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Abstract

Objective: This papers proposes an initial proof-of-concept validation for a method that estimates the respiratory effort during
pressure support ventilation, based solely on the signals provided by a standard commercial ventilator. The study is carried out on a
test bench with an Active Servo Lung 5000 mechanical simulator. Methods: The asymptotic behavior of the respiratory mechanics
during expiration is exploited to analyze its identifiability (the fact that two sets of respiratory mechanics parameters necessarily
generate distinct signals). Furthermore, we propose a method of estimation of the patient’s respiratory muscle pressure, based on the
degree of smoothness of a signal constructed from the airway pressure and flow measurements. Results: The proposed method was
validated on a commercial ventilator, under a wide range of respiratory mechanics parameters and respiratory efforts. Conclusion:
Our approach provides a non-invasive estimation of the respiratory effort, which allows for accurately detecting over- and under-
assistance. Significance: Compared to existing muscle pressure estimation methods, our approach clarifies the conditions under
which the respiratory effort of a patient can be estimated and offers a simple way to compute it in real time, without using invasive
devices or occlusion-based techniques.

Keywords: Biomedical monitoring, Lung parameter estimation, Mechanical ventilation, Mechanical lung simulator, Muscle
pressure, Pressure support ventilation, Respiratory effort monitoring.

1. Introduction

Mechanical ventilation assists or replaces the patient’s respi-
ratory effort, ensuring adequate gas exchange. Depending on
the clinical condition of the patient, several ventilation modes
are available. Pressure support ventilation (PSV) is the most
widely used method of assisted ventilation in the world [1]. It
provides partial support to the patient, delivering an insufflated
volume that is modulated by the patient’s respiratory effort [2].

When adjusting the pressure support level, the primary ob-
jective of the physician is to adequately unload the respiratory
muscles. Indeed, insufficient or excessive respiratory effort dur-
ing PSV is associated with the risk of developing diaphrag-
matic dysfunction [3] (ventilation-induced diaphragm injury)
and lung injury (patient self-inflicted lung injury) [4, 5], which
can lead to an increase of the duration of ventilation [3]. How-
ever, during PSV, the measurement of respiratory effort is not
easily accessible to the clinician, which can lead to inappropri-
ate adjustments of the pressure support level and thus induce
a risk for the patient. The reference method is based on the
measurement of the pressure developed by the respiratory mus-
cles [6]. This technique requires the collection and analysis
of the esophageal pressure signal by means of an esophageal
catheter, which seriously limits its generalization. Alternative
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methods have been developed based on occlusion maneuvers
of the airway during the inspiratory effort [7, 8, 9] to detect
excessive or insufficient respiratory efforts. These methods re-
quire an intensivist’s intervention to perform the occlusion and
some of them may be poorly tolerated if repeated. Therefore,
they are not suitable for continuous monitoring [10, 11, 9, 8].
In contrast, a non-invasive, continuous method for estimating
muscle pressure would significantly help in monitoring respira-
tory effort and identifying over- or under-assistance. Vicario et
al. proposed a method [12], which estimates muscle pressure
under mechanical ventilation using ventilator-displayed flow
and pressure waveforms. However, it lacks extensive valida-
tion across a wide range of respiratory cycles for clinical ap-
plication. Besides, Al-Rawas et al. described a method for es-
timating respiratory mechanics (resistance and compliance of
the respiratory system) during PSV, based on flow and airway
pressure signals analysis [13]. The availability of the respira-
tory mechanics allows for continuous computation of respira-
tory muscle pressure according to the equation of motion of the
respiratory system [14]. Such estimation of muscle pressure us-
ing respiratory mechanics values derived from the method pro-
posed by Al-Rawas et al. is hereafter referred to as Al-Rawas
derived method.

In this paper, we propose a new method for estimating res-
piratory effort, based solely on the signals provided by stan-
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dard ICU ventilators during a single breathing cycle. We hy-
pothesized that our method enables to estimate the inspiratory
muscle pressure during PSV with sufficient accuracy to detect
both under-assistance and over-assistance. Consequently, we
assessed its performance across thousands of simulated clinical
scenarios and compared it to the performance of Vicario et al.
method and the method derived from Al-Rawas et al..

2. Material and Methods

In this section, we first introduce the mathematical models
used to derive the proposed estimation method. We further de-
scribe the experimental validation setup and the statistical anal-
ysis performed to assess the numerical methods.

2.1. Modeling pressure support ventilation
A standard practice in mechanical ventilation estimation

problems (see, e.g., [15] and [16]) is to model the respiratory
mechanics using a linear relation

Pao = RQ + EV + P0 + Pmus (1)

between the airway pressure Pao, the patient muscle pres-
sure Pmus, the pulmonary volume V , and the flow Q. The re-
sistance R, the elastance E, and the offset pressure P0 are un-
known constant parameters. In contrast, the time varying sig-
nals Pao(t) and Q(t) can be measured (they are used by the con-
trol system of the ventilator). The volume V(t) is deduced from
the flow by integration. Our aim is to recover the signal Pmus(t)
from a single cycle during pressure support ventilation.

A pressure support ventilation cycle [12] is composed of two
phases (Fig. 1). During the insufflation phase, the flow Q is
positive, while it is negative during the expiratory phase. Most
often, at the end of expiration the flow vanishes, until the patient
starts his effort and generates a positive flow (at tstr, with str for
start). The insufflation phase is then triggered by a threshold
on the flow, when Q ≥ Qon. The time at which the trigger-
ing occurs is denoted ton, with ton > tstr and Q(ton) ≥ Qon.
The inspiratory trigger Qon can usually be adjusted by the clin-
ician. Similarly, the expiration phase is triggered by a threshold
on the flow, once the flow has started to decrease and satis-
fies Q ≤ Qoff , which ends the insufflation phase. The time
at which the triggering occurs is denoted toff , with toff > ton

and Q(toff ) ≤ Qoff . Unlike Qon, which is constant, the thresh-
old Qoff is variable. It is defined as a percentage roff of the
maximum value Qmax reached by the flow during insufflation:
Qoff = roff · Qmax. The ratio roff is the expiratory trigger (or cy-
cling off criterion). On most modern ventilators, this parameter
can also be adjusted by the clinician.

The expiratory trigger roff has a strong impact on the synchro-
nization between the patient and the ventilator. In the ideal case,
the time toff (when the expiratory phase is triggered) should co-
incide with the time tend (when the patient ends his effort). The
case where both times are significantly different is called an
asynchrony and more specifically, a short cycle when tend > toff
and a prolonged insufflation when tend < toff . The extreme case
where, during the expiratory phase, the muscular effort of the
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Figure 1: Pressure support ventilation cycle on a Puritan-Benett 980 ventilator,
connected to an ASL5000 artificial lung simulator. The thresholds Qon and Qoff
trigger the beginning and end of the insufflation phase. The corresponding times
at which the trigger occurs are denoted ton and toff , respectively. The threshold
Qoff = roffQmax depends on the maximal value of the flow Qmax. The start and
end of the patient’s effort are denoted tstr and tend , respectively. The estimation
method proposed in this paper exploits the smoothness of the muscle pressure
at test .

patient is not able to trigger a new insufflation cycle is called an
ineffective effort.

2.2. Expiration asymptotic regime
In addition to the threshold-based controller described in

Sect. 2.1 (which triggers the inspiratory and expiratory phases
of the ventilator), pressure support also includes a proportional
controller of the airway pressure [17]. The flow reference Qre f

associated with this proportional regulation is given by

Qre f (t) = K(t)
(
P f lt(t) − Pao

)
, (2)

where the filtered reference P f lt is a smoothed version of a
piecewise constant pressure reference Pre f and K is a pro-
portional gain. While the pressure reference has always dis-
tinct values during insufflation and expiration, on some venti-
lator models, the gain K might remain constant. During each
phase, the dynamics of P f lt is designed in order to converge to-
wards Pre f either exponentially or in finite time. The ventilator
valves are then controlled in order to drive the actual flow Q
toward its reference Qre f .
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On most ventilators, the clinician can adjust the gain and
the convergence speed of the pressure reference filter during
the inspiratory phase, via the slope (or settling time) parameter
of the ventilator interface [18]. During expiration, the refer-
ence Pre f corresponds to the positive end-expiratory pressure
(PEEP) while, during insufflation, the difference between Pre f

and the PEEP determines the level of pressure support.
Consider a time interval where the respiratory effort of the

patient is constant. Once the filtered pressure has converged
towards its reference, equation (2) can be rewritten by replac-
ing Qre f with Q, and P f lt with Pre f . This allows us to com-
pute the asymptotic line towards which the volume and flow
converge in the volume/flow phase plane. Indeed, combining
equations (1) and (2) in this asymptotic regime yields

Pre f =
1
K

Q + Pao

=

(
R +

1
K

)
Q + EV + P0 + Pmus. (3)

Observe that the multiplying factor R+ 1
K differs from the airway

resistance. It includes a term related to the proportional gain K.
A direct consequence of (3) is that during expiration, once

the muscle pressure has vanished, the flow converges to the fol-
lowing asymptote

Q = αV + β (4)

with

α =
− E

R +
1

Kexp

and β =
Ppeep − P0

R +
1

Kexp

, (5)

where Kexp refers to the value of K(t) during the expiratory
phase. Indeed, in this situation Pmus vanishes and Pre f is equal
to Ppeep. The constant −1/α identifies with the Expiratory-Time
Constant (ETC)– see, e.g., [19].

Hereafter, we exclude patient pathologies inducing a nonlin-
ear expiration asymptote (like expiratory flow limitation [20])
and assume that the patient is ventilated in a domain where the
compliance is linear [21]. Otherwise, more complex models
should be used instead of (1), like those proposed in [22, 23].
Under our assuptions (at least in the absence of ineffective ef-
forts) the constants α and β can be estimated using linear re-
gression, a topic widely discussed in the literature (see, e.g.,
[19], [13], and [24]). Therefore, we will assume hereafter that
the estimation of Pmus is carried out over a cycle that does not
present any ineffective effort, and that the constants α and β
have already been estimated.

2.3. Muscle pressure identifiability

Our new respiratory mechanics estimation method builds
upon the asymptotic model (4). We first exploit it to explain
why, without further assumptions, the respiratory mechanics is
not identifiable [12] even when α and β are known. The concept
of identifiability refers to the fact that the unknown parameters
explaining the data signals V , Q, and Pao can be recovered un-
ambiguously [25].
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Figure 2: Three different reconstructions of the Pmus profile are computed from
the same recording (in blue) of the flow Q and of the airway pressure Pao, using
different values of R in equation (6). The curve in red is obtained with the resis-
tance estimation R̂ provided by the CDME procedure of Sect. 2.5, which maxi-
mizes the smoothness of the muscle pressure estimate. The yellow and magenta
curves consider R̂/2 and 2R̂, respectively, in (6). The estimation of R̂ provided
by the CDME procedure clearly provides a smoother estimation of Pmus that is,
moreover, closer to the real value of this signal.

Fact. Assume that α and β are known. For an arbitrary effort
Pmus, the respiratory mechanics (1) are not identifiable. Indeed,
for a given solution V, Q and Pao of (1), there is a whole family
of pressure profiles

Pmus(t,R) =
Q(t)
Kexp

+ Pao(t) − Ppeep

−

R +
1

Kexp

 (Q(t) − (αV(t) + β)) ,
(6)

parametrized by R, that generates identical evolutions of the
measured variables V, Q, and Pao.

To check this fact, observe that when α and β are known, one
can retrieve the values of E and P0 from (5):

E = −α
(
R +

1
Kexp

)
and P0 = Ppeep − β

R +
1

Kexp

 . (7)

Now, equation (1) yields

Pao = RQ − α
(
R +

1
Kexp

)
V + Ppeep − β

(
R +

1
Kexp

)
+ Pmus.
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Adding Q/Kexp to both sides of this equation, we get

Pmus = Pao +
Q

Kexp
− Ppeep −

(
R +

1
Kexp

)
(Q − (αV + β)),

which coincides with (6). Consider now fixed signals V , Q, and
Pao that satisfy (1) with the ground truth parameters R, E, and
P0. For an arbitrary choice of R̂ (different from R), one can
generate the corresponding estimates of Ê and P̂0 using (7) (in
which R has been replaced by R̂). Similarly, one can recover the
pressure profile Pmus(t, R̂) using (6). Since (1) is satisfied with
R̂ and induced parameters Ê and P̂0, the parameter estimation
problem is not mathematically identifiable. Indeed, the same set
of signals are recovered with any arbitrary parameter R̂, which
does not make it possible to retrieve R without imposing extra
assumptions.

2.4. Smoothness of muscle pressure estimates
In what follows, for an arbitrary nonsmooth (continuous but

not differentiable) signal h(t), the terms ∂−h(t0) and ∂+h(t0) de-
note the left and right derivatives of h at t0, namely

∂−h(t0) = lim
t→t−0

h(t) − h(t0)
t − t0

and

∂+h(t0) = lim
t→t+0

h(t) − h(t0)
t − t0

.

Equation (6) can be rewritten in a more compact form

Pmus(t,R) = f (t) −
R +

1
Kexp

 g(t), (8)

with
f (t) =

Q(t)
Kexp

+ Pao − Ppeep (9)

and
g(t) = Q(t) − (αV(t) + β). (10)

Note that the only unknown parameter in equation (8) is the air-
way resistance R. Indeed, all the parameters appearing in (9)-
(10) are known. The following result constitutes the corner-
stone of the paper. It states a condition under which one can
unambiguously estimate the correct value of R, using equa-
tion (11) below. It is shown hereafter that this equation results
from the equality ∂+Pmus(t0,R) = ∂−Pmus(t0,R). A graphical
representation of the underlying idea is proposed in Fig. 2.

Continuity Condition. If the flow is not differentiable at a
time t0, then there exists a unique resistance value

R̂ =
∂+ f (t0) − ∂− f (t0)
∂+g(t0) − ∂−g(t0)

−
1

Kexp
, (11)

for which the recovered signal Pmus(t,R) in (6) is smooth (con-
tinuously differentiable) at t0.

The first-order continuity condition (11) results from the fact
that the signals Q and Pao are continuous but not smooth every-
where. On an interval where Pmus is smooth, the only points t0
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Figure 3: The functions f and g, defined by equations (9) and (10), are approx-
imated by two parabolas P f and Pg on a time interval I+, after t0 = test . A
typical estimate of Pmus is plotted (yellow dots) and compared to its real value
(the ASL reference, in red). This estimate is obtained via the optimization pro-
cedure of Sect. 2.5, based on a cross-validation with the parabolas P f and Pg,
on a small interval I− before t0.

where Q and Pao are not differentiable are those where P f lt is
not smooth. At these points, functions f and g are neither dif-
ferentiable, so (11) is valid. Note that the signal V(t) is smooth
everywhere, since it reads as the anti-derivative of the continu-
ous signal Q. Thus, (8), (9) and (10) can be used to compute

∂+Pmus(t0,R) = ∂+ f (t0) − (R + 1/Kexp)∂+g(t0)

and

∂−Pmus(t0,R) = ∂− f (t0) − (R + 1/Kexp)∂−g(t0).

Imposing ∂+Pmus(t0,R) = ∂−Pmus(t0,R), one can determine the
unique value of the resistance

R̂ =
∂+ f (t0) − ∂− f (t0)
∂+g(t0) − ∂−g(t0)

−
1

Kexp
, (12)

for which Pmus(t, R̂) is differentiable at t0. The discontinuity
of the flow derivative and the smoothness of V at t0 imply that
∂+g(t0) , ∂−g(t0).
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Respiratory effort: Insufficient Normal Excessive
Number N of cycles 735 3651 4150
Simulated muscle pressure Pmus (cmH2O) 4 (2 ; 4) 10 (8 ; 12) 22 (18 ; 26)
Simulated resistance R (cmH2O/L/sec) 9 (6 ; 15) 15 (9 ; 24) 18 (12 ; 24)
Simulated compliance C (mL/cmH2O) 55 (40 ; 75) 65 (45 ; 85) 55 (40 ; 75)
Simulated inspiratory time (msec) 800 (800 ; 1000) 1000 (800 ; 1000) 1000 (800 ; 1000)
Pressure support (cmH2O) 10 (5 ; 15) 10 (5 ; 15) 10 (5 ; 15)
Tidal volume (mL) 356 (240 ; 522) 399 (301 ; 556) 574 (463 ; 732)
Estimated Pmus, CDME (cmH2O) 4.5 (3.5 ; 5.4) 10.6 (8.2 ; 13.2) 22.5 (18.7 ; 26.9)
Estimated Pmus, Al-Rawas (cmH2O) 2.8 (0 ; 3.9) 5.2 (3.5 ; 7.7) 6.6 (4.6 ; 9.7)
Estimated Pmus, Vicario (cmH2O) 5.7 (4.2 ; 9.9) 10.4 (8 ; 13.4) 18.4 (15.2 ; 26.9

Table 1: Description of the selected respiratory cycles (median and interquartile ranges). Insufficient respiratory effort was defined by muscle pressure < 5 cmH2O.
Excessive respiratory effort was defined by muscle pressure > 15 cmH2O. CDME refers to Continuous Differentiability of Muscular Effort method.

2.5. CDME procedure for muscle pressure estimation

From a theoretical viewpoint, the one-sided derivatives ap-
pearing in (11) could be estimated using linear regression, ap-
plied to a Taylor expansion of the signals at t0. Indeed, for an
arbitrary signal h, fixing ε > 0 we can define on each interval
[t0 − ε, t0] and [t0, t0 + ε] a Taylor expansion of the form

h(t) − h(t0) = (t − t0)(p0 + p1(t − t0)). (13)

Then, both unknown parameters p0 and p1 can be computed
using ordinary least-squares. On each interval, the parame-
ter p0 provides the desired estimate of the one-sided deriva-
tive ∂±h(t0). Nevertheless, the latter estimates are highly sensi-
tive to estimation errors on t0. Back to the framework of condi-
tion (11), one can hardly estimate t0 with high precision. There-
fore, the resistance parameter cannot be recovered using (12),
and more robust strategies must be envisioned.

Hereafter, we propose a robust method, named Continuous-
Differentiability of Muscular Effort (CDME). Let us first as-
sume that time t0 is known. We then define two intervals
I− = [t0 − ε − η−, t0 − ε] and I+ = [t0 + ε, t0 + ε + η+]. The
parameter ε > 0 must be chosen sufficiently large to cope for
the estimation errors on t0, while the parameters η− > 0 and
η+ > 0 must be sufficiently small to ensure that Pmus is smooth
on the whole interval [t0 − ε − η−, t0 + ε + η+]. Using linear
regression, one can approximate the signals f and g on I+ with
second order polynomials P f and Pg. Then, rewriting Pmus(t)
in (8) as f (t) − θg(t) with

θ = R +
1

Kexp
, (14)

we get

Pmus(t) ≈ P f (t) − θPg(t), (15)

for t ∈ I+. CDME is based on a cross-validation procedure,
aiming to impose that (15) is also valid on I−, since function
Pmus(t) has to be smooth around t = t0. We propose to select
the parameter θ for which the signal Pmus(t) on I− is as close

as possible to the one retrieved on I+. Thus, we address the
following least squares problem:

θ̂ = argmin
θ

∑
t∈I−

(
( f (t) − P f (t)) − θ(g(t) − Pg(t))

)2
, (16)

which provides an estimate of the airway resistance

R̂ = θ̂ −
1

Kexp
. (17)

Criterion (16) quantifies that for t ∈ I−, Pmus(t) = f (t) − θg(t)
should be as close as possible to the Taylor expansion of Pmus(t)
(obtained from data related to t ∈ I+), evaluated for t ∈ I−.

To be able to compute R̂, a crucial issue is to detect both in-
tervals I− and I+ surrounding the time t0 where (i) the flow is
non-smooth, that is, the flow derivative is discontinuous; and
(ii) Pmus is smooth. Even if the flow is guaranteed to be non-
smooth around ton and toff (the times when the phase of the ven-
tilation mode changes), the degree of smoothness of Pmus at the
same times is uncertain. Indeed, the start of the patient effort
tstr is shortly followed by ton, and the end of the patient effort
tend might coincide with toff . For this reason, to estimate R̂ in
the CDME method, we have chosen to set t0 as the time test at
which the second order derivative of Pao reaches its minimal
value (see Figs. 1 and 3). This corresponds to the time where
the curvature of this signal reaches a maximum. This choice
ensures the smoothness of Pmus. Indeed test is located between
ton and toff . It is therefore reasonable to expect Pmus to be dif-
ferentiable at this point. In the experimental validation of our
method, described below, the parameters ε, η−, and η+ were
chosen as multiples of the time d = test − ton, with ε = d/8,
η− = 3d/5, and η+ = 5d/4.

2.6. Experimental setting
The respiratory cycles studied were simulated using an Ac-

tive Servo Lung 5000 mechanical simulator (ASL5000; IngMar
Medical, Pittsburg, PA, USA), connected to a Puritan-Benett
Covidien PB 980 intensive care ventilator (Medtronic, Min-
neapolis, MN, USA). A dedicated script was created, allowing
the simulation of a large representative set of respiratory cycles,
by systematically varying:
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• Respiratory system compliance, from 30 to 100
mL/cmH2O, in steps of 5 mL/cmH2O;

• Respiratory system resistance from 3 to 30 cmH2O/L/s,
in steps of 3 cmH2O/L/s;

• Inspiratory muscle pressure from 2 to 30 cmH2O, in steps
of 2 cmH2O.

Two durations of respiratory effort were simulated: 800 and
1000 ms. The respiratory rate was set to 20 breaths/min. Expi-
ration was passive. The ventilator was set in PSV mode, with
a positive end-expiratory pressure of 8 cmH2O. Three levels
of pressure support were tested: 5, 10 and 15 cmH2O. The
inspiratory trigger was set to 1 L/min, the cycling-off thresh-
old to 25 %, and the insufflation slope to 80 %. All possible
combinations of these variables were simulated, except when
the corresponding cycle exceeded the technical limitations of
the ASL simulator. In particular, cycles that led to a total vol-
ume (including end-expiratory volume) greater than 1900 mL
or to a flow greater than 120 L/min were excluded. Cycles cor-
responding to ineffective efforts were neither considered. Six
cycles were simulated for each condition in order to reach a
steady-state but only the last cycle was analyzed.

2.7. Assessment of experimental results

Flow, airway pressure and simulated muscle pressure were
recorded by the ASL 5000 and sampled at 512 Hz. For each
respiratory cycle selected for analysis, muscle pressure was cal-
culated with three different methods: 1) The CDME method
presented in Sect. 2.5; 2) The method derived from Al-Rawas
et al. [13]; and 3) Vicario et al.’s method [12]. Agreement
between simulated and estimated muscle pressure was studied
for each method by a Spearman correlation and by a Bland-
Altman analysis. The sensitivity and specificity of each method
for diagnosing insufficient or excessive respiratory efforts were
calculated. Insufficient or excessive efforts were defined as
simulated muscle pressure below 5 cmH2O or greater than 15
cmH2O, respectively. In addition, the receiver operating char-
acteristic (ROC) curves of each method for the diagnosis of
insufficient efforts were computed. The comparison between
the three methods was based on the areas under their ROC
curves (AUROC) by DeLong’s test for correlated ROC curves,
with adjustment for multiple testing by the false discovery rate.
The thresholds were chosen according to the most recent ex-
pert suggestions [26], and by analogy with the recent work
[9]. While the threshold defining insufficient muscle pressure is
consensual [27], the threshold defining excessive muscle pres-
sure varies in the literature between 10 and 15 cmH2O. We
chose the highest threshold to define unquestionably excessive
efforts. Nevertheless, in order to test the robustness of our re-
sults with respect to the muscle pressure threshold defining ex-
cessive effort, a second analysis was performed, where exces-
sive muscle effort is defined by a muscle pressure greater than
11 cmH2O.

Correlation CMDE Al-Rawas Vicario
rs (95% CI) 0.94 (0.94; 0.95) 0.4 (0.39; 0.42) 0.72 (0.71;0.73)
p <0.0001 <0.0001 <0.0001

B&A Plots CMDE Al-Rawas Vicario
Bias (SD) 0.7 (2.9) -9.1 (7.2) -0.4 (6)
Lower AL -5 -23.3 -12
Upper AL 6.4 5.1 11.3

Table 2: Spearman correlation coefficient rs and Bland-Altman analysis results.
CI: confidence interval. SD: standard deviation. AL: Agreement limit.

3. Results

Using the experimental protocol described in Sect. 2.6, a set
of 9896 different conditions were simulated. Among them,
1360 were excluded: 1036 cycles corresponding to ineffec-
tive efforts and 324 cycles related to inspiratory flows strictly
greater than 2 L/s. The remaining 8536 cycles were analyzed:
735 with muscle pressure strictly lower than 5 cmH2O, 3651
with muscle pressure between 5 and 15 cmH2O, and 4150 with
muscle pressure strictly greater than 15 cmH2O (see Table 1).
The muscle pressure estimates calculated by each of the three
methods were significantly correlated with the simulated mus-
cle pressure values (Table 1). On the contrary, Spearman’s
coefficients provided by the three methods were significantly
different. The Bland-Altman analysis showed narrower limits
of agreement with CDME than with the two competing meth-
ods (Table 2). Correlation plots and Bland-Altman plots corre-
sponding to each muscle pressure estimation method are avail-
able in Fig. 4.

3.1. Diagnosis of insufficient effort
The area under the ROC curve of the proposed CDME

method (Fig. 5) for diagnosing insufficient respiratory effort
was 0.97 (95% confidence interval [CI], 0.97–0.98). At a
threshold of 5 cmH2O, CDME predicted insufficient effort
(muscle pressure lower than 5 cmH2O) with a sensitivity of
65% (95% CI, 61–68%) and a specificity of 99% (95% CI, 99–
99%). The area under the ROC curve of the method derived
from Al-Rawas et al. for diagnosing insufficient respiratory ef-
fort was 0.88 (95% CI, 0.87–0.89). At the same threshold of
5 cmH2O, this method predicted insufficient effort with a sen-
sitivity of 100% (95% CI, 99–100%) and a specificity of 61%
(95% CI, 60–62%). The area under the ROC curve of Vicario
et al.’s method for diagnosing insufficient respiratory effort was
0.82 (95% CI, 0.80–0.84). At the same threshold of 5 cmH2O,
Vicario et al.’s method predicted insufficient effort with a sen-
sitivity of 44% (95% CI, 40–47%) and specificity of 99% (95%
CI, 99–99). These results are summarized on top of Table 3.
The AUROC of the CDME method was statistically higher than
for competing methods.

3.2. Diagnosis of excessive effort
The area under the ROC curve of the CDME method for di-

agnosing excessive respiratory effort was 0.97 (95% CI, 0.97–
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Figure 4: Bland-Altman (Left) and Correlation (Right) plots including 95% limits of agreement (2STD) for the three tested methods: The proposed CDME method
(Top), Al-Rawas et al. (Middle) and Vicario et al. (Bottom). Cycles with an ineffective breath or with Qmax > 2 L/s have been excluded.

0.98). At the threshold of 15 cmH2O, this method predicted
excessive effort (muscle pressure greater than 15 cmH2O) with
a sensitivity of 98% (95% CI, 97–98%) and a specificity of
93% (95% CI, 92–94%). The area under the ROC curve of the
method derived from Al-Rawas et al. for diagnosing excessive
respiratory effort was 0.68 (95% CI, 0.67, 0.69). At the same
threshold of 15 cmH2O, this method predicted excessive effort
with a sensitivity of 4% (95% CI, 3–4%) and a specificity of
100% (95% CI, 100–100%). The area under the ROC curve of

Vicario et al.’s method for diagnosing excessive respiratory ef-
fort was 0.87 (95% CI, 0.86–0.88). At the same threshold of 15
cmH2O, Vicario et al.’s method predicted excessive effort with
a sensitivity of 76% (95% CI, 75–78%) and a specificity of 83%
(95% CI, 82–84%). These results are summarized in the middle
of Table 3. The AUROC of the CDME method was statistically
higher than those of competing methods. Analysis by defining
excessive effort as muscle pressure higher than 11 cmH2O led
to similar results (see the bottom of Table 3).
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Figure 5: Receiver operating characteristic (ROC) curves of the three tested
methods. Top: Insufficient respiratory effort (Pmus < 5 cmH2O). Middle: Ex-
cessive respiratory effort (Pmus > 15 cmH2O). Bottom: Excessive respiratory
effort (Pmus > 11 cmH2O).

3.3. Classification accuracy

Classification accuracy was significantly different for each
method (p < 0.0001 by global χ2 test). Overall, our method
allowed to correctly classify 92% of respiratory cycles, versus
33% for the method derived from Al-Rawas et al. (p < 0.0001
versus CDME) and 64% for Vicario et al.’s method (p < 0.0001
versus both CDME and the method derived from Al-Rawas et
al.).

In order to test the robustness of this result towards the mag-
nitude of simulated muscular pressure, we conducted in the ap-

pendix a sensitivity analysis that excludes cycles with simulated
muscular pressure larger than 25 cmH2O. The results of this
analysis (7257 cycles) are provided in Table 5. The result ob-
tained is similar to the one presented in the main analysis, with
a classification accuracy of 38%, 91%, and 72% for the method
derived from Al-Rawas et al., CDME, and Vicario’s method,
respectively (p < 0.001 for all comparisons).

3.4. Computational load

The computation cost of the method derived from Al-Rawas
et al. and of the CDME method are similar, in the sense that
they are both linearly proportional to the sampling frequency.
Their computational load is associated to the resolution of sev-
eral standard least squares problems: two for the former against
four for the latter. The dimension of these optimization prob-
lems is bounded by the number of signal samples measured dur-
ing a ventilator cycle. In contrast, the computation cost of Vi-
cario et al.’s method is significantly higher. Indeed, it requires
to solve a least squares problem for each possible value of tm
(see [12]). Moreover, the cost of each least squares problem
is large, since it includes inequality constraints, and no closed-
form solution is available (unlike the standard unconstrained
least squares problems involved in the other two methods).

Since the complexity of the three methods is increasing with
the sampling frequency, all of them can be implemented in real
time provided that the sampling frequency is small enough. In
this study, each method was implemented with the highest sam-
pling rate that was compatible with real-time execution. That is,
with an execution time smaller than the period of the shortest
respiratory cycle (arbitrarily set to 1.5 second). The estimation
methods where implemented in the form of a Maltab script run-
ning on an Intel Core i7-10850H CPU, with a clock frequency
of 2.70 GHz.

4. Discussion

We herein report an innovative method for estimating respi-
ratory muscle pressure in patients invasively ventilated in PSV.
Similar to [12], our approach does not require any interruption
of the flow delivered to the patient (see, e.g., [9]). The benefit
of our estimation method is twofold. From a theoretical per-
spective, our work clarifies the identifiability issues associated
with respiratory mechanics parameter estimation, completing
the discussion outlined in [12]. From a numerical viewpoint,
in contrast with [12], the proposed method does not require
to solve a computationally expensive constrained least-squares
optimization problem.

The main results of this study are the following:

• the proposed method can be applied to all respiratory cy-
cles generated with a mechanical simulator (provided that
ineffective efforts are excluded);

• the computational load for analyzing each cycle is short,
allowing for real-time implementation;
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Method: CMDE Al-Rawas Vicario
AUROC 0.97 (0.97,0.98) 0.88 (0.87,0.89) 0.82 (0.80,0.84)
Sensitivity (%) 65 (61,68) 100 (99,100) 44 (40,47)
Specificity (%) 99 (99,99) 61 (60,62) 99 (99,99)

Insufficient respiratory effort (defined by muscle pressure < 5 cmH2O). Aver-
age and 95 % CIs. AUROC: Area Under the Receiver Operating Curve.

Method: CMDE Al-Rawas Vicario
AUROC 0.97 (0.97,0.98) 0.68 (0.67,0.69) 0.87 (0.86,0.88)
Sensitivity (%) 98 (97,98) 4 (3,4) 76 (75,78)
Specificity (%) 93 (92,94) 100 (100,100) 83 (82,84)

Excessive respiratory effort (muscle pressure > 15 cmH2O).

Method: CMDE Al-Rawas Vicario
AUROC 0.98 (0.97,0.98) 0.71 (0.71,0.73) 0.86 (0.86,0.87)
Sensitivity (%) 98 (98,99) 16 (15,17) 90 (89,91)
Specificity (%) 89 (88,90) 100 (100,100) 73 (71,75)

Excessive respiratory effort (muscle pressure > 11 cmH2O).

Table 3: Accuracy of three methods for diagnosing insufficient or excessive
respiratory efforts (two different thresholds are used to define excessive effort).

• the performance in diagnosing insufficient effort is good,
similar to that of the method derived from Al-Rawas et
al.’s;

• the performance in diagnosing excessive effort is excel-
lent, and substantially better than previously published
methods.

The rest of this section provides a more detailed discussion on
these points.

4.1. Performance in diagnosing insufficient effort
The proposed CDME method makes it possible to diagnose

insufficient effort with a high specificity at the cost of an in-
termediate sensitivity. Thus, the risk associated with CDME is
to under-diagnose insufficient efforts. CDME should therefore
be combined with other techniques to improve the detection of
insufficient effort: clinical examination, P0.1, dynamic analysis
of the consequences of a change in the level of pressure sup-
port. Conversely, the method derived from Al-Rawas et al. [13]
exhibits a high sensitivity but a lower specificity, causing risk
of overdiagnosing inadequate effort. This method uses the ex-
piratory part of the cycle to estimate the time constant of the
respiratory system, and the terminal part of the insufflation to
estimate the compliance and resistance. In the related mathe-
matical model, it appears that the inspiratory muscle pressure
is not taken into account, which means that the (implicit) con-
ditions of validity of Al-Rawas et al.’s method are a passive
expiration, and a passive end-insufflation. It is thus expected
that the latter method yields better results for diagnosing weak
efforts, a situation in which the end of insufflation is more likely
to be passive, or at least the muscle pressure at end-insufflation
is negligible compared to the level of pressure support. Finally
and importantly, insufficient efforts are substantially less fre-
quent than excessive efforts in recent studies (see, e.g., [9] and

Method: CMDE Al-Rawas Vicario
Insufficient 474 (64%) 735 (100%) 320 (44%)
Normal 3336 (91%) 1943 (53%) 1941 (53%)
Excessive 4053 (98%) 151 (4%) 3165 (76%)
Total 7863 (92%)∗ 2829 (33%)∗ 5426 (64%)∗

Table 4: Classification accuracy, for detecting insufficient, normal, or excessive
respiratory effort. ∗ denotes p < 0.0001 versus other methods by exact Fisher
test.

[8]). While this does not negate the potential toxicity of insuf-
ficient effort, this highlights the priority of detecting excessive
respiratory effort.

4.2. Performance in diagnosing excessive effort

The performance of the CDME method in diagnosing ex-
cessive respiratory effort is excellent, and significantly better
than the two previously published methods. Importantly, our
results are robust with respect to the threshold defining exces-
sive respiratory effort, which is controversial in the literature.
As discussed in the previous section, the method derived from
Al-Rawas et al. neglects the presence of significant inspira-
tory effort at the end of insufflation. This situation is likely to
occur [27] and, even in some cases, with a respiratory effort ex-
ceeding twice the duration of insufflation, defining a short cycle.
In case of significant respiratory effort at the end-insufflation,
the respiratory system resistance is then strongly underesti-
mated. Thus, the respiratory effort responsible for the gener-
ation of the tidal volume is underestimated. Similarly, Vicario
et al. [12] reported that their method provided disappointing re-
sults when the end-inspiratory muscle pressure was not zero.
The authors stated that this situation was exceptional. How-
ever, physiological studies on patient-ventilator asynchronies
revealed that these situations are actually frequent and difficult
to detect by simple visual inspection of the ventilator wave-
forms [27].

4.3. Limitations

While this paper provides a proof of concept of the under-
lying mathematical method, validated via a large set of experi-
mental data, our work has several limitations. First, this work
was carried out on cycles created on a high-fidelity ventilation
simulator, not on patients. Thus, analyzed data were not subject
to errors caused by other phenomena, such as cardiac activity.
Compliance was considered constant, and flow was considered
laminar. Ineffective efforts were excluded. Nevertheless, both
premature and delayed cycling were analyzed. Whether our re-
sults can be transposed to real patient data is unknown. Second,
the simulated patients were passive during expiration. Third,
only one ventilator was tested, and no endotracheal tube was
used. Last, data were recorded with the simulator rather than
with the ventilator, implying a different sampling rate. Our ob-
jective was to generate a method applicable to a wide range of
clinical situations, and thus to the full range of possible com-
binations of respiratory mechanics and effort, which is possible
to test only using a simulator.
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Appendix A - Sensitivity analysis

In our main data set, the values of Pmus are limited
to 30 cmH2O. This limit has been taken relatively high in or-
der to cover all possible situations. Nevertheless, we verify in
Tab. 5 that considering a smaller limit of 25 cmH2O provides
similar results for the classification of insufficient or excessive
respiratory effort.

Method: CMDE Al-Rawas Vicario
AUROC 0.97 (0.96,0.97) 0.87 (0.86,0.88) 0.80 (0.78,0.82)
Sensitivity (%) 65 (61,68) 100 (99,100) 44 (40,47)
Specificity (%) 99 (99,99) 59 (57,60) 99 (99,99)

Insufficient respiratory effort (defined by muscle pressure < 5 cmH2O). Aver-
age and 95 % CIs. AUROC: Area Under the Receiver Operating Curve.

Method: CMDE Al-Rawas Vicario
AUROC 0.97 (0.97,0.98) 0.66 (0.65,0.68) 0.85 (0.84,0.85)
Sensitivity (%) 98 (97,98) 4 (3,4) 69 (67,70)
Specificity (%) 93 (92,94) 100 (100,100) 83 (82,84)

Excessive respiratory effort (muscle pressure > 15 cmH2O).

Table 5: Accuracy of three methods for diagnosing insufficient or excessive res-
piratory efforts (on a data set limited to the cycles for which Pmus ≤ 25cmH2O).
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