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Introduction: Production systems are bound to operate in stochastic conditions.
Prominent sources of performance-reducing uncertainty are constituted by
machine failures, decision errors, and fluctuating supplies. This article offers a
novel approach to uncertainty through modelling and simulation of nonlinear
production systems. In particular, the authors consider production systems
where the output is drastically reduced when a resource of fluctuating input
values reaches an upper threshold.

Methods: The article introduces minimal models of such hreshold-impeded
stochastic production (TISP) systems and the system performance (i.e., the
output) is analyzed as a function of system parameters (e.g., the type of
nonlinearity) and noise input features (e.g., the distribution width or time
correlations). Applications to steel manufacturing via continuous casting and
power generation through wind turbines are discussed in detail.

Results and Discussion: The simulation experiments illustrate that especially the
extent of the input fluctuations affects the output performance which is why the
authors recommend that TISP system operators counterbalance such fluctuations
if possible.

KEYWORDS

production systems, uncertainty, minimal model, simulation, optimization, Ornstein-
Uhlenbeck process

1 Introduction

1.1 Context

Uncertainty and stochasticity compromise real-life production systems in many ways.
For instance, customer demand, customer order changes, operator absences (Merten et al.,
2022a), machine breakdowns, or supply delays are very difficult to predict, and, thus, they
pose a difficult challenge for the managers and operators of such production systems (Koh
et al., 2002). Failure to cope with uncertainty might result in reduced customer order
punctuality (Koh and Saad, 2002), quality issues, increased production costs, and
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diminished performance in general. Additionally, production
systems often entail nonlinear transformations or correlations.
One nonlinear transformation of this sort (Pervozvanskii, 1965)
is portrayed by a system that has a precisely defined upper threshold
on the input, above which production is forced to stop and stays idle
for a fixed amount of time. The disruptive interplay of a threshold
and uncertain inputs described here is also of relevance in the
context of predictable production (Cho and Erkoc, 2009).

While the threshold value is usually beyond the system
operator’s control, the average production level (i.e., the input)
can frequently be selected at will. Therefore, such systems display
a fundamental optimization problem that covers the interface of
production planning and control as well process design: How to
choose the average input level of threshold-impeded stochastic
production (TISP) systems–given the input fluctuation type, the
threshold value or the duration of the idle time–so that the system’s
output is maximized? Figure 1 offers an intuitive graphical
representation of this question: By altering the mean of the input
stochastic distribution (e.g., 0.45, 0.55, or 0.65 input units per unit
time) and trimming values that exceed the upper threshold of 0.70
input units per unit time, the authors provide evidence that the
system’s output indeed has a maximal value.

1.2 Research goals

The goals of this investigation are: 1) The authors introduce the
basic notion of threshold-impeded stochastic production systems. 2)
The authors show that these systems display a non-monotonous
relationship between the production output and the average input
level (representing the resource load at which the production system is
run). This relationship is a universal feature of such TISP systems. 3)
The authors offer a method to assess the output sensitivity of TISP

systems in response to varying system and input parameters. 4) The
authors illustrate applicability of this theoretical concept to real-life
systems through two application scenarios which both fall into the
category of TISP systems.

1.3 Application scenarios

TISP systems can be found in diverse industrial contexts such as
the continuous casting of steel and the generation of electric power
through wind turbines. For example, if a continuous caster operates
so fast that the mass flow of manufactured steel outruns the supply
of liquid steel, the entire casting procedure needs to be interrupted
for maintenance (Merten et al., 2022b). Analogously, wind turbines
have to be switched off during stormy weather, or else they will
possibly suffer structural damages (Klimstra and Hotakainen, 2011).
The idea behind choosing two vastly different application scenarios
is to emphasise the wide-ranging applicability of TISP concepts.

1.4 Approach

The authors intend to approach the TISP-inherent optimization
problem by abstracting real-life nonlinear systems into minimal
models (Batterman and Rice, 2014), capturing the “stylized facts” of
the production mechanisms and then revealing, via careful
numerical analysis, the influencing factors that allow an accurate
control of the system. The study of nonlinear dynamics has a long
tradition of contributing to a better understanding of phenomena in
industrial production, assembly and supply systems (Chankov et al.,
2016; Alkan et al., 2018; Chankov et al., 2018; Lin and Naim, 2019).

The stylized representation of TISP systems allows one to define
TISP subtypes, which lead to various input-output relationships and

FIGURE 1
(A) Gaussian input distributions for three different means (0.045, 0.055, and 0.065 input units per unit time, respectively) and a cut-off threshold of
0.070 input units per unit time; (B)output as a function of the inputmean (i.e., average production level) given aGaussian input distributionwith a standard
deviation of 0.01 input units per unit time.
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sensitivities with respect to noise types. To this end, the authors consider
the output of TISP systems that exhibit typical nonlinear
transformations, as sketched in Figure 2. Depending on the
application scenario, three TISP subtypes are distinguished (i)
standard TISP: The nonlinearity of the system (i.e., the threshold):
brings excess input values down to zero (see Figure 2B); (ii) penalized
TISP: The nonlinearity brings excess input values to a value below zero
(see Figure 2C); (iii) lagged recovery TISP: After excess input values are
reduced, the system is unable to produce further output for a certain
number of time steps (see Figure 2D).

In order to provide a quantitative relationship between the generic
TISP systems (i.e., standard, penalized, or lagged recovery) and the
application scenarios outlined above, the authors estimate the systems’
output (i.e., steel mass flow and electric power) by simulating and
transforming random input values from several probability models
(e.g., uniform or Weibull noise) as well as computing expected values
numerically. Since these expected values originate in output integrals
of the minimal models, it is shown how the models compare against
the simulated outputs. Then, varying the average input level enables
one to determine the maximally achievable output and its
corresponding parameter values. This procedure is repeated
numerous times subject to changing statistical features of the noisy
input (e.g., distribution width) and other experimental parameters
(e.g., penalty and lag size) which reveals how sensitive the system
output is to such adjustments. For the continuous casting application,
the authors also examined time-correlated input from an Ornstein-
Uhlenbeck process that experiences a lagged recovery nonlinearity
(see Figure 2D). Contrasting the mean-reversing behavior of an
Ornstein-Uhlenbeck process with uncorrelated Gaussian input will
demonstrate the impact of noise correlations on the production
performance.

1.5 Novelty

To the authors’ best knowledge, the category of TISP systems has
not been described before. Understanding such high-level categories
can be helpful for production planning and control, where the
resource load either can be selected or the system can be set up
to perform optimally at typical input levels, and for a more detailed
modeling of specific systems. For such modeling efforts, the authors
argue that in any TISP system, non-monotonous input-output
relationships will be encountered independent of the intricacies
of the mathematical or computational model.

1.6 Outline

The remainder of this article is organized in the followingway: First,
the authors present selected works revolving around uncertainty in
production systems and they point out in what sense this study fits into
the research landscape (Section 2). Section 3 (“Application scenarios”)
explains the productionmechanisms and input distributions behind the
two scenarios, i.e., steel continuous casting and wind power generation.
Once the underlying production mechanism has been understood, the
authors establish the expected value integrals that describe the output of
the various TISP system subtypes (see Section 4 “Minimal models”). In
Section 5, the Ornstein-Uhlenbeck process for time-correlated input
values is introduced which becomes useful in the case of the lagged
recorvery TISP system (see Figure 2D). Section 6 (“Methods”) discloses
the simulation framework and it reveals how the minimal models as
well as the respective system or input parameters are deployed to assess
the output sensitivity of TISP systems. Throughout Section 7, the
numeric and simulation results are presented and discussed before,

FIGURE 2
Examples of generic TISP subtypes; (A) 20 time steps of uniformly distributed random input values; the input values are processed by a threshold
device acting as a nonlinear transformation (i.e., (B) standard TISP, (C) penalized TISP, or (D) lagged recovery TISP).
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finally, in Section 8 the authors conclude the findings and give an
outlook on promising future research directions.

2 Related work

2.1 Control and flexibility

In response to uncertainty, Correa (1992) offers two remedies,
namely, control and flexibility. “Control” includes all efforts that aim at
proactively reducing uncertainty before it arises, whereas “flexibility”
stands for reactively coping with uncertainty after it has arisen.
Angkiriwang et al. (2014) compare the usage of reactive uncertainty
strategies such as buffering and proactive uncertainty strategies such as
redesigning. However, buffering will not have the desired effect if the
interplay between uncertain production inputs and TISP thresholds
complicates the determination of appropriate buffer strategies.
Similarly, redesigning the production process will not reduce
uncertainty if the production process cannot be redesigned further
due to technology and cost restrictions or saturation effects.

Sreedevi & Saranga, (2017) state that flexibility helps “in
reducing [. . .] supply and manufacturing process risks” but the
“effect is context-dependent.” As a solution to this, the authors offer
a generalized description of uncertainty in threshold-impeded
production systems that can be adapted to different contexts (the
only condition being that the production mechanism itself is
understood and can be modelled mathematically). Regardless of
whether common control or flexibility strategies are applicable, this
description deepens the understanding of production outputs and
their sensitivity to uncertain inputs.

2.2 Rescheduling

Production uncertainty can be combatted reactively through
rescheduling (Vieira et al., 2003; Psarommatis et al., 2021).
Rescheduling has a long history in the steel industry; especially
multi-agent systems were often used for this purpose (Cowling et al.,
2003; Cowling et al., 2004; Ouelhadj et al., 2004). More recently,
evolutionary algorithms (Guo and Tang, 2019; Merten et al., 2024)
and machine learning (Iglesias-Escudero et al., 2019; Li et al., 2020)
have become the preferred solutions. However, all of these solutions
are extremely context-dependent and they are invalid with respect to
other application scenarios such as wind turbines. As stated above,
this is something the authors try to avoid with the TISP approach.

2.3 Buffering and diversification

In the context of wind turbines, a common “buffering” strategy
comprises changing the orientation of the wind turbine rotor blades
with respect to the direction from which the wind is blowing. So, one
can either harness more energy by aligning the rotor blades with the
wind or protect the wind turbine from strong winds by turning the
rotor blades away from the wind input direction (Castellani et al.,
2015; Yan, 2015). Nevertheless, this is only feasible for rather small
variations in the wind speed and, again, this strategy is highly
context-dependent.

On top of that, to reduce the power output variability of wind
farms, diversification methods could be applied. For instance,
spatially distributing wind turbines over a given area (Cassola
et al., 2008) or combining different types of wind turbines (e.g.,
smaller turbines for weaker winds and larger turbines for stronger
winds) helps to reduce variability. One a higher level, it is even
feasible to interconnect entire wind farms (Archer and Jacobson,
2007; Katzenstein et al., 2010). While these diversification methods
are to some extent adaptable to other application scenarios such as
steel continuous casting, they primarily aim at only reducing the
output variability but not at maximizing the overall output.
Nevertheless, output maximization is “usually one of the most
important objectives for any [wind farm] designer” because it is
closely linked to the revenue of a wind farm company (Feng and
Shen, 2017). On the contrary, maximizing the overall output is the
central purpose of the TISP approach as explained in the
introduction of this article.

In steel continuous casting, the tundish (which is a reservoir of
molten steel; see Section 3) may serve as a buffer containment.
Therefore, it can be used to slightly slow down or ramp up the
production process. Yet, the tundish’s ability to combat uncertainty
is limited because changing the flow pattern of the molten steel has
profound effects on the steel quality (Zhong et al., 2007). Besides,
one has to consider a multitude of constraints when adjusting the
casting speed or else the resulting steel strand might be torn apart or
it might not be sufficiently solidified before leaving the production
machine (Merten et al., 2022b). Both these occurrences would cause
the production to halt for cost- and time-intensive maintenances.

2.4 Modernization

A proactive way to reduce uncertainty is to modernize the
production environment (Gerwin and Tarondeau, 1982; Ettlie,
1990; Groover, 2006; Bertsimas and Thiele, 2014; Dotoli, et al.,
2019; Ghobakhloo, 2020). For this purpose, Industry
4.0 technologies such as cyber-physical systems (CPS), internet of
things (IoT), artificial intelligence (AI), and cloud computing
(Zhong et al., 2017; Xu et al., 2018; Oztemel and Gursev, 2020)
are routinely implemented. In particular, AI applications have
proven valuable as means to combat production uncertainty
(Iglesias-Escudero et al., 2019; Arinez et al., 2020). For example,
Roy et al. (2004) describe an inference model that is capable of
handling schedule disturbances in steel production. With respect to
wind turbine control and optimization, neural networks are
frequently utilized (Chatterjee and Dethlefs, 2021). But what is to
be done in production environments where access to advanced
technologies is limited or the necessary input data does not exist (Lee
et al., 2013)? In fact, many steel factories still fall under this category.
For these situations, the authors offer a technique that, instead of
focusing on individual input events or threshold violations, yields
universal recommendations which work very well on average.

2.5 Analytical models and simulation

On a more theoretical level, Peidro et al. (2009) suggested
analytical models and simulations (Aouam et al., 2018; Jamalnia
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et al., 2019; Gupta and Maravelias, 2020; Tordecilla et al., 2021).
Simulation tools have been successfully deployed to tackle
uncertainty in production systems (Negahban and Smith, 2014;
Jeon and Kim, 2016; Zhang et al., 2019) because “due to [their] low
cost, quick analysis, low risk and meaningful insight that [they] may
provide” (Mourtzis, 2020) simulation tools allow “for the
experimentation and validation of [. . .] process and system
design” (Mourtzis et al., 2014) and show “unique advantages in
solving practical problems” (Zhang et al., 2019). Nevertheless, a few
research gaps concerning state-of-the-art simulation tools have been
identified: (i) Capable tools only exist for a selective subset of
application scenarios (Mourtzis et al., 2014) and (ii) “unified
approaches and terminology” are missing (Mourtzis, 2020). As a
solution to this, the methodology can be viewed as a simulation
toolbox that is adaptable to diverse application scenarios and,
regardless of the scenario, always follows the same underlying
recipe or approach.

3 Application scenarios

3.1 Steel continuous casting

Over the past 70 years, continuous casting has widely replaced
ingot casting as the primary fabrication method for steel slabs
(Santos et al., 2003). The working principle of a continuous
caster is shown in Figure 3. First, the steel alloy is poured into
the tundish from which it passes through a mold. Here, the tundish
serves as a funnel and buffer containment that ideally ensures a
constant delivery of liquid metal. The design of the mold basically
dictates the shape and proportions of the emerging steel slabs, while
the amount of steel flowing across the mold can be modified with the
help of a nozzle. At the mold exit, the nascent steel slabs are still

largely molten, and secondary cooling in the form of water sprays
has to be carried out for further shell solidification (Irving, 1993).

Extensive attempts have been made to increase the operating
speed of casters and, therefore, their output. Faced with the
ubiquitous compromise between output maximization (Li and
Thomas, 2000) and process quality/steadiness, numerous
researchers have examined likely limitations of the operating
speed (Merten et al., 2022b) which, among others, encompass
several customer-dependent slab properties (e.g., slab
dimensions). For instance, to ensure sufficient shell solidification
the operating speed has to be chosen so that the slabs have enough
time to solidify. This solidification time is tightly linked to one of the
most important planning parameters in steel production (Özgür
et al., 2021), namely, the slab thickness (Thomas, 2002). In practice,
it is often not possible to maintain a constant operating speed which
would be beneficial for the slab quality (Zhang et al., 2006;Wang and
Zhang, 2010; Zhang and Wang, 2010) since subsequently
manufactured customer orders typically exhibit divergent
thickness values.

Another example shedding light onto the output maximization
trade-off is discussed inMerten et al. (2022b). The authors inspected
historical production data from an industrial casting machine which
revealed an abrupt adjustment of the casting speed strategy and,
subsequently, they traced this regime transition back to the existence
of a theoretical limit for the maximum achievable steel mass flow. In
essence, this maximum achievable steel mass flow is motivated by
the fact that the tundish (see Figure 3) must not run out of liquid
steel. As soon as the steel mass flow (and, hence, the operating speed)
exceeds this maximum limit, the continuous casting process has to
be stopped for cost-intensive and time-consuming maintenance
during which no output can be generated.

In this application scenario, the system’s input uncertainty
originates from complex planning constraints (Merten et al.,
2022a) as well as unstable customer demand entailing
fluctuations of the casting speed-relevant variables. At the same
time, a threshold/nonlinear transformation is imposed by the
maximum achievable steel mass flow beyond which the steel slab
might be torn apart (Merten et al., 2022b). These systemic features
turn the continuous casting of steel into a TISP device.

3.2 Wind turbines

Wind turbines play an important role in today’s renewable
energy market (Liu et al., 2013; Wood et al., 2013). By means of
rotor blades and an electric generator, they convert wind kinetic
energy into electric energy, where the relationship of the wind speed
v (unit: m/s) and the generated electrical power P (unit: kg × m2/s3)
is demonstrated to be cubic (Bergey, 1979; Salameh and
Safari, 1992):

P � ρAv3

2
,

where ρ and A denote the air density (unit: kg/m3) and the rotor
blade swept area (unit: m2). Typically, wind turbines are
characterized by three different thresholds on the wind speed
(i.e., cut-in, rated and cut-out speeds) that govern the
transformation from wind to energy. At speeds below the cut-in

FIGURE 3
Steel slab production through continuous casting; the liquid
(solid) steel is colored yellow (red); abstracted from Louhenkilpi, 2014.
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threshold vin, no electric energy is built up because of static friction
between the mechanical components of the wind turbine and
negligible torque on the rotor blades (Wood et al., 2013). Above
the cut-in speed, the electric energy production grows substantially
with the wind speed; however, wind turbines are constructed to trim
any energy surpluses beyond a rated threshold vr corresponding to
the maximum capacity of the integrated electric generator (Manwell
et al., 2010; Wood et al., 2013). Moreover, wind turbines need to be
protected against storms as pointed out earlier. Thus, they are shut
down as soon as the wind speed surpasses a specified cut-out
threshold vout (Klimstra and Hotakainen, 2011). The impact of
the wind intensity on the electric power output is commonly
documented in power curves (Carrillo et al., 2013; Hau, 2013). A
schematic illustration of such a power curve is shown in Figure 4
(Salameh and Safari, 1992). In the theoretical framework, the wind
corresponds to the stochastic input, whereas the wind turbine and its
speed thresholds act as a nonlinear transformation. Based on these
technological aspects, the authors stylize the functioning of a wind
turbine as a TISP system and they utilize various minimal models
(see Section 4) to study how wind turbine parameters as well as the
wind speed pattern affect the turbine performance.

From the principles of fluid flow, Lanchester and Betz have
deduced a physical boundary for the maximum energy that can be
obtained through wind turbines (Bergey, 1979). More recently, the
literature concerning wind energy mainly addressed two distinct
research topics—(i) the fitting of stochastic distributions to wind
speed data (Morgan et al., 2011) and (ii) the analysis of technical
details of wind turbines (Carrillo et al., 2013)—with some articles
considering both jointly (Kwon, 2010; Liu et al., 2013). While
Morgan et al. (2011) explore the suitability of theoretical wind
speed models with regards to offshore wind measurements,
Carillo et al. (2013) evaluate a series of generic equations to
approximate the conversion of wind to energy via wind turbines.
Stevens and Smoulders (1979) observe the energy production as a
function of the Weibull distribution shape parameter (whereby the
Weibull distribution is the most commonly used distribution to
characterize wind speeds). Furthermore, frameworks that enable one
to match wind turbines to wind speed distributions/wind sites are
provided by Salameh and Safari (1992)/Ritter and Deckert (2017).
Here, the authors intend to expand previous methodologies through
additional TISP features such as penalties and lagged recoveries.

4 Minimal models

In order to assess the parameter sensitivity of a TISP system on
the output performance Y, minimal models are developed that
quantitatively explain the transformation process undergone by
the noisy input X. Successively, the authors consider the three
generic TISP systems already mentioned (i.e., standard, penalized
and lagged recovery) and their application to steel continuous
casting and wind power generation. When uncorrelated over
time, the noisy input per unit time is fully described by an
independently distributed random variable X with the probability
density f(x). The case of a time-correlated input X(t) requires the
framework of special stochastic processes such as the Ornstein-
Uhlenbeck process (see Section 5).

Standard TISP system (uncorrelated noisy input; both
application scenarios): In the case of standard TISP systems, the
predicted average outcome per unit time Y can be computed via the
expected value E[g(X)] � ∫∞

0
g(x)f(x)dx, as done in Bendat and

Piersol (2011). The modelling step lies in devising the appropriate
transformation g(·) of the input X, such that Y � g(X). In
particular g(·) involves the threshold(s) controlling the
functioning of the TISP system and the accompanying nonlinear
transformation(s) of the input.

In the case of steel continuous casting, there is only one upper
threshold T, corresponding to the maximum mass flow (i.e., mass
per unit time) above which the machine must stop (Merten et al.,
2022b). When the system operates below the threshold, the output is
equal to the input, therefore gsteel(X) � X 1[0,T](X). On average,
it becomes:

E Ysteel � gsteel X( )[ ] � ∫T

0
xf x( )dx

In the case of a wind turbine, the power curve depicted on
Figure 4 leads to:

E Ywind � gwind X( )[ ]∝∫vr

vin

x3f x( )dx + v3r∫vout

vr

f x( )dx

where vin, vr, and vout are the cut-in, rated and cut-out speeds,
respectively (Wood et al., 2013). The function gwind(X) involves
these three thresholds and the above-mentioned cubic relationship
between the wind speed and the generated power P � ρAv3/2
(Bergey, 1979; Salameh and Safari, 1992), namely, gwind(X) �
(ρA/2)[X3 1[vin,vr](X) + v3r 1[vr,vout](X)].

Note that in both application scenarios (steel continuous casting
and wind power generation), the simulation of the TISP system
amounts to computing g(x) for each sampled value x of the noisy
input (sampled according to the prescribed distribution f(·));
therefore, the set of simulated outcomes corresponds to a
sampling of the above expected value E[Ysteel] or E[Ywind]. If
real-life production data was available (i.e., input and output
data), this data could be used to configure the minimal model
and test its suitability.

Penalized TISP system (uncorrelated noisy input, both
application scenarios): In penalized TISP systems, overshooting
the upper threshold (T or vout) leads to a negative outcome −p,
mimicking situations where some of the production output has to be
discarded. Specifically, such a penalty could arise in the two
application scenarios considered here for the following reasons: 1.

FIGURE 4
Typical power curve relating the wind speed to the power output
of a wind turbine (Salameh and Safari, 1992); it exhibits three
thresholds: cut-in, rated and cut-out speeds.
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If the continuous casting process needs to be rebooted after an
abrupt cast break, some of the initial yields may have to be
disregarded until the caster reaches steady manufacturing
conditions. 2. In order to shut down/start up a wind turbine due
to a storm, some electrical power will be required which
consequently cannot be fed into the grid. For the continuous
casting system, this effect is taken into account by adding a
penalty term −psteel 1]T,∞](X) to the above-mentioned function
gsteel(X), which leads to a new formula for the average output
per unit time:

E Ysteel[ ] � ∫T

0
xf x( )dx − psteel∫∞

T
f x( )dx

Similarly, for the wind power application scenario, a term
−pwind 1]vout ,∞](X) is added to the above-mentioned function
gwind(X) so that the average output turns out to be:

E Ywind[ ]∝∫vr

vin

x3f x( )dx + v3r∫vout

vr

f x( )dx − pwind∫∞

vout

f x( )dx

Lagged recovery TISP system (uncorrelated noisy input, both
application scenarios): The authors also consider the possibility that
resetting the TISP system after overshooting the upper threshold
takes some time, say, l production time steps. Additional threshold
violations during this lag result in repeated shutdowns and delay the
moment when the production resumes (i.e., after l time steps
without exceeding the threshold).

The authors denote FX the cumulative distribution of the
random variable X, namely, FX(T) is the probability that the
input X lies below T during the considered time step. In the
absence of time correlations, the condition that the input does
not overshoot the threshold T during l time steps is taken into
account through a multiplicative factor [FX(T)]l. For the two
application scenarios this yields:

E Ysteel[ ] � FX T( )[ ]l∫T
0

xf x( )dx

E Ywind[ ]∝ FX vout( )[ ]l ∫vr
vin

x3f x( )dx + v3r ∫vout
vr

f x( )dx⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
Note that in this case, the output Y is not related in a simple way

to the input X, i.e., it is no longer possible to write Y � g(X) since
the output depends on several preceding input steps. However, when
the input is not time-correlated (as in this case) this phenomenon is
already reflected in the average output value given above.

Combination of penalized and lagged recovery TISP system
(uncorrelated noisy input; both application scenarios): Barring any
time-correlated inputs, the lagged recovery TISP system can adopt
penalized TISP features through (i) the addition of a term
−p 1]T,∞](X) to the production event occurring after l steps and
(ii) the contribution of a penalty p (with probability 1 − [FX(T)]l) in
case of a shutdown event occurring during these l steps:

E Ysteel[ ] � FX T( )[ ]l ∫T
0

xf x( )dx − psteel∫∞

T
f x( )dx⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦

− psteel 1 − FX T( )[ ]l( )

E Ywind[ ]∝ FX vout( )[ ]l ∫vr
vin

x3f x( )dx + v3r ∫vout
vr

f x( )dx − pwind∫∞

vout

f x( )dx⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦
− pwind 1 − FX vout( )[ ]l( )
Lagged recovery TISP system (correlated noisy input; steel

continuous casting only): Time-correlated inputs only matter
when some integration over multiple time steps occurs in the
production process. In lagged recovery TISP systems, the
sequence of input values during l steps and its joint probability
has to be taken into account. To be specific, the authors detail the
computation for the continuous casting system: The output Yt at
time t depends on the inputs at times t, t − 1, . . ., t − l. Computing its
averages involves the joint probability ofXt,Xt−1, . . .,Xt−l, through
the joint density f(x, x1, . . . , xl). The authors introduce the
conditional density depending on the preceding l input values:

f x, x1, . . . , xl( ) � f x | x1, . . . , xl( ) × f x1, . . . , xl( )
The average output for the continuous casting application

scenario can then be expressed as

E Yt( ) � ∫T

0
. . .∫T

0
dx1 . . . dxlf x1, . . . , xl( ) × ∫T

0
xf x |x1, . . . , xl( )dx

where the contribution ∫T
0
. . .∫T

0
dx1 . . . dxlf(x1, . . . , xl) is simply

equal to [FX(T)]l in the absence of time correlations. The wind
turbine scenario is not considered for this kind of TISP system due to
the increased mathematical complexity that comes with the addition
of time correlations to the output model.

5 Ornstein-Uhlenbeck (OU) process

A standard framework for modeling the noisy input of TISP
systems is that of stochastic processes, in particular the Ornstein-
Uhlenbeck process for the case of a time-correlated input. The latter
is a stochastic processXt (t> 0) defined by the stochastic differential
equation dXt � θ(μ −Xt)dt + σdWt where μ is the theoretical
mean of the process (computed as the long-run empirical mean)
and θ is called the stiffness (or the rate of mean reversion), while σ
denotes the diffusion coefficient (also termed volatility) and Wt is a
standard Wiener process (Maller et al., 2009). As opposed to
standard Brownian motion, an OU-particle (i.e., a particle whose
motion Xt follows an OU-process) converges towards a constant
level μ by drifting upwards whenever Xt < μ and downwards
whenever Xt > μ (Uhlenbeck&Ornstein, 1930). Aside from
statistical physics, OU-variants were adopted in financial
mathematics (Vasicek, 1977) and neuroscience (Ricciardi and
Sacerdote, 1979; Laing and Lord, 2010). In the context of this
article, OU-processes can be viewed as analogous to production
environments with implicit mean-reverting features. Such features
could manifest themselves, for instance, through system operators
that meticulously attempt to counterbalance fluctuations in the
production process.

Ornstein and Uhlenbeck (1930) have proven that the
motion of OU-particles is normally distributed; Hence,
expressions for the mean and covariance function of an OU-
process are easily derived (Maller et al., 2009). An OU-processXτ

Frontiers in Industrial Engineering frontiersin.org07

Merten et al. 10.3389/fieng.2024.1353531

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2024.1353531


with start value X0 has mean X0 × exp(−θt) + μ(1 − exp(−θt))
and variance (σ2/2θ) × (1 − exp(−2θt)):

Xt ~ N X0 × exp −θt( ) + μ 1 − exp −θt( )( ), σ2
2θ

1 − exp −2θt( )( )( )
Besides, Gillespie (1996) contributes an efficient algorithm for

the simulation of the position and velocity of OU-particles. Special
interest was shown in the question at what time an OU-particle
exceeds a given distance S from its equilibrium position (Thomas,
1975; Cerbone et al., 1981; Alili et al., 2005). The mean, variance, and
skewness of this so-called hitting time are disclosed in Cerbone et al.
(1981). For an OU-process starting at its theoretical mean μ, they
report the mean hitting time H as (Cerbone et al., 1981):

H S
∣∣∣∣ θ, μ, σ2( ) � 1

2θ
∑∞
n�1

��
2θ
σ2

2√
S − μ( )( )2n

n 2n − 1( )‼

+
���
π

θσ2

2
√

S − μ( )∑∞
n�0

��
2θ
σ2

2√
S − μ( )( )2n

2nn! 2n + 1( )

During the numerical experiments of output performance, the
authors use this mean hitting time as the simulation length for the
OU-process (see Sections 6 and 7).

Note that such time-correlated input processes only impact the
output productivity in the case of a lagged recovery TISP system (see
Figure 2; Section 4). Apart from an OU-process, the authors could
have chosen any other type of time-correlated input but they wanted
to deploy a stochastic process for which the probability density can
be written in terms of elementary functions. This will be helpful with
regards to the minimal models presented in Section 4.

6 Methods

As stated earlier, the goal is to investigate the output sensitivity of
TISP systems to changing process parameters through minimal models
(see Section 4) and simulations. The output simulations are achieved by
creating input samples with the desired type/extent of randomness and
subsequently transforming them through the TISP system. For
comparison reasons, the output integrals from Section 4 are
numerically integrated and held against these output simulations.

Based on regression methods, the authors then investigate the
optimal output’s dependence on tunable process parameters. Here,
the distribution width w/shape k, the penalty p, and the recovery lag
l can be varied as well as the kind of noisy input, as described by the
probability density f(x). First, the authors consider uncorrelated
input, then a lagged recovery TISP model fueled by correlated
Ornstein-Uhlenbeck noise. The latter TISP model is only
deployed in the continuous casting of steel scenario, whereas the
experiments for uncorrelated noise apply to both real-life scenarios.

6.1 Uncorrelated noisy input (both
application scenarios)

For both application scenarios–the continuous casting of steel
and the generation of power via wind turbines–the authors choose

the input probability distributions according to the pertaining
literature and industrial data. A summary of all distributions is
presented in Table 1 and an explanation for their parameters is
enclosed in Table 2. Moreover, Table 2 indicates the range of the
noise parameter values in the numerical experiments.

As can be seen in Table 1, the authors characterize the mass flow
data (Merten et al., 2022b) by uniform and symmetric triangular
distributions, while wind speeds are most commonly reproduced by
Weibull distributions (Stevens and Smulders, 1979). The mean steel
mass flow as well as the scale of the wind speed distribution are
varied between 0.055 and 0.070 tons per second as well as 1.00 and
25.00 meters per second, respectively (see Table 2). Also, the authors
select the threshold wind speeds vin, vr, vout as reported in Carillo
et al. (2013) and the maximum possible steel mass flow T according
to Merten et al. (2022b). The cut-off thresholds T and vout are fixed
at 0.070 meters per second and 27.00 meters per second (see
Table 3), respectively.

After studying the discrepancy between the numerical
integration and the simulations, the authors determine, by means
of regression, the position of the performance maximum as a
function of the noise parameters w/k, the penalty p, and the lag
l. For this purpose, the “combination of penalized and lagged
recovery TISP” system (see Section 4) is implemented as a
minimal model because it embeds the “standard TISP” system
(p � l � 0), the “penalized TISP” system (l � 0), and the “lagged
recovery TISP” system (p � 0) in its limits.

6.2 Time-correlated noisy input (steel
continuous casting only)

Next, the effects of input correlations on the output productivity
of a lagged recovery TISP system (lag l � 1) are examined (see
Section 4) with respect to the continuous casting application
scenario. To this end, the authors use correlated noise from an
Ornstein-Uhlenbeck process and white Gaussian noise as a baseline
comparison. The distribution mean μ varies from 0.055 to 0.070
tons/second, whereas the standard variation σ changes between
0.001 and 0.030 tons/second. The OU-specific parameters are
located between 2 and 10 (for the stiffness θ) as well as 0.055
and 0.070 tons/second (for the theoretical mean μ/start value x0),
respectively. For both types of input fluctuations, the authors assume
the same threshold parameter as in the previous subsection (see
Subsection 6.2).

For the simulation of the OU-process starting at a start valueX0

equal to its theoretical mean μ, the process’ mean hitting time H
(Cerbone et al., 1981) is adopted as the simulation length. Through
Bland-Altman diagrams (Bland and Altman, 1986), the authors
assess the validity of the hitting time formula (see Section 5) by
comparing it with the average time span that a simulated OU-
process needs to exceed a given distance from its equilibrium mean.
Bland-Altman diagrams plot the difference between two
measurement series against the (arithmetic) average of the two
series; they visualize to what degree the series deviate from each
other through the indication of confidence intervals. Afterwards, the
minimal model for time-correlated input (see Section 4) is held
against the output simulations (obtained by transforming a random
OU-sample according to the cut-off threshold T). Finally, the
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authors measure the impact of the noise parameters (i.e., standard
deviation and stiffness) on the position of the performance
maximum by using regression methods.

7 Results and discussion

7.1 Uncorrelated noisy input (both
application scenarios)

7.1.1 Steel continuous casting
As can be seen in the quantile-quantile plots shown in Figure A.1

(see Supplementary Material A), the fluctuations of the input mass
flow in Merten et al. (2022b) are described by uniform and
symmetric triangular distributions to an adequate extent.
Figure 5 and A.2 demonstrate the perfect agreement of the
minimal model and the simulations for these two distributions.
While the size of the penalty or the lag do not seem to affect the
position of the maximum output with respect to the distribution
mean (see Supplementary Material A: Figure A.2), the distribution
width does have a substantial effect. In the selected parameter
ranges, the relationship between the value of the distribution

mean at which the maximum performance occurs and the
distribution width turns out to be linear (see Supplementary
Material A: Figure A.3). Once an optimum has been reached, the
output curve drops off more sharply for the uniform distribution
than for the symmetric triangular distribution. This happens since,
for uniformly distributed input samples, a much larger part of the
area under the probability density curve is located beyond the
threshold compared to the symmetric triangular distribution
(given the same distribution mean μ and width w). Hence,
system operators adjusting the process parameters would have to
be more careful when facing uniformly distributed input.
Furthermore, for longer lags both mass flow curves lose their
concavity as the performance approaches zero (see
Supplementary Material A: Figure A.2). The findings underscore
the relevance of this numerical experiment because, e.g., in the case
of a uniform noise distribution, overshooting the optimal average
production level by less than eight percent may lead to a production
loss that is greater than 23 percent (see Figure 5A).

7.1.2 Wind turbines
In Figure 6, the authors describe the wind power production as a

function of the Weibull distribution scale λ subject to varying
distribution shape k, penalty p, and lag l. Again, the minimal
models agree with the results of the simulations. However, in this
case, the position of the maximum output is impacted by the size of
the penalty and the duration of the lag. Apparently, the distribution
scale optimizing the wind power generation roughly depends on the
square of the penalty and the logarithm of the lag (see
Supplementary Material A: Figure A.4). Besides, the authors
observe that longer lags again induce a shift of curvature from
concave to convex for larger Weibull scale (see Figures 6B, C).
Assuming Weibull-distributed wind speeds, the planners of wind

TABLE 1 Noise types.

Stochastic model Probability density function Parameters Application scenario

Uniform Distribution
f x( ) �

0for x< μ − 0.5wor x> μ + 0.5w

1
w

for μ − 0.5w≤ x≤ μ + 0.5w

⎧⎪⎨⎪⎩
μ, w Continuous casting

Symmetric Triangular Distribution

f x( ) �

0for x< μ − 0.5wor x> μ + 0.5w

4 x − μ + 0.5w( )
w2 for μ − 0.5w≤x≤ μ

4 μ + 0.5w − x( )
w2 for μ≤ x≤ μ + 0.5w

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ, w Continuous casting

Weibull Distribution

f x( ) �
k

λ
x

λ( )k−1 exp − x

λ[ ]k{ }for x≥ 0

0for x< 0

⎧⎪⎪⎨⎪⎪⎩
k, λ Wind power

TABLE 2 Noise parameters.

Parameter Explanation Continuous casting values Wind power values

μ Mean 0.055 to 0.070 tons/second

w Distribution width 0.001 to 0.030 tons/second

λ Weibull scale 1 to 25 meters/s

k Weibull shape 1 to 3

TABLE 3 Threshold parameters.

Parameter Explanation Values

T Maximum possible steel mass flow 0.070 tons/second

vin Cut-in wind speed 5 meters/s

vr Rated wind speed 17 meters/s

vout Cut-out wind speed 27 meters/s
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FIGURE 5
Output mass flow as a function of the mean of the mass flow input distribution for various input distribution widths for the (A) uniform distribution
(distribution width w � 0.01 to 0.03 tons/second; penalty p � 0.00 tons/second; lag l � 0 time steps) and the (B) symmetric triangular distribution
(distribution width w � 0.01 to 0.03 tons/second; penalty p � 0.00 tons/second; lag l � 0 time steps); for each set of parameters the results of theminimal
models (continuous lines) and the simulations (circles) are presented.

FIGURE 6
Output wind power as a function of the scale of the wind speed input distribution under changing (A) distribution shape (distribution shape k � 1 to 3;
penalty p � 0meters / second; lag l � 0 time steps), (B) penalty size (distribution shape k � 3; penalty p � 0 to 30meters / second; lag l � 0 time steps), and
(C) lag duration (distribution shape k � 3; penalty p � 0 meters / second; lag l � 0 to 8 time steps) for the Weibull distribution; for each set of parameters
the results of theminimalmodels (continuous lines) and the simulations (circles) are presented; the power values (y-axis) were obtained by assuming
an air density of ρ � 1.225kg/m3 and a rotor blade radius of r � 100 m.
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farms have to consider threshold-induced power losses (“penalty”)
and downtimes (“lag”) when choosing the wind speed pattern
(i.e., the farm site). Exceeding the optimal distribution scale by
approximately 21 percent might bring a power loss of almost
one-third.

7.2 Time-correlated noisy input (steel
continuous casting only)

Earlier, the authors have established the mean hitting time of an
Ornstein-Uhlenbeck process (see Section 5). In Figure 7, the
analytical formula from Cerbone et al. (1981) is compared with
the average time span that a simulated OU-process needs to surpass
a given threshold, by looking at how much the simulation deviates
from the analytical hitting time. If the cut-off threshold is chosen to
be 0.070 tons per second and change theoretical mean μ (and with it
the starting value x0) from 0.055 to 0.070 tons per second, the
formula predicts the hitting time fairly well for values up to 40 time
steps. This is confirmed by the corresponding Bland-Altman
diagram (Bland and Altman, 1986; see Supplementary Material
A: Figure A.5) as the deviation between the two series of
measurements exceeds the confidence interval consistently only
after 40 time steps.

Figure 8 displays the comparison between the minimal models
and the output simulations for the lagged recovery TISP model (lag
l � 1), in the case of an Ornstein-Uhlenbeck process and an
uncorrelated Gaussian input. Both series coincide seamlessly for
the uncorrelated input type. On the contrary, the discrepancies for
the OU-process tend to increase along the x-axis which is confirmed
by the Bland-Altman diagram (see Supplementary Material A:
Figure A.6). The Authors exclude a systematic divergence
between the minimal model and the output simulation, since the
mean difference between them is close to zero regardless. The
inherent random error presumably originates in the fact that for
larger starting values/theoretical mean values (i.e., very short average

hitting times/simulation lengths) an OU-process may spend a
considerable period above or below the threshold and, therefore,
the arithmetic mean of the simulated output is distorted by chance.
Selecting a smaller simulation step would resolve this problem but is
computationally very expensive.

Apart from this, Figure 8 also suggests that a production device
powered by OU-noise input could be less susceptible to the
disruptive threshold, as the curve associated with the
uncorrelated Gaussian noise sinks much quicker. For a starting
value/theoretical mean equal to the size of the disruptive threshold,
the curves differ by already 50 percent. This is due to the mean-
reverting behavior of the OU-process or the system operator that
meticulously attempts to counterbalance performance fluctuations.
Lastly, the authors monitored what consequences a change in the
input distribution standard deviation or stiffness has on the location
of the maximum performance. The position of the maximum
appears to move logarithmically with the stiffness and inversely
proportional with the standard deviation (see Supplementary
Material A: Figure A.7). Thus, the larger the stiffness (or the
more the input fluctuations are regulated by the system
operator), the better the performance.

8 Conclusion

8.1 Summary

In this article, the authors have examined the output
characteristics of several threshold-impeded stochastic production
(TISP) systems using minimal models and simulations. The output
experiments differ in terms of their input fluctuations (e.g., Gaussian
or Weibull noise), application scenarios (i.e., steel continuous
casting and wind turbines), and nonlinear features of the
transformation (e.g., number of thresholds, magnitude of the
penalties/lags). The influence of multiple input characteristics
(e.g., noise distribution width) on the position of the maximum

FIGURE 7
Mean hitting time of an Ornstein-Uhlenbeck process as a function of the starting value x0 (equal to its theoretical mean μ); the prediction of the
analytical formula (line) and the results of the simulations (circles) are presented for a standard deviation of σ � 0.010 tons/second and a stiffness value of
θ � 2.
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output performance in the parameter space has been explored. It
turns out that for the continuous casting application scenario,
neither the size of the penalty nor the duration of the lag have a
significant effect on the maximum output, while they are essential
for the calculation of the maximum power that can be generated by
wind turbines. Ultimately, time-correlated and time-uncorrelated
inputs have been compared by applying a simple nonlinear
transformation to a mean-reversing Ornstein-Uhlenbeck process
and uncorrelated Gaussian noise. The authors showed that a
hypothetical production apparatus fuelled by OU-noise input
would be superior to an equivalent apparatus fuelled by
uncorrelated Gaussian noise (provided with the same system and
noise parameters). Hence, a machine operator that constantly tries
to dampen the input fluctuations of a TISP-type system improves
the output performance.

8.2 Impact and practical relevance

Our work has further highlighted and developed the work of
Merten et al. (2022b) as they essentially describe the existence of a
TISP system in the continuous casting of steel (see Section 3).
Clearly, in the case of a maximum possible steel flow around
0.070 tons per second, the choice of the mean production level is
immensely important because, for example, overshooting the
optimal level by less than eight percent can theoretically lead to a
production loss that is greater than 23 percent (see Figure 5 (a)). In
fact, since the introduction of the novel production strategy at the
steel factory investigated in Merten et al. (2022b) the ratio of
devaluated casting products has gone down by more than
50 percent. If the value of devaluated products depreciated by
just 20 percent on average and if one assumes a mean mass flow
of 0.05 tons per second as well as a steel price of 1000 US dollars per
ton, this decrease (5.5 percent to roughly 2.7 percent) in
downgrading percentage would entail an optimization potential

of almost 9 million US dollars per year. Analogously, selecting a
suitable location and thereby the right wind speed pattern is crucial
for the construction of new wind farms (see Figure 6). In a way, the
authors have extended the approach of Salameh and Safari (1992)
who developed a framework to determine the correct wind turbine
parameters for a specific wind site by including additional degrees of
freedom related to the amount of energy necessary to restart a wind
turbine after it has been shut down as well as the length of its idle
time following a threshold violation.

8.3 Future outlook

With this work the authors want to draw attention to production
situations, where a balance is required between the process stability
and the strive for increased production–due to both input
stochasticity and the presence of disruptive thresholds. Often
such a balance is hidden within the intricacies of the production
process (e.g., disruptive thresholds masked as load-dependent errors
or sudden declines in product quality when reaching critical load
levels in the production system). Identification of such situations
requires a dialog between different divisions of a production facility
that are responsible for maximizing production (e.g., operations
management) or surveying the occurrence of component failures
and errors, as well as quality standards (e.g., quality control). The
authors believe that the procedure can contribute to this dialog as it
is applicable to any production system that a) relies on stochastic
inputs and b) is subject to nonlinear transformations involving
disruptive thresholds. Accordingly, the authors would like to
encourage researchers to test this methodology with regards to a
wider range of applications scenarios and extra technical details such
as different noise correlations and flavors. One potential scenario for
this endeavour is portrayed by a situation where a company wants to
sell a product through its website. Obviously, more website visitors
should lead to greater sales; however, once a critical number of

FIGURE 8
Output mass flow as a function of the starting value x0 (equal to its theoretical mean μ) for the uncorrelated Gaussian distribution (purple) and an
Ornstein-Uhlenbeck process (orange); the results of the analytical model and the simulations are presented for standard deviation, stiffness and, lag
values of σ � 0.010 tons/second, θ � 2, and l � 1, respectively; for each probability model the results of the minimal models (continuous lines) and the
simulations (circles) are presented.
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visitors is reached the website server might crash resulting in
extended downtimes. The respective company should adjust its
marketing activities to account for this possibility.

In earlier publications (Merten et al., 2022a; Merten et al., 2022b)
we have studied the technical details and algorithmic challenges of
steel production in some detail. Hence, the description here has a
stronger emphasis on this example. With our second example, wind
farms, we wish to emphasize that the TISP systems are not just
confined to this one application domain. We hope that other
researchers are encouraged to think about their production
systems from a TISP perspective.
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