wasserstein distance W
[q]
p . The fact that the kth-order marginal ρN (t)sN :k of the symmetrization of

ρN (t), which is absolutely not a tensor product at time t = 0, becomes however the tensor product
µ(t)⊗k at the limit N → +∞, is usually referred to as propagation of chaos (formalized in the
pioneering articles [47, 53], see also [35, 56, 75, 76]).
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4.2.1 First way, with ρN0 Dirac

Given any fixed N ∈ IN∗, let (XN ,ΞN0 ) ∈ supp(µ0)N ⊂ ΩN × IRdN be arbitrary. Typically we may

want that the empirical measure µe
(XN ,ΞN0 )

= 1
N

∑N
i=1 δxNi ⊗ δξN0,i converges to µ0 in Wasserstein

distance as N → +∞ (see Appendix A.3 for such conditions). Let t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t))
be the solution on [0, T0) of the particle system (9) such that ΞN (0) = ΞN0 . If µe

(XN ,ΞN0 )
converges

to µ0 then, by Corollary 3.2, the empirical measure µe(XN ,ΞN (t)) = 1
N

∑N
i=1 δxNi ⊗ δξNi (t) converges

to µ(t) in Wasserstein distance as N → +∞.
Defining ρN0 ∈ Pc(ΩN × IRdN ) as the Dirac measure ρN0 = δXN ⊗ δΞN0 , by Remark 4.1, the

unique solution of the Liouville equation (61) such that ρN (0) = ρN0 , is given by the Dirac measure

ρN (t) = ΦN (t)∗ρ
N
0 = δXN ⊗ δΞN (t) ∀t ∈ [0, T0).

It is then easy to see that ρN (t)sN :1 = µe(XN ,ΞN (t)) (see the proof of the theorem below). Therefore,

if µe
(XN ,ΞN0 )

converges weakly to µ0 then ρN (t)sN :1 converges weakly to µ(t) as N → +∞. Actually,

this first fact re-expresses results seen in Sections 3.1 and 3.2. The convergence is less obvious for
the marginals of order k > 2.

Recall that G satisfies Assumption (G).

Theorem 4.1. We have the following statements, for any p ∈ [1,+∞) and q ∈ [1,+∞].

(A) If µe
(XN ,ΞN0 )

converges weakly (equivalently, in Wasserstein distance Wp) to µ0 as N → +∞,

then, for every k ∈ IN∗, ρN (t)sN :k converges weakly (equivalently, in Wasserstein distance

W
[q]
p ) to µ(t)⊗k as N → +∞, uniformly with respect to t on any compact interval of [0, T0).

(B) Assuming that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t
on any compact), setting

SNµ (τ) = supp(µ(τ)) ∪ {(xNi , ξNi (τ)) | i ∈ {1, . . . , N}} (64)

and defining

CNµ (t) = exp

(
2

∫ t

0

Lip(G(τ, ·, ·, ·, ·)|SNµ (τ)2) dτ

)
, (65)

for every N ∈ IN∗ and for every t ∈ [0, T0) we have ρN (t)sN :1 = µe(XN ,ΞN (t)) = 1
N

∑N
i=1 δxNi ⊗

δξNi (t) and

Wp

(
ρN (t)sN :1, µ(t)

)
= Wp

(
µ̄eΞN (t), µ̄(t) 6 CNµ (t)Wp

(
µe(XN ,ΞN0 ), µ0

)
(66)

and, for every k ∈ IN∗ such that k2 6 2N ln
(
1 + 1

2p

)
,

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6 2k1/q

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
+ k1/qCNµ (t)Wp

(
µe(XN ,ΞN0 ), µ0

)
(67)

where diamIRd(ΞN (t)) = max
16i,j6N

‖ξNi (t)− ξNj (t)‖.

Theorem 4.1 is proved in Appendix B.4.
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In (67), diamΩ(supp(ν)) = max
x,x′∈supp(ν)

dΩ(x, x′), and the Wasserstein distance W
[q]
p on Ωk ×

(IRd)k is computed with respect to the distance d
[q]

Ωk×(IRd)k
defined by (63). Since W

[q]
p 6 k

1
q W

[∞]
p

(by (88)), the strongest inequality (67) is obtained when q = +∞.
Lemmas A.15 and A.16 in Appendix A.3 show that there always exists a sequence of empirical

measures µe
(XN ,ΞN0 )

converging weakly to µ0. As alluded above, to obtain an interesting convergence

estimate from Item (B) of this theorem, we apply Lemma A.17 in Appendix A.3, which yields the

estimate Wp(µ
e
(XN ,ΞN0 )

, µ0) 6 1
Nr/p

C
1/p

Ω×IRd
diamΩ×IRd(supp(µ0))1−1/p under the assumption of the

existence of a family of tagged partitions. As noted in this appendix, there exist plenty of results
quantifying the convergence of empirical measures to a given measure (see, e.g., [31]). Lemma A.17
is a rough result.

Corollary 4.1. In the context of Item (B) of Theorem 4.1, we assume moreover that there exists a
family of tagged partitions of supp(µ0) associated with µ0 (see Section 1.5), i.e., for every N ∈ IN∗

there exists a partition of supp(µ0) = ∪Ni=1F
N
i such that all subsets FNi ⊂ Ω×IRd are µ0-measurable,

pairwise disjoint, satisfy µ0(FNi ) = 1
N and diamΩ×IRd(FNi ) 6 CΩ×IRd/N

r for some CΩ×IRd > 0 and
r > 0 not depending on N , and N -tuples XN = (xN1 , . . . , x

N
N ) ∈ ΩN and ΞN0 = (ξN0,1, . . . , ξ

N
0,N ) ∈

(IRd)N such that (xNi , ξ
N
0,i) ∈ FNi for every i ∈ {1, . . . , N}. Then, for every t ∈ [0, T0),

Wp

(
ρN (t)sN :1, µ(t)

)
= Wp

(
µ̄eΞN (t), µ̄(t) 6

1

Nr/p
C

1/p

Ω×IRd
diamE(supp(µ0))1−1/p CNµ (t)

and, for every k ∈ IN∗ such that k2 6 2N ln
(
1 + 1

2p

)
,

W [∞]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6 2

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
+
C

1/p

Ω×IRd

Nr/p
diamΩ×IRd(supp(µ0))1−1/p CNµ (t). (68)

When Ω is a n-dimensional manifold (thus dim(Ω× IRd) = n+ d), we have r = 1/(n+ d) < 1.

According to the estimate (68), ρN (t)sN :k converges to µ(t)⊗k in Wasserstein distance W
[∞]
p

as N → +∞, uniformly with respect to t on compact intervals of [0, T0), at rate 1/Nr/p if k �
N (1−r)/2 and at rate k2/p/N1/p if N (1−r)/2 � k � N1/2. The rate of convergence can be improved
if one uses better results for convergence of empirical measures.

Note that the assumption of a family of tagged partitions in Corollary 4.1 essentially entails
that µ0 be absolutely continuous with respect to a Lebesgue measure on Ω× IRd.

Particular case where G does not depend on (x, x′). When G does not does not depend on
(x, x′), particles are indistinguishable and the mean field is given by (55). We have the following
corollary of Theorem 4.1.

Corollary 4.2. Let µ̄0 ∈ Pc(IRd) and let t 7→ µ̄(t) be the unique solution on [0, T0), with T0 =
Tmax(supp(µ̄0)), of the Vlasov equation (56) such that µ̄(0) = µ̄0 (see Corollary 3.1). Besides, let
ρ̄N0 = δΞN0 and let t 7→ ρ̄N (t) = δΞN (t) be the unique solution on [0, T0) of the Liouville equation

(61) (without dependence on X) such that ρ̄N (0) = ρ̄N0 . Then, for every t ∈ [0, T0),

Wp

(
ρ̄N (t)sN :1, µ̄(t)

)
= Wp

(
µ̄eΞN (t), µ̄(t) 6 CNµ̄ (t)Wp

(
µ̄eΞN0

, µ̄0

)
(69)
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and we have ρ̄N (t)sN :1 = µeΞN (t) = 1
N

∑N
i=1 δξNi (t) (empirical measure), where CNµ̄ (t) is defined by

(65) (without dependence on x, x′), and, for every k ∈ {2, . . . , N},

W [∞]
p

(
ρ̄N (t)sN :k, µ̄(t)⊗k

)
6 2

(
k2

N

)1/p

diamIRd(ΞN (t)) + CNµ̄ (t)Wp

(
µ̄eΞN0

, µ̄0

)
. (70)

Proof. Following the proof of Corollary 3.1 and choosing ν̄ = δx̄ for some arbitrary x̄ ∈ Ω, when
G does not depend on (x, x′), µ̄(·) is solution of the Vlasov equation (56) (without dependence
on x) if and only if µ(·) = δx̄ ⊗ µ̄(·) is solution of the Vlasov equation (45). We now define
XN = (x̄, . . . , x̄) ∈ ΩN , and we take ρN0 = δXN ⊗ δΞN0 as initial condition for the Liouville equation

in Theorem 4.1, so that ρN (t) = δXN ⊗ ρ̄N (t) where ρ̄N (t) = δΞN (t). With these choices, we

obviously have ρN (t)sN :k = δ⊗kx̄ ⊗ ρ̄N (t)sN :k, and then (69) and (70) straightforwardly follows from
(66) and (67), by applying Remark A.2 in Appendix A.1.4.

4.2.2 Second way, with ρN0 “semi-Dirac”

Given any fixed N ∈ IN∗, let XN = (xN1 , . . . , x
N
N ) ∈ ΩN be arbitrary. We set δXN = δxN1 ⊗ · · · δxNN

and ρN0,XN = µ0,xN1
⊗ · · · ⊗ µ0,xNN

. Defining ρN0 ∈ Pc(ΩN × IRdN ) as the “semi-Dirac” measure

ρN0 = δXN ⊗ ρN0,XN , we consider the unique solution on [0, T0) of the Liouville equation (61) such

that ρN (0) = ρN0 , given by the “semi-Dirac” measure

ρN (t) = ΦN (t)∗ρ
N
0 = δXN ⊗ Φ(t,XN , ·)∗ρN0,XN = δXN ⊗ ρNt,XN .

Note indeed that the marginal θN = (π⊗N )∗ρ
N
t of ρNt = ρN (t) on ΩN is θN = δXN , and that

ρNt,XN = ΦN (t,XN , ·)∗ρN0,XN .
As a preliminary remark, we claim that, at t = 0, we have

(ρN0 )sN :1 =
1

N

N∑
i=1

δxNi ⊗ µ0,xNi
= (µ0)seXN (71)

(semi-empirical measure), which converges weakly to µ0 as N → +∞ under slight assumptions on
µ0, by Lemma A.19 in Appendix A.4.2. More generally, (ρN0 )sN :k converges weakly to µ⊗k0 (in the
proof of the theorem hereafter, we give an explicit expression for (ρN0 )sN :k, using (105) in Appendix
A.2.3). In the theorem below, we establish that this convergence is propagated in time.

Theorem 4.2. We assume that the norm ‖ · ‖ on IRd is induced by a scalar product on IRd. Let
p ∈ [1, 2] and q ∈ [1,+∞] be arbitrary.

(A) Assume that x 7→ µ0,x is ν-almost everywhere continuous for the Wasserstein distance Wp.
Then, for every k ∈ IN∗, ρN (t)sN :k converges weakly to µ(t)⊗k (equivalently, in Wasserstein

distance W
[q]
p ) as N → +∞, uniformly with respect to t on any compact interval of [0, T0).

(B) Assuming that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t
on any compact), defining SNµ (τ) by (64) and

Cµ(t) = 11
(

1 + 70 max
06τ6t

diamΩ×IRd(supp(µ(t)))
)1/2

exp
(

2t max
06τ6t

‖G(τ, ·, ·, ·, ·)|SNµ (τ)2‖C 0,1

)
,

(72)
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we have, for every N ∈ IN∗, for every k ∈ {1, . . . , N} such that k2 6 2N ln
(

3
2

)
,

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6 k1/qCµ(t) max

((
k2

N

)1/p

,
1

N
1
q−

1
2

, N1− 1
q

√
W1

(
(µ0)se

XN
, µ0

)
,Wp ((µ0)seXN , µ0)

)
(73)

for every t ∈ [0, T0) (for k = 1, without the first term in the above parenthesis).

Theorem 4.2 is proved in Appendix B.5. Note that the p-Wasserstein distance at the left-
hand side of (73) is considered with p 6 2, because in the proof we use in an instrumental way
a variance-type estimate, measuring the L2 discrepancy between the mean field and the particle
vector field (see Appendix A.6). Besides, q ∈ [1,+∞] is arbitrary, but only the values q ∈ [1, 2) are
meaningful. The strongest estimate inferred from (73) is when q = 1, i.e., when one takes the `1

distance on Ωk × (IRd)k. This choice has no importance while k is small, but becomes important
if one takes for instance k = N1/4.

To obtain an interesting convergence result from this theorem, we apply the second item of

Lemma A.19 of Appendix A.4.2, which yields W1((µ0)seXN , µ0) 6 (L+1)CΩ

Nr and Wp((µ0)seXN , µ0) 6
diamΩ×IRd(supp(µ0))1−1/p((L+ 1)CΩ/N

r)1/p under a regularity assumption on µ0.

Corollary 4.3. In the context of Item (B) of Theorem 4.2, we assume moreover that, for every
N ∈ IN∗, there exists a tagged partition (AN , XN ) of Ω associated with ν satisfying (27) (see
Section 1.5), and that x 7→ µ0,x is Lipschitz for the Wasserstein distance W1, i.e., that there exists
L > 0 such that W1(µ0,x, µ0,y) 6 LdΩ(x, y) for ν-almost all x, y ∈ Ω. Then

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6 k1/q(L+ 1)CΩCµ(t) max

((
k2

N

)1/p

,
1

N
1
q−

1
2

,
1

N
r
2 + 1

q−1
,

1

Nr/p

)
(74)

for every t ∈ [0, T0).

When Ω is a n-dimensional manifold, we have r = 1/n, hence, if we take q = 1 and p = 1, the
rate of convergence provided by (74) is k

N1/2n .
Note that the assumption of a family of tagged partitions in Corollary 4.3 essentially entails

that ν be absolutely continuous with respect to a Lebesgue measure on Ω.

Particular case where G does not depend on (x, x′). When G does not depend on (x, x′),
we have the following corollary of Theorem 4.2 (still assuming that the norm ‖ · ‖ on IRd is induced
by a scalar product on IRd, that p ∈ [1, 2] and that q ∈ [1,+∞]).

Corollary 4.4. Let µ̄0 ∈ Pc(IRd) and let t 7→ µ̄(t) be the unique solution on [0, T0), with T0 =
Tmax(supp(µ̄0)), of the Vlasov equation (56) such that µ̄(0) = µ̄0 (see Corollary 3.1). Besides,
let ρ̄N0 = µ̄⊗N0 and let t 7→ ρ̄N (t) = Φ(t, ·)∗ρ̄N0 be the unique solution on [0, T0) of the Liouville
equation (61) (without dependence on X) such that ρ̄N (0) = ρ̄N0 . Then, for every N ∈ IN∗, for
every k ∈ {1, . . . , N}, we have

W [q]
p

(
ρ̄N (t)N :k, µ̄(t)⊗k

)
6 k1/qCµ̄(t) max

((
k2

N

)1/p

,
1

N
1
q−

1
2

)
(75)

for every t ∈ [0, T0), where Cµ̄(t) is defined as in (72) (without dependence on x).

Proof. The proof is the same as the one of Corollary 4.2: we take ν̄ = δx̄ for an arbitrary x̄ ∈ Ω.
Then (µ0)seXN = δx̄ ⊗ µ̄0 and thus W1((µ0)seXN , µ0) = Wp((µ0)seXN , µ0) = 0. We conclude the
proof by noticing that, since the particle dynamics are invariant under permutations, we have
ρ̄N (t)N :k = ρ̄N (t)sN :k.
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Remark 4.2. It is interesting to observe that, in (75), we have not taken the symmetrization of
the measure ρ̄N (t) (in contrast to Corollary 4.2).

Remark 4.3. Applying Corollary 4.4 to the kinetic plus potential Hamiltonian case where we have
G(t, (qi, pi), (qj , pj)) =

(
pi,∇V (qi − qj)

)
, we recover [36, Theorem 3.1]. The corollary can also be

applied to more general Hamiltonian systems, for example, G(t, (qi, pi), (qj , pj)) = (pi,−∇(V (qi −
qj) + (pi − A(qi))

2)), where a magnetic field associated to a vector potential A : IRd → IRd; or
to Cucker–Smale systems, for which G(t, (qi, pi), (qj , pj)) =

(
pi, F (|qi − qj |)(pi − pj)

)
, and gener-

alizations introduced in [58].

5 From mesoscopic to macroscopic scale: hydrodynamic
limit (from Vlasov to Euler)

5.1 Averaged dynamical quantities defined on Ω

Given any µ ∈ P(Ω × IRd), disintegrated as µ =
∫

Ω
µx dν(x), the three macroscopic quantities

that are usually considered in the hydrodynamic limit procedure are the three first moments of the
measure µ with respect to ξ (see, e.g., [75]), leading to define, for ν-almost every x ∈ Ω:

• the total mass ρ(x) > 0 of µx by

ρ(x) =

∫
IRd
dµx(ξ) = µx(IRd) = 1,

(moment of order 0) which is here assumed to be equal to 1 for ν-almost every x ∈ Ω;

• the “speed” y(x) ∈ IRd by

ρ(x)y(x) =

∫
IRd
ξ dµx(ξ),

(moment of order 1) which is also the expectation of any random law of probability distri-
bution µx;

• and the “temperature” T (x) > 0 by

dρ(x)T (x) =

∫
IRd
‖ξ − y(x)‖2 dµx(ξ)

(moment of order 2) which is a variance, or equivalently, if ‖ · ‖ is the Euclidean norm, by

1

2
ρ(x)‖y(x)‖2 +

d

2
ρ(x)T (x) =

1

2

∫
IRd
‖ξ‖2 dµx(ξ).

Let t 7→ µ(t) be a fixed solution of the Vlasov equation (45) (recall that the mean field X [µ]
is defined by (44)). According to Remark 3.1, its marginal ν(t) = ν on Ω does not depend on t.
Following the hydrodynamic limit procedure recalled above (see also, e,g. [17, 29, 58]), for every
t ∈ IR and for ν-almost every x ∈ Ω, we define the three first moments ρ(t, x), y(t, x) and T (t, x)
of µ(t). The moment ρ(t, x) of order 0 does not depend on t and is equal to 1 for ν-almost every
x ∈ Ω and 0 otherwise. Let us study the moments of order one and two.
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5.2 Moment of order 1, Euler equation

Given any solution t 7→ µ(t) of the Vlasov equation (45) on [0, T ] (for some T > 0), of marginal ν
on Ω, using the disintegration of µ with respect to ν we define

y(t, x) =

∫
IRd
ξ dµt,x(ξ) (76)

for ν-almost every x ∈ Ω, and y(t, x) = 0 for every x ∈ Ω \ supp(ν), for every t ∈ [0, T ]. As a
preliminary remark, using (45) (or, rather, (46)), we have

∂ty(t, x) = 〈∂tµt,x, ξ 7→ ξ〉 =
〈
µt,x, LX [µt](t,x,·)(ξ 7→ ξ)

〉
=

∫
IRd
X [µt](t, x, ξ) dµt,x(ξ)

which is a kind of “mean” mean field, since the mean field is now averaged under µt,x. Hence

∂ty(t, x) =

∫
IRd

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµt(x
′, ξ′) dµt,x(ξ). (77)

It is remarkable that, for some classes of functions G, and for some classes of initial data, the right-
hand side of (77) can be expressed in terms of y(t, x) only: we thus obtain a “closed” equation in
y, as seen next.

5.2.1 Linear Euler equation

Proposition 5.1. Assume that G is linear with respect to (ξ, ξ′), i.e.,

G(t, x, x′, ξ, ξ′) = a1(t, x, x′)ξ + a2(t, x, x′)ξ′ ∀(t, x, x′, ξ, ξ′) ∈ IR× Ω× Ω× IRd × IRd.

For any solution t 7→ µ(t) of the Vlasov equation (45), the mapping t 7→ y(t, ·), where y(t, x) is
defined by (76), is solution of the continuum / graph limit equation (31), in which the operator A
is linear, given by

(A(t)y)(x) =

∫
Ω

a1(t, x, x′) dν(x′) y(x) +

∫
Ω

a2(t, x, x′)y(x′) dν(x′) ∀y ∈ L∞ν (Ω, IRd),

where ν is the marginal of µ(t) on Ω (not depending on t).

Proof. Using the disintegration of the measure, we infer from (77) and from the specific expression
of G that

∂ty(t, x) =

∫
IRd
ξ dµt,x(ξ)︸ ︷︷ ︸
=y(t,x)

∫
Ω

a1(x, x′)

∫
IRd
dµt,x′(ξ

′)︸ ︷︷ ︸
=1

dν(x′)

+

∫
IRd
dµt,x(ξ)︸ ︷︷ ︸
=1

∫
Ω

a2(t, x, x′)

∫
IRd
ξ′ dµt,x′(ξ

′)︸ ︷︷ ︸
=y(t,x′)

dν(x′)

and the result follows.

Remark 5.1. If µ(0) = 1
N

∑N
i=1 δxNi ⊗ δξNi (0) = µe

(XN ,ΞN0 )
as in Proposition 3.1, then µ(t) =

µe(XN ,ΞN (t)) whose marginal on Ω is ν = νeXN = 1
N

∑N
i=1 δxNi and whose disintegration with respect

to ν is µt,x = δξNi (t) if x = xNi for i ∈ {1, . . . , N} and 0 otherwise. In this case, in the context of

Proposition 5.1, we have then y(t, x) = ξNi (t) if x = xNi for i ∈ {1, . . . , N} and 0 otherwise, and
the differential equation (41) exactly coincides with the particle system (13).
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Proposition 5.1 applies, for example, to the Hegselmann–Krause system: under Assumption
(G), if t 7→ µ(t) is a solution of the Vlasov equation associated to the mean field (60) then
t 7→ y(t, ·), with y(t, x) defined by (76), is a solution of the continuum / graph limit equation (41).

The result of Proposition 5.1 fails however if G is not linear with respect to (ξ, ξ′), since then
we do not obtain a “closed” equation in y.

5.2.2 Open issue: how to obtain a closed equation?

An open question is to characterize the mappings G such that, for any solution µ of (45), the
function y defined by (76) satisfies the nonlinear Euler equation (31), ∂ty(t, ·) = A(t, y(t, ·)). We
face here with the classical problem in kinetic theory of considering the three first moments of a
solution µ of the Vlasov equation, and searching how to close the moment system since a priori
the equations depend on higher-order moments. Suitable closure assumptions are not known so
far, in general (see [17] for interesting comments, see also Section 5.4 further). This is why it is
usual to consider a monokinetic ansatz for µ, as explained in the following section.

5.2.3 The ν-monokinetic case

In this section, we assume that Ω is compact (for the non-compact case, see Remark 2.1). Let
us consider specific solutions µ of the Vlasov equation (45), that are ν-monokinetic, meaning that
µ is delta-valued in the ξ variable and has the marginal ν on Ω. Given any ν ∈ P(Ω) and any
measurable function y : Ω→ IRd, we define the ν-monokinetic measure µνy on Ω× IRd by

µνy = ν ⊗ δy(·). (78)

We have y(x) =
∫

Ω
ξ d(µνy)x(ξ) for ν-almost every x ∈ Ω (as in (76)), where the disintegration of

µνy with respect to its marginal ν on Ω is given by the family of conditional measures defined by
(µνy)x = δy(x).

Proposition 5.2. Let ν ∈ P(Ω). Let T > 0 and let t 7→ y(t, ·) ∈ L∞ν (Ω, IRd) be a locally Lipschitz
mapping on [0, T ].

The mapping t 7→ µ(t) = µνy(t,·) ∈ Pc(Ω × IRd), of marginal ν on Ω, is a (ν-monokinetic)

solution on [0, T ] of the Vlasov equation (45) with the general mean field (44) if and only if the
mapping t 7→ y(t, ·) ∈ L∞ν (Ω, IRd) is a solution on [0, T ] of the (nonlinear) Euler equation (31).

Proof. When µt = µνy(t,·), (44) gives X [µt](t, x, ξ) =
∫

Ω
G(t, x, x′, ξ, y(t, x′)) dν(x′). The proof is

then straightforward, and we can note that A(t, y)(x) = X [µνy ](t, x, y(x)) (where the nonlinear
operator A is defined by (30)).

Remark 5.2. Proposition 5.2 implies Theorem 2.1 (existence and uniqueness for the Euler equa-
tion (31)). Indeed, assume that Ω is compact, let ν ∈ P(Ω), let y0 ∈ L∞ν (Ω, IRd), set K ′ =
ess.im(y0) its essential range (compact subset of IRd) and K = Ω × K ′ (compact). Since the
unique solution of the Vlasov equation (45) such that µ(0) = µνy0 = ν ⊗ δy0(·) is well defined on

[0, Tmax(K)) (by Theorem 3.1) and is given by µ(t) = µνy(t,·) (by Proposition 5.2), it follows that

the nonlinear Euler equation (31) has a unique solution on [0, Tmax(K)) such that y(0, ·) = y0(·).

When µt is not of the form µνy(t,·), t 7→ y(t, ·) fails in general to satisfy a “closed” equation

(i.e., ∂ty(t, ·) may not be expressible only in function of the first moment y(t, ·)). Instead, there
may be a full hierarchy of equations coupling all moments of µt,x (see Section 5.4). Anyway, when
convergence to consensus holds, we may expect that any solution µ of (45) is asymptotically of
the form µνy(t,·).
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Remark 5.3. In Remark 2.3 in Section 2.1, we have seen how to embed the solutions of the
particle system to solutions of the Euler equation by considering an empirical measure ν. This
embedding works because, when ν = νeXN = 1

N

∑N
i=1 δxNi and y(t, xNi ) = ξNi (t), the ν-monokinetic

measure µνy(t,·) coincides with the empirical measure µe(XN ,ΞN (t)). Indeed,

µνy(t,·) =
1

N

N∑
i=1

δxNi ⊗ δy(t,·) =
1

N

N∑
i=1

δxNi ⊗ δy(t,xNi ) =
1

N

N∑
i=1

δxNi ⊗ δξNi (t) = µe(XN ,ΞN (t)).

Remark 5.4. In Appendix A.5, we provide estimates on the discrepancy between empirical mea-
sures and ν-monokinetic measures. Lemma A.20 of that appendix, combined with Theorem 2.2
and with the proof of that theorem, yields estimates on the discrepancy of the empirical measure
µe(XN ,ΞN (t)) with respect to the ν-monokinetic measures µνy(t,·) or µνyN (t,·).

Remark 5.5. The proofs of Theorems 2.2 and 2.3 that we provide in Appendices B.1 and B.2
are direct, but actually one can also prove these propositions by applying Corollary 4.1 with
µ(t) = µνy(t,·) = ν ⊗ δy(t,·) (the ν-monokinetic measure) and use Lemma A.20 of Appendix A.5.

5.3 Moment of order 2

In this section, we assume that the norm ‖ · ‖ on IRd is induced by a scalar product 〈 , 〉IRd on IRd.
We define

T (t, x) =
1

d

∫
IRd
‖ξ − y(t, x)‖2 dµt,x(ξ)

for ν-almost every x ∈ Ω. Note that T (t, x) = 0 for ν-almost every x ∈ Ω \ supp(ν). Using (45)
(or, rather, (46)) and noting that

∫
IRd
〈ξ − y(t, x), ∂ty(t, x)〉IRd dµt,x(ξ) = 0, we compute

∂tT (t, x) =
2

d

∫
IRd
〈ξ − y(t, x),X [µt](t, x, ξ)〉IRd dµt,x(ξ). (79)

Proposition 5.3. In the Hegselmann–Krause model (13), we have G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′−ξ)
and

∂tT (t, x) = −2S(x)T (t, x)

where S(x) =
∫

Ω
σ(x, x′) dν(x′) for ν-almost every x ∈ Ω. Hence t 7→ T (t, x) = T (0, x)e−2tS(x)

decreases exponentially to 0 as t→ +∞ for ν-almost every x ∈ Ω such that S(x) > 0.

Proof. We have X [µt](t, x, ξ) =
∫

Ω

∫
IRd
σ(x, x′)(ξ′ − ξ) dµt,x′(ξ′) dν(x′) in the Hegselmann–Krause

model (see (60)), and thus

X [µt](t, x, ξ) = −S(x)

∫
IRd

(ξ − y(t, x)) dµt,x′(ξ
′) +

∫
Ω

∫
IRd
σ(x, x′)(ξ′ − y(t, x)) dµt,x′(ξ

′) dν(x′).

Since the second term does not depend on ξ, using again the fact that
∫

IRd
(ξ− y(t, x)) dµt,x(ξ) = 0

by definition, and using (79), the result follows.

Remark 5.6. We will see in Remark 5.7 in Section 5.4 that, in the Hegselmann–Krause model,
all moments of order > 2 satisfy the same differential equation, and thus, decrease exponentially
to 0 as t→ +∞ as soon as S(x) > 0 for ν-almost every x ∈ Ω. This shows that, under the latter
assumption, the solution t 7→ µ(t) of the Vlasov equation (45) is such that µt,x is exponentially
close (in Wasserstein distance) to the Dirac measure δy(t,x) as t→ +∞.
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In [14], convergence to consensus is proved for the Euler equation under the assumptions that
dν(x) = dx, that S(x) > δ > 0 for almost every x ∈ Ω and that the (infinite-dimensional)
graph associated with σ be strongly connected. This remark shows that the result of [14] can be
generalized by relaxing the assumption on S to: S(x) > 0 for ν-almost every x ∈ Ω.

For general mappings G, the question of whether or not T is the solution of some “closed”
equation is open.

In the ν-monokinetic case, i.e., assuming that µ is of the form (78) and is a solution of (45),
we have T (t, x) = 0. This is expected since T (t, x) is the variance and thus measures the distance
to the average y(t, x).

5.4 Generalization: coupled equations of moments

More generally, assuming d = 1 to simplify, let us set, formally,

G(t, x, x′, ξ, ξ′) = G(t, x, x′, y(t, x), y(t, x′)) +
∑
i+j>1

gij(t, x, x
′)(ξ − y(t, x))i(ξ′ − y(t, x′))j

where y(t, x) =
∫

IR
ξ dµt,x(ξ) is the moment of order 1 of µt,x (recall that the moment of order 0 is

y0(t, x) =
∫

IR
dµt,x(ξ) = 1). Defining the central moment of order i by

yi(t, x) =

∫
IR

(ξ − y(t, x))i dµt,x(ξ) ∀i ∈ IN

(note that y0(t, x) = 1 and y1(t, x) = 0), we have

X [µt](t, x, ξ) =

∫
Ω×IR

G(t, x, x′, ξ, ξ′) dµt(x
′, ξ′)

=

∫
Ω

G(t, x, x′, y(t, x), y(t, x′)) dν(x′)

+
∑
i+j>1

(ξ − y(t, x))i
∫

Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

and thus, using (30),

X [µt](x, ξ) = (A(t, y(t)))(x) +
∑
i+j>1

(ξ − y(t, x))i
∫

Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

It is interesting to see that, in the above formal expansion of X [µt](x, ξ) using the centered mo-
ments, the first term is (A(t, y(t)))(x).

Therefore, we have

∂ty(t, x) =

∫
IR

X [µt](x, ξ) dµt,x(ξ)

= (A(t, y(t)))(x) +
∑
i+j>1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)
yi(t, x)

(actually since y1 = 0 the above sum can be taken over all pairs (i, j) such that i+ j > 2) and, for
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every k ∈ IN \ {0, 1},

∂tyk(t, x) = 〈µt,x, LX [µt].(ξ 7→ (ξ − y(t, x))k)〉 − 〈µt,x, k(ξ − y(t, x))k−1∂ty(t, x)〉

= k

∫
IR

(ξ − y(t, x))k−1 (X [µt](x, ξ)− ∂ty(t, x)) dµt,x(ξ)

= k

∫
IR

(ξ − y(t, x))k−1

(
X [µt](x, ξ)−

∫
IR

X [µt](x, ξ
′) dµt,x(ξ′)

)
dµt,x(ξ)

= k
∑
i+j>1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)∫
IR

(ξ − y(t, x))k−1
(
(ξ − y(t, x))i − yi(t, x)

)
dµt,x(ξ)

= k
∑
i+j>1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)(
yk−1+i(t, x)− yk−1(t, x)yi(t, x)

)
(actually since y1 = 0 the pair (i = 0, j = 1) does not occur in the above sum). In full generality,
all equations of moments are coupled and we have no closed system.

Closing the hierarchy of equations satisfied by all the moments yi(t, x), for i ∈ IN∗, might be
done by adding a small parameter ε. This is an open question.

Remark 5.7. In the Hegselmann–Krause model (13), we have G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ)
and thus gij = 0 if i + j > 2 and g01 = −g10 = σ. We recover the facts that the equation in y is
closed and that ∂ty2(t, x) = −2S(x)y2(t, x). Moreover, a straightforward computation shows that

1

k
∂tyk(t, x) = −S(x)yk(t, x) ∀k ∈ IN \ {0, 1},

thus generalizing the case k = 2 studied in Proposition 5.3. Therefore, yk(t, x) = yk(0, x)e−tS(x).

5.5 Directly from Liouville to Euler

In this section we answer the question : which “Liouville” quantity the first moment of the solution
to Vlasov (i.e., the solution of Euler in the good cases) is the large N limit of the symmetrized first
marginal of?

Ler us motivate this question by reminding that, in accordance with Section 4.2, the true
“vector” for passing from Liouville to Vlasov is the process of taking marginals: Vlasov appears as
a subsystem of the large N limit of Liouville by keeping only the information encapsulated in the
marginals of the solutions of Liouville. The task of the present section is to do the same for Euler.

In Section 2.2 we considered the direct passage from the particle system (8) to the Euler
(continuum / graph limit , graph limit) equation (31) through the system of ODEs defining the
particle dynamics whereas in the present section we also reached the same Euler equation but via
the Vlasov equation in the pure mean field paradigm, using the results of Sctions 3 and 4.

The Liouville equation (61) being the transport equation lifting the particle system (8), a
natural question is to wonder whether there exists a direct way to pass from Liouville to Euler.
Our objective in this section is to provide a quantity cooked up out of the solution ρ(·) of the
Liouville equation (61), converging to the solution of the Euler equation as N → +∞. The
question may fill a gap in the general micro-meso-macroscopic landscapes.

Let us explain how this can be done. Considering a system of N particles, each of them
living in a phase space Ω × IRd, the meaning of the solution ρ(t) ∈ P(Ω × IRd) of the Liouville
equation (61) is the following, when it has a density with respect to the Lebesgue measure: for any
X = (x1, . . . , xN ) ∈ ΩN and any Ξ = (ξ1, . . . , ξN ) ∈ IRdN , ρ(X,Ξ) is the joint probability that, for
every i ∈ {1, . . . , N}, the ith particle has position and momentum (xi, ξi). In Section 4.2 we have
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shown that, for appropriate initial conditions ρ(0), we recover the mean field limit by taking the
limit N → +∞ of the average over all particles but one and then by taking marginals.

The Liouville paradigm enlarges the moment setting to a probabilistic one: every agent has a
moment, but it hesitates randomly between several values that can be assigned to it. Of course the
monokinetic case through the Vlasov equation exhausts this random feature by assigning a single
moment. But it is quite remarkable, and one has to say still mysterious for us, that, for the opinion
propagation model outside monokineticity, the marginal of the full density, namely a probability
“average over all particles but one” leads through, and after the large N limit, its first moment to
the same limit as the fundamentally different “discrete to continuous” passage emblematic to the
graph limit.

It is therefore interesting to remove this “after the largeN limit” and pass directly from Liouville
to Euler (or at least to the velocity field of the solution of the Vlasov equation) and answer the
aforementioned question: which N particles system’s quantity is the solution to the graph limit
equation the large N limit of the first marginal of?

Given any XN = (xN1 , . . . , x
N
N ) ∈ ΩN , we set

ρ(X,Ξ) =

n∏
i=1

δxNi (xi)µ(xi, ξi)

and, for any i ∈ {1, . . . , N},

Mi
1[ρ] =

∫
IRd
ξiρ(X,Ξ) dξi (80)

defined as a marginal against test functions on ΩN × IRd(N−1), i.e.,〈
Mi

1[ρ], ϕ
〉

=

∫
ΩN×IRd(N−1)

ϕ(X,Ξ−i)ξiρ(X,Ξ) dX dξ

where Ξ−1 = (ξ1, . . . , ξi−1, ξi+1, . . . , ξN ). Given any µ ∈ P(Ω× IRd), we set

m1[µ](x) =

∫
IRd
ξ dµx(x, ξ).

Proposition 5.4. Under the framework of Corollary 4.3 and uniformly with respect to i ∈
{1, . . . , N}, we have

W1

((
Mi

1[ρt]
)s
N :1

,m1[µt]
)

= o(N−1)

where o(N−1) is given by the right-hand side of (74) for k = p = q = 1. Here ρt is the pushforward
of ρt=0 = ρ under the particle flow, and µt solves Vlasov with initial condition µt=0 = µ.

Corollary 5.1 (monokinetic case). When µ(x, ξ) = δ(ξ − y(x)),

W1

((
Mi

1[ρt]
)s
N :1

, yt
)

= o(N−1)

(same as in Proposition 5.4), where yt solves Euler with initial condition yt=0 = y.
It is also true for general ρ for the Hegselmann Krause model, with y(x) =

∫
ξ dµx(x, ξ).

In other words, the answer to the question asked in this section is any “first moment” of the
Liouville solution as defined by (80).

Proof. The fact that the proposition and the corollary are valid uniformly with respect to i ∈
{1, . . . , N} comes from the fact that symmetrization commutes with the action of taking first-
order marginals (only first-order). Therefore

(
Mi

1[ρt]
)s
N :1

= m1

[
([ρt])

s
N :1

]
and the proposition

easily follows from Lemma A.11. The proof of the corollary is immediate.
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5.6 Hydrodynamic limit in the second-order case

For second-order particle systems (16) where q is interpreted as a position and p as a speed (or a
momentum), in the classical kinetic literature where particles are assumed to be indistinguishable,
the hydrodynamic quantities that are most often considered are the three first moments of µ
integrated with respect to p and kept as functions of q.

Let us recall that the “hydrodynamics” replaces a scalar equation on “phase space” (the one of
q and p), the Vlasov one, by a system of equations on the “configuration space” (the one of q only).
The interest of this approach is twofold: firstly at the conceptual level, as it puts the dynamics on
a physical, directly observable space (a feature particularly important for situations not naturally
embedded in the classical physics cultural paradigm (for example biology, economy, social sciences),
and secondly at the numerical point of view since the increasing number of variables for PDEs is
very costly (see [60] for a comparison between numerics associated to Vlasov and Euler).

More precisely, in the second-order case, any solution t 7→ µ(t) of the Vlasov equation (not
depending on x) is such that µ(t) ∈ Pc(IRr× IRr), where d = 2r and ξ = (q, p), and, assuming that
dµt(q,p)
dq dp = f(t, q, p), the three first (marginal) moments of µ(t) under consideration are:

• the mass m(q) =
∫

IRr
f(t, q, p) dp,

• the momentum m(q)v(q) =
∫

IRr
p f(t, q, p) dp,

• the energy (or temperature) m(q)E(q) =
∫

IRr
‖p− v(q)‖2 f(t, q, p) dp,

as defined in [75]. This is different from what we did in Section 5.1.
The above quantities are introduced for example in [38] in the Cucker–Smale model. In general,

they provide alternative objects of investigation, in the specific case of second-order models. But
let us notice that they do not satisfy a system of closed equations; the equations for the mass
and the momentum close themselves under a monokinetic condition on the initial condition of the
Vlasov equation.

Let us assume that d = 2r, ξ = (q, p) ∈ IRr × IRr and that the system of particles is an
indistinguishable second-order system of the form

q̇i(t) = pi(t), ṗi(t) =
1

N

N∑
j=1

K(t, qi(t), pi(t), qj(t), pj(t))

for some continuous mapping K of class C1 with respect to its four last variables. Here, qi(t)
is the position and pi(t) is the speed of the agent number i. Assumption (G) in Section 1.2 is
satisfied with G(t, x, x′, ξ, ξ′) = (p,K(t, ξ, ξ′)). Since G does not depend on (x, x′), particles are
indistinguishable. When considering the limit equations (Euler or Vlasov), we can however choose
to distinguish them, as already discussed.

Euler equation. Choosing a set Ω of labels and a probability measure ν on Ω, the Euler equation
(31) is

∂ty1(t, x) = y2(t, x)

∂ty2(t, x) =

∫
Ω

K(t, y1(t, x), y2(t, x), y1(t, x′), y2(t, x′)) dν(x′)
(81)

where it is understood that y1(t, xi) ' qi(t) and y2(t, xi) ' pi(t) (see Section 2.2).
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Vlasov equation. As we have seen before in (55) and (56), since in the present case the mean
field X [µ] does not depend on the variable x, we have X [µ](t, x, ξ) = X̄ [µ̄](t, ξ) where the mean
field X̄ [µ̄] is given by

X̄ [µ̄](t, ξ) =

(
p∫

IRr×IRr
K(t, ξ, ξ′) dµ̄(ξ′)

)
and the Vlasov equation is ∂tµ̄+ div(X̄ [µ̄]µ̄) = 0.

Usual hydrodynamic limit considered in the literature: the standard Euler equation.
We are going to consider the hydrodynamic variables in the sense that is usually considered in the
literature: moments of the measure µ̄ where the integration is performed with respect to p, but
keeping q as a parameter.

(1) If we proceed by disintegration, we do not obtain something much interesting. Let us explain.
Given any probability measure µ̄ on IRr× IRr (where the variables are (q, p)), let θ be the marginal
of µ̄ on the first copy of IRr (where the variable is q). The disintegration of µ̄ with respect to θ
is µ̄ =

∫
IRr
µq dθ(q) where the measures µq are probability measures. Then, if we take the first

moments of µ: the moment of order 0 is ρ(q) =
∫

IRr
dµq(p) = 1 and thus is uninteresting; we could

then consider the moments of order 1 and 2. But let us proceed in another way, following what is
usually done in the literature:

(2) In the usual way, we assume that, for every t, µ̄(t) (solution of Vlasov) is absolutely continuous,
i.e., dµ̄t(q, p) = f(t, q, p) dq dp, and we define

• the moment of order 0: ρ(t, q) =
∫

IRr
f(t, q, p) dp;

• the moment of order 1: ρ(t, q)u(t, q) =
∫

IRr
p f(t, q, p) dp.

This is different from what was done in (1) because now ρ(t, q) is not constant. Actually, comparing

with the disintegration of µ̄t, we have
dµ̄t,q
dp (p) = f(t, q, p)/

∫
IRr
f(t, q, p′) dp′. So, here, the way we

consider the hydrodynamic variables is different.
Let us recall how to compute the equations satisfied by ρ and u (this is well known in the

existing literature). The Vlasov equation for f is

∂tf + 〈p,∇qf〉+ divp(XK [f ]f) = 0

where XK [f ](t, q, p) =
∫

IRr

∫
IRr
K(t, q, p, q′, p′)f(t, q′, p′) dq′ dp′. Multiplying by ϕ1(q)ϕ2(p) and

integrating, we get∫
IRr

∫
IRr
ϕ1(q)ϕ2(p)∂tf(t, q, p) dq dp

=

∫
IRr

∫
IRr

(
ϕ2(p) dϕ1(q).p+ ϕ1(q) dϕ2(p).XK [f ](t, q, p)

)
f(t, q, p) dq dp

First, taking ϕ2(p) = 1, replacing above and integrating by parts, and noting that the equation is
valid for any function ϕ1 (thus, one can localize in q), we get

∂tρ+ divq(ρu) = 0

which is the classical continuity equation. It is obtained without any specific assumption, in
contrast to the next one.

Taking ϕ2 = pi for any i ∈ {1, . . . , r} (where p = (p1, . . . , pr)), replacing above and integrating
by parts does not suffice in producing a “closed” equation. As done usually, we assume that the
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velocity distribution is monokinetic: f(t, q, p) = ρ(t, q)δ(p − u(t, q)). In this way we obtain the
equation

∂t(ρu) + divq(ρu⊗ u) =

∫
IRr
b(t, q, u(t, q), q′, u(t, q′)) ρ(t, q) ρ(t, q′) dq′

which is the pressureless Euler equation, as obtained by [21, 29] and [59] for more general systems
including chemiotaxis. Although we have used the same name, this Euler equation (and the way
it has been obtained) is of course completely different from the one given in (81).

6 Summary: relationships between various scales
(Euler and continuum / graph limit equations are the same)

In the previous sections, we have investigated the following three scales (recall that G satisfies
Assumption (G)):

• The microscopic model, which is the particle system

ξ̇Ni (t) =
1

N

N∑
j=1

G(t, xNi , x
N
j , ξ

N
i (t), ξNj (t)), i ∈ {1, . . . , N}. (82)

When extending this system by setting ẋNi (t) = 0, in some sense we perform an extension of
the particle system to the phase space.

• The mesoscopic model, which is the (kinetic) Vlasov equation

∂tµ+ divξ(X [µ]µ) = 0 (83)

where X [µ](t, x, ξ) =
∫

Ω×IRd
G(t, x, x′, ξ, ξ′) dµ(x′, ξ′) for all (t, x, ξ) ∈ IR× Ω× IRd, obtained

by mean field limit.

• the macroscopic model, which is the Euler equation

∂ty(t, x) = (A(t, y(t)))(x) =

∫
Ω

G(t, x, x′, y(t, x), y(t, x′)) dν(x′) (84)

where ν ∈ P(Ω), obtained by graph limit.

Additionally, we have also considered the Liouville equation,

∂tρ
N + divΞ(Y NρN ) = 0 (85)

where Y N is the vector field in IRdN representing the system of all particles.
Figure 1 illustrates the various relationships that we have investigated in the paper, and that

we comment hereafter.

Particle to Liouville. Any solution ΞN (·) of the particle system (82) can be embedded as a
Dirac measure ρN (·) = δXN ⊗ δΞN (·) that is a solution of the Liouville equation (85).
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particle system

Liouville

embedding

first−order moment

embedding

(linear model or

and mean field limit

empirical embedding

limit N → +∞

∂tρ + divΞ(Y ρ) = 0

ρ(t)sN :n ⇀ µ(t)⊗n

N → +∞

(ẋi = 0)

ξ̇i =
1

N

N∑
i=1

G(t, xi, xj, ξi, ξj)

ν = 1
N

∑N
i=1 δxi

y(t, xi) = ξi(t)

Vlasov

∂tµ + divξ(X [µ]µ) = 0

Euler

y(t, x) =
∫

IRd ξ dµt,x(ξ)Dirac

embedding

ρ(t) = δX ⊗ δΞ(t)

specific ρ(0)

N → +∞
ν-monokinetic

ν-monokinetic case)

µ(t) = ν ⊗ δy(t,x)

µ(t) = 1
N

∑N
i=1 δxi ⊗ δξi(t)

specific ρ(0)

appropriate moment

∂ty = A(y)

ξi(0) = y(0, xi)

Continuum / graph limit

Figure 1: Relationships between particle (microscopic) system, Liouville (probabilistic) equation,
Vlasov (mesoscopic, mean field) equation, Euler (macroscopic, graph limit) equation. We do not
write the upperscript N in the various formulas to keep a better readability.

Particle to Vlasov. By Proposition 3.1, any solution ΞN (·) of the particle system (82) can be

embedded to an empirical measure µ(·) = µe(XN ,ΞN (·)) = 1
N

∑N
i=1 δxNi ⊗ δξNi (·) that is a solution

of the Vlasov equation (83). Conversely if an empirical measure µ(·) = µe(XN ,ΞN (·)) (with distinct

points) is a solution of the Vlasov equation (83) then ΞN (·) must be a solution of (82).
In this context, the mean field limit consists of taking the limit N → +∞.

Particle to Euler. Any solution ΞN (·) of the particle system (82) can be embedded to a solution
of the general nonlinear Euler equation (84) by using an empirical measure ν (see Remark 2.3).

Alternatively and much more interestingly, to pass from the microscopic to the macroscopic
scale, by Theorems 2.2 and 2.3, one can take the graph limit of the particle system (Riemann sum
theorem) and thus obtain the Euler equation, with estimates of convergence as N → +∞.

Liouville to Vlasov. By Theorems 4.1 or 4.2, one can recover the solutions of the Vlasov
equation (83) from those of the Liouville equation (85), for some appropriate initial conditions
ρ(0), by taking marginals and taking the limit N → +∞.
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Euler to Vlasov. By Proposition 5.2 in Section 5.2.3, given any ν ∈ P(Ω) and any solution
t 7→ y(t, ·) of the Euler equation (84), the ν-monokinetic measure mapping t 7→ µ(t) = µνy(t,·) =

ν ⊗ δy(t,·) defined by (78) is a solution of the Vlasov equation (83). This embedding from the
macroscopic to the mesoscopic scale is general and is valid for the mean field X [µ] defined by (44)
and for the nonlinear operator A defined by (30).

Vlasov equation to Euler equation. Here, and only here, we assume, first, that G is linear
with respect to (ξ, ξ′) (as it is the case for the Hegselmann–Krause model). Proposition 5.1 says
that, given any solution t 7→ µ(t) of the Vlasov equation (83), defining ν = π∗µ(t) (marginal
of µ(t), which does not depend on t), the moment mapping t 7→ y(t, ·) of order 1, defined by
y(t, x) =

∫
IRd
ξ dµt,x(ξ), is a solution of the Euler equation (84) (which is linear in this case).

As discussed in Section 5.2.3, there is a second way, still not general, to go from Vlasov to
Euler, by assuming that the solution µ(·) of the Vlasov equation is ν-monokinetic. In this case, its
moment y of order 1 is solution of the nonlinear Euler equation (31).

This projection from the mesoscopic to the macroscopic scale is not general because, in general,
y does not satisfy a closed equation.

Liouville equation to Euler equation. Proposition 5.4 and its Corollary in Section 5.5 show
how to derive Euler from Liouville, for specific initial conditions ρN (0), by taking an adequate
moment of ρN (t) and then passing to the limit N → +∞.

Finally, all above relationships are general (i.e., valid for a general interaction mapping G)
except the transition from the mesoscopic (kinetic, mean field) model to the macroscopic (Euler)
model, which is valid if G is linear with respect to (ξ, ξ′) but fails in general. The graph limit
procedure is of a different nature and relies on the Riemann sum theorem (see Section 2).

Anyway, what is interesting in the above arguments is that it may not be relevant to place the
mesoscopic level in-between the microscopic level and the macroscopic one.

In conclusion let us emphasize the following important novelty of our article:

a Vlasov-mesoscopic scale equation for agent systems
and the fact that

the (continuum) graph limit equation is an Euler equation

7 Further comments and perspectives

In this paper we have surveyed and generalized various ways to pass to the limit in finite systems
of particles, and described precise relationships between the various limit equations: Euler, Vlasov
and Liouville equations. This has been done under the standing assumption (G) on the interaction
mapping G modeling the particle dynamics.

As already said, we have restricted our study to regular mappings G, because our objective
was to highlight in the simplest possible way the basic relationships between the microscopic,
mesoscopic and macroscopic scales, with the most possible general viewpoint. The study of singular
kernels is much more challenging and requires the development of other techniques.

Related to this issue, we give in the section hereafter a surprising consequence of our results.

7.1 Approximation of PDEs by finite particle systems

As stated in the longer preprint version [62] of the present article, and as already presented at
a number of conferences and talks since 2022, there is a surprising consequence of our analysis,
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namely, that sufficiently regular solutions of any quasilinear PDE can be approximated by solutions
of systems of N particles, to within 1/ ln ln(N).

This intriguing result is stated in [62] but since this preprint was becoming too long we decided
to split it and to present the PDE application in a separate paper.

In this section, we give a flavor of this result. To simplify the setting, we restrict our exposition
to the linear case. Let us consider a linear evolution equation

ẏ(t) = Ay(t) (86)

where A : D(A) → L2(Ω, IRd) is a linear operator generating a C0 semigroup and Ω is an open
bounded subset of IRn. Let [A] be the (distributional) Schwartz kernel of A, so that (Af)(x) =
〈[A](x, ·), f〉 in the distributional sense, for every f ∈ C∞c (Ω, IRd). For instance if [A](x, x′) = δ′x,
the distributional derivative of the Dirac measure δx at x, then A = −∂x.

Writing, with a slight abuse of notation, (Af)(x) =
∫

Ω
[A](x, x′)f(x′), we see a strong similarity

with the bounded operator given in (41) (in Section 2.3), of kernel σ. The idea then consists
in approximating the distribution [A] with a family of smooth kernels σε, depending on a new
parameter ε > 0, such that σε converges in the distributional sense to [A] as ε→ 0.

There are a number of ways to perform such an approximation. Explicit constructions are
provided in [62] by using convolutions. In all cases, we now have a family of bounded operators Aε
on L2(Ω), such that (Aεf)(x) =

∫
Ω
σε(x, x

′)f(x′) dx′ for every f ∈ C∞c (Ω, IRd). Following Section
2.1, for every ε > 0 fixed, the operator Aε is of the form (30) with the mapping Gε given by
Gε(t, x, x

′, ξ, ξ′) = σε(x, x
′)ξ′, and the corresponding Euler equation (31), which is here the linear

evolution equation ẏε(t) = Aεyε(t), is viewed as an approximation of the linear evolution equation
(86). Actually, it is not difficult to stand general assumptions under which ‖yε(t)−y(t)‖L2 6 Ceβt

for some C > 0 and β ∈ IR not depending on the solutions.
Now, in a second step, following the path drawn in this paper and passing from the macroscopic

to the microscopic scale, the family of finite particle systems, indexed by N , naturally associated
to the ε-Euler equation ẏε(t) = Aεyε(t) is

ξ̇Nε,i(t) =
1

N

N∑
j=1

σε(x
N
i , x

N
j ) ξNε,j(t)

and the discrepancy between their respective solutions can be estimated thanks to Theorem 2.2 in
Section 2.2 (in particular, (37)). Under appropriate assumptions, or by an explicit construction of
the kernel σε done in [62], it happens that the Lipschitz constants of Gε and of σε are estimated
by integer powers of 1

ε so that, finally, by the triangular inequality, we obtain an estimate of the
form ∥∥∥∥y(t, ·)−

N∑
i=1

ξNε,i(t)1ΩNi
(·)
∥∥∥∥
L2(Ω,IRd)

6 C

(
ε+

1

N
exp

(
C

ε
exp

(
C

ε

)))
.

Actually, there are powers of N and of ε but we drop them to simplify. Of course, in the above
estimate, if N is fixed and ε → 0 then the estimate blows up, which is expected because of the
unboundedness of A. It is thus required to let N tend to infinity and ε to zero in an appropriate
way. Optimizing the above estimate leads to choose ε ∼ 1

ln lnN , and then∥∥∥∥y(t, ·)−
N∑
i=1

ξNε,i(t)1ΩNi
(·)
∥∥∥∥
L2(Ω,IRd)

6
C

ln lnN

(actually, a positive power of it). We have thus shown that we can approximate any linear (and
actually, quasilinear) PDE by an explicit family of finite particle systems, to within 1/ ln ln(N).
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It is intriguing that this result is universal and requires very few assumptions (see [62] for more
details and complete statements). However, coming back to the basics of statistical physics, one
should not forget that a given domain Ω, say of volume 1, contains N ' 6.1023 particles and that
ln ln(N) ' 4, thus making unrelevant the general obtained estimate. This shows that, in some
sense, the estimate 1/ ln ln(N) is a kind of physical barrier. But we refer the reader to the last
part of [62], soon becoming a separate article, for more results and comments on this issue.

We conclude the present paper with a comment. The above discovery has been made possible
only by adding the variable x ∈ Ω to the particle system, to the Vlasov equation, yielding the
Euler equation obtained by graph limit. This additional variable x, which stands for the label of a
given particle (and is used to distinguish particles one from each other), becomes naturally here,
in the context of PDEs, the spatial variable. We refer to [63] for further developments.

7.2 Some open questions

We provide hereafter several further comments and open issues.

Closing the hierarchy of moments. In Section 5, we have defined the moments of the measure
µ solution of the Vlasov equation. We have seen that the hierarchy of moments is closed if G is
linear with respect to (ξ, ξ′) but is not closed in general otherwise. Although Proposition 5.1
remains an obvious observation, it is still mysterious to us. The question is open to characterize
all mappings G so that the hierarchy is closed at a certain level.

In cases where the hierarchy is not closed (like for fluid equations), we wonder whether it is
possible to add a small parameterε which would be used to close the hierarchy by taking adequate
limits (see [35] for similar comments).

Convergence to consensus. We have shown in Section 5.3 that, surprisingly, the “temperature”
always decreases exponentially, pointwisely, as soon as S(x) > 0, for the Hegselmann–Krause
model. This fact allows one to easily recover (and improve) some known results on convergence to
consensus. We do not know to what extent this observation may be generalized but we think that
it can be used to derive consensus results under weaker assumptions.

In more general, for nonlinear systems enjoying consensus properties (like nonlinear Hegselmann–
Krause models) or synchronization properties (like the Kuramoto model), following Section 5.2.3,
we expect that, under appropriate assumptions, any solution t 7→ µ(t) of the Vlasov equation (45)
is asymptotically of the form µνy(t,·) where t 7→ y(t, ·) is a solution of the Euler equation (31).

In any case, establishing a consensus result at the level of the Vlasov equation is interesting
because it should a priori imply consensus at the level of the (macroscopic) Euler equation and for
the (microscopic) particle system.

Improving error estimates. In our results, we establish error estimates between solutions of
the particle system and a limit equation (Euler or Vlasov) on compact intervals of time, and
the error grows exponentially in time, essentially due to a Gronwall argument. Such errors can
certainly be much improved for some classes of mappings G, maybe under consensus convergence
properties, in order to obtain uniform in time estimates.

Use of the measure ν. In the existing literature, the measure ν used in the definition (30) of
the operator A of the Euler equation (31) (graph limit) is always the Lebesgue measure. We have
shown in this paper the interest of considering other measures, in particular empirical measures,
to obtain (trivial) relationships with the particle system. But more generally, it is certainly of
interest to use other measures ν, depending on the context. For example, in social sciences, each
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agent could have a probability of decision, but several agents could have the same probability of
opinion.

Weakly regular (but not singular) mapping G. It is likely that, in our results and in
particular in Theorem 3.1, we can weaken the continuity assumption on G, provided we consider
the solutions of the Vlasov equation in a weaker sense. This is what is done in [44] for some classes
of opinion propagation models: the authors do not assume that there exists a limit mapping G (as
we do in (G)) but to take the mean field limit, in a weaker sense, they make another assumption
of uniform boundedness on their dynamics. However, at the limit they lose the distinguishability
of the particles.

It can be noted that when G is weakly regular (for instance L∞), we do not have, a priori,
an existence and uniqueness result for the particle system. But, following [45], we can study the
Liouville equation (61), for which we can have existence (but not uniqueness) for rough vector
fields, and then derive the Vlasov equation by taking marginals.

Multiplewise interactions. As alluded at the end of Section 1.3, we have considered particle
systems having pairwise interactions. We could consider dynamics with “triplewise” interactions
(or more):

ξ̇i(t) =
1

N2

N∑
j,k=1

G(t, xi, xj , xk, ξi(t), ξj(t), ξk(t)).

For such dynamics, the mean field is then formally obtained as

X [µ](t, x, ξ) =

∫
Ω×IRd

∫
Ω×IRd

G(t, x, x′, x′′, ξ, ξ′, ξ′′) dµ(x′, ξ′) dµ(x′′, ξ′′)

and the Vlasov equation (45) remains the same. Obtaining a theorem of existence and uniqueness
of a solution t 7→ µ(t) to the Vlasov equation, like in Theorem 3.1, is an open problem. The above
mean field X [µ] is indeed now quadratic with respect to µ and this may complicate significantly
the analysis. We do not know if such triplewise (or more) interaction particle systems have been
studied in the literature.

Similar models. There exist some interesting models in the literature, not covered by our
analysis but are not far. A first example is the more general Hegselmann–Krause model

ξ̇Ni (t) =
1

N

N∑
j=1

φ(‖ξNi (t)− ξNj (t)‖)

1

N

N∑
k=1

φ(‖ξNi (t)− ξNk (t)‖)

(ξNj (t)− ξNi (t)), i ∈ {1, . . . , N},

studied in (see [57]. Its graph limit is the Euler equation

∂ty(t, x) =

∫
IRd

φ(‖y(t, x)− y(t, x′)‖)∫
IRd
φ(‖y(t, x)− y(t, x′′)‖) dx′′

(y(t, x′)− y(t, x)) dx′

and the mean field is

X [µ](ξ) =

∫
IRd

φ(‖ξ − ξ′‖)∫
IRd
φ(‖ξ − ξ′′‖) dµ(ξ′′)

(ξ′ − ξ) dµ(ξ′).
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The corresponding Vlasov equation is studied in [57].
A second example is the Transformers model studied in [34]

ξ̇Ni (t) =
1

N

N∑
j=1

exp〈QξNi (t),KξNj (t)〉

1

N

N∑
k=1

exp〈QξNi (t),KξNk (t)〉

V ξNj (t), i ∈ {1, . . . , N},

where Q, K and V are matrices. This interacting particle model seems to be particularly relevant
in artificial intelligence. Although the above dynamics cannot be written in the form of the particle
system (8), it is quite evident that all the theory developed in this paper extends to such cases and
that its graph limit is the Euler equation

∂ty(t, x) =

∫
IRd

exp〈Qy(t, x),Ky(t, x′)〉∫
IRd

exp〈Qy(t, x),Ky(t, x′′)〉 dx′′
V y(t, x′) dx′

and that the Vlasov equation (studied[34, Section 6.3]) is (45) with the mean field

X [µ](ξ) =

∫
IRd

exp〈Qξ,Kξ′〉∫
IRd

exp〈Qξ,Kξ′′〉 dµ(ξ′′)

V ξ′ dµ(ξ′).

There exist also other variants of particle systems, involving some delays, or some coupling with
other equations (like in the Keller-Segel model). We think that many of them can be covered by
slight extensions of the analysis done in this paper.

Stochastic particle systems. Throughout this article, we have focused on deterministic finite
systems of particles. Since many stochastic systems of interacting particles, involving noise, can be
relevant in modeling collective behavior, it is of interest to extend the results of this paper to the
stochastic context. For example, using Ito calculus, it is proved in [12] that taking the stochastic
mean field limit in a kinetic McKean-Vlasov type finite particle system, involving some Brownian
motion, leads to a kinetic Fokker-Planck equation. The general picture drawn on Figure 1 remains
to be investigated in the stochastic setting.

Control at the various scales. From the control theory viewpoint, it is natural to add a control
term in the particle system (8) and, accordingly, in the limit Euler equation (31) and in the Vlasov
equation (45). This was done in [1, 15, 30, 64, 68] (just to cite a few). The main objective is then
to obtain “commutative diagrams” in the following sense: if u is a control for a limit equation then
one wants that there is an explicit sequence of controls uN for the particle system, converging to
u (this is the easy part); conversely, and much more difficultly, one wants to design controls uN

for the family of particle systems, indexed by N , converging to a control u for the limit equation.
This question can be settled in various contexts: exact control, optimal control, stabilization. This
is a major challenge.

Numerical consequences. All results and error estimates derived in our paper show that the
solutions of particle systems provide good approximations of the Euler or of the Vlasov equation. In
numerical analysis, particle methods, or particle-in-cell methods, have been much used in particular
to approximation solutions of fluid equations (see, e.g., [23, 70]). Of course, these equations involve
unbounded operators. But the results announced in Section 7.1 open a new perspective regarding
numerical issues, to be explored.
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A Appendix

Let E be a Polish space, endowed with a distance dE .

A.1 Some general facts on the Wasserstein distance

Choice of a distance on Ek. Let q ∈ [1,+∞] be arbitrarily fixed. Given any k ∈ IN∗, we endow
Ek with the `q distance based on dE , defined by

d
[q]

Ek
(y, y′) = ‖(dE(y1, y

′
1), . . . ,dE(yk, y

′
k))‖`q =


( k∑
i=1

dE(yi, y
′
i)
q

)1/q

if 1 6 q < +∞

max
16i6k

dE(yi, y
′
i) if q = +∞

(87)

for all y = (y1, . . . , yk) and y′ = (y′1, . . . , y
′
k) in Ek.

Fixing such a choice has an impact on the computation of the Wasserstein distance Wp between
two probability measures on Ek. Indeed, this means that the distance (87) is used in the definition
(21) of Wp, and that, in the definition (24) of W1, the Lipschitz constants must be computed with
the distance (87). The lemma below is thus important to compute Lipschitz constants.

Lemma A.1. Let f ∈ Lip(Ek). Then, for any y2, . . . , yk ∈ E, the mapping y1 7→ f(y1, y2, . . . , yk)
is Lipschitz, of Lipschitz constant less than Lip(f). We set Lipy1

(f) = max{Lip(f(·, y2, . . . , yk)) |
y2, . . . , yk ∈ E}. All other Lipyi(f) are defined similarly, for i = 2, . . . , k. We have

Lip(f) = ‖(Lipy1
(f), . . . ,Lipyk(f))‖`q′ =


( k∑
i=1

Lipyi(f)q
′
)1/q′

if q′ < +∞

max
16i6k

Lipyi(f) if q′ = +∞

where q′ ∈ [1,+∞] is defined by 1
q + 1

q′ = 1.

Proof. It suffices to write

|f(y1, . . . , yk)− f(y′1, . . . , y
′
k)|

6 |f(y1, y2 . . . , yk)− f(y′1, y2, . . . , yk)|+ · · ·+ |f(y′1, . . . , y
′
k−1, yk)− f(y′1, . . . , y

′
k−1, y

′
k)|

6
k∑
i=1

Lipyi(f) dE(yi, y
′
i)

and to use the Hölder inequality.

Remark A.1. The choice of a distance d
[q]

Ek
on the tensor product Ek (i.e., the choice of q ∈

[1,+∞]) is far from being insignificant because, although all norms are equivalent in Ek, comparing
them gives constants depending on k. The choice thus becomes particularly meaningful when k is
large.

Another remark is that the definition (87) is based on the usual `q norm, for q ∈ [1,+∞]. Other
choices are possible, but in order to keep many of the statements further the convexity of the norm
is important.
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Notation W
[q]
p . For all p, q ∈ [1,+∞], following Remark A.1, hereafter we denote by W

[q]
p the

Wasserstein distance Wp on P(Ek) (defined by (21)) with respect to the distance d
[q]

Ek
on Ek.

It follows from the usual inequalities for `q norms in IRk that q 7→ d
[q]

Ek
is decreasing and

1 6 q1 6 q2 6 +∞ ⇒ d
[q2]

Ek
6 d

[q1]

Ek
6 k

1
q1
− 1
q2 d

[q2]

Ek

and thus
1 6 q1 6 q2 6 +∞ ⇒ W [q2]

p 6W [q1]
p 6 k

1
q1
− 1
q2 W [q2]

p (88)

for any p ∈ [1,+∞]. These inequalities complement (23). For p fixed, in the family of distances

W
[q]
p , for q ∈ [1,+∞], the `1 distance W

[1]
p is the weakest one. This is an important point because,

in the existing literature, very often the `2 distance W
[2]
p is used, but in this work the use of q = 1

is crucial for some parts.

In all subsections hereafter, we fix an arbitrary p ∈ [1,+∞). The case p = +∞ is obtained by
taking the limit when it makes sense. We also fix an arbitrary q ∈ [1,+∞].

A.1.1 Convexity

Lemma A.2 ((Wp)
p is convex). Given any µ1, µ2, µ

′
1, µ
′
2 ∈ P(E) and any λ ∈ [0, 1], we have

Wp(λµ1 + (1− λ)µ2, λµ
′
1 + (1− λ)µ′2)p 6 λWp(µ1, µ

′
1)p + (1− λ)W1(µ2, µ

′
2)p.

Proof. This result is a particular case of [78, Part I, Chapter 4, Theorem 4.8]. Let Πi be an optimal
coupling between µi and µ′i, for i = 1, 2. Then Π = λΠ1 + (1− λ)Π2 couples λµ1 + (1− λ)µ2 and
λµ′1 + (1− λ)µ′2 (maybe not optimally). Hence

Wp(λµ1 + (1− λ)µ2, λµ
′
1 + (1− λ)µ′2)p 6

∫
E

dE(x, x′)p dΠ(x, x′)

= λ

∫
E

dE(x, x′)p dΠ1(x, x′)+(1−λ)

∫
E

dE(x, x′)p dΠ2(x, x′) = λWp(µ1, µ
′
1)p+(1−λ)W1(µ2, µ

′
2)p

and the lemma follows.

Lemma A.3. Let µ1, µ2, β ∈ P(E) and let ε ∈ (0, 1] be such that µ1 = (1 + ε)µ2 − εβ. Then

Wp(µ1, µ2) 6 ε1/pWp(µ1, β)

and, assuming that ε < 1,

Wp(µ1, µ2) 6
ε1/p

1− ε1/p
Wp(µ2, β).

In the particular case p = 1, we have W1(µ1, µ2) = εW1(µ2, β).

Proof. We have µ2 = 1
1+εµ1 + ε

1+εβ (convex combination), and applying Lemma A.2 we get
Wp(µ1, µ2)p 6 ε

1+εWp(µ1, β)p 6 εWp(µ1, β)p, and the first inequality follows. The second inequal-
ity is obtained by using the triangular inequality Wp(µ1, β) 6 Wp(µ1, µ2) + Wp(µ2, β). When
p = 1, given any f ∈ C 0

c (E), we have
∫
E
f d(µ1−µ2) = ε

∫
E
f d(µ2− β), and taking (in two steps)

the supremum over all f such that Lip(f) 6 1, we get W1(µ1, µ2) = εW1(µ2, β).
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A.1.2 Symmetrization

Let N ∈ IN∗ be arbitrary. Given any µ ∈ P(EN ), the measure µs ∈ P(EN ), called the symmetriza-
tion under permutations of µ, is defined by

µs =
1

N !

∑
σ∈SN

σ∗µ (89)

where the measure σ∗µ is defined by 〈σ∗µ, f〉 = 〈µ, σ∗f〉 and (σ∗f)(y) = f(σ · y), with σ · y =
(yσ(1), . . . , yσ(N)) for every y ∈ EN and for every σ ∈ SN , where SN is the group of permutations
of N elements. Here, 〈 , 〉 is the duality bracket. Equivalently,∫

EN
f(y) dµs(y) =

1

N !

∑
σ∈SN

∫
EN

f(σ · y) dµ(y) ∀f ∈ C 0
c (EN ).

Lemma A.4. Given any µ1, µ2 ∈ P(EN ), we have

W [q]
p (µs1, µ

s
2) 6W [q]

p (µ1, µ2).

In this lemma, the Wasserstein distance Wp is computed with respect to the `q distance d
[q]

EN
.

Proof. This follows from Lemma A.2, since µs is written as the convex combination (89), noting

that W
[q]
p (σ∗µ1, σ∗µ2) = W

[q]
p (µ1, µ2) for any σ ∈ SN because the distance d

[q]

EN
defined by (87)

is itself symmetric and because, for any Π coupling µ1 and µ2 and for any σ ∈ SN , (σ ⊗ σ)∗Π
couples σ∗µ1 and σ∗µ2.

A.1.3 Marginals

Let N ∈ IN∗ be arbitrary. Given any µ ∈ P(EN ) and any k ∈ {1, . . . , N}, the kth-order marginal
µN :k ∈ P(Ek) of µ is the image of µ under the canonical projection πk : EN = Ek ×EN−k → Ek.

Lemma A.5. Given any µ1, µ2 ∈ P(EN ) and any k ∈ {1, . . . , N}, we have

W [q]
p ((µ1)N :k, (µ2)N :k) 6W [q]

p (µ1, µ2). (90)

The Wasserstein distance at the left-hand (resp., right-hand) side of (90) is computed with

respect to the `q distance d
[q]

Ek
(resp., d

[q]

EN
). We will establish in Lemma A.13 in Appendix A.2.2

a stronger estimate when µ1 and µ2 are symmetric.

Proof. Let Π be an optimal coupling between µ1 and µ2. Then, obviously, (πk)∗Π couples (maybe
not optimally) (πk)∗µ1 = (µ1)N :k and (πk)∗µ2 = (µ2)N :k. Therefore

W [q]
p ((µ1)N :k, (µ2)N :k)p 6

∫
Ek

d
[q]
Ek

((y1, . . . , yk), (y′1, . . . , y
′
k))p d(πk)∗Π((y1, . . . , yk), (y′1, . . . , y

′
k))

6
∫
EN

d
[q]
Ek

(πk(y), πk(y′))p dΠ(y, y′)

6
∫
EN

d
[q]
EN

(y, y′)p dΠ(y, y′) = W [q]
p (µ1, µ2)p

where we have used that d
[q]
Ek

(πk(y), πk(y′)) 6 d
[q]
EN

(y, y′).
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A.1.4 Tensor product

Let k ∈ IN∗. For every i ∈ {1, . . . , k}, let Ei be a Polish space, endowed with a distance dEi . We
endow the product space E1 × · · · × Ek with the distance

d
[q]
E1×···×Ek(y, y′) = ‖(dE1(y1, y

′
1), . . . ,dEk(yk, y

′
k))‖`q =


( k∑
i=1

dEi(yi, y
′
i)
q

)1/q

if 1 6 q < +∞

max
16i6k

dEi(yi, y
′
i) if q = +∞

(91)
for all y = (y1, . . . , yk), y′ = (y′1, . . . , y

′
k) ∈ E1 × · · · × Ek.

Lemma A.6. Given any µ1, µ
′
1 ∈ P(E1), . . ., µk, µ

′
k ∈ P(Ek), we have, for every j ∈ {1, . . . , k},

Wp(µj , µ
′
j) 6W [q]

p

(
k
⊗
i=1
µi ,

k
⊗
i=1
µ′i

)
6 max

(
k

1
q−

1
p , 1
)( k∑

i=1

Wp(µi, µ
′
i)
p

)1/p

(92)

and the right-hand side inequality in (92) is an equality if p = q.
Taking Ei = E, dEi = dE, µi = µ and µ′i = µ′ for every i ∈ {1, . . . , n}, we have the slightly

stronger inequality
W [q]
p (µ⊗k, (µ′)⊗k) 6 k1/qWp(µ, µ

′) (93)

and the inequality is an equality if p = q.

Lemma A.6 can be found in [51].
The Wasserstein distance Wp at the left-hand side of (92) is computed with respect to the

distance dEj . The Wasserstein distance W
[q]
p in the middle of (92) is computed with respect to the

distance d
[q]
E1×···×Ek defined by (91).

The Wasserstein distance W
[q]
p at the left-hand side of (93) is computed with respect to the

distance d
[q]

Ek
defined by (87). Recall that q ∈ [1,+∞] has been chosen arbitrarily to define this

distance. At the right-hand side of (93), if q = +∞ then k1/q = 1.

Remark A.2. As a particular case of (92), taking k = 2 and µ2 = µ′2 = µ, we have

Wp(µ1, µ
′
1) 6W [q]

p (µ1 ⊗ µ, µ′1 ⊗ µ) = W [q]
p (µ⊗ µ1, µ⊗ µ′1) 6 max

(
2

1
q−

1
p , 1
)
Wp(µ1, µ

′
1).

In particular, if p 6 q then Wp(µ1, µ
′
1) = W

[q]
p (µ1 ⊗ µ, µ′1 ⊗ µ) = W

[q]
p (µ⊗ µ1, µ⊗ µ′1).

Proof. We have Wp(µj , µ
′
j) 6 W

[q]
p

( k
⊗
i=1

µi ,
k
⊗
i=1
µ′i

)
for every i ∈ {1, . . . , k}: this is proved like in

Lemma A.5 because µj is the marginal on Ej of the measure
k
⊗
i=1
µi on E, and similarly for µ′j .

Therefore the left-hand side inequality in (92) follows.
Let us now establish the right-hand side inequality in (92), for q < +∞. For every i ∈ {1, . . . , k},

let Πi be an optimal coupling between µi and µ′i. Then, obviously, Π =
k
⊗
i=1

Πi couples (maybe not

optimally)
k
⊗
i=1
µi and

k
⊗
i=1
µ′i. Therefore

W [q]
p

(
k
⊗
i=1
µi ,

k
⊗
i=1
µ′i

)p
6
∫
E1×E1

· · ·
∫
Ek×Ek

( k∑
i=1

dEi(yi, y
′
i)
q

)p/q
dΠk(yk, y

′
k) · · · dΠ1(y1, y

′
1).
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If p > q, using the convexity inequality (|a1| + · · · + |ak|)r 6 kr−1 (|a1|r + · · ·+ |ak|r) for r > 1
(with equality for r = 1), we obtain

W [q]
p

(
k
⊗
i=1
µi ,

k
⊗
i=1
µ′i

)p
6 k

p
q−1

k∑
i=1

Wp(µi, µ
′
i)
p

and the inequality is an equality if p = q because in this case Π is an optimal coupling. If p 6 q,
using the inequality (|a1|+ · · ·+ |ak|)1/r 6 |a1|1/r + · · ·+ |ak|1/r for r > 1, we obtain

W [q]
p

(
k
⊗
i=1
µi ,

k
⊗
i=1
µ′i

)p
6

k∑
i=1

Wp(µi, µ
′
i)
p.

All in all, we have established (92).
To prove (93), using the definition (22) of Wp, we note that

W [q]
p (µ⊗k, (µ′)⊗k)p 6 E

( k∑
i=1

dE(Y, Y ′)q
)p/q

= kp/q EdE(Y, Y ′)p = kp/qWp(µ, µ
′)p

where Y and Y ′ are random variables (with values in E) of laws µ and µ′, such that Wp(µ, µ
′)p =

EdE(Y, Y ′)p.

A.1.5 Diameter of the support

Lemma A.7. Given any µ1, µ2 ∈ Pc(E), we have

Wp(µ1, µ2) 6 diamE(supp(µ1) ∪ supp(µ2)) = max{dE(y, y′) | y, y′ ∈ supp(µ1) ∪ supp(µ2)}.

Proof. By (21), since Wp(µ1, µ2)p is the infimum of
∫
E2 dE(y, y′)p dΠ(y, y′) over all probability

measures Π on E2 coupling µ1 and µ2, we have Wp(µ1, µ2) 6 max{dE(y1, y2) | y1 ∈ supp(µ1), y2 ∈
supp(µ2)}, and the result follows.

A.1.6 Propagation

In this section, we assume that E is a Banach space, endowed with a norm ‖·‖E . Let also Λ (space
of parameters) be a Polish space, endowed with a distance dΛ. The space Λ× E is endowed with
the distance dΛ×E = dΛ + dE , where dE is the distance on E induced by the norm ‖ · ‖E .

Lemma A.8. For i = 1, 2, let Y i(t, λ, ·) be a continuous time-varying vector field on E, depending
on the parameter λ ∈ Λ, locally Lipschitz with respect to (λ, y) ∈ Λ×E uniformly with respect to t
on any compact interval, generating a flow (Φi(t, t0, λ, ·))t∈IR (assumed to be well defined for every
t ∈ IR) for any t0 ∈ IR, that is,

∂tΦ
i(t, t0, λ, y) = Y i(t, λ,Φi(t, t0, λ, y))

Φi(t0, t0, λ, y) = y

for all t, t0 ∈ IR, y ∈ E and λ ∈ Λ. Given any t0 ∈ IR and any µ1(t0), µ2(t0) ∈ Pc(Λ × E),
we set µit = µi(t) = Φi(t, t0)∗µ

i(t0) for every t > t0, for i = 1, 2; this notation means, denoting
by νi the (constant in time) marginal of µi(t) on Λ and disintegrating µit =

∫
Λ
µit,λ dν

i(λ), that

µit,λ = Φi(t, t0, λ, ·)∗µi(t0) for νi-almost every λ ∈ Λ. For every p ∈ [1,+∞), we have

Wp(µ
1(t), µ2(t)) 6 e(t−t0)L([t0,t])Wp(µ

1(t0), µ2(t0)) +M([t0, t])
e(t−t0)L([t0,t]) − 1

L([t0, t])
(94)
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for every t > t0, where6

L([t0, t]) = max
t06τ6t

Lip
(
Y 1(τ, ·, ·)|S(τ)

)
, (95)

S(t) = (supp(ν1) ∪ supp(ν2))× Φ1(t, t0, supp(µ1(t0)) ∪ supp(µ2(t0))) ∪ supp(µ2(t)),

M([t0, t]) = max{‖Y 1(τ, λ, y)− Y 2(τ, λ, y)‖E | t0 6 τ 6 t, (λ, y) ∈ supp(µ2(τ))}. (96)

Alternatively, the second term at the right-hand side of (94) can be replaced by

Mp([t0, t])(t− t0)1/p

(
e(t−t0)p′L([t0,t]) − 1

p′L([t0, t])

)1/p′

(97)

where 1
p + 1

p′ = 1 and

Mp([t0, t]) = max
t06τ6t

(∫
Λ×E

‖Y 1(τ, λ, y)− Y 2(τ, λ, y)‖pE dµ
2
τ (λ, y)

)1/p

. (98)

Some remarks are in order:
– In (94) (and in (97)), it is understood that if L([t0, t]) = 0 then e(t−t0)L([t0,t])−1

L([t0,t])
is replaced

by t− t0. Lemma A.8 extends [67, Proposition 4] to the case with parameters and to the local
Lipschitz case; also, the alternative (not usual) estimate with (97) is useful to derive some results
of this paper.

– If Y 1 = Y 2 then M(·) = 0.
– When t0 = 0, we denote Φi(t, λ, y) = Φi(t, 0, λ, y), L(t) = L([0, t]) and M(t) = M([0, t]).
– Finally, it is interesting to observe that, in Lemma A.8, actually only the first vector field Y 1 is

required to be locally Lipschitz. Concerning the second, it is only required that Y 2 is regular
enough so that (98) is well defined, and also that the flow Φ2 is well defined.

Proof. Given any (λ1, y1) ∈ supp(µ1(t0)) and (λ2, y2) ∈ supp(µ2(t0)), using (95) we have

∂t
∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)

∥∥
E

6 ‖Y 1(t, λ1,Φ
1(t, t0, λ1, y1))− Y 1(t, λ2,Φ

1(t, t0, λ2, y2))‖E
6 L([t0, t])

(
dΛ(λ1, λ2) +

∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)
∥∥
E

)
because Φ1(t, t0, λ1, y1) ∈ Φ1(t, t0, supp(µ1(t0))) and Φ1(t, t0, λ2, y2)) ∈ Φ1(t, t0, supp(µ2(t0))) (this
motivates the definition of S(t)), and by integration we get that

dΛ(λ1, λ2) +
∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)

∥∥
E
6 e(t−t0)L([t0,t]) (dΛ(λ1, λ2) + ‖y1 − y2‖E) (99)

for every t > t0, for i = 1, 2 (we have used the fact that t 7→ L([t0, t]) is nondecreasing).
Taking an optimal coupling Πt0 ∈ P((Λ×E)2) between µ1(t0) and µ2(t0), the probability mea-

sure Πt = (Φ1(t, t0) ⊗ Φ2(t, t0))∗Πt0 couples (maybe not optimally) µ1(t) with µ2(t).7 Therefore,

6Note that S(t) is compact and that Φi(t, t0, supp(µi(t0))) = supp(µi(t)).
7Indeed, denoting by πi the projection of (Λ×E)2 onto the ith-copy of Λ×E, we have πi ◦ (Φ1 ⊗Φ2) = Φi ◦ πi.
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using the definition (21) of Wp,

Wp(µ
1(t), µ2(t))p

6
∫

(Λ×E)2

(dΛ(λ1, λ2) + ‖y1 − y2‖E)
p
dΠt(λ1, y1, λ2, y2)

=

∫
(Λ×E)2

(
dΛ(λ1, λ2) + ‖Φ1(t, t0, λ1, y1)− Φ2(t, t0, λ2, y2)‖E

)p
dΠt0(λ1, y1, λ2, y2)

6
∫

(Λ×E)2

(
dΛ(λ1, λ2) + ‖Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)‖E

+ ‖Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)‖E
)p
dΠt0(λ1, y1, λ2, y2)

and thus, and using the triangular inequality in Lp, we get

Wp(µ
1(t), µ2(t))

6

(∫
(Λ×E)2

(
dΛ(λ1, λ2) + ‖Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)‖E

)p
dΠt0(λ1, y1, λ2, y2)

)1/p

+

(∫
(Λ×E)2

‖Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)‖pE dΠt0(λ1, y1, λ2, y2)

)1/p

(100)

Using (99), the first term of the sum at the right-hand side of (100) is less than or equal to

e(t−t0)L([t0,t])

(∫
(Λ×E)2

(dΛ(λ1, λ2) + ‖y1 − y2‖E)
p
dΠt0(λ1, y1, λ2, y2)

)1/p

= e(t−t0)L([t0,t])Wp(µ
1(t0), µ2(t0)),

the latter equality being because Πt0 is an optimal coupling between µ1(t0) and µ2(t0).
To treat the second term, we first observe that, for (λ, y) ∈ supp(µ2(t0)),

∂t‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖E 6 ‖Y 1(t, λ,Φ1(t, t0, λ, y))− Y 1(t, λ,Φ2(t, t0, λ, y))‖E
+ ‖Y 1(t, λ,Φ2(t, t0, λ, y))− Y 2(t, λ,Φ2(t, t0, λ, y))‖E

6 L([t0, t])‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖E
+ ‖Y 1(t, λ,Φ2(t, t0, λ, y))− Y 2(t, λ,Φ2(t, t0, λ, y))‖E

where we have used (95), noting that (λ,Φ1(t, t0, λ, y)) ∈ S(t) and (λ,Φ2(t, t0, λ, y)) ∈ S(t), and
thus, using the Gronwall lemma and the fact that τ 7→ L([t0, τ ]) is nondecreasing,

‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖E

6
∫ t

t0

e(t−τ)L([t0,t])‖Y 1(τ, λ,Φ2(τ, t0, λ, y))− Y 2(τ, λ,Φ2(τ, t0, λ, y))‖E dτ. (101)

Using the definition (96) of M([t0, t]) and the fact that Φ2(τ, t0, supp(µ2(t0))) = supp(µ2(τ)), we
get

‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖E 6M([t0, t])
e(t−t0)L([t0,t]) − 1

L([t0, t])
.
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Therefore, the second term of the sum at the right-hand side of (100) is estimated by

(∫
(Λ×E)2

‖Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)‖pE dΠt0(λ1, y1, λ2, y2)

)1/p

=

(∫
Λ×E

‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖pE dµ
2
t0(λ, y)

)1/p

6M([t0, t])
e(t−t0)L([t0,t]) − 1

L([t0, t])

where we have used that the second marginal of Πt0 is µ2
t0 = µ2(t0). The estimate (94) follows.

To obtain the alternative estimate with the term (97), we apply the Hölder inequality to the
right-hand side of (101), obtaining

‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖E

6

(
ep
′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′(∫ t

t0

‖Y 1(τ, λ,Φ2(τ, t0, λ, y))− Y 2(τ, λ,Φ2(τ, t0, λ, y))‖pE dτ
)1/p

.

Therefore, the second term of the sum at the right-hand side of (100) is estimated by(∫
(Λ×E)2

‖Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)‖pE dΠt0(λ1, y1, λ2, y2)

)1/p

=

(∫
Λ×E

‖Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)‖pE dµ
2
t0(λ, y)

)1/p

6

(
ep
′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′ (∫ t

t0

∫
Λ×E

‖Y 1(τ, λ,Φ2(τ, t0, λ, y))

− Y 2(τ, λ,Φ2(τ, t0, λ, y))‖pE dµ
2
t0(λ, y) dτ

)1/p

6

(
ep
′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′ (∫ t

t0

∫
Λ×E

‖Y 1(τ, λ, y)− Y 2(τ, λ, y)‖pE dµ
2
τ (λ, y) dτ

)1/p

6

(
ep
′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′

(t− t0)1/pMp([t0, t])

The lemma is proved.

Lemma A.9. Let Y (t, λ, ·) be a continuous time-varying vector field on E, depending on the
parameter λ ∈ Λ, locally Lipschitz with respect to y ∈ E uniformly with respect to (t, λ) on any
compact, generating a flow (Φ(t, t0, λ, ·))t∈IR (assumed to be well defined for every t ∈ IR) for any
t0 ∈ IR (as in Lemma A.8). Given any t0 ∈ IR and any µt0 ∈ Pc(Λ×E), we set µ(t) = Φ(t, t0)∗µt0
for every t > t0. For every p ∈ [1,+∞), we have

Wp(µ(t), µ(t0)) 6M([t0, t])|t− t0| ∀t > t0

where M([t0, t]) = max {‖Y (τ, λ, y)‖ | t0 6 τ 6 t, (λ, y) ∈ supp(µ(τ))}.

Proof. It would suffice to apply Lemma A.8 with Y 1 = 0 and Y 2 = Y , if Y were also Lipschitz
with respect to λ (or, to adapt this lemma to vector fields that depend only continuously on λ).
Without this assumption, let us give a quick proof. We first establish the following general result.
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Lemma A.10. Let F be a Polish space, endowed with a distance dF , let µ ∈ Pc(F ) and let
φ : F → F be a measurable mapping. For every p ∈ [1,+∞), we have

Wp(φ∗µ, µ) 6

(∫
F

dF (y, φ(y))p dµ(y)

)1/p

Proof of Lemma A.10. With a slight abuse of notation, we define Π ∈ P(F × F ) by Π(y, y′) =
µ(y) δy′=Φ(y). Since we also have Π = (Φ∗µ)(y′) δy′=Φ(y), it follows that Π couples µ and φ∗µ.
Therefore Wp(φ∗µ, µ)p 6

∫
F 2 dF (y, y′)p dΠ(y, y′) =

∫
F

dF (y, φ(y))p dµ(y). Lemma A.10 is proved.

Applying Lemma A.10 with F = Λ× E, µ = µt0 and φ = Φ(t, t0), we have

Wp(µ(t), µ(t0))p 6
∫

Λ×E
dΛ×E((λ, y), (λ,Φ(t, t0, λ, y)))p dµt0(λ, y)

and we note that dΛ×E((λ, y), (λ,Φ(t, t0, λ, y))) = ‖Φ(t, t0, λ, y) − y‖. Now, since Φ(t, t0, λ, y) =

y+
∫ t
t0
Y (τ, λ,Φ(τ, t0, λ, y)) dτ and supp(µ(t)) = Φ(t, t0, supp(µt0)), Lemma A.9 easily follows.

A.1.7 Moment of order one

Let Ω be a polish space and let d ∈ IN∗.

Lemma A.11. For i = 1, 2, let µi ∈ Pc(Ω × IRd), disintegrated as µi =
∫

Ω
(µi)x dνi(x) with

respect to its marginal νi on Ω, and let yi be the moment of order one of µi, defined by yi(x) =∫
IRd
ξ d(µi)x(ξ) for νi-almost every x ∈ Ω. Then

W1(y1ν1, y2ν2) 6W1(µ1, µ2).

Proof. By the definition (24) of W1, we have W1(y1ν1, y2ν2) =
∫

Ω
y1g dν1−

∫
Ω
y2g dν2 for some g ∈

Lip(Ω) such that Lip(g) 6 1. Hence W1(y1ν1, y2ν2) =
∫

Ω×IRd
f d(µ1 − µ2) where f(x, ξ) = g(x)ξ.

Since f ∈ Lip(Ω× IRd) and Lip(f) 6 1, the result follows.

A.2 More precise facts on the marginals of a symmetrization

Let N ∈ IN∗ be arbitrary. Recall that the symmetrization of a measure is defined by (89) (see
Appendix A.1.2).

A.2.1 First marginal of the symmetrization

For every i ∈ {1, . . . , N}, we denote by pi the projection of EN onto the ith copy of E, i.e., in
coordinates, pi(y) = yi.

Lemma A.12. Let µ ∈ P(EN ) be arbitrary.

• The first marginal µsN :1 = p1
∗µ

s of the symmetrization µs of µ is given by

µsN :1 =
1

N

N∑
i=1

pi∗µ

where pi∗µ is the image of µ under the projection pi. In other words, µsN :1 is the average of
the marginals of µ on the copies of E.
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• We have pi∗µ
s =

1

N

N∑
j=1

pj∗µ
s for every i ∈ {1, . . . , N} and thus pi∗µ

s does not depend on i.

In other words, the marginals of a symmetric measure on the copies of E are all equal; the
same is true for the marginals of higher order.

Proof. Given any f ∈ C 0
c (E), we have

〈µsN :1, f〉 = 〈p1
∗µ

s, f〉 = 〈µs, (p1)∗f〉 =
1

N !

∑
σ∈SN

〈σ∗µ, (p1)∗f〉 =
1

N !

∑
σ∈SN

〈µ, σ∗(p1)∗f〉

=
1

N !

∑
σ∈SN

∫
EN

f ◦ p1(σ · y) dµ(y) =
1

N !

∑
σ∈SN

∫
EN

f(yσ(1)) dµ(y)

When designing a permutation σ ∈ SN , we have N choices for σ(1), among {1, . . . , N}, and the
rest is a permutation of N − 1 elements. Since card(SN−1) = (N − 1)!, we get that

〈µsN :1, f〉 =
1

N

N∑
i=1

∫
EN

f(yi) dµ(y) =
1

N

N∑
i=1

∫
EN

f ◦ pi(y) dµ(y) =
1

N

N∑
i=1

〈pi∗µ, f〉

whence the first item.
The second item is proved in the same way, replacing µ by µs.

A.2.2 Marginals of symmetric measures

We have seen in Lemma A.5 (Appendix A.1.3) that W
[q]
p ((µ1)N :k, (µ2)N :k) 6 W

[q]
p (µ1, µ2), for

every k ∈ {1, . . . , N}, for any µ1, µ2 ∈ P(EN ). We have a stronger estimate when µ1 and µ2 are
symmetric, i.e., when µ1 = µs1 and µ2 = µs2.

Lemma A.13. Let µ1, µ2 ∈ P(EN ) be symmetric measures. Then, for any k ∈ {1, . . . , N},

W [q]
p ((µ1)N :k, (µ2)N :k) 6

(
k

N

)1/q

W [q]
p (µ1, µ2). (102)

In (102), the W
[q]
p distances are computed with respect to the `q distances d

[q]

Ek
and d

[q]

EN
defined

by (87).

Proof. Assume that q < +∞ (for q = +∞, it suffices to take limits). Let Π ∈ P((EN )2) be an

optimal coupling between µ1 and µ2 for the W
[q]
p distance, i.e., using the definitions (21) and (22)

of W
[q]
p ,

W [q]
p (µ1, µ2)p =

∫
(EN )2

(
N∑
i=1

dE(y1
i , y

2
i )q

)p/q
dΠ(y1, y2) = E

(
N∑
i=1

dE(Y 1
i , Y

2
i )q

)p/q

where yj = (yj1, . . . , y
j
N ) for j = 1, 2, and where the Y ji are random variables of laws the respective

marginals of Π. Using that the cost is symmetric, without loss of generality we assume that Π is
symmetric, i.e., Π = (σ ⊗ σ)∗Π for every σ ∈ SN (the symmetrization is performed in each copy
EN of (EN )2). By an obvious adaptation of Lemma A.12 in Appendix A.2.1, the marginals of Π
(which are, accordingly, probability measures on E2, by considering the product of the ith copy

57



of E with the ith copy of E) are all equal. The same is true for the marginals of higher order. It
follows that Y 1

i and Y 2
i do not depend on i and thus

W [q]
p (µ1, µ2)p = Np/q EdE(Y 1

1 , Y
2
1 )p = Np/q

∫
E2

dE(y1
1 , y

2
1)p dΠN :1(y1

1 , y
2
1)

=

(
N

k

)p/q
E

(
k∑
i=1

dE(Y 1
i , Y

2
i )q

)p/q
=

(
N

k

)p/q ∫
(Ek)2

d
[q]

Ek
(y1, y2)p dΠN :k(y1, y2)

for every k ∈ {1, . . . , N}. The latter quantity is greater than or equal to W
[q]
p ((µ1)N :k, (µ2)N :k)p

because ΠN :k couples (µ1)N :k and (µ2)N :k. The lemma follows.

A.2.3 A combinatorial lemma towards propagation of chaos

Lemma A.14. Let µ1, . . . , µN ∈ P(E), and let ρ ∈ P(EN ) be defined by

ρ = µ1 ⊗ · · · ⊗ µN .

The symmetrization of ρ is given by

ρs =
1

N !

∑
σ∈SN

µσ(1) ⊗ · · · ⊗ µσ(N). (103)

The first marginal ρsN :1 ∈ P(E) of ρs is

ρsN :1 =
1

N

N∑
i=1

µi (104)

and, for every k ∈ {2, . . . , N}, its kth-order marginal ρsN :k ∈ P(E) is

ρsN :k = (1 + εk) (ρsN :1)
⊗k − εkβk (105)

where

εk =
Nk(N − k)!

N !
− 1 ∈

[
0, e

k2

2N − 1
]

(106)

and

βk =
1

εk

(N − k)!

N !

∑
µi1 ⊗ · · · ⊗ µik ∈ P(Ek) (107)

where the sum in (107) is taken over all k-tuples (i1, . . . , ik) ∈ {1, . . . , N}k for which at least two
elements are equal. For every p ∈ [1,+∞), for every k ∈ IN∗ such that k2 6 2N ln

(
1 + 1

2p

)
, we

have

W [q]
p

(
ρsN :k, (ρ

s
N :1)⊗k

)
6 2

(
k2

N

)1/p

W [q]
p

(
(ρsN :1)⊗k, βk

)
(108)

and therefore, assuming moreover that µ1, . . . , µN ∈ Pc(E),

W [q]
p

(
ρsN :k, (ρ

s
N :1)⊗k

)
6 2k1/q

(
k2

N

)1/p

diamE

(
N⋃
i=1

supp(µi)

)
. (109)
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In (108) and (109), the Wasserstein distance W
[q]
p is computed with respect to the `q distance

d
[q]

Ek
. The estimate (109) is used several times in the proofs of our main results, in an instrumental

way to express that, for N large, the kth-order marginal ρsN :k of the symmetric measure ρs is close
to the tensor power (ρsN :1)⊗k, with an error that is precisely estimated.

The first part of the lemma, in particular the formulas (104) and (105), are certainly known by
experts and can be found, e.g., in [69, Section 3], for Dirac measures.

Proof. The formula (103) straightforwardly follows from (89), and the formula (104) follows from
Lemma A.12 in Appendix A.2.1 because pi∗ρ = µi.

Let us now compute the kth-order marginal ρsN :k of ρs, for every k ∈ {2, . . . , N}. Let INk be
the set of all k-tuples (i1, . . . , ik) consisting of distinct integers chosen in {1, . . . , N}. We have
card(INk ) = N !

(N−k)! . Denoting by Si1,...,ik
N the set of all σ ∈ SN such that (σ(1), . . . , σ(k)) =

(i1, . . . , ik), we have card(Si1,...,ik
N ) = (N − k)!. Now, since∑

σ∈SN

µσ(1) ⊗ · · · ⊗ µσ(N) =
∑

(i1,...,iN )∈INk

µi1 ⊗ · · · ⊗ µik ⊗
∑

σ∈Si1,...,ikN

µσ(n+1) ⊗ · · · ⊗ µσ(N)

we infer that

ρsN :k =
(N − k)!

N !

∑
(i1,...,ik)∈INk

µi1 ⊗ · · · ⊗ µik . (110)

Now, writing INk = {1, . . . , N}k \
(
{1, . . . , N}k \ INk

)
, we write the sum in (110) as a sum over

{1, . . . , N}k minus a sum over {1, . . . , N}k \ INk (where at least two of the indices are equal). For
the first sum, we have

∑
(i1,...,ik)∈{1,...,N}k

µi1 ⊗ · · · ⊗ µik =

( N∑
i=1

µi

)⊗k
= Nk (ρsN :1)

⊗k
. (111)

We infer from (110) and (111) that

ρsN :k =
Nk(N − k)!

N !
(ρsN :1)

⊗k − (N − k)!

N !
β

where
β =

∑
(i1,...,ik)∈{1,...,N}k\INk

µi1 ⊗ · · · ⊗ µik

is a nonnegative Radon measure of total mass |β| = card({1, . . . , N}k\INk ) = Nk− (N−k)!
N ! . Besides,

we have

1 6
Nk(N − k)!

N !
=

Nk

N(N − 1) · · · (N − k + 1)
=

1∏k−1
i=1

(
1− i

N

) 6 e
k2

2N

where we have used the inequality

ln

k−1∏
i=1

(
1− i

N

)
= −

k−1∑
i=1

ln

(
1− i

N

)
> − 1

N

k−1∑
i=1

i = − (k − 1)k

N
> − k2

2N
.

Therefore, defining εk by (106) and

βk =
1

εk

(N − k)!

N !
β ∈ P(IRdk),
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we obtain ρsN :k = (1+εk) (ρsN :1)
⊗k−εkβk, which is (105). Then, applying Lemma A.3 in Appendix

A.1.1, using that εk < 1 if ek
2/2N − 1 < 1, or equivalently, k2 < 2N ln(2), we obtain that

W [q]
p ((ρsN :1)⊗k, ρsN :k) 6

ε
1/p
k

1− ε1/p
k

W [q]
p ((ρsN :1)⊗k, βk) if k2 < 2 ln(2)N. (112)

The estimate (108) is now inferred from (112) as follows: if k2 6 2N ln(1+ 1
2p ) then ek

2/2N−1 6 1
2p ,

hence ε
1/p
k 6 1

2 (using (106)) and thus
ε
1/p
k

1−ε1/pk

6 2ε
1/p
k , and it follows from (112) that

W [q]
p ((ρsN :1)⊗k, ρsN :k) 6 2

(
e
k2

2N − 1
)1/p

W [q]
p ((ρsN :1)⊗k, βk).

Using the inequality ex−1
x 6 1/2p ln(1 + 1

2p ) 6 2 for every x ∈ (0, ln(1 + 1
2p )], we obtain (108).

Let us finally establish (109). Using (111) and (107), which express (ρsN :1)⊗k and βk as linear
combinations, applying two times Lemma A.2 in Appendix A.1.1 and then Lemma A.7 in Appendix
A.1.5, we infer that

W [q]
p ((ρsN :1)⊗k, βk) 6 max

(
k∑
i=1

dE(yi, y
′
i)
q

)1/q

6 k1/q diamE

(
N⋃
i=1

supp(µi)

)

where, above, the maximum has been taken over all possible yi, y
′
i ∈ supp(µi), for i ∈ {1, . . . , k}.

Then, (109) follows from (108) combined with the above inequality.

A.3 Density of empirical measures in the set of probability measures

Let E be a Polish space, endowed with a distance dE . For every N ∈ IN∗, let Y N = (yN1 , . . . , y
N
N ) ∈

EN , and define the empirical measure µeY N ∈ P(E) by

µeY N =
1

N

N∑
i=1

δyNi .

The points yNi are not required to be distinct, so that the empirical measure µeY N can equivalently
be defined as a convex combination with rational coefficients of Dirac masses. Note that∫

E

f dµeY N =
1

N

N∑
i=1

f(yNi ) ∀f ∈ C 0(E).

A sequence (µj)j∈IN∗ of P(E) converges weakly to µ ∈ P(E) if
∫
E
f dµj →

∫
E
f dµ as j → +∞

for any f ∈ Cb(E) (narrow convergence), where Cb(E) is the Banach space of bounded functions
on E.

Lemma A.15. When E is compact, the set {µeY N | N ∈ IN∗, Y N ∈ EN} is weakly dense in
P(E). In other words, any probability measure on E is the weak limit of a sequence of empirical
measures.

Proof. This is a well known consequence of the Krein-Milman theorem (see, e.g., [52, Lemma 7]).
Let us anyway recall a proof. The set P(E) is convex and weak star compact, and its extreme
points are Dirac masses. The Krein-Milman theorem implies that any µ ∈ P(E) is the limit of
a finite convex combination

∑
i λiδyi of Dirac masses. By density of rationals, without loss of

generality we can moreover assume that λi ∈ Q. The statement follows.
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Recall that the Wasserstein distance Wp metrizes the weak convergence in Pp(E) (which also
entails the convergence of first moments), for any p ∈ [1,+∞). We have then the following variant
of the above lemma (see [78, Theorem 6.18]).

Lemma A.16. The set {µeY N | N ∈ IN∗, Y N ∈ EN} is dense in Pp(E) for the Wasserstein
distance Wp. In other words, any µ ∈ Pp(E) is the limit of a sequence of empirical measures for
the Wasserstein distance Wp.

Proof. It suffices to consider R > 0 sufficiently large such that
∫
E\B(y0,R)

dE(y0, y)p dµ(y) < ε, for

ε > 0 small enough, so that the argument can be performed in the compact set B(y0, R), and the
statement readily follows (see also [73, Chap. 5]).

There exist a number of results in the literature quantifying the convergence of empirical
measures µeY N towards µ ∈ P(E) and providing rates of convergence, most in a probabilistic
context, like [31] where Y consists of N random variables having the same distribution as µ. In
the result hereafter, Y is deterministic and the rate of convergence is the one obtained by Riemann
integration.

Lemma A.17. Let µ ∈ Pc(E) and let N ∈ IN∗. We assume that there exists a family of tagged
partitions of supp(µ) associated with µ (see (27)), i.e., for every N ∈ IN∗ there exists a partition
of supp(µ) = ∪Ni=1F

N
i such that all subsets FNi are µ-measurable, pairwise disjoint, µ(FNi ) = 1

N ,

and satisfy diamE(FNi ) 6 CE
Nr for some CE > 0 not depending on N , and a N -tuple Y N =

(yN1 , . . . , y
N
N ) ∈ EN such that yNi ∈ FNi for every i ∈ {1, . . . , N}. Then

W1(µeY N , µ) 6
CE
Nr

and thus also, using (23), Wp(µ
e
Y N , µ) 6 diamE(supp(µ))1−1/p C

1/p
E

Nr/p
, for any p ∈ [1,+∞).

Note that, when E is a finite-dimensional manifold, r = 1/ dim(E).
When one wants that the assumption on the tagged partition be satisfied for any N ∈ IN∗, this

requires that the mass of µ be quite well uniformly distributed; for instance it is satisfied if µ is
absolutely continuous with respect to a Lebesgue measure with a density that is bounded above
and below on supp(µ). This result is quite obvious and has nothing to see with much deeper and
general results like those of [31].

Proof. For every i ∈ {1, . . . , N}, we have
∫
Fi
f(yNi ) dµ(y) = f(yNi )µ(FNi ) = 1

N f(yNi ) because

µ(FNi ) = 1
N and thus, for every f ∈ Lip(E) such that Lip(f) 6 1,

∣∣∣∣∫
E

f d(µ− µeY N )

∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫
FNi

f(y) dµ(y)− 1

N

N∑
i=1

f(yNi )

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫
FNi

(f(y)− f(yNi )) dµ(y)

∣∣∣∣∣
6

N∑
i=1

∫
FNi

|f(y)− f(yNi )| dµ(y) 6
N∑
i=1

∫
FNi

dE(y, yNi ) dµ(y) 6
N∑
i=1

µ(FNi ) diamE(FNi ) 6
CE
Nr

and the conclusion follows by taking the supremum over all f .

A.4 Convergence of empirical and semi-empirical measures

Let (Ω,dΩ) be a complete metric space and let ν ∈ Pc(Ω). We assume that there exists a family
of tagged partitions (AN , XN ) of supp(ν) associated with ν satisfying (27) (see Section 1.5), with
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AN = (ΩN1 , . . . ,Ω
N
N ) and XN = (xN1 , . . . , x

N
N ). We define the empirical measure νeXN ∈ P(Ω) by

νeXN =
1

N

N∑
i=1

δxNi .

Note that, when Ω is a n-dimensional manifold, one has r = 1/n in (27).

A.4.1 Convergence of empirical measures on Ω

Lemma A.18. • Let f be a bounded and ν-almost everywhere continuous (i.e., ν-Riemann
integrable) function on Ω, of compact support. Then∫

Ω

f d(ν − νeXN ) =

∫
Ω

f dν − 1

N

N∑
i=1

f(xNi ) = o(1) (113)

as N → +∞. As a consequence, νeXN converges weakly to ν as N → +∞; equivalently,
Wp

(
νeXN , ν

)
= o(1) as N → +∞.

• Given any α ∈ (0, 1] and any N ∈ IN∗, we have∣∣∣∣∣
∫

Ω

f dν − 1

N

N∑
i=1

f(xNi )

∣∣∣∣∣ 6 CαΩ
Nrα

Holα(f) (114)

for every f ∈ C 0,α
c (Ω). As a consequence of (114) for α = 1, we have

W1 (νeXN , ν) 6
CΩ

Nr
(115)

and thus also, using (23), Wp(ν
e
XN , ν) 6 diamΩ(supp(ν))1−1/p C

1/p
Ω

Nr/p
, for any p ∈ [1,+∞).

Proof. In the first item, (113) follows from the theorem of convergence of Riemann sums, as already
recalled in (29). Interpreted in terms of the empirical measure νeXN , this means that νeXN converges
weakly to ν as N → +∞. In accordance with the Portmanteau theorem (see, e.g., [9, Chapter 1,
Section 2, Theorem 2.1]), since Wp metrizes the weak convergence, we have Wp

(
νeXN , ν

)
= o(1) as

N → +∞ since supp(ν) is compact.

Writing
∫

Ω
f dν =

∑N
i=1

∫
ΩNi

f dν and using that ν(ΩNi ) = 1
N (thus 1

N f(xNi ) =
∫

ΩNi
f(xNi ) dν(x))

and that diamΩ(ΩNi ) 6 CΩ

Nr (see (27)), we have∣∣∣∣∣
∫

Ω

f dν − 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫
ΩNi

(f(x)− f(xNi )) dν(x)

∣∣∣∣∣ 6
N∑
i=1

∫
ΩNi

|f(x)− f(xNi )| dν(x)

6 Holα(f)

N∑
i=1

∫
ΩNi

dΩ(x, xNi )α dν(x) 6 Holα(f)

N∑
i=1

ν(ΩNi ) diamΩ(ΩNi )α 6
CαΩ
Nrα

Holα(f)

which gives (114). Taking α = 1, (115) follows by the definition (24) of W1.
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A.4.2 Convergence of semi-empirical measures

Let d ∈ IN∗. Let µ ∈ Pc(Ω × IRd), disintegrated as µ =
∫

Ω
µx dν(x) with respect to its marginal

ν = π∗µ on Ω. We define the semi-empirical measure µseXN ∈ P(Ω× IRd) by

µseXN =
1

N

N∑
i=1

δxNi ⊗ µxNi =

∫
Ω

µx dν
e
XN (x).

Its marginal on Ω is the empirical measure νeXN . In other words, the disintegration of µseXN
with respect to νeXN is the family of probability measures given by µxNi when x = xNi for some

i ∈ {1, . . . , N} and 0 otherwise.

Lemma A.19.

• We assume that x 7→ µx is ν-almost everywhere continuous for the Wasserstein distance W1

(equivalently, Wp). Let f be a bounded and µ-almost everywhere continuous (i.e., µ-Riemann

integrable) function on Ω× IRd, of compact support, Lipschitz with respect to ξ ∈ IRd with a
Lipschitz constant that is uniform with respect to x ∈ Ω. Then∫

Ω×IRd
f d(µ− µseXN ) = o(1) (116)

as N → +∞. As a consequence, µseXN converges weakly to µ; equivalently, Wp(µ
se
XN , µ) = o(1)

as N → +∞.

• We assume that x 7→ µx is Lipschitz for the Wasserstein distance W1, i.e., that there exists
L > 0 such that W1(µx, µy) 6 LdΩ(x, y) for ν-almost all x, y ∈ Ω. Then, given any N ∈ IN∗,∣∣∣∣∫

Ω×IRd
f d(µ− µseXN )

∣∣∣∣ 6 (L+ 1)CΩ

Nr
Lip(f) (117)

for every f ∈ C 0
0 (Ω× IRd) ∩ Lip(Ω× IRd). As a consequence,

W1 (µseXN , µ) 6
(L+ 1)CΩ

Nr
, (118)

and thus also, using (23), Wp(µ
se
XN , µ) 6 diamΩ×IRd(supp(µ))1−1/p ((L+1)CΩ)1/p

Nr/p
, for any p ∈

[1,+∞).

Proof. Let f : Ω×IRd → IR be a bounded and µ-almost everywhere continuous function, of compact
support, Lipschitz with respect to ξ ∈ IRd. The function F defined by F (x) =

∫
IRd
f(x, ξ) dµx(ξ)

is bounded on Ω, and

|F (x)− F (x′)| 6
∫

IRd
|f(x, ξ)− f(x′, ξ)| dµx(ξ) +

∣∣∣∣∫
IRd
f(x′, ξ) d(µx − µx′)(ξ)

∣∣∣∣
6
∫

IRd
|f(x, ξ)− f(x′, ξ)| dµx(ξ) +W1(µx, µx′) Lip(f(x′, ·))

(119)

for all x, x′ ∈ Ω. Now:

• First, if moreover x′ 7→ Lip(f(x′, ·)) is bounded on Ω and if x 7→ µx is ν-almost everywhere
continuous for the Wasserstein distance W1, then we infer from (119) that F is ν-almost
everywhere continuous. Therefore∫

Ω×IRd
f d(µ− µseXN ) =

∫
Ω

F d(ν − νeXN ) =

∫
Ω

F dν − 1

N

N∑
i=1

F (xNi ) = o(1)

as N → +∞ by convergence of Riemann sums (f and thus F being fixed), which gives (116).
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• Second, if f ∈ Lip(Ω × IRd) and if x 7→ µx is L-Lipschitz for the Wasserstein distance W1

then we infer from (119) that

|F (x)− F (x′)| 6 Lip(f) dΩ(x, x′) +W1(µx, µx′) Lip(f) 6 Lip(f)(1 + L) dΩ(x, x′)

and thus, using Lemma A.18, that
∫

Ω
F d(ν − νeXN ) 6 CΩ

Nr Lip(F ), whence (117) and (118).

Remark A.3. In the first item of Lemma A.19, the boundedness assumption on f can be slightly
weakened to: x 7→ f(x, 0) bounded and µ ∈ P1(Ω × IRd). Indeed, writing |f(x, ξ)| 6 |f(x, 0)| +
Lip(f(x, ·))|ξ|, we infer that F is bounded. The rest of the proof is the same.

A.5 Discrepancy between empirical and ν-monokinetic measures

Recall that:

• given any XN = (xN1 , . . . , x
N
N ) ∈ ΩN and any ΞN = (ξN1 , . . . , ξ

N
N ) ∈ IRdN , the empirical

measure µe(XN ,ΞN ) on Ω× IRd is defined by (58);

• given any ν ∈ P(Ω) and any measurable function y : Ω → IRd, the ν-monokinetic measure
µνy on Ω× IRd is defined by (78).

Lemma A.20. Let ν ∈ P(Ω) and let (AN , XN )N∈IN∗ be a family of tagged partitions associated
with ν (see (27)), with AN = (ΩN1 , . . . ,Ω

N
N ) and XN = (xN1 , . . . , x

N
N ).

(i) Let y ∈ Lip(Ω, IRd). For every N ∈ IN∗, taking ΞN = (ξN1 , . . . , ξ
N
N ) with ξNi = y(xNi ) for

every i ∈ {1, . . . , N}, we have∣∣∣〈µνy − µe(XN ,ΞN ), f
〉∣∣∣ 6 CΩ

Nr
Lip (x 7→ f(x, y(x))) ∀f ∈ Lipc(Ω× IRd).

(ii) For every N ∈ IN∗, let ΞN = (ξN1 , . . . , ξ
N
N ) ∈ IRd. Defining the piecewise continuous function

yN (x) =

N∑
i=1

ξNi 1ΩNi
(x) ∀x ∈ Ω,

so that yN (xNi ) = ξNi for every i ∈ {1, . . . , N}, we have∣∣∣〈µνyN − µe(XN ,ΞN ), f
〉∣∣∣ 6 CΩ

Nr
max

16i6N
Lip(f(·, ξNi )) ∀f ∈ Lipc(Ω× IRd).

Proof. Let us prove (i). We have
〈
µνy , f

〉
=
∫

Ω
f(x, y(x)) dν(x) =

∑N
i=1

∫
ΩNi

f(x, y(x)) dν(x) and

(using that ν(ΩNi ) = 1
N )〈

µe(XN ,ΞN ), f
〉

=
1

N

N∑
i=1

f(xNi , y(xNi )) =

N∑
i=1

∫
ΩNi

f(xNi , y(xNi )) dν(x)

hence ∣∣∣〈µνy − µe(XN ,ΞN ), f
〉∣∣∣ 6 N∑

i=1

∫
ΩNi

∣∣f(x, y(x))− f(xNi , y(xNi ))
∣∣ dν(x)

6 Lip (x 7→ f(x, y(x)))

N∑
i=1

∫
ΩNi

dΩ(x, xNi ) dν(x)
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and (i) follows because
∫

ΩNi
dΩ(x, xNi ) dν(x) 6 ν(ΩNi ) diamΩ(ΩNi ) 6 CΩ

N1+r (using (27)).

The estimate of (ii) is proved similarly: we have
〈
µνyN , f

〉
=
∑N
i=1

∫
ΩNi

f(x, ξNi ) dν(x) and thus

∣∣∣〈µνyN − µe(XN ,ΞN ), f
〉∣∣∣ 6 N∑

i=1

∫
ΩNi

∣∣f(x, ξNi )− f(xNi , ξ
N
i )
∣∣ dν(x)

6
N∑
i=1

Lip(f(·, ξNi ))

∫
ΩNi

dΩ(x, xNi ) dν(x)

and (ii) follows.

Remark A.4. Actually, we see from the proof that, in the estimates stated in the above lemma, it
suffices that all functions of which we consider the Lipschitz constant, be Lipschitz on each subset
ΩNi . In particular, they may be discontinuous at the boundary of ΩNi .

With that remark, we recover (ii) as a consequence of (i).

A.6 Mean field and variance

Let µ ∈ Pc(Ω× IRd) be arbitrary. Recall that the mean field X [µ](t, x, ξ) is defined by (44), which
is the expectation of G(t, x, ·, ξ, ·) for the measure µ, performed with respect to (x′, ξ′) ∈ Ω× IRd:

X [µ](t, x, ξ) =

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµ(x′, ξ′) = EµG(t, x, ·, ξ, ·)

Given any t ∈ IR, any x, x′ ∈ Ω and any ξ, ξ′ ∈ IRd, we set

et[µ](x, x′, ξ, ξ′) = G(t, x, x′, ξ, ξ′)−X [µ](t, x, ξ).

Of course, we have Eµet[µ](x, ·, ξ, ·) = 0 and thus also

Eµ⊗µet[µ] = 0.

This naturally leads to consider the variance of et[µ] with respect to µ⊗ µ:

Var(et[µ]) = Eµ⊗µ‖et‖2 =

∫
Ω2×IR2d

‖G(t, x, x′, ξ, ξ′)−X [µ](t, x, ξ)‖2 dµ(x′, ξ′) dµ(x, ξ).

Note that
Var(et[µ]) 6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0 . (120)

LetN ∈ IN∗ be fixed. Recall that the particle (time-dependent) vector field Y N = (Y N1 , . . . , Y NN )

is defined by (10) with Y Ni defined by (11), i.e., Y Ni (t,X,Ξ) = 1
N

∑N
j=1G(t, xi, xj , ξi, ξj), where

we use the notations X = (x1, . . . , xN ) ∈ ΩN and Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N .

Lemma A.21. We assume that the norm ‖ · ‖ on IRd is induced by a scalar product 〈 , 〉 on IRd.
For every i ∈ {1, . . . , N} we have∫

ΩN×IRdN
‖Y Ni (t,X,Ξ)−X [µ](t, xi, ξi)‖2 dµ⊗N (X,Ξ) =

1

N
Var(et[µ]) 6

4

N
‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0 .
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Proof of Lemma A.21. By definition of et, we have, for every i ∈ {1, . . . , N},

Y Ni (τ,X,Ξ)−X [µ](t, xi, ξi) =
1

N

N∑
j=1

et[µ](xi, xj , ξi, ξj).

Therefore,∫
ΩN×IRdN

‖Y Ni (τ,X,Ξ)−X [µ](t, xi, ξi)‖2 dµ⊗N (X,Ξ)

=
1

N2

∫
ΩN×IRdN

N∑
j=1

‖et[µ](xi, xj , ξi, ξj)‖2 dµ⊗N (X,Ξ)

+
1

N2

∫
ΩN×IRdN

N∑
j,k=1
j 6=k

〈et[µ](xi, xj , ξi, ξj), et[µ](xi, xk, ξi, ξk)〉 dµ⊗N (X,Ξ).

(121)

The first term at the right-hand side of (121) is equal to

1

N

∫
Ω2×IR2d

‖et[µ](x, x′, ξ, ξ′)‖2 dµ(x′, ξ′) dµ(x, ξ) =
1

N
Var(et[µ]). (122)

The second term at the right-hand side of (121) is equal to

N2 −N
N2

∫
Ω3×IR3d

〈et[µ](x, x′, ξ, ξ′), et[µ](x, x′′, ξ, ξ′′)〉 dµ(x, ξ) dµ(x′, ξ′) dµ(x′′, ξ′′)

=
N2 −N
N2

∫
Ω×IRd

∥∥∥∥∫
Ω×IRd

et[µ](x, x′, ξ, ξ′) dµ(x′, ξ′)

∥∥∥∥2

dµ(x, ξ) = 0 (123)

because the expectation of et[µ](xi, ·, ξi, ·) is equal to 0. The lemma is proved, using (120).

Although Lemma A.21 is not used as such in this article, we believe that it has its own interest.
Actually, in the proof of Theorem 4.2 (in Appendix B.5), we will need the following result, in the
spirit of Lemma A.21 but more technical.

Lemma A.22. As in Lemma A.21, we assume that the norm ‖ · ‖ on IRd is induced by a scalar
product 〈 , 〉 on IRd. Let X̄ = (x̄1, . . . , x̄N ) ∈ ΩN be arbitrary, and let

ρ = δx̄1 ⊗ · · · ⊗ δx̄N ⊗ µx̄1 ⊗ · · · ⊗ µx̄N .

Then

M(t) =

(∫
ΩN×IRdN

( N∑
i=1

‖Y Ni (t,X,Ξ)−X [µ](t, xi, ξi)‖
)2

dρ(X,Ξ)

)1/2

6 2‖G(t, ·, ·, ·, ·)|supp(µ)2‖C 0,1

(√
N
√

1 + 70 diamΩ×IRd(supp(µ)) +N
√

5W1

(
µ, µse

X̄

))
(124)

where µse
X̄

= 1
N

∑N
i=1 δx̄i ⊗ µx̄i = ρsN :1 (semi-empirical measure).
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Proof. As a first remark, we note that, since the function inside the integral at the left-hand side
of the inequality (124) is symmetric, we can replace ρ by the symmetrization ρs in the integral
(indeed, when F : ΩN × IRdN → IR is symmetric, we have

∫
F dρ =

∫
F dρs). As a second remark,

since M(t) is defined as the L2 norm of a sum, we infer from the triangular inequality that

M(t) 6
N∑
i=1

(∫
ΩN×IRdN

‖Y Ni (t,X,Ξ)−X [µ](t, xi, ξi)‖2 dρs(X,Ξ)

)1/2

6 N max
16i6N

√
Ii(t) with Ii(t) =

∫
ΩN×IRdN

‖Y Ni (t,X,Ξ)−X [µ](t, xi, ξi)‖2 dρs(X,Ξ)

Note that it was important to symmetrize the measure ρ before applying the triangular inequality.
Let us now estimate Ii(t), for any fixed i ∈ {1, . . . , N}. We cannot apply directly Lemma A.21
because in the integral Ii(t) the integration is performed with respect to ρs, and not with respect to
µ⊗N . However, following the proof of Lemma A.21, we expand Ii(t) similarly as in (121); replacing
µ⊗N by ρs and thus the second-order marginal ρsN :2 and third-order marginal ρsN :3 appear. Note
that, by Lemma A.12 in Appendix A.2, since ρs is symmetric all its second-order (resp., third-order)
marginals on the various copies of (Ω× IRd)2 (resp., of (Ω× IRd)2) are equal. We obtain

Ii(t) =
1

N

∫
Ω2×IR2d

‖et[µ]‖2 dρsN :2 +
N2 −N
N2

∫
Ω3×IR3d

Ft[µ] dρsN :3 (125)

with
Ft[µ](x, x′, x′′, ξ, ξ′, ξ′′) = 〈et[µ](x, x′, ξ, ξ′), et[µ](x, x′′, ξ, ξ′′)〉

To estimate the first term at the right-hand side of (125), we observe that (using the definition
(24) of the Wasserstein distance W1)∫

Ω2×IR2d

‖et[µ]‖2 d(ρsN :2 − µ⊗2) 6 Lip(‖et[µ]|supp(µ)2‖2)W
[1]
1 (ρsN :2, µ

⊗2)

6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0,1W
[1]
1 (ρsN :2, µ

⊗2)

(the choice of q = 1, above, has little importance; other choices would change the constant 4, see
Lemma A.1) and that, using (120) and (122),∫

Ω2×IR2d

‖et[µ]‖2 dµ⊗2 = Var(et[µ]) 6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0 6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0,1 .

To estimate the second term at the right-hand side of (125), similarly, we observe that∫
Ω3×IR3d

Ft[µ] d(ρsN :3 − µ⊗3) 6 Lip(Ft[µ]|supp(µ)2)W
[1]
1 (ρsN :3, µ

⊗3)

6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0,1W
[1]
1 (ρsN :3, µ

⊗3)

and that, as in (123), ∫
Ω3×IR3d

Ft[µ] dµ⊗3 = 0.

It follows that

Ii(t) 6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0,1

(
1

N
+W

[1]
1

(
ρsN :2, µ

⊗2
)

+W
[1]
1

(
ρsN :3, µ

⊗3
))

.
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Now, applying Lemma A.14 (Appendix A.2.3), we infer from (104) that ρsN :1 = 1
N

∑N
i=1 δx̄i⊗µx̄i =

µse
X̄

(semi-empirical measure) and from (109) (taking k = 2, 3) that

W
[1]
1

(
ρsN :2, (µ

se
X̄ )⊗2

)
+W

[1]
1

(
ρsN :3, (µ

se
X̄ )⊗3

)
6

70

N
diamΩ×IRd(supp(µ))

and thus, using the triangular inequality,∑
k=2,3

W
[1]
1

(
ρsN :k, µ

⊗k) 6 70

N
diamΩ×IRd(supp(µ)) +

∑
k=2,3

W
[1]
1

(
µ⊗k, (µseX̄ )⊗k

)
.

Applying Lemma A.6 in Appendix A.1.4, we have

W
[1]
1

(
µ⊗k, (µseX̄ )⊗k

)
6 kW1

(
µ, µseX̄

)
.

Finally,

Ii(t) 6 4‖G(t, ·, ·, ·, ·)|supp(µ)2‖2C 0,1

(
1

N
+

70

N
diamΩ×IRd(supp(µ)) + 5W1

(
µ, µseX̄

))
and the estimate (124) follows.

The results of that section can be compared with some considerations done in [36, 58, 59].

B Proofs

B.1 Proof of Theorem 2.2

We start by proving the second item of Theorem 2.2. Hence, we assume that G is locally α-Hölder
continuous with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any compact).

Lemma B.1. Let x, x′ ∈ Ω be arbitrary. We have

‖y(t, x)− y(t, x′)‖ 6 etLy(t)
(
‖y0(x)− y0(x′)‖+ dΩ(x, x′)α

)
∀t > 0. (126)

Proof of Lemma B.1. By definition, we have ∂ty(t, z) =
∫

Ω
G(t, z, x′′, y(t, z), y(t, x′′)) dν(x′′) for

every z ∈ Ω, hence

∂ty(t, x)−∂ty(t, x′) =

∫
Ω

G(t, x, x′′, y(t, x), y(t, x′′)) dν(x′′)−
∫

Ω

G(t, x′, x′′, y(t, x), y(t, x′′)) dν(x′′)

+

∫
Ω

G(t, x′, x′′, y(t, x), y(t, x′′)) dν(x′′)−
∫

Ω

G(t, x′, x′′, y(t, x′), y(t, x′′)) dν(x′′) (127)

and using the definition of Ly(t) we obtain

‖∂t(y(t, x)− y(t, x′))‖ 6 Ly(t) (dΩ(x, x′)α + ‖y(t, x)− y(t, x′)‖)

and (126) follows by integration (noting that τ 7→ Ly(τ) is nondecreasing).

Remark B.1. If G does not depend on (x, x′) then one can remove the term dΩ(x, x′)α in (126).
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By assumption, ‖y0(x) − y0(x′)‖ 6 Holα(y0)dΩ(x, x′)α for all x, x′ ∈ Ω, hence, using (126) in
Lemma B.1 we infer that y(t, ·) is α-Hölder continuous and (35) follows.

Let us establish (36). We set rNi (t) = y(t, xNi )− ξNi (t), for i = 1, . . . , N . By definition, we have

ṙNi (t) =
1

N

N∑
j=1

(
G(t, xNi , x

N
j , y(t, xNi ), y(t, xNj ))−G(t, xNi , x

N
j , ξ

N
i (t), ξNj (t))

)
+ εNi (t) (128)

where

εNi (t) =

∫
Ω

G(t, xNi , x
′, y(t, xNi ), y(t, x′)) dν(x′)− 1

N

N∑
j=1

G(t, xNi , x
N
j , y(t, xNi ), y(t, xNj )) (129)

with rNi (0) = 0, for every i ∈ {1, . . . , N}. On the one part, we have∥∥G(t, xNi , x
N
j , y(t, xNi ), y(t, xNj ))−G(t, xNi , x

N
j , ξ

N
i (t), ξNj (t))

∥∥ 6 LNy (t)(‖rNi (t)‖+ ‖rNj (t)‖) (130)

where LNy (t) is defined by (38). On the other part, using (114) in Lemma A.18 (see Appendix
A.4), we have

‖εNi (t)‖ 6 CαΩ
Nrα

Holα(x′ 7→ G(t, xNi , x
′, y(t, xNi ), y(t, x′))) (131)

and we claim that

Holα(x′ 7→ G(t, xNi , x
′, y(t, xNi ), y(t, x′))) 6 Ly(t)(1 + etLy(t)(Holα(y0) + 1)). (132)

Indeed, writing for short g(x′, y(t, x′)) = G(t, xNi , x
′, y(t, xNi ), y(t, x′)), we have

‖g(x′1, y(t, x′1))− g(x′2, y(t, x′2))‖
6 ‖g(x′1, y(t, x′1))− g(x′2, y(t, x′1))‖+ ‖g(x′2, y(t, x′1))− g(x′2, y(t, x′2))‖
6 Ly(t)dΩ(x′1, x

′
2)α + Ly(t)‖y(t, x′1)− y(t, x′2)‖

6 Ly(t)dΩ(x′1, x
′
2)α + Ly(t) Holα(y(t, ·))dΩ(x′1, x

′
2)α

and (132) follows by using (35). Finally, setting RN (t) = (rN1 (t), . . . , rNN (t)), noting that Ly(t) 6
LNy (t), we infer from (128), (130), (131) and (132) that

d

dt
‖RN (t)‖∞ 6 ‖ṘN (t)‖∞ 6 LNy (t)

(
2‖RN (t)‖∞ +

CαΩ
Nrα

(1 + etL
N
y (t)(Holα(y0) + 1))

)
and, noting that τ 7→ LNy (τ) (defined by (38)) is nondecreasing and by integration, we obtain (36).

Let us establish (37). For every x ∈ Ω there exists i ∈ {1, . . . , N} such that x ∈ ΩNi , and thus
dΩ(x, xNi ) 6 diamΩ(ΩNi ) 6 CΩ

Nr (by (27)). It follows from (35) that

‖y(t, x)− y(t, xNi )‖ 6 Holα(y(t, ·))dΩ(x, xNi )α 6
CαΩ
Nrα

etL
N
y (t) (Holα(y(0, ·)) + 1)

and, noting that yN (t, x) = ξNi (t), (37) follows by the triangular inequality, using (36).

Let us now prove the first item of Theorem 2.2. Starting as in the proof of Lemma B.1, by
continuity of G, we infer from (127) that, for any ε > 0, if x and x′ are sufficiently close then

‖∂t(y(t, x)− y(t, x′))‖ 6 Ly(t) (ε+ ‖y(t, x)− y(t, x′)‖)

69



and by integration we obtain

‖y(t, x)− y(t, x′)‖ 6 etLy(t)
(
‖y0(x)− y0(x′)‖+ ε

)
. (133)

By assumption, y0 is continuous ν-almost everywhere on Ω. It follows from (133) that, for every
t > 0, y(t, ·) is continuous ν-almost everywhere on Ω with the same continuity set as y0 (thus, not
depending on t).

Let us finally establish (34). By the Riemann integration theorem (see (28)), we have εNi (t) =
o(1) (where εNi (t) is defined by (129)) as N → +∞, uniformly with respect to t on every compact.
Besides, we still have the inequality (130), but with LNy (t) now defined by

LNy (t) = max
x,x′∈Ω
06τ6t

Lip(G(τ, x, x′, ·, ·)|SNy (τ)2 ,

i.e., like in (38) but without the first term involving Holα(G). With this substitution, we obtain

d

dt
‖RN (t)‖∞ 6 ‖ṘN (t)‖∞ 6 LNy (t)

(
2‖RN (t)‖∞ + o(1)

)
and integrating we get ‖RN (t)‖∞ 6 e2tLNy (t)o(1), which yields (34), noting that LNy (t) is uniformly
bounded with respect to t ∈ [0, T ] and to N ∈ IN∗ (as a consequence of Lemma 1.1). Then, (33)
follows by the triangular inequality, using the ν-almost everywhere continuity of y(t, ·).

B.2 Proof of Theorem 2.3

The proof is a slight adaptation of the proof of Theorem 2.2. We start by establishing (40). Hence,
we assume that G is locally α-Hölder continuous with respect to (x, x′, ξ, ξ′) (uniformly with respect
to t on any compact).

Lemma B.2. Let i ∈ {1, . . . , N} and x, x′ ∈ ΩNi be arbitrary. We have

‖yN (t, x)− yN (t, x′)‖ 6 etLyN (t)dΩ(x, x′)α (134)

where y0(·) = y(0, ·), where LyN (t) is defined as Ly(t) in Theorem 2.2 with y replaced by yN .

Proof. Following the proof of Lemma B.1, we arrive at

‖∂t(yN (t, x)− yN (t, x′))‖ 6 LyN (t) (dΩ(x, x′)α + ‖yN (t, x)− yN (t, x′)‖)

and (134) follows by integration, noting that yN (0, x)− yN (0, x′) = 0 if x, x′ ∈ ΩNi .

It follows from Lemma B.1 that yN (t, ·) is α-Hölder continuous in each Ωi, with Hölder constant
etLyN (t).

We set rN (t, x) = yN (t, x)− yN (t, x) for every x ∈ Ω. By definition, if x ∈ ΩNi then yN (t, x) =
ξNi (t) and thus

∂tr
N (t, x) =

1

N

N∑
j=1

(
G(t, x, xNj , yN (t, x), yN (t, xNj ))−G(t, xNi , x

N
j , ξ

N
i (t), ξNj (t))

)
+ εN (t, x)

where

εN (t, x) =

∫
Ω

G(t, x, x′, yN (t, x), yN (t, x′)) dν(x′)− 1

N

N∑
j=1

G(t, x, xNj , yN (t, x), yN (t, xNj ))

70



with rN (0, x) = 0. We have on the one part∥∥G(t, x, xNj , yN (t, x), yN (t, xNj ))−G(t, xNi , x
N
j , ξ

N
i (t), ξNj (t))

∥∥
6 LNyN (t)(dΩ(x, xNi )α + ‖rN (t, x)‖+ ‖rN (t, xNj )‖) ∀x ∈ ΩNi

and on the other part, proceeding like in the proof of Theorem 2.2 (see Appendix B.1),

‖εN (t, x)‖ 6 CαΩ
Nrα

LNyN (t)(1 + etL
N
yN

(t)) ∀x ∈ ΩNi .

Using that dΩ(x, xNi ) 6 diamΩ(ΩNi ) 6 CΩ

Nr (see (27)), we finally obtain

d

dt
‖rN (t, ·)‖L∞(Ω) 6 ‖∂trN (t, ·)‖L∞(Ω) 6 LNyN (t)

(
2‖rN (t, ·)‖L∞(Ω) +

CαΩ
Nrα

(2 + etL
N
yN

(t))

)
and by integration, noting that τ 7→ LNyN (τ) is nondecreasing, (40) follows.

Finally, (39) is established as in the proof of Theorem 2.2.

B.3 Proof of Theorem 3.1

Let T > 0 be arbitrary. Let F be either equal to Ω × IRd, or a compact subset of Ω × IRd that is
the closure of an open set. Let C0(F ) be the Banach space of continuous functions on F vanishing
at infinity (when F is compact we have C0(F ) = C 0(F )), and letM1(F ) = C 0(F )′ be the Banach
space of Radon measures on F , endowed with the total variation norm ‖ ‖TV (which is the dual
norm). We have Pc(F ) ⊂M1(F ) and C 0([0, T ],Pc(F )) ⊂ L∞([0, T ],M1(F )).

The Banach space L∞([0, T ],M1(F )) is endowed with its strong topology, induced by the L∞

norm in time of the total variation in space, but can also be endowed with its weak star topology,
as follows. Recall the general fact of Bochner integral theory that L1([0, T ], E)′ = L∞([0, T ], E′)
(isometric isomorphism) for any Banach space E such that E′ is separable, where the prime is the
topological dual. Applying this fact to the Banach space E = C 0(F ), observing that E′ =M1(F ) is
separable in weak star topology (because the set of rational convex combinations of Dirac measures
over points with rational coordinates is dense in it), the Banach space L∞([0, T ],M1(F )) coincides
with L1([0, T ],C 0(F ))′, i.e., with the dual of a Banach space, and thus is endowed with the
corresponding weak star topology.

We have the following preliminary lemma.

Lemma B.3. Let K be a compact subset of Ω × IRd, let µ0 ∈ Pc(K) and let T > 0 be arbitrary.
Assume that there exists a sequence of measures µk ∈ C 0([0, T ],Pc(K)) solutions of the Vlasov
equation ∂tµ

k + LX [µk]µ
k = 0 in the sense (47), such that:

• µk(0) converges weakly to µ0 in Pc(K),

• µk converges to µ ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star topology,

as k → +∞. Then µ ∈ C 0([0, T ],Pc(K)) and t 7→ µ(t) is Lipschitz continuous in Wp distance
(for any p ∈ [1,+∞)) and is a solution of the Vlasov equation ∂tµ + LX [µ]µ = 0 (in the sense

(47)) such that µ(0) = µ0. Moreover, µk(t) converges weakly to µ(t) as k → +∞ (equivalently,
Wp(µ

k(t), µ(t))→ 0), uniformly with respect to t ∈ [0, T ].

Proof. For every k ∈ IN∗, since µk ∈ C 0([0, T ],Pc(K)) is solution of the Vlasov equation in
the sense (47) and thus in the distributional sense, we have 〈∂tµk + LX [µk]µ

k, f〉 = 0 for any
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f ∈ C∞([0, T ]×K) and thus, integrating by parts,∫
K

f(0, x, ξ) dµk0(x, ξ) +

∫ T

0

∫
K

∂tf(t, x, ξ) dµk(t, x, ξ)

+

∫ T

0

∫
K

〈∇ξf(t, x, ξ), G(τ, x, x′, ξ, ξ′)〉 dµk(t, x′, ξ′) dµk(t, x, ξ) dτ = 0.

Passing to the limit, we obtain the same equation with µk replaced by µ and µk0 replaced by µ0,
for any f ∈ C∞([0, T ] ×K). Hence µ is solution of the Vlasov equation ∂tµ + LX [µ]µ = 0 in the
distributional sense, with µ(0) = µ0.

Let us prove that µ ∈ C 0([0, T ],Pc(Ω × IRd)) and that µ is a solution of the Vlasov equation
in the sense (47) and that µk(t) converges weakly to µ(t) for every t ∈ [0, T ].

By assumption, supp(µk) ⊂ [0, T ] × K for every k ∈ IN∗, hence, by the Prokhorov theorem,
a subsequence of µk converges weakly (i.e., in (C 0([0, T ] × K))′) to some measure, which must
then be equal to µ. Then supp(µ) is contained in the Kuratowski liminf of supp(µk) (see, e.g.,
[3, Proposition 5.1.8]), i.e., for every (t, x, ξ) ∈ supp(µ) there exists a sequence of (tk, xk, ξk) ∈
supp(µk) such that (tk, xk, ξk)→ (t, x, ξ) as k → +∞. We infer that supp(µ) ⊂ [0, T ]×K. Since
µ ∈ L∞([0, T ],M1(Ω× IRd)), we must have supp(µ(t)) ⊂ K for almost every t ∈ [0, T ].

For every k ∈ IN∗, we consider on [0, T ] × K the time-dependent vector field vk(t, x, ξ) =
X [µkt ](t, x, ξ), which is continuous and Lipschitz with respect to ξ (thanks to (G)). Since supp(µk) ⊂
[0, T ] ×K, we have ‖vk‖C 0([0,T ]×K) 6 C for some C > 0 not depending on k. Let (Φvk(t))t∈[0,T ]

be the flow on [0, T ] × K generated by vk. Since µk is a solution of the transport equation
∂tµ

k + Lvkµ
k = 0, by the usual existence and uniqueness theorem for linear transport equations

(see, e.g., [77, Theorem 5.34]), we have µk(t) = Φvk(t)∗µ
k
0 for every t ∈ [0, T ]. This means,

denoting by νk = π∗µ
k(t) the (constant in time) marginal of µk(t) on Ω and disintegrating

µkt = µk(t) =
∫

Ω
µkt,x dν

k(x), that µkt,x = Φvk(t, x, ·)∗µk0,x for νk-almost every x ∈ π(K), for

every t ∈ [0, T ]. It follows from Lemma A.9 of Appendix A.1.6 that Wp(µ
k(t1), µk(t2)) 6 C|t1− t2|

for all t1, t2 ∈ [0, T ], i.e., t 7→ µk(t) is Lipschitz continuous on [0, T ] in Wp distance, uniformly with
respect to k. Since µk converges to µ ∈ L∞([0, T ],M1(K)) for the weak star topology, it follows
from the Ascoli theorem that µk(t) converges weakly to µ(t) inM1(K) = C 0(K)′, uniformly with
respect to t ∈ [0, T ], and thus that µ ∈ C 0([0, T ],P1

c (K)) and that t 7→ µ(t) is Lipschitz continuous
in Wp distance. Lemma B.3 is proved.

In view of establishing Item (A), let us first prove the existence of a solution of the Vlasov
equation. Given µ0 ∈ Pc(Ω × IRd), we consider a sequence of empirical measures µe

(XN ,ΞN0 )
=

1
N

∑N
i=1 δxNi ⊗ δξN0,i converging weakly to µ0 as N → +∞. Setting XN = (xN1 , . . . , x

N
N ) ∈ ΩN and

ΞN0 = (ξN1 , . . . , ξ
N
N ) ∈ (IRd)N , let t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) be the unique solution of the

particle system (9) with parameter XN such that ΞN (0) = ΞN0 . It is well defined on [0, T ] for
any T ∈ (0, Tmax(supp(µ0))) thanks to Assumption (G) and Lemma 1.1. Using the first part of
Proposition 3.1, which does not use anything from Theorem 3.1 (see its proof), t 7→ µe(XN ,ΞN (t)) =
1
N

∑N
i=1 δxNi ⊗ δξNi (t) is a solution of the Vlasov equation (45) in the sense (47).

Without loss of generality, we can assume that (XN ,ΞN0 ) ∈ (supp(µ0))N for every N ∈ IN∗,
where we recall that supp(µ0) is compact. Since µe(XN ,ΞN (t)) is supported on the corresponding

solutions of the particle system, it follows from Lemma 1.1 that there exists a compact subset
K ⊂ Ω× IRd such that supp(µe(XN ,ΞN (t))) ⊂ K for every t ∈ [0, T ] and for every N ∈ IN∗, i.e., the

measures µe(XN ,ΞN (·)) are equi-compactly supported on [0, T ], uniformly with respect to N .

Besides, since µe(XN ,ΞN (t)) is a probability measure, we have ‖µe(XN ,ΞN (t))‖TV = 1 < +∞ for

every t ∈ [0, T ], and thus the sequence (µe(XN ,ΞN (·)))N∈IN∗ is bounded in L∞([0, T ],M1(Ω × IRd))
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for the strong topology, i.e., in (L1([0, T ],C0(Ω× IRd)))′ for the strong (dual norm) topology. By
the Banach-Alaoglu theorem, there exists a subsequence of (µe(XN ,ΞN (·)))N∈IN∗ converging to some

µ ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star topology.
Therefore, a subsequence of the sequence of measures µe(XN ,ΞN (·)) ∈ C 0

comp([0, T ],Pc(K)) sat-

isfies all assumptions of Lemma B.3. It follows from that lemma that µ ∈ C 0([0, T ],Pc(K)) and
that µ is a solution on [0, T ] of the Vlasov equation ∂tµ+LX [µ]µ = 0 (in the sense (47)) such that
µ(0) = µ0, and is Lipschitz continuous with respect to t in Wp distance.

At this step, we have obtained the existence of solutions in C 0
comp([0, Tmax(supp(µ0))),Pc(Ω×

IRd)) (not yet uniqueness).

Remark B.2. In [65, 66, 67, 68], the proof of the existence is done by constructing a sequence
of piecewise constant measures converging to a solution, under the stronger assumption that G be
globally Lipschitz continuous. The proof given above relies on approximation by empirical measures
and propagation of them, in the spirit of [37] (see also [61] and [75, Part I, Theorem 5.1]), which
is more appropriate to exploit Lemma 1.1. For the Cucker–Smale model, the proof done in [16]
relies on a fixed point argument in the metric space of solutions, by adequately estimating the
propagation of supports.

Remark B.3. Before going ahead, let us observe that, when G is locally Lipschitz with respect to
all variables (x, x′, ξ, ξ′), we have, for all µ1, µ2 ∈ Pc(Ω×IRd) and for every (t, x, ξ) ∈ [0, T ]×Ω×IRd,

∥∥X [µ1](t, x, ξ)−X [µ2](t, x, ξ)
∥∥ =

∥∥∥∥∫
Ω×IRd

G(t, x, x′, ξ, ξ′) d(µ1(x′, ξ′)− µ2(x′, ξ′))

∥∥∥∥
6 Lip(G(t, x, ·, ξ, ·)|S)W1(µ1, µ2) 6 Lip(G(t, x, ·, ξ, ·)|S)Wp(µ

1, µ2) (135)

where S = supp(µ1) ∪ supp(µ2) (compact set). We have used that W1 6Wp.
In the case (A), there is however a weaker assumption: under Assumption (G), G is locally

Lipschitz only with respect to (ξ, ξ′) and thus the classical Wasserstein distance W1 cannot be
used as above. The main difference then comes from the following observation: given any µ1, µ2 ∈
Pc(Ω× IRd) having the same marginal ν ∈ Pc(Ω) on Ω, we have, by disintegration,

X [µ1](t, x, ξ)−X [µ2](t, x, ξ) =

∫
Ω

∫
IRd
G(t, x, x′, ξ, ξ′) d(µ1

x′(ξ
′)− µ2

x′(ξ
′)) dν(x′)

and thus∥∥X [µ1](t, x, ξ)−X [µ2](t, x, ξ)
∥∥ 6 max

x′∈supp(ν)
Lip(G(t, x, x′, ξ, ·)|Sx′ ) L

1
νW1(µ1, µ2)

6 max
x′∈supp(ν)

Lip(G(t, x, x′, ξ, ·)|Sx′ ) L
1
νWp(µ

1, µ2)
(136)

where Sx′ = supp(µ1
x′)∪supp(µ2

x′) (compact) and L1
νWp(µ

1, µ2) =
∫

Ω
Wp(µ

1
x′ , µ

2
x′) dν(x′) is defined

by (26).

Let us now establish (51) in the item (A2) (which also entails uniqueness). Let µ1, µ2 ∈
C 0

comp([0, T ],Pc(Ω × IRd)) be two solutions of the Vlasov equation for some T > 0, having the

same (constant in time) marginal ν = π∗µ
i ∈ Pc(Ω) on Ω. Let K ⊂ Ω× IRd be a compact subset

containing supp(µi(t)) for i = 1, 2 and for every t ∈ [0, T ].
For i = 1, 2, we consider on [0, T ]×K the continuous time-dependent vector field vi(t, x, ξ) =

X [µit](t, x, ξ) (which is C 1 with respect to ξ), so that µi is a solution of the transport equation
∂tµ

i + Lviµ
i = 0. Since we are going to apply Lemma A.8 (in Appendix A.1.6) with t0 6= 0, for

every t0 ∈ [0, T ] we consider the flow (Φvi(t, t0))t∈[0,T ] on [0, T ]×K generated by vi, i.e., defined as
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the unique solution of ∂tΦvi(t, t0, x, ·) = vi(t, x, ·) ◦ Φvi(t, t0, x, ·) such that Φvi(t0, t0, x, ·) = idIRd

for ν-almost every x ∈ supp(ν). Then, we have µi(t) = Φvi(t, t0)∗µ
i(t0) for every t ∈ [0, T ]. This

means, disintegrating µit = µi(t) =
∫

Ω
µit,x dν(x), that µit,x = Φvi(t, t0, x, ·)∗µit0,x for ν-almost every

x ∈ supp(ν), for every t ∈ [0, T ].
It follows from Lemma A.8 (in Appendix A.1.6), applied with Λ = ∅ and E = IRd to the vector

fields vi(t, x, ·) for any fixed x ∈ supp(ν), that

Wp(µ
1
t,x, µ

2
t,x) 6 e(t−t0)L([t0,t])Wp(µ

1
t0,x, µ

2
t0,x) +M([t0, t])

e(t−t0)L([t0,t]) − 1

L([t0, t])
∀t ∈ [t0, T ]

where, setting S(t) = supp(ν)× Φv1(t, t0, supp(µ1
t0) ∪ supp(µ2

t0)) ∪ supp(µ2(t)) (compact),

L([t0, t]) = ess sup {‖(∂ξG, ∂ξ′G)(τ, x, x′, ξ, ξ′)‖ | t0 6 τ 6 t, (x, ξ), (x′, ξ′) ∈ S(τ)} ,

M([t0, t]) = max
{
‖X [µ1

τ ](τ, x, ξ)−X [µ2
τ ](τ, x, ξ)‖ | t0 6 τ 6 t, (x, ξ) ∈ supp(µ2

τ )
}
.

Since µ1
τ and µ2

τ have the same marginal ν on Ω, it follows from (136) and from the above definition
of L([t0, t]) and of S(t) that

M([t0, t]) 6 L([t0, t]) max
t06τ6t

L1
νWp(µ

1
τ , µ

2
τ ).

Therefore

Wp(µ
1
t,x, µ

2
t,x) 6 e(t−t0)L([t0,t])Wp(µ

1
t0,x, µ

2
t0,x) +

(
e(t−t0)L([t0,t]) − 1

)
max
t06τ6t

L1
νWp(µ

1
τ , µ

2
τ ).

Integrating with respect to x ∈ Ω for the measure ν, we obtain

L1
νWp(µ

1(t), µ2(t)) 6 e(t−t0)L([t0,t])L1
νWp(µ

1(t0), µ2(t0))

+
(
e(t−t0)L([t0,t]) − 1

)
max
t06τ6t

L1
νWp(µ

1(τ), µ2(τ)). (137)

We have the following general lemma.

Lemma B.4. For every t0 ∈ IR, let at0 : [t0,+∞) → [0,+∞) be a nondecreasing function,
continuous at t0, depending continuously on t0. Let h : IR → [0,+∞) be an absolutely continuous
function such that

h(t) 6 e(t−t0)at0 (t)h(t0) +
(
e(t−t0)at0 (t) − 1

)
max
t06τ6t

h(τ) ∀t > t0 ∀t0 ∈ IR.

Then

h(t) 6 h(0) exp

(
2

∫ t

0

aτ (τ) dτ

)
∀t ∈ IR.

Proof. Taking t0 < t < t1, writing

h(t)− h(t0)

t− t0
6
e(t−t0)at0 (t1) − 1

t− t0
h(t0) +

e(t−t0)at0 (t1) − 1

t− t0
max
t06τ6t

h(τ)

and taking the limit as t → t0, since t1 is arbitrary, we obtain h′(t0) 6 2h(t0)at0(t0), for almost
every t0 ∈ IR. The lemma follows by integration.
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Applying Lemma B.4 to h(t) = L1
νWp(µ

1(t), µ2(t)) and at0(t) = L([t0, t]), and using (137), we
obtain (51). In particular, the uniqueness statement follows.

At this step, we have proved existence and uniqueness of solutions of the Vlasov equation in the
space C 0

comp([0, T ],Pc(Ω × IRd)). We can thus now define the Vlasov flow by (49), and we obtain
(48) by uniqueness.

Establishing (53) in the item (B) follows straightforwardly the same lines as above, by applying
Lemma A.8 (in Appendix A.1.6) with Λ = Ω and E = IRd, and using (135) instead of (136). We
do not give any further details.

It remains to establish the item (A1). For K ⊂ Ω × IRd compact and T ∈ (0, Tmax(K)), we
consider a sequence of measures µk ∈ C 0([0, T ],Pc(K)) solutions of the Vlasov equation such that
µk0 = µk(0) converges weakly to µ0 = µ(0) as k → +∞. Our objective is to prove that µk(t)
converges weakly to µ(t), uniformly with respect to t ∈ [0, T ].

Since µk(t) is a probability measure, we have ‖µk(t)‖TV = 1 < +∞ for every t ∈ [0, T ], and
thus the sequence (µk(·))k∈IN∗ is bounded in L∞([0, T ],M1(Ω×IRd)) (for the strong topology), i.e.,
in (L1([0, T ],C0(Ω× IRd)))′ for the strong (dual norm) topology. By the Banach-Alaoglu theorem,
a subsequence of (µk(·))k∈IN∗ converges to some µ̃(·) ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star
topology.

It follows from Lemma B.3 that µ̃ ∈ C 0([0, T ],Pc(K)), that µ̃ is a solution of the Vlasov
equation such that µ̃(0) = µ0, and that µk(t) converges weakly to µ̃ uniformly with respect to t.
By uniqueness, we must have µ̃ = µ. This finishes the proof of the theorem.

B.4 Proof of Theorem 4.1

We have ρN (t) = δXN ⊗ δΞN (t). By (104) in Lemma A.14 of Appendix A.2.3 (applied with
γi = δξNi (t)), we have

ρN (t)sN :1 =
1

N

N∑
i=1

δxNi ⊗ δξNi (t) = µe(XN ,ΞN (t)),

which gives the preliminary remark to Theorem 4.1. The statement (A) for k = 1 then follows
from the item (A1) of Theorem 3.1, and the estimate (66) follows from the item (B) of Theorem
3.1.

For any k ∈ IN∗, the kth-order marginal ρN (t)sN :k is given by (105) in Appendix A.2.3 (applied
with µi = δxNi ⊗ δξNi (t)) By the triangular inequality, we have

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6W [q]

p

(
ρN (t)sN :k, (µ

e
(XN ,ΞN (t)))

⊗k
)

+W [q]
p

(
(µe(XN ,ΞN (t)))

⊗k, µ(t)⊗k
)

(138)
For the first term at the right-hand side of (138), noting that (XN ,ΞN0 ) ∈ (supp(µ0))N and thus

diamΩ×IRd

(
N⋃
i=1

supp(δxNi ⊗ δξNi (t))

)
6 diamΩ(supp(ν)) + diamIRd(ΞN (t)),

and noting that µe(XN ,ΞN (t)) = ρN (t)sN :1, we infer from (109) in Lemma A.14 of Appendix A.2.3

that

W [q]
p

(
ρN (t)sN :k, (µ

e
(XN ,ΞN (t)))

⊗k
)
6 2k1/q

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
. (139)
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For the second term at the right-hand side of (138), as a consequence, successively, of the estimate
(93) of Lemma A.6 in Appendix A.1.4 and of Theorem 3.1, we have

W [q]
p

(
(µe(XN ,ΞN (t)))

⊗k, µ(t)⊗k
)
6 k1/qWp

(
µe(XN ,ΞN (t)), µ(t)

)
6 k1/q CNµ (t)Wp

(
µe(XN ,ΞN0 ), µ(0)

)
(140)

where the constant CNµ (t) is defined by (65) (or equivalently by Cµ,µe
(XN,ΞN )

(t), with the notation

used in (50) in Theorem 3.1). Therefore, (67) follows from (138), (139) and (140). Note that, for
k = 1, the first term of the right-hand side of (138) is equal to 0, which gives (66) again.

The statement (A) for any k ∈ IN∗ is proved by replacing the right inequality in (140) with the
application of the item (A) of Theorem 3.1.

B.5 Proof of Theorem 4.2

First of all, since ρN0 = δXN ⊗ρN0,XN , with δXN = δxN1 ⊗· · ·⊗ δxNN and ρN0,XN = µ0,xN1
⊗· · ·⊗µ0,xNN

,

it follows from (104) in Lemma A.14 of Appendix A.2.3 (applied with µi = δxNi ⊗ µ0,xNi
) that

(ρN0 )sN :1 = 1
N

∑N
i=1 δxNi ⊗ µ0,xNi

= (µ0)seXN (semi-empirical measure), which gives (71), and the

weak convergence to µ0 stated in Item (A) for k = 1 is obtained by Lemma A.19 of Appendix
A.4.2, which gives the preliminary remark to the theorem.

Recall that ρN (t) = ΦN (t)∗ρ
N
0 and µ(t) = ϕµ0

(t)∗µ0. Setting

ρ̃N (t) = ϕµ0(t)⊗N∗ ρN0 = δxN1 ⊗ · · · ⊗ δxNN ⊗ µt,xN1 ⊗ · · · ⊗ µt,xNN

(the latter equality is because ϕµ0(t, xi, ·)∗µ0,xNi
= µt,xNi ), we note that ρ̃N (t)s = ϕµ0(t)⊗N∗ (ρN0 )s

and that
ρ̃N (t)sN :k = ϕµ0

(t)⊗k∗ (ρN0 )sN :k ∀k ∈ {1, . . . , N}.

Indeed, this follows from the following obvious lemma.

Lemma B.5. Let E be a measure space, ϕ : E → E be a measurable mapping, N ∈ IN∗ and
ρ ∈ P(EN ). Then (

ϕ⊗N∗ ρ
)
N :k

= ϕ∗(ρN :k) ∀k ∈ {1, . . . , N}.

Proof of Lemma B.5. Denoting by πk : EN = Ek × EN−k → Ek the canonical projection, the
lemma straightforwardly follows from the fact that πk ◦ ϕ⊗N = ϕ⊗k ◦ πk.

In particular, we have

ρ̃N (t)sN :1 = ϕµ0
(t)∗(ρ

N
0 )sN :1 = ϕµ0

(t)∗(µ0)seXN =
1

N

N∑
i=1

δxNi ⊗ µt,xNi = µ(t)seXN .

In order to establish (73), we start by applying the triangular inequality:

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6W [q]

p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
+W [q]

p

(
ρ̃N (t)sN :k, µ(t)⊗k

)
, (141)

and we next show how to estimate each of the two terms of the sum at the right-hand side of (141).

First term. Applying successively Lemma A.13 in Appendix A.2.2 and Lemma A.4 in Appendix

A.1.2, and using that W
[q]
p 6W

[q]
2 6W

[1]
2 (see (23) and (88)) because p 6 2, we have

W [q]
p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
6
( k
N

)1/q

W
[1]
2

(
ρN (t), ρ̃N (t)

)
(142)
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where we insist that the latter Wasserstein distance W2 is computed with respect to the distance

d
[1]

(Ω×IRd)N
defined by (63): the choice of q = 1 is important. Given that ρN (t) = ΦN (t)∗ρ

N
0 and

ρ̃N (t) = ϕµ0(t)⊗N∗ ρN0 , to estimate this distance, we apply Lemma A.8 (in Appendix A.1.6) with

Λ = ΩN and E = IRdN to the flows ΦN (t) and ϕµ0
(t)⊗N in the space ΩN × IRdN endowed with the

distance d
[1]

(Ω×IRd)N
, respectively generated by the time-dependent vector fields Y N (t, ·, ·) (defined

by (10)) and X [µt](t, ·, ·)⊗N (with X [µt] defined by (44)), obtaining from the alternative estimate
of that lemma, with p = 2, that

W
[1]
2

(
ρN (t), ρ̃N (t)

)
6M2(t)

√
t

(
etL2(t) − 1

L2(t)

)1/2

(143)

where
L2(t) = max

06τ6t
Lip(Y N (τ, ·, ·)|supp(ρN (τ))∪supp(ρ̃N (τ)))

and, using (98),

M2(t) = max
06τ6t

(∫
ΩN×IRdN

‖Y N (τ, ·, ·)−X [µτ ](τ, ·, ·)⊗N‖2`1 dρ̃Nτ
)1/2

= max
06τ6t

(∫
ΩN×IRdN

( N∑
i=1

‖Y Ni (τ,X,Ξ)−X [µτ ](τ, xi, ξi)‖
)2

dρ̃Nτ (X,Ξ)

)1/2

where we recall that ‖Ξ‖`1 =
∑N
i=1 ‖ξi‖ for any Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N . Let us estimate L2(t)

and M2(t).

Since the `1 distance d
[1]

(Ω×IRd)N
has been used, according to Lemma A.1 in Section A.1 we have,

using the definition (11) of Yi,

L2(t) = max
06τ6t

max
16i6N

Lip(Y Ni (τ, ·, ·)|supp(ρN (t))∪supp(ρ̃N (t))) = max
06τ6t

Lip(G(τ, ·, ·, ·, ·)|SNµ (τ)2)

6 max
06τ6t

‖G(τ, ·, ·, ·, ·)|SNµ (τ)2‖C 0,1 = L(t)

where SNµ (τ) is defined by (64). The choice q = 1 has been crucial here (for a choice q > 1 we
would get a positive power of N in the exponential term in (143), which is not desirable).

Besides, by Lemma A.22 in Appendix A.6 (the choice of p = 2 has been done to be able to
apply this lemma), we have

M2(t) 6 2L(t)

(
√
N
√

1 + 70 max
06τ6t

diamΩ×IRd(supp(µ(t))) +N
√

5W1

(
µ(t)se

XN
, µ(t)

))
.

Since the map s 7→ ets−1
s is increasing for s > 0, and since

√
y(ey − 1) 6 ey for every y > 0, we

infer from (142) and (143) that

W
[q]
2

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
6 2
( k
N

)1/q
(√

NC ′µ(t) +N
√

5W1

(
µ(t)se

XN
, µ(t)

))
etL(t).

where C ′µ(t) = (1 + 70 max06τ6t diamΩ×IRd(supp(µ(t))))1/2, for every t > 0. Applying Lemma A.8

(in Appendix A.1.6) with Λ = Ω and E = IRd to the Vlasov flow ϕµ0
(t) in Ω × IRd generated by

the vector field X [µt](t, ·, ·), we obtain

W1 (µ(t)seXN , µ(t)) 6 etL(t)W1 ((µ0)seXN , µ0) .
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Finally,

W [q]
p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
6 2k1/q

(
C ′µ(t)

N
1
q−

1
2

+N1− 1
q

√
5W1

(
(µ0)se

XN
, µ0

))
e2tL(t) (144)

Second term. Applying Lemma A.8 (in Appendix A.1.6) with Λ = Ωk and E = (IRd)k to the

Vlasov flow ϕµ0(t)⊗k in the space Ωk× (IRd)k endowed with the distance d
[q]

(Ω×IRd)k
defined by (63),

generated by the vector field X [µt](t, ·, ·)⊗k, we obtain

W [q]
p

(
ρ̃N (t)sN :k, µ(t)⊗k

)
= W [q]

p

(
ϕµ0(t)⊗k∗ (ρN0 )sN :k, ϕµ0

(t)⊗k∗ µ⊗k0

)
6 etL(t)W [q]

p

(
(ρ0)sN :k, µ

⊗k
0

)
where L(t) is defined as before.

Similarly as in the proof of Theorem 4.1 (see Appendix B.4), we note that, for any k ∈
{1, . . . , N}, the measure (ρN0 )sN :k is given by the formula (105) of Lemma A.14 in Appendix A.2.3
with βk given by (107) and γi = µ0,xNi

. Hence we infer from (109) in Lemma A.14 (Appendix

A.2.3) that, if k2 6 2N ln
(
1 + 1

2p

)
, since (ρN0 )sN :1 = (µ0)seXN ,

W [q]
p

(
(ρN0 )sN :k, ((µ0)seXN )⊗k

)
6 2k1/q

(
k2

N

)1/p

diamΩ×IRd(supp(µ0))

(the above term is zero and thus does not appear in the final estimate when k = 1). Therefore, by
the triangular inequality and by (93) in Lemma A.6 (Appendix A.1.4),

W [q]
p

(
ρ̃N (t)sN :k, µ(t)⊗k

)
6
(
W [q]
p

(
(ρ0)sN :k, ((µ0)seXN )⊗k

)
+W [q]

p

(
((µ0)seXN )⊗k, µ⊗k0

))
etL(t)

6 k1/q

(
2

(
k2

N

)1/p

diamΩ×IRd(supp(µ0)) +Wp ((µ0)seXN , µ0)

)
etL(t). (145)

Conclusion. From (141), (144) and (145), we conclude that, for every t > 0,

W [q]
p

(
ρN (t)sN :k, µ(t)⊗k

)
6 2k1/q

((
k2

N

)1/p

C ′µ(0) +
C ′µ(t)

N
1
q−

1
2

+N1− 1
q

√
5W1

(
(µ0)se

XN
, µ0

)
+Wp ((µ0)seXN , µ0)

)
e2tL(t)

and (73) finally follows.
To obtain the statement (A) for any k ∈ IN∗, we have to adapt all the above arguments and in

particular Lemma A.8 in Appendix A.1.6 to the case where G is locally Lipschitz only with respect
to (ξ, ξ′). This is lengthy but straightforward and we do not give any details.
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[16] J.A. Cañizo, J.A. Carrillo, J. Rosado, A well-posedness theory in measures for some kinetic
models of collective motion Math. Models Methods Appl. Sci. 21 (2011), no. 3, 515–539.

[17] J.A. Carrillo, Y.-P. Choi, Mean-field limits: from particle descriptions to macroscopic equa-
tions, Arch. Ration. Mech. Anal. 241 (2021), no. 3, 1529–1573.

[18] J.A. Carrillo, Y.-P. Choi, M. Hauray, The derivation of swarming models: mean-field limit
and Wasserstein distances, Collective dynamics from bacteria to crowds, 1–46, CISM Courses
and Lect., 553, Springer, Vienna, 2014.

[19] J.A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent, D. Slepcev, Global-in-time weak measure
solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J. 156
(2011), no. 2, 229–271.

79



[20] J. A. Carrillo, M. Fornasier, J. Rosado, G. Toscani, Asymptotic flocking dynamics for the
kinetic Cucker-Smale model, SIAM J. Math. Anal. 42 (2010), 218–236.

[21] J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil, Mathematical modeling of collective behavior
in socio-economic and life sciences, Particle, kinetic, and hydrodynamic models of swarming,
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