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ABSTRACT Equivalent electrical circuits (ECM) have proven to be effective in modeling the dynamic
behavior of proton exchange membrane (PEM) electrolyzer voltage response. They are a valuable tool
for studying the interactions between power electronics and PEM electrolyzers during dynamic operating
conditions. Generally, the ECM takes into consideration the activation over-voltage that is present at both the
anode and the cathode for the dynamic part of the model. Therefore, the monitoring of the ECM activation
over-voltage is an important issue for the correct modeling of the PEM electrolyzer voltage. However, voltage
sensors for this over-voltage are expensive and the reported observers of the PEMelectrolyzer activation over-
voltage are scarce and have not been validated over a sufficiently long time. This work aims at overcoming
these drawbacks by proposing the use of a Luenberger observer to accurately estimate the activation over-
voltage using an ECM. Based on this proposal, it is possible to build a device capable of emulating the
electrolyzer voltage efficiently. Furthermore, a stability analysis of the observable system is provided to
ensure its performance throughout the experiment period. Statistical results, based on experimental voltage
data from a PEM electrolyzer QL–300, demonstrate the high accuracy and performance of the Luenberger
observer under continuous changes in input currents, which demonstrates its robustness.

INDEX TERMS Electronic circuit model, Luenberger observer, PEMelectrolyzer, Stability analysis, Voltage
behavior.

I. INTRODUCTION

ELECTROLYZERS have demonstrated their importance
in the production of green hydrogen from environmen-

tally friendly power sources, which is considered one of
the main fuels to meet the energy demand of the coming
years [1], [2]. The basic operation of an electrolyzer is the
production of highly pure hydrogen through the process of
water electrolysis [3]. Despite the different technologies de-
veloped and reported in the literature for electrolyzers (i.e.,
solid oxide, anion exchange membrane, alkaline and proton
exchange membrane (PEM)), only alkaline and PEM elec-
trolyzers have reached the commercial stage. Between these
two technologies, PEM electrolyzers have evidenced to have
a better response when coupled with renewable energies due
to their operational flexibility [4].

Mathematical modeling of the PEM electrolyzer that ef-
ficiently describes the behavior of its internal and external
processes, has largely contributed to the development of
the PEM electrolyzer technology. Furthermore, with these
mathematical models, it is possible to design controllers,
failure analysis, energy management, and optimization of
the PEM electrolyzer system [5]–[9]. Mathematical models
of PEM electrolyzers are classified as analytical, empirical,
and mechanistic. Commonly, analytical models consider the
performance of the electrolyzer to determine the behavior of
the main variables that influence it. Empirical models use
experimental data to determine system parameters. However,
a disadvantage of these models is that they are limited to
a specific PEM electrolyzer. Mechanistic models are more
complex compared to the other two types of modeling since
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they use differential or algebraic equations to perform highly
reliable simulations of the phenomena that occur in the elec-
trolyzer. It is worth mentioning that the time to perform the
simulations of the mechanistic models is considerable due to
the extensive calculations [10].

Dynamic models, which belong to the class of mechanistic
models, are useful to describe systems in real-time, besides,
from these models, control theory can be applied [11]. The
equivalent electronic circuit model (ECM), which belongs to
the dynamic models, allows modeling the PEM electrolyzer
voltage response during dynamic operating conditions [12].
Usually, the ECM takes into account the over-voltages that
occur within the PEM electrolyzer [13], [14]. Furthermore,
these over-voltages can be classified as ohmic, activation,
and concentration [15]. In particular, the voltage responses
of the PEM electrolyzer take place in the activation over-
voltage [16]. Therefore, to efficiently reproduce the voltage
of a PEM electrolyzer (to build a voltage emulator based on
an ECM), it is important to be able to observe the dynamic
behavior of the activation over-voltage [17]. To carry out this
task, voltage sensors can be used, which are usually expensive
depending on the measurement accuracy. Also, it is possible
to replace the measurements of the voltage sensors with the
estimations of an observer, which only depend on the input
and output signals [18]. Different types of observers have
been applied to different research fields, such as PEM fuel
cells [19], [20], batteries [21], and underactuated quadrotors
[22], [23]. Table 1 shows examples of observers recently
applied to different research fields and their details. However,
observers for the PEM electrolyzer activation over-voltage
are scarce and have not been implemented during a long
enough time window [24]. For this reason, the development
of observers for PEM electrolyzers is important for the study
of responses to dynamic oscillations in the voltage.

Due to the importance of observers for the PEM elec-
trolyzer voltage, this work aims at implementing the Luen-
berger observer in an ECM since this observer has proven
to be practical and robust for linear observable systems [32].
As mentioned in [33], for less complex linear systems, the
Luenberger observer is the best choice among other tech-
niques such as Bayesian estimators or AI-based observers,
as it provides a valid estimate of the system state without
requiring complex computational methods that are usually
time-consuming or difficult to implement.

The main characteristics and contributions of the proposed
observer in this work are presented below.

• The observability and stability of the system were
demonstrated to ensure the effectiveness of the observer
throughout the experimental test (4000 s).

• A comparison of the observer with experimental data
under constant disturbances in the input current (square
wave function at different periods using dSPACE con-
troller board) from a PEM electrolyzer QL–300 of Shan-
dong Saikesaisi Hydrogen Energy Co was made. This
comparison validated the performance and robustness of

TABLE 1. Examples of observers applied to research fields.

Reference Observer Field Application

[21] Nonlinear Batteries Active species
concentrations

[22] Extended state Underactuated
quadrotor

Helical
trajectory
tracking

[23] Luenberger Underactuated
quadrotor

Helical
trajectory
tracking

[24] Luenberger PEM
electrolyzer

Activation
over-voltage

[25]
Nonlinear
Distributed
Parameters

PEM fuel cell Internal states

[26] Extended state PEM fuel cell Oxygen excess
ratio

[27] Kalman filter Batteries state of charge

[28] Multi-objective
nonlinear Batteries Fault detection

[29] Bayesian Natural
daylight Hue perception

[30] Impulsive Wind energy Flux detection

[31] Event-triggered
impulsive

Disturbed
states and
disturbed
outputs

State of DC
microgrids

The present
paper Luenberger PEM

electrolyzer
Activation
over-voltage

the observer of the activation voltage (i.e., statistical tests
were applied).

• It is possible to build a device that efficiently emulates
the PEM electrolyzer voltage by implementing the pro-
posed observer with the ECM design of this work.

The rest of the work is structured as follows: after dis-
cussing the state-of-the-art and motivations in the introduc-
tion, Section II presents a detailed description of the experi-
mental platform. In Section III, the description of an ECM for
estimating the PEM electrolyzer voltage is shown. Besides,
in this section, the design of the Luenberger observer and the
stability analysis of the observable system are provided. Sub-
sequently, in Section IV, the simulations of the estimations
from the observer and the discussion of this work are shown.
Finally, in Section V, the conclusion is presented.

II. EXPERIMENTAL TEST SET-UP
A. PEM ELECTROLYZER BASIC OPERATION
To carry out electrolysis, the PEM electrolyzer generally
operates with an anode, a cathode, a PEM (usually Nafion),
and a DC power source. Each part of the PEM electrolyzer
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FIGURE 1. PEM electrolyzer basic operation.

system serves a fundamental purpose: at the anode, oxygen,
electrons, and protons are produced; the produced protons
pass to the cathode through the PEM; the external circuit
connected to the DC power source flows the electrons from
the anode to the cathode; hydrogen is produced at the cathode
by combining protons with electrons [34], [35], see Figure 1.
The reactions in the PEM electrolyzer are presented in (1).

H2O→ 2H+ +
1

2
O2 + 2e− (Anode reaction)

2H+ + 2e− → H2 (Cathode reaction)

H2O→ H2 +
1

2
O2 (General reaction)

(1)

The PEM electrolyzer is a promising technology despite
being less efficient than the alkaline electrolyzer due to its
wide operating range, high current densities (2 A ·cm−2), fast
response time, and good performance when combined with
renewable energy sources. Therefore, the PEM electrolyzer
can cope with fluctuations from intermittent energy sources
due to its partial load [36], [37].

B. EXPERIMENTAL DATABASE COLLECTION
The different databases were obtained from the PEM elec-
trolyzer QL–300 of Shandong Saikesaisi Hydrogen Energy
Co., Ltd. (Jinan, China). The characteristics of this elec-
trolyzer are shown in Table 2.

To obtain reliable databases, the equipment and experimen-
tal test described below were proposed, see Figure 2.
(1) A computer with Matlab-Simulink®.
(2) An oscilloscope MDO34–1000 of Tektronix Company.
(3) A PEM electrolyzer QL–300.
(4) An electrical current sensor.

TABLE 2. PEM electrolyzer QL–300 specifications.

Parameter Value Unit

Hydrogen purity ≥99.999 %
Hydrogen output flow range 0–310.3 mL · min−1

Output pressure range 0.2–4 bar
Pressure stability <0.01 bar
Electrical power range 0–150 W
Operating voltage range 1.4–2.5 V
Current range 0–60 A
Cell number 1 –
Active area section 150 cm2

Solid Polymer Electrolyte (SPE) 183 µm

1

2 3
4

5

6

7
8

FIGURE 2. Equipment and experimental test set-up.

(5) A DS1104 controller board from dSPACE Company.
(6) A voltage sensor.
(7) A signal converter from the dSPACE control to the DC

power supply.
(8) A DC power supply EL 9160–100 of Elektro Automat-

ick (EA) Company.
Seven databases were taken, each data collection had a du-
ration of 4000 seconds and the following mechanics were
carried out: A square wave current signal was programmed
in Matlab-Simulink® for the dSPACE controller board (i.e.,
minimum and maximum current values, see Table 4); the
dSPACE controller sent this signal to the DC power source
using a signal converter; the PEM electrolyzer was supplied
by the DC power source using a square wave current signal;
the database of the voltage and current sensors was projected
and saved by the oscilloscope.
Figure 3 shows the experimental results obtained for the

PEM electrolyzer voltage databases and their respective
square waveform input currents. The different square wave-
form current inputs were generated throughMatlab–Simulink
and dSPACE in a minimum step range of 0 to 10 A and a
maximum step range of 7 to 20 A with switching periods of
25 seconds (Figure 3.a), 50 seconds (Figure 3.b), and 100
seconds (Figure 3.c). The different voltage responses varied
between 1.6 and 2.2 V for the minimum current input steps
and varied between 1.9 and 2.4 V for the maximum current
input steps. It is worth mentioning that the PEM electrolyzer
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Voltage (1 V/div)

Electrical current (10 A/div)

Time scale (400 s/div)

(a) Period of 25 seconds.

Voltage (1 V/div)

Electrical current (10 A/div)

Time scale (400 s/div)

(b) Period of 50 seconds.

Voltage (1 V/div)

Electrical current (10 A/div)

Time scale (400 s/div)

(c) Period of 100 seconds.

FIGURE 3. PEM electrolyzer voltage behavior with different input square
waveform currents.

voltage is usually variable due to different factors that occur in
the electrolyzer such as pressure, temperature, and the power
source (renewable energy source). After obtaining the exper-
imental databases, the Luenberger observer was developed
and implemented for an ECM in Section III.

TABLE 3. ECM and Luenberger observer parameters.

Parameter Description Unit

Ca Equivalent capacitor (anode) F
Cc Equivalent capacitor (cathode) F
e Estimation error V
iel PEM electrolyzer current A
L Luenberger gains vector −
Ra Equivalent resistor (anode) Ω
Rc Equivalent resistor (cathode) Ω
Rmem Membrane resistor Ω
u System input A
vact Activation over-voltage V
vact,a Activation over-voltage (anode) V
vact,c Activation over-voltage (cathode) V
vcon Concentration over-voltage V
ve PEM electrolyzer voltage V
vini DC voltage source V
vrev Reversible over-voltage V
vΩ Ohmic over-voltage V
x System states V
x0 Initial condition of states V
x̂ System estimated states V
y System output V
τa Electrical time constant (anode) s
τc Electrical time constant (cathode) s

III. DESIGN OF THE LUENBERGER OBSERVER FOR THE
PEM ELECTROLYZER VOLTAGE
To start this section, the description of the parameters used in
the ECM and observer equations are shown in Table 3.

A. PEM ELECTROLYZER MATHEMATICAL MODEL
In this work, the ECM developed in [38], [39] is used. The
PEM electrolyzer voltage ve is expressed in terms of the
reversible vrev, ohmic vΩ, activation vact, and concentration
vcon over-voltages as follows:

ve = vrev + vΩ + vact + vcon. (2)

The ECM for (2) is defined as follows:
- A constant DC voltage source vini is used for modeling
vrev,

vrev = vini. (3)

- A constant resistance is used for modeling the elec-
trolyzer membrane Rmem, thus vΩ is expressed as:

vΩ = Rmemiel, (4)

where iel is the PEM electrolyzer current (A).
- Two resistor-capacitor branches are used for modeling
vact, one for the cathode vact,c and the other for the
anode vact,a. Besides, it has been reported that the PEM
electrolyzer voltage dynamic occurs at this over-voltage.

vact = vact,c + vact,a, (5)

where the dynamic equations are defined as:

dvact,c
dt

=
1

Cc
iel −

1

τc
vact,c, (6)
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FIGURE 4. Equivalent electronic circuit diagram for PEM electrolyzer
voltage.

dvact,a
dt

=
1

Ca
iel −

1

τa
vact,a, (7)

where Cc and Ca are the equivalent capacitors for the
cathode and the anode in (F), respectively. τc and τa are
the electrical time constants that depend strongly on the
operating conditions at the cathode and the anode in (s),
respectively. Rc and Ra are the resistors for the cathode
and the anode in (Ω), respectively. Besides, Rc and Ra

are calculated using τc and τa as follows:

τc = CcRc, (8)

τa = CaRa. (9)

- Finally, vcon is estimated as zero because this over-
voltage has been reported to be considerably smaller
than vact and vΩ [40], [41].

So, the ECM for the PEM electrolyzer voltage is expressed
as:

ve(t) = vini + Rmemiel(t) + vact(t). (10)

Figure 4 shows the equivalent electronic circuit diagram
for PEM electrolyzer voltage using the electronic components
that make up the ECM (i.e., one DC voltage source, two
capacitors, and three resistors). Therefore, this diagram is
useful for constructing a real equivalent electronic circuit to
emulate the PEM electrolyzer voltage.

B. DEVELOPMENT OF THE LUENBERGER OBSERVER
In this subsection, the equations describing the PEM elec-
trolyzer voltage are defined as a control system, so that it
is easier to structure the Luenberger observer. So, let y be
defined as follows:

y := ve − vini, (11)

and

x1 := vact,c,
x2 := vact,a,
u := iel.

(12)

Substituting (11) and (12) in (6), (7), and (10), it is obtained:

ẋ1 =
1

Cc
u− 1

τc
x1, (13)

ẋ2 =
1

Ca
u− 1

τa
x2, (14)

y = Rmemu+ x1 + x2. (15)

where x = [x1, x2]T with initial condition x0 = [x1,0, x2,0]T .
Then, the system can be represented as:

ẋ = Ax + Bu, (16)

where

A =

(
A11 0
0 A22

)
=

( − 1
τc

0

0 − 1
τa

)
(17)

and

B =

(
B1

B2

)
=

( 1
Cc
1
Ca

)
(18)

And let

y = Cx + Du (19)

where C = [1, 1] and D = Rmem.
To implement the Luenberger observer to the system de-

fined in (16)–(19), it is necessary to prove that this system
is observable. Therefore, the rank of the observability matrix
defined below was calculated for A11 ̸= A22 and ∀s ∈ C,

rank
[
sI − A
C

]
= rank

 s− A11 0
0 s− A22

1 1

 = 2. (20)

By applying the observability matrix criterion [42], one can
conclude that the system is observable.
Once the observability property of the system is demon-

strated, the Luenberger observer is constructed. This observer
is built with the original system including the estimation error
to compensate for the inaccuracies in A and B [43]. In this
way, the observer model is defined as:

˙̂x = Ax̂ + Bu+ L(y− Cx̂ − Du)

= (A− LC)x̂ + (B− LD)u+ Ly,
(21)

where x̂ = [x̂1, x̂2]T is the estimated state and, therefore,Cx̂+
Du is the estimated output. L = [l1, l2]T is the Luenberger
vector, which is a weighting vector that continuously corrects
the model output and improves the observer’s behavior. The
error vector e is defined as the difference between x and x̂:

e := x − x̂. (22)

Therefore, the dynamic of vector e is given by:

ė = ẋ − ˙̂x

= (A− LC)(x − x̂)

= (A− LC)e.

(23)

Therefore, the eigenvalues of the matrix (A − LC) must
be negative to ensure that e converges to zero and that x
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converges to x̂ exponentially. Thus, this work proposes con-
ditions on L for which the matrix (A − LC) has negative
eigenvalues. Consider the following expression to calculate
the eigenvalues λ:

det(λI − A+ LC) = 0. (24)

The following expression is obtained from (24):

λ2 + bλ+ c = 0. (25)

where b = l1+l2−A11−A22 and c = A11A22−A11l2−A22l1
Therefore, the eigenvalues of the matrix are given by:

λ =
−b±

√
b2 − 4c
2

, (26)

To find conditions for which the eigenvalues are negative,
note that the discriminant satisfies:

b2 − 4c =(A22 − A11)
2 + 2(A22 − A11)(l1 − l2)

+ (l1 + l2)2

= [(A22 − A11) + (l1 − l2)]
2
+ (l1 + l2)2

− (l1 − l2)2

= [(A22 − A11) + (l1 − l2)]
2
+ 4l1l2.

Given the above developments, (b2 − 4c) is positive as long
as l1 and l2 have the same sign or if l1 + l2 > |l1 − l2|. Now,
suppose both values of L are greater or equal to zero l1, l2 ≥ 0
(the case when l1 = l2 = 0 is the original system (16), which

is nominally stable). Then, as the values of −A11 =
1

τc
and

−A22 =
1

τa
are greater than zero by hypothesis, it is obtained

that b > 0 and c > 0. Therefore,

λ1 =
−b−

√
b2 − 4c
2

< 0.

Besides, it holds that
√
b2 − 4c <

√
b2 = |b| = b. Thus,

−b+
√
b2 − 4c < 0 and hence

λ2 =
−b+

√
b2 − 4c
2

< 0.

Therefore, the system (23) is stable when l1, l2 ≥ 0. For the
cases when l1, l2 ≤ 0 and l1+l2 > |l1−l2| the restrictions that
guarantee negative eigenvalues for (23) are derived below.

It is worth mentioning that case l1+ l2 > |l1− l2| involves
the following two cases:

Case 1 Case 2
l1 + l2 > l1 − l2 l1 − l2 > −l1 − l2

l2 > −l2 l1 > −l1
2 · l2 > 0 2 · l1 > 0
l2 > 0 l1 > 0.

Now, to ensure that b > 0, let l1 + l2 > A11 + A22, so that,
for the cases when l1, l2 ≤ 0 and l1 + l2 > |l1 − l2|, b > 0.

−0.3 −0.2 −0.1 0.1 0.2 0.3

−6

−4

−2

2

4

6

StableStable

Stable Stable

− l1
0.2449

− l2
4.9020

< 1 − l1
0.2449

− l2
4.9020

< 1

l1

l2

FIGURE 5. Demonstrated stable region for the system (23) using
τc = 4.0835 and τa = 0.2040.

Therefore, λ1 < 0. Furthermore, to guarantee that c > 0,

it is assumed that l1 and l2 satisfy
l1
A11

+
l2
A22

< 1. Thus,

it is obtained that A11l2 + A22l1 < A11A22. Consequently,
c > 0, and taking into consideration that b > 0, it holds that√
b2 − 4c <

√
b2 = |b| = b. Thus, λ2 < 0.

Therefore, for the cases when l1, l2 ≤ 0 and l1 + l2 >
|l1 − l2|, the system (23) is stable if l1 + l2 > A11 + A22, and
l1
A11

+
l2
A22

< 1. Figure 5 illustrates the demonstrated stable

region of the system (23) for τc = 4.0835 and τa = 0.2040
(these values were considered according to [38]).
Once the observer was determined and its stability region

demonstrated, it was simulated. The simulation results of the
proposed observer are shown in the next section.

IV. RESULTS AND DISCUSSION
In this section, the simulation results of the observer response
are presented in detail. Besides, a discussion of the outcomes
is presented.

A. SIMULATION AND VALIDATION
To carry out the simulations, the Python programming lan-
guage was used (Python version: 3.8.10 for 64 bits, processor:
Intel CORE i7-7700 HQ CPU, 2.80 GHz, operating system:
Windows 10). The proposed observer was simulated using
the parameter values vini = 1.43 V , Rmem = 0.0155 Ω,
and Cc = Ca = 125 F . Furthermore, as mentioned in [39],
the parameters τc and τa are constants that depend on the
input current and other relevant parameters (gas pressure and
temperature that are not considered in this current work), for
this reason, different values for these parameters were used
depending on the database, see Table 4.
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TABLE 4. Maximum and minimum input current iel and values τc and τa
for each database.

Database iel τc τa

Database 1 min = 10 A,max = 20 A 4.0835 s 0.2040 s
Database 2 min = 1 A,max = 20 A 3.4917 s 0.4819 s
Database 3 min = 5 A,max = 15 A 4.0336 s 0.6644 s
Database 4 min = 6 A,max = 16 A 3.9747 s 0.6556 s
Database 5 min = 8 A,max = 18 A 3.9822 s 0.4040 s
Database 6 min = 9 A,max = 19 A 3.7851 s 0.4321 s
Database 7 min = 2 A,max = 7 A 4.6681 s 1.5860 s
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FIGURE 6. Observer error behavior with different values of L (stable
region) for Database 1.

The behavior of the observer error under different values
of L (l1 and l2 at different points of the stability region)
was analyzed using Databases 1 and 2. For Database 1, the
Luenberger observer obtained better performance when using
l1, l2 > 0 with a relative error of 0.075%, while in the
other cases l1 < 0 and l2 > 0, l1 > 0 and l2 < 0, and
l1, l2 < 0 obtained a relative errors of 3.3717%, 3.6469%,
and 17.5394%, respectively. Figure 6 shows the evolution
of the observer error concerning time for Database 1 and
different values of L. Similarly, for Database 2, the Luen-
berger observer obtained a relative error of 0.0911% when
using l1, l2 > 0, which demonstrates the effectiveness of
convergence with positive values l1 and l2. For the other
different values of l1 < 0 and l2 > 0, l1 > 0 and l2 < 0, and
l1, l2 < 0 obtained a relative errors of 1.1219%, 3.0287%,
and 4.3968%, respectively. These relative errors obtained
from Database 2 are lower compared to those obtained from
Database 1 due to the different behavior of the databases.
Figure 7 shows the evolution of the observer error concerning
time for Database 2 and different values of L. Due to the
fast convergence of the error to zero when l1, l2 > 0, the
simulations were developed by considering l1 = 35 and
l2 = 30. It is worth mentioning that the higher the values of
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FIGURE 7. Observer error behavior with different values of L (stable
region) for Database 2.
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FIGURE 8. Comparison of the observer and Database 1 with its respective
input current iel.

l1 and l2, the faster the convergence. However, computational
work is more demanding due to the small step size to achieve
solution iterations. For these values of L, the computational
operation time for all databases varied between 3.41 and 3.95
seconds. Figure 8 shows the result of the comparison of the
observer and Database 1 with its respective input current iel
(the dSPACE signal was programmed for an input current of
min = 10 A and max = 20 A).
Figure 9 shows the observed states vact,c and vact,a with

initial values vact,c,0 = 0.55 V and vact,a,0 = 0.03 V . In this
case, a different behavior can be seen during the first 1000
seconds, which agrees with the voltage shown in Figure 8.

Figure 10 shows the behavior of the observer for Database
2 with its respective input current iel (the dSPACE signal was
programmed for an input current ofmin = 1A andmax = 20
A).

Figure 11 shows the observed states vact,c and vact,a with
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FIGURE 9. Observed states vact,c and vact,a for Database 1.
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FIGURE 10. Comparison of the observer and Database 2 with its
respective input current iel.

initial values vact,c,0 = 0.25 V and vact,a,0 = 0.06 V . In
this case, a regular voltage behavior can be seen during the
experiment, which agrees with the voltage shown in Figure
10.

Figure 12 shows the input current iel (the dSPACE signal
was programmed for an input current of min = 5 A and
max = 15 A) and the experimental voltage from Database 3
with its respective estimation using the Luenberger observer.
Figure 13 shows the observed states vact,c and vact,a with
initial values vact,c,0 = 0.29 V and vact,a,0 = 0.04 V . In ad-
dition to the high precision observed in Figure 12 between the
estimated voltage and the real PEM electrolyzer voltage, the
behavior of the observed states agrees with the system output,
which proves the effectiveness of the proposed observer.

Figure 14 shows the result of the comparison of the ob-
server and Database 4 with its respective input current iel
(the dSPACE signal was programmed for an input current of
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FIGURE 11. Observed states vact,c and vact,a for Database 2.
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FIGURE 12. Comparison of the observer and Database 3 with its
respective input current iel.

min = 6 A and max = 16 A).
Figure 15 shows the observed states vact,c and vact,a with

initial values vact,c,0 = 0.52 V and vact,a,0 = 0.08 V . In this
case, a different behavior is observed around the first 1400
seconds, which agrees with the voltage shown in Figure 14.
Figure 16 shows the behavior of the observer for Database

5 with its respective input current iel (the dSPACE signal was
programmed for an input current ofmin = 8A andmax = 18
A).
Figure 17 shows the observed states vact,c and vact,a with

initial values vact,c,0 = 0.27 V and vact,a,0 = 0.05 V .
The effectiveness of the observer is demonstrated by the high
precision between the estimated voltage and the real voltage
of the PEM electrolyzer shown in Figure 16 and the behavior
of the observed states, which agrees with the output of the
system.
Figure 18 shows the input current iel (the dSPACE signal
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FIGURE 13. Observed states vact,c and vact,a for Database 3.
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FIGURE 14. Comparison of the observer and Database 4 with its
respective input current iel.

was programmed for an input current of min = 9 A and
max = 19 A) and the experimental voltage from Database 6
with its respective estimation using the Luenberger observer.

Figure 19 shows the observed states vact,c and vact,a with
initial values vact,c,0 = 0.52 V and vact,a,0 = 0.05 V .
This Database showed the most irregular behavior of all the
databases. However, as can be seen in Figures 18 and 19, the
high accuracy of the simulated voltage in estimating the real
voltage and the behavior of the observed states demonstrate
that the proposed observer is efficient and robust. Figure
20 shows the result of the comparison of the observer and
Database 7 with its respective input current iel (the dSPACE
signal was programmed for an input current ofmin = 2A and
max = 7 A). Figure 21 shows the observed states vact,c and
vact,a with initial values vact,c,0 = 0.22 V and vact,a,0 = 0.03
V . In this case, a regular behavior can be seen during the
experiment, which agrees with the voltage shown in Figure
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FIGURE 15. Observed states vact,c and vact,a for Database 4.
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FIGURE 16. Comparison of the observer and Database 5 with its
respective input current iel.

21.
Statistical tests were applied after observing the compar-

isons of the different databases with the Luenberger observer.
The results of these tests are shown in the next subsection.

B. DISCUSSION

Relative error Er, mean error Em, mean squared error MSE ,
and root mean squared error RMSE were applied to validate
the effectiveness of the observer. These statistical tests are
given by:

Er =

(
100

Nd

) Nd∑
k=1

∣∣∣∣vexp,k − vsim,k

vexp,k

∣∣∣∣ , (27)

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3400049

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



Hernández-Gómez et al.: Preparation of Papers for IEEE Access

0 1000 2000 3000 4000

0.25

0.50

0.75

V
o
lt

a
g
e

(V
) Vact,c

0 1000 2000 3000 4000

Time (s)

0.0

0.1

V
o
lt

a
g
e

(V
) Vact,a

FIGURE 17. Observed states vact,c and vact,a for Database 5.
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FIGURE 18. Comparison of the observer and Database 6 with its
respective input current iel.

Em =

(
1

Nd

) Nd∑
k=1

|vexp,k − vsim,k | , (28)

MSE =

(
1

Nd

) Nd∑
k=1

(vexp,k − vsim,k)
2
, (29)

RMSE =
√
MSE , (30)

where Nd is the number of voltage data (i.e., Nd varied
between 9904 and 9970). vexp,k is the k-th voltage data mea-
surement and vsim,k is the k-th voltage data simulation. The
statistical test results are shown in Table 5.

As can be seen in Table 5, the statistical results demonstrate
the high accuracy of the Luenberger observer proposed for
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FIGURE 19. Observed states vact,c and vact,a for Database 6.
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FIGURE 20. Comparison of the observer and Database 7 with its
respective input current iel.

TABLE 5. Statistical test results.

Database Er Em MSE RMSE

Database 1 0.0750% 0.0027 V 1.25e−5 V 2 0.0035 V
Database 2 0.0911% 0.0030 V 2.78e−5 V 2 0.0053 V
Database 3 0.0752% 0.0025 V 1.20e−5 V 2 0.0035 V
Database 4 0.0746% 0.0025 V 1.16e−5 V 2 0.0034 V
Database 5 0.0773% 0.0026 V 1.29e−5 V 2 0.0036 V
Database 6 0.0768% 0.0027 V 1.20e−5 V 2 0.0035 V
Database 7 0.0771% 0.0025 V 1.13e−5 V 2 0.0034 V

different databases. Besides, the observer showed high perfor-
mance in estimating the electrolyzer voltage under continuous
changes in input currents, which demonstrates its robustness.
This high precision was achieved using values of L in the
calculated stability region, l1, l2 > 0. Therefore, by using
this observer it is possible to appreciate the dynamics of the
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FIGURE 21. Observed states vact,c and vact,a for Database 7.

voltage states vact,c and vact,a that occur at the cathode and
the anode through an ECM. However, the assumption for vini,
Rmem, and Cc = Ca (i.e., these parameters are considered
constant to facilitate the development of the Luenberger ob-
server) affects the accuracy of measurements for the dynamic
voltage vact presented in a real PEM electrolyzer.

V. CONCLUSION
In this work, the effectiveness and robustness of the Luen-
berger observer were demonstrated for the dynamics present
in the PEM electrolyzer voltage when subjected to continuous
changes in input currents.

The effectiveness of the implementation of the Luenberger
observer to an ECM for PEM electrolyzer voltage opens new
research opportunities for different implementations of ob-
servers and control. Furthermore, by using the ECM parame-
ters and implementing the Luenberger observer it is possible
to build an electronic circuit that emulates the real voltage
response of a PEM electrolyzer in a reliable way and that also
allows for estimating dynamic behaviors.
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