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Guéric Etesse,1, ∗ Chloé Salhani,2, 3 Xiangyu Zhu,2 Nicolas

Cavassilas,1 Kazuhiko Hirakawa,2, 3 and Marc Bescond1, 2, †

1IM2NP, UMR CNRS 7334, Aix-Marseille Université,
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Abstract

Using quantum transport simulations, we study the operating principle of a proposed Quantum

Cascade Cooler, a multiple quantum well structure whose cooling capabilities rely on combined

resonant tunneling and thermionic emission filtering. We couple charge and heat transport by

self-consistently solving non-equilibrium Green’s functions and heat equation, and subsequently

calculate thermodynamic properties of the electrons using non-invasive virtual probes. We show

that such device exhibits bias dependent electron temperature oscillations emerging from electron-

phonon interactions and inter-subband transitions. Finally, we show the advantage of a multiple

quantum well structure over a single quantum well one and discuss the actual potential for such

structure to effectively cool down the crystal lattice upon optimization.

I. INTRODUCTION

In the last few decades, the need for improved heat management devices and systems

has become a major challenge for energetic and environmental purposes, as well as to avoid

technical limitations on state-of-the-art electronic devices.

For instance, amongst the so-called Information Communication Technology (ICT) sector,

the increasing demand for data centers resulted in a consumption estimated to 1.4 percent

of the total, worldwide, energy consumption from which almost half of the amount had been

used solely for cooling purposes [1, 2]. The carbon footprint of such facilities is estimated to

undergo the highest growth rate across the whole ICT sector [3], the latter being responsible

for 2 percent of CO2 emissions, a proportion comparable to the aviation sector [3].

Besides, modern microchips have continued to follow Moore’s Law stating that transistor

count is doubling every two years [4–6] and have now attained transistor densities of the order

of the billion devices per chip. Power densities associated are hence dangerously approaching

values hard to administer without substantial enhancement for the cooling processes, leading

to the apparition of software limitations on the clock speed in some recent processors [4, 7].

Current active heat dissipation methods, including fanning or liquid cooling, have the

advantage of large coefficients of performance [8]. They however lack the compactness and
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silence required for portable devices [9]. More importantly, the apparition of hot spots due

to the miniaturization of electronic devices down to sizes comparable with the phonon mean

free path [10–12] cannot be properly addressed by these type of approaches. Indeed, they

resort on the extraction of heat diffused to a heat sink and therefore cannot deal with the

non-uniformity of temperature emerging with localized hot spots.

Thermoelectric refrigeration systems using Peltier effect [13] have been investigated as a

possible solution to address those hot spots. Their size, of a few hundred microns, however

induces significant amount of scattering processes amongst the electrons, which in turn

leads to a reduced power factor S2σ where S is the Seebeck coefficient and σ is the electrical

conductivity. An approach overpassing these scattering issues, could be the thermionic

refrigeration [14]. Within this approach, electrons absorb heat from the cathode [15] and

are thermionically transmitted to the anode before scattering processes can take place.

It has also been observed that, with such mechanism, it was possible for a semiconductor

heterostructure at room temperature to directly cool down the electrons before they transfer

energy to the lattice [16].

An asymmetric double barrier heterostructure, originally proposed by Chao et al.

[17], takes advantage of resonant tunneling across a first thin barrier and restrict the

injection to cold electrons. It has been shown by Yangui et al. that the thermionic

emission from the quantum well (QW) led to substantial evaporative cooling of the

electrons up to 50 K below room temperature [16]. In the present work, we propose

and theoretically investigate an AlGaAs based heterostructure, shown in Figure 1, derived

from the asymmetric double barrier, and consisting of sequentially stacked QWs. Thanks

to appropriate band engineering, it is possible to progressively increase the energy level

of successive QW state. In this configuration, an electron absorbing a phonon in the first

QW can tunnel into the next QW of the structure, where another phonon can be absorbed.

Electrons are finally extracted from the last QW by thermionic emission over a thicker

layer, acting as a thermal wall to prevent heat backflow. This process is similar to the

one occurring in quantum cascade laser [18] between electron and photon emission, which

leads us to identify this structure as “Quantum Cascade Cooler” (QCC). The role of the

successive barriers is to filter injected electrons and to concentrate the cooling in the QWs.

By doing so, we will be able to precisely refrigerate nanoscale regions and to demonstrate

a proof of concept to answer the hot spots issue. This type of solution will require to be
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adapted to the specifics of the device it aims to cool, depending on the materials and the

type of circuit conception. The exact general application of those nanocoolers is however

out of the scope of the present article.

Using quantum transport code based on the non-equilibrium Green’s functions (NEGF)

formalism coupled to the heat equation, we show that electron temperature in each QW

depicts anti-correlated oscillations as a function of the applied voltage. Simulations show

that those temperature oscillations depend on the energy difference between two consecutive

QW states and are directly linked to the polar optical phonon energy. The paper is organized

as follows. Section II presents the theoretical framework used to compute electron and heat

transport as well as the local thermodynamic properties of the electrons. Section III develops

the physical analysis associated to the studied structure. Section IV finally concludes this

work by summarizing the key findigs.

II. THEORETICAL APPROACH

We consider the heterostructure represented in Figure 1 whose emitter (cathode) and

collector (anode) regions are n-doped GaAs layers with a donor concentration of 1018 cm−3.

The undoped active region is composed of five layers: we consider two 5 nm thick QWs

composed of Al0.1Ga0.9As and Al0.2Ga0.8As labeled as QW1 and QW2, respectively. QW1

is separated from the emitter and QW2 by 6 nm thick Al0.35Ga0.65As barriers. Finally, QW2

is separated from the collector by a 30 nm Al0.35Ga0.65As barrier.

Applying a voltage bias between the two contacts induces a non-equilibrium transport

regime of carrier which typically results in two different temperatures for the lattice and

electrons. Indeed, such a transport being filtered in energy thanks to the tunnelling and

thermionic process, it leads to a temperature of electrons controlled by evaporative cooling

effect [16] while lattice temperature is controlled by transfer of energy from the lattice to

the electron bath through electron-phonon scattering [15].

The theoretical study of such physical processes for a realistic device requires to consider

both electron and phonon transport. In order to do so, we use an in-house code in which

electron and heat transport are solved self-consistently. We subsequently use virtual Büttiker

probes to unambiguously determine the local electronic temperature and electrochemical

potential inside the device.
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FIG. 1: Considered Quantum Cascade Cooler with LB1 =LB2 = 6 nm, LQW1 = LQW2 = 5

nm and LB3 = 30 nm. The solid black line corresponds to the edge of the conduction

band. ϵFE and ϵFC are the Fermi levels of the emitter and collector respectively. The

ground states of the quantum wells are described by the red dashed rounded rectangles.

The intended working principle is represented by the successive blue arrows and

decomposed in 4 steps. (1) The electrons are injected from the emitter in the first

quantum well (QW1) by resonant tunneling. (2) Electrons are injected in the second

quantum well (QW2) by phonon assisted tunneling. (3) Electrons are thermionically

extracted from the second quantum well. (4) Electrons are progressively relaxed in the

collector through electron-phonon interactions.

A. Electron transport model

The description of the method used to calculate electron and heat transport for this work

has been thoroughly presented in previous work [19]. Equations required for the analysis

presented in this work will nonetheless be recalled.

Let us first introduce the retarded Green’s function at energy E and transverse wavevector

kt.
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Gr
kt = [(E − V )I −Hkt − Σr

L,kt − Σr
R,kt − Σr

S,kt ]
−1, (1)

where V is the electrostatic potential energy, considered only transport axis dependant

and thus invariant in the transverse plan, I is the identity matrix, Hkt is the effective mass

Hamiltonian describing the Γ valley of the conduction band, kt = nkt×2π/Lt is the transverse

wavevector with nkt an integer and Lt the perpendicular dimension of the system. Σr
L(R),kt

are

the self-energies for the left (L) and right (R) semi-infinite device contacts, Σr
S,kt

is the self-

energy calculated within the self-consistent Born approximation (SCBA) that accounts for

the interaction between electrons and both the acoustic phonons and polar optical phonons.

In our approach, acoustic and polar-optical phonon baths are considered at equilibrium and

locally follow a Bose-Einstein distribution. They are however, not in equilibrium with one

another. We thus need to define two different temperatures TAC and TOP , the temperature

of acoustic and polar optical phonons, respectively. The physical reason for this is the

unbalance in their respective energy densities leading to the net anharmonic decay of optical

phonons into acoustic ones which has a critical impact on the thermal transport[20]. These

temperatures are self-consistently computed by coupling the electron transport equations

with the heat equation as presented in subsection II B.

The lesser/greater Green’s functions are obtained by deriving the retarded Green’s

functions using the following identities:

G≶
kt
= Gr

kt(Σ
≶
L,kt

+ Σ≶
R,kt

+ Σ≶
S,kt

)Gr†
kt
, (2)

Σr =
1

2
[Σ> − Σ<], (3)

where the total scattering self-energy, for a given mode kt, can be decomposed into

Σ≶
S,kt

= Σ≶
AC,kt

+ Σ≶
POP,kt

, (4)

where Σ≶
AC,kt

is the self-energy for acoustic phonons calculated within the elastic assumption

at position j along the transport axis that can be expressed as [21, 22]

Σ≶
AC(j, j;E) =

∑
k′t

π(2nk′t
+ 1)

Ξ2kBTAC(j)

ρu2
s

(j)G≶
k′t
(j, j;E), (5)

where Ξ is the deformation potential, ρ is the mass density, us is the sound velocity and TAC

is the temperature of acoustic phonons. We assume interactions with acoustic phonons to

be local and therefore only consider the diagonal part of the Green’s function [23].
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The scattering self-energy for polar optical-phonons is defined in Eq. 6 and we use the

diagonal expression that have been proposed in previous work by Moussavou et al. to

effectively describe their long range interactions [24]. For a given wavevector kt, we have :

Σ≶
POP,kt

(j, j;E) =
λM2

2πS

∑
k
′
t

[(nL(j) + 1)G≶
k′t
(j, j;E ± ℏωLO) + (nL(j))G

≶
k′t
(j, j;E ∓ ℏωLO))]

×
∫ π

π/Lt

π(2nk′t
+ 1)√

(kt − k′
tcosθ)

2 + (k′
tsinθ)

2
dθ, (6)

where nL(j) = (e(ℏωLO)/(kBTPOP ) − 1)−1 with ℏωLO the LO phonon energy and TPOP their

temperature, M is the Fröhlich factor, θ is the angle between kt and k′
t. λ is a scaling factor

correcting for the reduced strength emerging from the diagonal approximation. The value

λ = 8 used in this paper has been obtained using the physically-based analytical model

developed in Ref. [24].

Once the Green’s functions are obtained we have access to all the physical properties of

interest.

The electron density nj at position j along the transport axis is given by:

nj = −2× i

2π

∫
G<

j,j(E)dE, (7)

with G<
j,j(E) =

∑
kt
π(2nkt + 1)G<

kt,j,j
(E)

The electron current density (in A/m2), Jj→j+1 from position j to j + 1 :

Jj→j+1 =

∫
Jj→j+1(E)dE, (8)

where Jj→j+1(E) is the electron current density spectrum (in A/(m2.eV)):

Jj→j+1(E) =
e

ℏ
∑
kt

2nkt + 1

S
[Hj,j+1G

<
kt,j+1,j(E)−G<

kt,j,j+1(E)Hj+1,j]. (9)

We can then deduce the electronic energy current that reads:

JE
j→j+1 =

∫
E

e
Jj→j+1(E)dE, (10)

whose first derivative of the electronic energy current corresponds to the cooling power

density (in W/m3):

Qj = −∇j · JE. (11)
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Qj being the source term allowing to couple the electron transport equation to the heat

equation. A negative value of Qj corresponds to an increase of the electronic energy current

density and then to a transfer of energy from the lattice to the electronic bath, leading to

a cooling of the lattice. A positive value corresponds to the opposite phenomenon, i.e. the

heating of the lattice.

B. Heat transport model

The lattice temperature is computed by solving the 1D heat equation along the direction

of transport. The discretized heat equation at site j can be expressed as:

[
− ∂

∂x
[κth(x)

∂

∂x
TAC(x)]

]
j

= Qj, (12)

The thermal conductivity of the material κth is taken equal to 4 W/(m·K) in the QWs

region in order to take into account the increased thermal resistance emerging from the

interface between layers[25, 26]. In the rest of the device it is set to the bulk value of GaAs

(46 W/(m·K)). The temperature considered in the heat equation TAC is the temperature

of acoustic phonons. They have a larger velocity than their optical counterpart and are

therefore mainly responsible of heat transport[27]. Left and right contact temperatures

are set to TAC = 300 K by enforcing Dirichlet boundary conditions. This assumption

corresponds to consider massive contacts with a sufficiently high thermal capacitance. Qj is

the cooling power density (CPD) previously defined (See Eq.11) which ensures local energy

conservation between electron and phonon systems. From a physical point of view, since

the acoustic phonons have a much lower energy than the energy range of interest, their

interactions with electrons is assumed to be elastic. This implies that electrons loose or

increase their energy by scattering with polar optical-phonons. In turn, optical phonons

decay into acoustic phonon modes, which sustains the thermal energy propagation along the

device. In stationary conditions, the power transfer from optical to acoustic phonons must

be equal to the cooling power density Qj. Within a relaxation time approximation, we can

thus write

(TPOP (j)− TAC(j))CPOP

τPOP−→AC

= Qj, (13)

8



where τPOP−→AC is the relaxation time of polar optical phonons into acoustic phonons

(τPOP−→AC = 4.16×10−12 s) and CPOP is the thermal capacitance of polar optical phonons

per unit volume (CPOP = 1.72×106 J/(m3·K)). The numerator of the left side expresses the

average energy per unit volume exchanged between the polar optical and acoustic phonon

baths in an interval τPOP−→AC . Eq. 13 allows us to compute TPOP (j) from the knowledge

of Qj and TAC(j). The computed values of TAC and TPOP are substituted in Eq. 5-6. This

establishes the coupling between the heat equation and the electron transport equations. The

heat equation is iteratively solved together with the transport equations and the Poisson

equation, until the criteria of convergence for both electron density and carrier current

density are reached. The potential energy V is self-consistently determined by nonlinearly

coupling the transport equations with the Poisson equation through the electron density.

C. Local electron temperature

As a post processing step, we use the virtual Büttiker probe [28, 29] to calculate local

electron temperature. It is based on the introduction of a local non invasive probe defined

at position j by its self-energy:

Σ>(j, j;E) = −i[1− fFD(E, µj, Tj)]× i[
G>(j, j;E)−G<(j, j;E)

2π
]× νcoup (14)

Σ<(j, j;E) = ifFD(E, µj, Tj)× i[
G>(j, j;E)−G<(j, j;E)

2π
]× νcoup (15)

where fFD(E, µj, Tj) is the Fermi-Dirac distribution of the probe depending on the electrochemical

potential µj and the electronic temperature Tj. i[
G>

j,j(E)−G<
j,j(E)

2π
] is the local density of states,

common to the probe and the device.

Using the previously determined Green’s functions of the device, we calculate the electrons

and energy currents between the probe and the device.

(∆Ie)j ≡
∫ ∞

0

[Σ>
j,j(E)G<

j,j(E)−G>
j,j(E)Σ<

j,j(E)]dE (16)

(∆Iq)j ≡
∫ ∞

0

E

e
[Σ>

j,j(E)G<
j,j(E)−G>

j,j(E)Σ<
j,j(E)]dE (17)

The principle is now to find [Tj;µj] such that (∆Ie)j and (∆Iq)j vanish. The probe

is then in a local equilibrium with the device, itself arbitrarily out-of-equilibrium. The
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temperature and chemical potential of the probe are therefore accurate measurements of the

device thermodynamic properties.

In order to find the vanishing conditions of the currents in each point of the device, we

solve the two coupled non-linear equations (16) and (17) using a Newton-Raphson algorithm.

This method determines the electronic temperature and electrochemical potential in

systems arbitrarily far from equilibrium provided the probe is localized, weak and broadband,

to ensure that the properties of the device are measured while avoiding perturbation by the

probe [28]. These conditions being satisfied by the proposed probe, it is expected to yield a

unique and an unambiguous electronic temperature and chemical potential. In the following

section, we will restrict ourselves to the study of the electronic temperature based on this

approach.

III. RESULTS AND DISCUSSION

In this section we analyze the physical properties of the Quantum Cascade Cooler whose

local density of state and potential profile are represented in Figure 2-a). We clearly see

that the structure parameters taken in Figure 1 lead to the desired step-like feature of the

QW states. We also compare its properties with those of the SQW structure whose local

density of state and potential profile are represented in Figure 2-b)

A. Electron temperatures

In this section we explain the electronic temperature behaviours in each quantum well

for the structure Figure 3 first shows the electron temperatures in QW1 and QW2 as a

function of the applied bias. We observe a phase opposition of oscillations between those

two temperatures. Figure 3 also showsW, the energy difference between the two QW ground

states. We see that the period of oscillations corresponds to polar optical phonon energy

ℏωLO, equal to 35 meV [30]. In order to explain those dependencies we analyze the injected

and extracted current spectra impacting the electron distributions in each QW.

The first extrema of electron temperatures, at V = 0.175 V, corresponds to W ≈ ℏωLO.

At this bias, Figure 4-a) shows that the current density spectra (see Eq. 9) from the emitter

to QW1, and from QW1 to QW2 exhibit maxima that are separated by the polar optical
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FIG. 2: Local density of states (colormap) and potential profile (green solid line) of the (a)

SQW and (b) QCC for a voltage bias of V = 0.175 V. QCC is obtained from the

parameters of Figure 1. The 0 of energy is set to the emitter Fermi energy.

phonon energy ℏωLO . Moreover, in Figure 4-b) representing the first subband of the two

QWs, we can see that the energy difference between the ground states of the two QWs is

also equal to ℏωLO. This ensures that the intersubband transition between the two ground

states is principally controlled by LO phonon absorption. Indeed, since W > kbT ≈ 25 meV,

most thermally excited electrons cannot directly tunnel from QW1 to QW2 through elastic

scattering processes. Due to the broad injection coming from the emitter alongside with the

lack of selective extraction of thermally excited electrons, the distribution of electrons in
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FIG. 3: Representation of the calculated electronic properties as a function of bias.

Average temperature of the electrons in the first (blue line with circle markers) and second

QW (orange line with triangle markers); W, the energy difference between the first and

second QW’s ground state (black line with square markers).

QW1 becomes hotter. Conversely, due to the effective injection of electrons assisted by LO

phonon absorption near the ground state of QW2, followed by the thermionic extraction of

electrons above the last thick AlGaAs barrier, the distribution of electrons in QW2 becomes

colder. As a result, in Figure 4-c) which shows the electron density spectrum in the QWs,

QW1 (QW2) exhibits a broader (narrower) distribution, consistent with a higher (lower)

electron temperature.

At V = 0.275 V, the energy difference between the two subbands is W ≈ 1
2
ℏωLO. We

can see on Figure 5-a), which shows electron current density spectra for both QWs, that

the maximum of injection in QW2 now happens 1
2
ℏωLO above QW2 ground state. Although

the absorption of one LO phonon by electrons in QW1 can only lead to this energy or
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FIG. 4: V = 0.175 V. a) Normalized electron current density spectrum in the first QW

(blue solid line) and between both QWs (orange dashed line); b) First subband for the first

(blue solid line) and second QW (orange dashed line) represented as a function of the

transverse wavevector, kt; c) Electron density spectrum for the first (blue solid line) and

second QW (orange dashed line). In all sub-figures, ground states of the first subbands of

both QW are also represented (horizontal dotted lines) across each tile.

higher, the presence of a peak at QW2 ground state’s energy demonstrates that an other

scattering mechanism occurs. Figure 5-b) shows the first subband of the two QWs. Here,

we can see that since W is equal to 1
2
ℏωLO, the minimum change in wavevector required

for the intersubband transition assisted by LO phonons is non zero. Due to the wavevector

dependancy in the polar optical phonon self-energy (See Eq. 6), the LO phonon absorption

is thus less efficient than in the previous case (i.e V = 0.175 V). Moreover the value of

W is now inferior to kbT , leading to a substantial component of the thermally excited

electrons which can tunnel through elastic scattering with acoustic phonons. This possible

extraction of thermally excited electrons via elastic scattering processes thus induces a local

minimum of electron temperature in QW1. Finally, in Figure 5-c), which represents the

electron density spectra in QW1 and QW2, we can see that the electron density spectrum
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FIG. 5: Same as figure 4 for V = 0.275 V.

in QW2 exhibits two peaks. One is located near QW2 ground state, and the other is 1
2
ℏωLO

above QW2 ground state, corresponding to the energy of the shifted maximum of current.

This evidences that the energy selective injection resulting from electron-phonon interaction

shapes the electron distribution and thus the electron temperature. The injection of electrons

in QW2 at this energy resulting from LO phonon absorption thus leads to a local maximum

of electron temperature in QW2.

Finally at V = 0.375 V, W ≈ 0, which is the resonant case where the QW ground states

are aligned. Unlike for the two previous biases, electrons near QW1 ground state energy

do not need to absorb phonons to flow from QW1 to QW2. In Figure 6-a), representing

the electron current density spectra from the emitter to QW1 and from QW1 to QW2,

we can see that the current density spectrum gets narrower between the injection in QW1

and the injection in QW2. This narrowed injection stems from the fact that electrons in

QW1 which are 35 meV above the ground state can now emit LO phonons to get injected

in QW2. However, as it can be seen on Figure 6-b), which represents the first subband of

the two QWs, electrons of QW1 below this energy are forbidden to emit LO phonons as

this would result in an injection below QW2 ground state. In Figure 6-c) representing the
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FIG. 6: a) Same as figure 4 and figure 5 for V = 0.375 V.

electron density spectra in both QWs, we can see that this narrow energy range acts as a

bottleneck for electrons in QW1 and leads to the apparition of a shoulder at 0.055 eV. This is

consistent with the fact that this configuration corresponds to a maximum of temperature for

electrons in QW1. Conversely, the narrow injection in QW2 alongside with the subsequent

thermionic emission above the last thick AlGaAs barrier leads to a distribution of electrons

corresponding to a lower temperature.

Above V = 0.375 V, in Figure.4, we observe a fast increase of the temperature in QW2.

Since W becomes negative, electrons are injected in QW2 at energies above ground state.

On the other hand, electron temperature in QW1 remains closer to 300 K until a bias of

0.65 V is reached, for which QW1’s ground state becomes lower than the emitter conduction

band edge, where the same phenomenon happens.

B. Cooling properties

In this section we compare the cooling properties of the present Quantum Cascade Cooler

to its single quantum well (SQW) counterpart. In order to faithfully compare the two
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FIG. 7: Potential profile (black line) and cooling power density Qj(orange solid line), for a

voltage bias of V =0.175 V. The base line (orange dashed lined) and the cooling power

(orange area), JQ, are also represented. The 0 of energy is set to the emitter Fermi energy.

structures, we consider a SQW device of same length where the energy gap between the

emitter Fermi level and the first QW state is conserved at equilibrium. Moreover, the

energy interval between the QW level and the top of the second barrier is taken identical to

the the one between the level of the second QW and the last barrier of the QCC. In order

to do so, we replace the second barrier, the second quantum well, and the last barrier of the

QCC by a 41nm single barrier of Al0.25Ga0.75As. The new structure’s local density of states

and potential profile are represented in Figure 2-b) for a bias of V = 0.175 V.

By integrating the negative part of the cooling power density Qj (See Eq. 11) over x (the

direction of transport) as represented by the orange area in Figure 7, we obtain the cooling

power (JQ) of the central region (between the middle of the first barrier and the end of last

barrier). This quantity is represented for both devices in Figure 8-a). We also represent

the contribution of QW1 and QW2 to the cooling power for the QCC. This cooling power

is obtained by integrating the negative part of the cooling power density Qj (See Eq. 11)

over x (the direction of transport) as represented in Figure 7. Of course, integrating both

the negative and positive components of Qj over the whole device systematically yields a

positive value equal to the supplied electrical power (PSupplied = J × V ). This corresponds

to an overall heating of the device. We are studying the cooling of the QW region of the
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FIG. 8: a) Cooling power, (JQ), as a function of potential bias for the SQW (blue line with

cricle markers) and the QCC (orange line with square markers). Contribution of QW1 and

QW2 to the cooling power are also represented (black dashed lines with hollow and filled

triangle markers, respectively) b) Coefficient of performance (COP) as a function of the

potential bias for the SQW (blue line with circle markers) and the QCC (orange line with

square markers).

device, we therefore restrict ourselves to the calculation of the heat transferred in its central

region.

We can first see that the QCC yields lower cooling powers than the SQW structure for

biases below V = 0.175 V. However, its maximum cooling power is much greater. Indeed,

JQ = 383 kW/m−2 at V = 0.3 V for the QCC whereas the maximum is only of 244 kW/m−2

at V = 0.25 V for the SQW. Similarily to the temperature of the electrons, the QCC cooling
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power depicts oscillations. Such oscillations take their origins in the phenomena described

in the previous section. This can be directly deduced from QW1’s and QW2’s contribution

to the QCC cooling power, which are locally maximized at biases corresponding to local

minima of electronic temperature (see Figure 3). The overall maximum cooling power is

obtained for W ≈0.5ℏωLO where both QWs contribute to the cooling.

Figure 8-b) shows the corresponding coefficient of performance (COP), which is defined

as the ratio between JQ over PSupplied. For both structures, the COP decreases with the

bias as it is unfortunately usual in thermionic cooling devices (see Figure 4 in Ref.[31]).

However, for all biases the COP of the QCC is significantly higher than the COP of the

SQW structure. This result shows that for the same flux of electron, more phonons are

absorbed in the QCC than in the SQW structure, which is exactly the purpose of the QCC.

Here, although the applied bias required to achieve maximum cooling power in the QCC

is higher than the one required for the single QW structure, the COP at maximum JQ is

higher for the QCC (12.3 %) than for the SQW structure (9.3%).

The QCC shows an overall greater efficiency and greater CP than its single QW

counterpart. There is, however, no significant reduction of the lattice temperature. This is

due to the huge difference between the heat capacitance of electrons and phonons. In order

to solve this problem, one would need to increase the amount of electrons in the QW regions.

This could be achieved by heavily doping in the order of 1021∼22 cm−3 or by considering

metal/semiconductor junctions. This is however beyond the scope of the article.

IV. CONCLUSIONS

In the present work, we theoretically investigate the proposed Quantum Cascade Cooler

device through the use of an in-house quantum code coupling heat and electron transport.

We report anti-correlated electronic temperature oscillations as a function of voltage bias

between two successive quantum wells. We show that such behaviour directly emerges

from the possibility for electrons to absorb or emit polar optical phonons whose energy

(35 meV) establishes the period of oscillations. Such bias dependence in the proposed

heterostructure sheds light on the versatile physical properties which can emerge from this

kind of device. The thermal properties of this device are also compared to its single quantum

well counterpart. We show that the QCC leads to a significant improvement of both the
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maximum cooling power and the efficiency, and is therefore a good candidate for solid state

cooling upon optimization. The present QCC cooling structures may be also useful in devices

in which electronic cooling plays an important role. Light-emitting devices will gain better

efficiency if the carrier temperature can be decreased via our cooling device by 30–50 K.

Non-radiative losses due to thermal escape of carriers outside the confining potential wells

would be decreased. Similarly, in QW infrared photodetectors, the dark current will be

reduced by cooling electrons in the QW. These are only a few examples. We believe there

will be many more useful applications of electron cooling.

V. ACKNOWLEDGEMENT

This work was supported by the GELATO project from ANR (ANR-21-CE50-0017).

[1] A. Habibi Khalaj, T. Scherer, and S. K. Halgamuge, Energy, environmental and economical

saving potential of data centers with various economizers across Australia, Applied Energy

183, 1528 (2016).

[2] J. Ni and X. Bai, A review of air conditioning energy performance in data centers, Renewable

and Sustainable Energy Reviews 67, 625 (2017).

[3] B. Whitehead, D. Andrews, A. Shah, and G. Maidment, Assessing the environmental impact

of data centres part 1: Background, energy use and metrics, Building and Environment 82,

151 (2014).

[4] L. Xiu, Time Moore: Exploiting Moore’s Law From The Perspective of Time, IEEE Solid-State

Circuits Magazine 11, 39 (2019).

[5] C. A. Mack, Fifty Years of Moore’s Law, IEEE Transactions on Semiconductor Manufacturing

24, 202 (2011).

[6] G. E. Moore, Lithography and the future of moore’s law, IEEE Solid-State Circuits Society

Newsletter 11, 37 (2006).

[7] Q. Zhang, K. Deng, L. Wilkens, H. Reith, and K. Nielsch, Micro-thermoelectric devices, Nature

Electronics 5, 333 (2022).

19

https://doi.org/10.1016/j.apenergy.2016.09.053
https://doi.org/10.1016/j.apenergy.2016.09.053
https://doi.org/10.1016/j.rser.2016.09.050
https://doi.org/10.1016/j.rser.2016.09.050
https://doi.org/10.1016/j.buildenv.2014.08.021
https://doi.org/10.1016/j.buildenv.2014.08.021
https://doi.org/10.1109/MSSC.2018.2882285
https://doi.org/10.1109/MSSC.2018.2882285
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1109/TSM.2010.2096437
https://doi.org/10.1109/N-SSC.2006.4785861
https://doi.org/10.1109/N-SSC.2006.4785861
https://doi.org/10.1038/s41928-022-00776-0
https://doi.org/10.1038/s41928-022-00776-0


[8] J. Mao, G. Chen, and Z. Ren, Thermoelectric cooling materials, Nature Materials 20, 454

(2021).

[9] Y.-H. Gong, J. J. Yoo, and S. W. Chung, Thermal Modeling and Validation of a Real-World

Mobile AP, IEEE Design & Test 35, 55 (2018).

[10] C. Fiegna, Y. Yang, E. Sangiorgi, and A. G. O’Neill, Analysis of Self-Heating Effects in

Ultrathin-Body SOI MOSFETs by Device Simulation, IEEE Transactions on Electron Devices

55, 233 (2008).

[11] R. Gaska, A. Osinsky, J. Yang, and M. Shur, Self-heating in high-power AlGaN-GaN HFETs,

IEEE Electron Device Letters 19, 89 (1998).

[12] E. Pop, S. Sinha, and K. Goodson, Heat Generation and Transport in Nanometer-Scale

Transistors, Proceedings of the IEEE 94, 1587 (2006).

[13] K. M. Kretzschmar and D. R. Wilkie, The use of the Peltier effect for simple and accurate

calibration of thermoelectric devices, Proceedings of the Royal Society of London. Series B.

Biological Sciences 190, 315 (1975).

[14] E. L. Murphy and R. H. Good, Thermionic Emission, Field Emission, and the Transition

Region, Physical Review 102, 1464 (1956).

[15] G. N. Hatsopoulos and E. P. Gyftopoulos, Theory, technology, and application, Thermionic

energy conversion No. Vol. 2 (MIT Press, Cambridge, Mass, 1979).

[16] A. Yangui, M. Bescond, T. Yan, N. Nagai, and K. Hirakawa, Evaporative electron cooling in

asymmetric double barrier semiconductor heterostructures, Nature Communications 10, 4504

(2019).

[17] K. A. Chao, M. Larsson, and A. G. Mal’shukov, Room-temperature semiconductor

heterostructure refrigeration, Applied Physics Letters 87, 022103 (2005).

[18] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, engQuantum

cascade laser., Science (New York, N.Y.) 264, 553 (1994), place: United States.

[19] M. Bescond, G. Dangoisse, X. Zhu, C. Salhani, and K. Hirakawa, Comprehensive Analysis

of Electron Evaporative Cooling in Double-Barrier Semiconductor Heterostructures, Physical

Review Applied 17, 014001 (2022).

[20] J. Lai and A. Majumdar, Concurrent thermal and electrical modeling of sub-micrometer silicon

devices, Journal of Applied Physics 79, 7353 (1996).

20

https://doi.org/10.1038/s41563-020-00852-w
https://doi.org/10.1038/s41563-020-00852-w
https://doi.org/10.1109/MDAT.2017.2695958
https://doi.org/10.1109/TED.2007.911354
https://doi.org/10.1109/TED.2007.911354
https://doi.org/10.1109/55.661174
https://doi.org/10.1109/JPROC.2006.879794
https://doi.org/10.1098/rspb.1975.0095
https://doi.org/10.1098/rspb.1975.0095
https://doi.org/10.1103/PhysRev.102.1464
https://doi.org/10.1038/s41467-019-12488-9
https://doi.org/10.1038/s41467-019-12488-9
https://doi.org/10.1063/1.1992651
https://doi.org/10.1126/science.264.5158.553
https://doi.org/10.1103/PhysRevApplied.17.014001
https://doi.org/10.1103/PhysRevApplied.17.014001
http://scitation.aip.org/content/aip/journal/jap/79/9/10.1063/1.361424


[21] C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport

in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55, 645 (1983),

publisher: American Physical Society.

[22] S. Jin, Y. Park, and H. Min, A three-dimensional simulation of quantum transport in silicon

nanowire transistor in the presence of electron-phonon interactions, Journal of Applied Physics

99, 123719 (2006).
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