N

N

SMEAR: Stylized Motion Exaggeration with
ARt-direction

Jean Basset, Pierre Bénard, Pascal Barla

» To cite this version:

Jean Basset, Pierre Bénard, Pascal Barla. SMEAR: Stylized Motion Exaggeration with ARt-direction.
SIGGRAPH 2024 - Conference & Exhibition on Computer Graphics & Interactive Techniques, Jul
2024, Denver, CO / Virtual, United States. 10.1145/3641519.3657457 . hal-04576817

HAL Id: hal-04576817
https://hal.science/hal-04576817

Submitted on 15 May 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04576817
https://hal.archives-ouvertes.fr

SMEAR: Stylized Motion Exaggeration with ARt-direction

JEAN BASSET, PIERRE BENARD, and PASCAL BARLA,
Inria, Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, France

Fig. 1. We present a method for the stylization of 3D motion using smear frames. From left to right on the three central frames, we show elongated in-betweens,
motion lines and multiple in-betweens. All three stylization effects are based on automatically-computed motion offsets, shown color-coded in inset figures.
These effects also depend on vertex velocity in this case, to limit the stylization to fast moving parts only.

Smear frames are routinely used by artists for the expressive depiction
of motion in animations. In this paper, we present an automatic, yet art-
directable method for the generation of smear frames in 3D, with a focus on
elongated in-betweens where an object is stretched along its trajectory. It
takes as input a key-framed animation of a 3D mesh, and outputs a deformed
version of this mesh for each frame of the animation, while providing for
artistic refinement at the end of the animation process and prior to rendering.

Our approach works in two steps. We first compute spatially and tem-
porally coherent motion offsets that describe to which extent parts of the
input mesh should be leading in front or trailing behind. We then describe
a framework to stylize these motion offsets in order to produce elongated
in-betweens at interactive rates, which we extend to the other two com-
mon smear frame effects: multiple in-betweens and motion lines. Novice
users may rely on preset stylization functions for fast and easy prototyping,
while more complex custom-made stylization functions may be designed by
experienced artists through our geometry node implementation in Blender.

CCS Concepts: « Computing methodologies — Non-photorealistic ren-
dering; Animation.

Additional Key Words and Phrases: Stylized Animation, Smear Frames

ACM Reference Format:

Jean Basset, Pierre Bénard, and Pascal Barla. 2024. SMEAR: Stylized Mo-
tion Exaggeration with ARt-direction. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Papers *24 (SIG-
GRAPH Conference Papers "24), July 27-August 1, 2024, Denver, CO, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3641519.3657457

SIGGRAPH Conference Papers °24, July 27-August 1, 2024, Denver, CO, USA

© 2024 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Special Interest
Group on Computer Graphics and Interactive Techniques Conference Conference Papers
"24 (SIGGRAPH Conference Papers '24), July 27-August 1, 2024, Denver, CO, USA, https:
//doi.org/10.1145/3641519.3657457.

1 INTRODUCTION

Stylization has long been applied to traditional hand-drawn 2D
animation to expressively convey motion. The 12 principles of ani-
mation [Thomas and Johnston 1981] developed at the Walt Disney
Studio in the late 1920’s and early 1930’s have served as guidelines
since then. Lasseter [1987] presents how these principles can be
manually applied by an artist to 3D animations. In particular, he
describes how stretching an object to cover the span of several
frames helps relieve the disturbing effect of strobing that happens
with fast motion. This technique precisely corresponds to elongated
in-betweens that are typical of 2D animations [Williams 2001], as il-
lustrated in Figure 2. Drawing multiple in-betweens, i.e., copies of the
animated objects displaced along their trajectories, is an alternative
smearing technique that is used to ease motion perception. Another
common motion stylization effect, inspired by comic books, is mo-
tion lines that clearly emphasize motion trajectories. With the recent
popularity of 3D animated films with strong stylistic identities, such
as the “Spider-Verse” movies, these motion effects have regained
interest. In this work, we aim at recreating smear frames, especially
elongated in-betweens, in 3D animations with a semi-automatic,
art-directed approach.

To guide the design of our method and better understand how
smear frames are used in 3D productions, we conducted an interview

Fig. 2. Example of smear frames in traditional 2D animation, “The Dover
Boys at Pimento Academy”, directed by Charles M. Jones (public domain).

HTTPS://ORCID.ORG/0009-0006-3300-9994
HTTPS://ORCID.ORG/0000-0002-2846-1955
HTTPS://ORCID.ORG/0000-0003-2844-6656
https://doi.org/10.1145/3641519.3657457
https://doi.org/10.1145/3641519.3657457
https://doi.org/10.1145/3641519.3657457

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

with the head of innovation in an animation studio (see the supple-
mental document for details) and had more informal discussions
with professional animators. Combined with observational studies
of traditional 2D animations and tutorials on smear frames [Williams
2001], we have identified the following guidelines:

G1: Smear frames have two main goals: (1) increase retinal persis-
tence by creating a larger overlap among consecutive frames, and
(2) create an effect of surprise (the “snap!” in Richard Williams [2001]
words) to direct the observer’s gaze.

G2: A motion stylization tool must seamlessly fit in the 3D anima-
tion workflow. It must thus be fast enough to provide interactive
feedback, toggling the motion effect should be easy, and artists
must be able to fine tune the results manually. Moreover, for skele-
tal animations, the tool should not modify the input poses.

G3: Motion stylization effects should be fully customizable by artists,
allowing to create unique styles for every production.

As discussed in Section 2, no existing method proposed in aca-
demic work fully satisfies these guidelines. First, smear frames, as
described in G1, have received little attention compared to more
generic squash-and-stretch deformations, and no method specifi-
cally addressed elongated in-betweens. Second, existing methods
targetting other motion effects or smear frame styles are difficult to
integrate into the animation workflow (G2) since they either involve
simulations that offer little intuitive artistic control (e.g., [Zhang
et al. 2020]) or are applied at the compositing stage (e.g., [Schmid
et al. 2010]), which makes results hard to control by animators. In
3D animation software, such as Autodesk 3Dsmax or Blender, some
smear frame creation tools are available as plugins, e.g., OverMor-
pher and motionFX. However, the former requires manual sculpting
of the 3D model, which makes iterative refinement of the effect very
tedious (G2); whereas the latter offers very little artistic control (G3).

In this paper, we present for the first time a method for the au-
tomatic yet art-directable creation of elongated in-betweens for
keyframe-based animations of 3D meshes, which we extend to the
cases of multiple in-betweens and motion lines. All three motion
stylizations are based on motion offsets, which identify which parts
of an input object or articulated figure should be leading in front
or trailing behind once stylized. As detailed in Section 3, motion
offsets are spatially- and temporally-coherent signed displacements
of mesh vertices computed from their trajectories.

We then propose in Section 4 a framework that provides interac-
tive artistic control over the stretching of an animated mesh along its
trajectory based on motion offsets, to create elongated in-betweens
that overlap adjacent frames (G1). The style of the smear frames
can be controlled using predefined stylization functions based on
high-level parameters, while the output per-frame meshes have the
same topology than the input and may still be manually fine-tuned
by artists (G2). In addition, we demonstrate that, with little adjust-
ments, this framework generates other types of smear frames, such
as multiple in-betweens and motion lines.

We finally show in Section 5 a wide range of stylization effects,
and demonstrate that our implementation as a Blender plugin man-
ages to quickly (i.e., in a few seconds) recompute motions offsets
after any change in the input animation, achieving interactive styl-
ization performance and iterative refinement of the animation and

Jean Basset, Pierre Bénard, and Pascal Barla

motion effects (G2). We rely on the geometric node graph interface
in Blender to let experienced artists create new stylizations (G3).
Our Blender implementation is included in supplemental material
and is openly available at https://github.com/MoStyle/SMEAR.

2 RELATED WORK

Since its inception, one of the goal of computer graphics has been to
reproduce the expressiveness of traditional hand-drawn 2D anima-
tions. Many works have thus explored ways to (semi-)automatically
deform objects or characters to reproduce effects typical of tradi-
tional 2D animations, such as squash-and-stretch, or anticipation
and follow-through.

Physically-based deformations. A common approach to generate
elastic deformations is to rely on physical simulations. For instance,
custom physically-based models were developed to produce exag-
gerated cartoon effects [Chenney et al. 2002; Coros et al. 2012; Garcia
et al. 2007; Miller et al. 2005] or jiggling on characters [Iwamoto
et al. 2015; Rumman and Fratarcangeli 2014].

The more generic “Complementary Dynamics” framework of
Zhang et al. [2020] creates secondary deformations on top of a
skeleton-based animation by computing these in the subspace or-
thogonal to the rig. Even though real-time performance can be
achieved [Benchekroun et al. 2023], physically-based deformations
are limited in terms of art-directability (G2 & G3) since artists only
control simulation parameters, requiring trials and errors.

Kinematic approaches. Another line of work has thus explored
simpler, direct kinematic approaches to reproduce cartoon effects.
The time-based filter of Wang et al. [2006] applied to vertex trajec-
tories can express anticipation and follow-through. For character
animations, deformations of the bones themselves [Kwon and Lee
2012] can reproduce squash-and-stretch effects, but they are in con-
tradiction with G2 as they automatically alter the skeleton pose.

Geometric deformers based on bone velocities [Noble and Tang
2007; Rohmer et al. 2021] and accelerations [Kalyanasundaram et al.
2022] are able to reproduce a wide range of motion exaggeration
effects, and offer artist control through painted weights and han-
dles. Example-based methods [Dvoroznak et al. 2017; Roberts and
Mallett 2013] provide even more natural and intuitive controls, but
they must be set up manually for each specific animation. Most
importantly, they are not adapted to produce smear frames (G1).

Specifically targeting novice users, Ma et al. [Ma et al. 2022]
present a user-interface to apply motion stylization presets on top
of a 3D animation. Their system allows fast prototyping, in line
with guideline G2, and additionally offers a node-based interface to
more experienced users for customizing effects, in accordance with
G3. However, they only handle simple rigid animations.

Smear frames. Far fewer previous methods explicitely aim at gen-
erating smear frames. Schmid et al. [2010] propose a custom ren-
dering engine that supports programmable motion effects. They
manage to produce smear frames in various styles: motion blur, mul-
tiple in-betweens and motion lines, inspired by the motion depiction
taxonomy of Cutting [2002]. Style customization (G3) is possible
by construction, but reserved to experienced programmers. More

https://www.kinematiclab.com/products/overmorpher-world-space
https://www.kinematiclab.com/products/overmorpher-world-space
https://blendermarket.com/products/motionfx
https://github.com/MoStyle/SMEAR

SMEAR: Stylized Motion Exaggeration with ARt-direction

importantly, the artist cannot manually fine tune the results since
they are produced at rendering time, in contradiction with G2.

Swept volumes, i.e., the union of all positions spanned by an ob-
ject over the course of an animation, are used to convey 3D motion
in static images and sculptures [Kazi et al. 2016; Zhang et al. 2018].
They may also be used to create smear effects close to elongated
in-betweens by sweeping an object along its trajectory, as stated by
guideline G1, such as motion trails [Sellan et al. 2021] or motion
blur [Jones and Keyser 2005]. Even though swept volume methods
produce meshes that may be fine tuned by artists (G2), they are
not guaranteed to be homeomorphic to the input object, hiding
high-frequency surface details and concavities, thus impeding the
recognition of the object. In addition, their high computation time
makes them impractical for interactive stylization (G2).

Our method produces smear frame stylization (G1) directly in
3D at interactive frame rates, seamlessly fitting in the 3D animator
workflow and supporting artistic fine tuning in post-process (G2). It
is thus more similar to swept volume approaches, while addressing
their limitations through a method based on motion offsets. Our
method could be used in complement to other motion effects such
as physical deformations or kinematics approaches, in order to
create compelling animations with secondary motions and smearing.
Our approach additionally borrows the concept of a multi-level
authoring tool from [Ma et al. 2022], whereby stylization presets
are exposed with default parameters, and complemented by a node
graph interface for advanced customization (G3).

3 MOTION OFFSETS

In our approach, elongated in-betweens, multiple in-betweens or
motion lines are all created at a given frame by first identifying
which parts of the object should be leading in front, and which
parts should be trailing behind (see Figure 3). Formally, we assign
scalar values 8;(f) € [~1,1] at each vertex i and frame f, which
we call motion offsets (color-coded in Figure 3b). Vertices with a
motion offset of §;(f) = 1 (resp —1) will be the ones with the largest
amount of stylization when depicting motion in the future (resp. in
the past). For instance, in the case of elongated in-betweens, these
points will be displaced so as to overlap the next (resp. previous)
frame, as illustrated in Figure 3c. Such a normalization of motion
offsets eases further stylization as it makes it more predictable.

In the following, we explain how we compute motion offsets, first
in the case of a simple object (Section 3.1), then in the case of an
articulated figure (Section 3.2). For clarity of notation, we usually
omit the dependency of motion offsets on the current frame f. In

v

addition, we write unit vectors as v = R

3.1 Simple Object

For a globally-convex rigid object, such as the ball in Figure 3, mo-
tion offsets could be computed by a mere dot product between the
normalized velocity of its centroid and the normal at a given ver-
tex [Jones and Keyser 2005]. However, such a simple local formula
is not adapted to objects with large concavities or high-frequency
surface details, as motion offsets would exhibit undesired local vari-
ations. As shown in Figure 4-left, this can result in strong artifacts

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

<>

(a) Bouncing ball animation with onion
skin visualization of adjacent frames.

@ @

(c) Elongated in-between. (d) Multiple in-between.

(b) Motion offsets computed
with our method.

e) Motion lines.

Fig. 3. Motion offsets, separation plane (in green), and corresponding styl-
izations for a bouncing ball. Positive (resp. negative) motion offsets are
painted red (resp. blue).

i P

Fig. 4. Motion offsets and corresponding elongated in-between for a peanut
model translating left to right, computed (left) as the dot product of the
centroid velocity and vertex normals, and (right) with our approach.

after stylization, such as important self-intersections, and hide con-
cavities and surface details.

We instead opt for a global characterization: we separate surface
points leading in front from those trailing behind via a plane of
normal v - the normalized velocity of the object (i.e., its direction
of motion) — and going through the object centroid c (see Figure 3b).
The motion offset for a vertex i at position p; is then given by the
normalized signed distance to that plane:

. Si

=——— with §=
man|5j| !

(pi—o¢)-¥,)
where the maximum is taken over all the vertices of the object.

For animations with fast changing motion directions, motion
offsets may vary abruptly across frames at some vertices. We thus
optionally smooth their values using a temporal window of N frames
on either sides of the current frame f:

N

Sif) =), wabi(f +n), @)

n=-N

2

2

(7]
with N = 2 in practice. The supplemental video shows the effect of
this temporal smoothing on a fast animation.

with wy, a temporal weighting function. We use wy, = [1 -

3.2 Articulated figure

Compared to a simple object, an articulated figure exhibits more
complex movements (due to different motions of skeleton bones),
which must be captured by motion offsets. In this case, instead of
separating mesh vertices with a plane as in Section 3.1, we sepa-
rate them using ribbons that run through the bones and are locally

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

Fig. 5. Mathematical notations for a single bone. For every vertex i of the
mesh with position p;, we compute the normal fi(u;) of the ribbon (in green)
which is orthogonal to the bone axis b = (¢; — ¢;-) and is as aligned as
possible to the direction of motion ¥(u;) interpolated from the normalized
velocities ¥, and ¥, at root and tip locations ¢, and c;.

oriented as orthogonal as possible to the direction of motion, as illus-
trated in Figures 5 and 6. The rationale behind this choice is that we
want to convey motion (G1) without changing the apparent skele-
ton pose (G2). We first explain how motion offsets are computed
from ribbons for a single bone, and then for a full skeleton.

Single Bone. The geometry for a single bone is illustrated in Fig-
ure 5: the root and tip of a bone are denoted by ¢, and c; respectively,
while its axis is written b with b = c; — ¢r. A vertex i with position
p: is mapped to the bone axis by assigning it a 1D parameter:

sz(W—w%b

ml) ®

with S : R — [0, 1] a smoothstep function classically defined by
S(x) = [3x2 - 2x3]é where [x]é clamps x to the [0, 1] range.

We then compute a local direction of motion ¥(u;) through the
spherical linear interpolation [Shoemake 1985] of motion directions
at root and tip locations — noted ¥, and ¥; respectively - using:
sin((1 —u)w) .

sin(w)

sin(uw)

V(u) = A2 4

sin(w)
with w = arccos(V, - V;). To avoid numerical inaccuracies, we fall
back to a linear interpolation when w < 0.1 radians.

We next compute the ribbon normal fi(u;) for vertex i, which
should be orthogonal to the bone axis b, and aligned with the local
direction of motion ¥(u;) as much as possible. The ribbon normal i
for a parametric position u along the bone axis is given by:

n(u)
In(w)ll’

The motion offset for vertex i is then given similarly to Equation 1:

n(u) = ¥(u) - (o(u) : 13) b fw) =)

8i = weon, (ui) with 6 = (pi —¢/) - 0(w;), (6)

i
max; |5
where weop (w) = 1— (V(u) -f))2 is a weight function that decreases
the magnitude of motion offsets as local motion directions get in-
creasingly collinear to the bone axis. Its effect is best described in
the case of multiple bones, as explained next.

Jean Basset, Pierre Bénard, and Pascal Barla

Al Al

Fig. 6. Motion offsets for a two-bones capsule, with onion skin visualization
of the animation. Left: motion offsets computed using a secant plane as
in Section 3.1. Right: motion offsets computed using a ribbon separation
surface depending on the local motion direction.

a) Two bones capsule translating to the right with onion skin visualization.

re ime

(b) Without collinear weights. c) With collinear weights.

Fig. 7. Motion offsets computed for the animation in (a), weighted according
to motion collinearity (c), and without this weighting scheme (b), yielding a
noticeable shearing.

Full skeleton. For a vertex i affected by multiple bones, its motion
offset is computed by the contribution of each bone k through its
skinning weight w;y, similarly to [Rohmer et al. 2021]:

5_1- = Z Wik Sik with Z Wik = 1. (7)
k k

The motion offset contribution of a bone in a full skeleton is
similar to that of a single bone but differs in term of normalization:

_ O; . .
Sik = Wcoll.(uik)M;i with & = (pi — k) - g (wir), (8)
1

where u;y is the parametric position of vertex i along bone k of root
¢k » and axis f)k, and ny, is obtained by applying Equation 5 to bone k.
The purpose of the collinear weight term woy . is to avoid shearing
artifacts that occur when the local motion direction is collinear with
the bone axis, as illustrated in Figure 7 with a simple mesh animated
via a pair of bones.

The motion offset normalization term M;y is given by:

M = u; max |6ix| + (1 —ujr) max |8k, 9
ik lkjE(Vk,r|]kl (lk)jE(Vk,t|]k| ()

where Vj , (resp. Vi ;) is the set of vertices affected by bones that
are connected to the root (resp. the tip) of bone k, including bone k
itself. The rationale behind Equation 9 is to ensure that M;;. varies
smoothly across bone joints. As shown in Figure 8b, using a per-
bone normalization (i.e., max;eqy, |§jx| with V. the set of vertices
affected by bone k) produces more abrupt transitions of motion

SMEAR: Stylized Motion Exaggeration with ARt-direction

/'

(a) input animation. b) Per-bone normalization.

¢ 7 d

(d) Skeleton pruning.

(c) Normalization using Equation 9.

Fig. 8. Motion offsets computed for the animation in (a) with different
normalization factors (b-c). In (d), we compare the motion offsets computed
considering all bones (left) with those obtained by considering the hand as
a single body part affected by the forearm bone (right).

offsets around articulations, which show up in the final stylized
motion. Note that this smoothing step can create motion offsets
that slightly go beyond the [—1, 1] interval at joints between two
adjacent body parts with very different shapes. However, this is not
an issue in practice since normalization is mainly used to ensure
that motion stylization remains predictable over the whole mesh.

Using Equation 7, the level of detail of motion offsets is tied to the
complexity of the skeleton. In some cases, one might want to have
simpler motion offsets. A good example is the creation of elongated
in-betweens for an arm motion, where the artist might want to
deform the hand as a whole instead of deforming it at the finger
level. We grant such an artistic control by optionally toggling off
bones in the skeleton for the computation of motion offsets. All
its vertices are then instead affected by its parent bone. This is
illustrated in Figure 8d on the character’s hand.

4 STYLIZED MOTION

We now rely on motion offsets to control three types of motion
stylizations. Our main focus is on the creation of elongated in-
betweens (Section 4.1), but we also show how to adapt our method
to produce multiple in-betweens (Section 4.2) and motion lines
(Section 4.3) in 3D. In accordance with guideline G3, the stylization
functions introduced in Equations 10, 11 and 13 are not fixed but
open to customization, as demonstrated in Section 5.

4.1 Elongated In-betweens

Elongated in-betweens are produced by displacing every mesh ver-
tex according to its motion offset along its trajectory. Vertex trajecto-
ries are modeled as a concatenation of Catmull-Rom splines [Catmull
and Rom 1974], one per pair of contiguous frames in the input ani-
mation. Formally, we write Q; ¢(#) the trajectory of vertex i between

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

frames f and f + 1, with ¢ € [0, 1] the spline parameter. Tangents
between contiguous splines are set to ensure C! continuity.

Moving a vertex along its trajectory by an arbitrary displacement
B € R yields a new point p;(f) = Q; () (t(B)), where f(B) =
f+ |p] and t(f) = B — |p], with |x] the floor of x. The floor
function is used to deal with values of outside [0, 1]. For instance,
at frame f = 5 with § = 1.4, interpolation starts at frame f+|f] =6
and uses an interpolation parameter ¢(f) = 0.4. To convey motion,
we apply a displacement f;(f) at vertex i and frame f, controlled
by a general stylization function of motion offsets that may take an
arbitrary number of arguments “args”:

Bi(f) = Se(6i(f); args). (10)
Since the displacements f3; are not constrained to the [-1, 1] range,
the deformed object may be elongated farther than the previous or
next frame in the animation. A simple example of stylization func-
tion is Sg(6; Pmax) = SPmax, With fmax € R an artist-controlled
maximum elongation parameter. The elongated in-between pre-
sented in Figure 3c is created using Sg(J; 1). More complex styles
are demonstrated in Section 5, based on additional parameters such
as speed, shape, or surface location.

4.2 Multiples In-betweens

In our approach, we create multiple in-betweens by adding displaced
copies of the whole mesh in the past and/or the future, optionally
followed by opacity modulations of each copy. Formally, a multiple
is identified by its index m € [~my, mp] (m # 0), with m,, (resp. mp,)
the number of copies in the past (resp. in the future). Each multiple
m is displaced using the trajectory-based mechanism of Section 4.1,
except that we use the same S, (f) = mAf for all mesh vertices,
with Af an artist-controlled temporal spacing parameter.

The opacity a; ,(f) of a vertex i for a multiple m # 0 at frame f
is then controlled by a general stylization function of motion offsets:

aim(f) = Sm(8i(f), m; args). (11)
A simple example is obtained by creating the same number of
copies in the past and future (ms = mp = mmax), spaced half a frame

apart (Af = %), and using the following stylization function:

Im| -

Sir (8, m; Mumay) = H(6m)S (M) with 8, = , (12)
1 - om

Mmax

where H is the Heaviside function and S the smoothstep function.
The first term ensures that vertices with positive (resp. negative)
motion offsets are transparent for multiples in the past (resp. in
the future). The second term assigns an opacity gradient based on
motion offsets, which begins at increasingly higher offset values &,
the farther a multiple is from the mesh at the current frame. Multiple
in-betweens created with Af = 3 L and Sp1(8, m; 2) are presented in
Figure 3d. As explored in Section 5, varying the number of multiples,
their spacing, or their opacity through different stylization functions
achieves different motion effects.

4.3 Motion lines

Motion lines are created in our approach by tracing trajectory curves
using thin tubular meshes in 3D. A subset of surface points is first
selected in pre-process to act as seeds for motion lines. In practice,

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

we use a random selection of mesh vertices for simplicity, but any
other solution could be employed. At a given frame f, a motion
line ¢ thus starts on the animated mesh at the seed point p,(f),
and is traced along its trajectory until it reaches the end point
pp(f) = Q¢ f(r)(t(1)), with T € R™ a length parameter.

The motion line length 7 (f) for a curve ¢ at frame f is controlled
by a general stylization function of motion offsets:

7e(f) = SL(8¢(f); args). (13)

Note that in this case motion offsets 5y are not computed from vertex
positions p; but from seed positions p; in Equation 8.

A simple example of stylization function is St (5; Tmax) = OTmax»
with Tax € R* an artist-controlled maximum length parameter.
Motion lines traced with Sy (8;1) are shown in Figure 3e. In this
case, the other motion line parameters (thickness, color and opacity)
are kept constant; but they may also be made to vary with motion
offsets or other object properties through more complex stylization
functions, as shown in Section 5.

5 RESULTS

Our implementation in Blender is described in Section 5.1 and pro-
vided in supplemental material, along with the scene files used to
produce all the results of Section 5.2 but Figure 18.

5.1 Implementation

Our Blender implementation consists of two components.

First, motion offsets as described in Section 3 are computed
through a Python add-on using the Blender API. They are stored
as vertex attributes and must be recomputed efficiently every time
the animation is modified. We also precompute the Catmull-Rom
splines Q; ¢ during this step. As reported in Table 1, the whole pro-
cess is on the order of a few seconds (e.g., roughly 3 seconds for
the animation in Figure 11a, with 40 frames and 14267 vertices)
and is thus compatible with iterative refinements of the animation
(G2). It could be further accelerated with a lower-level (e.g., C++)
multi-threaded implementation, but the distribution of our Blender
add-on would then be less practical. Note that our discussions with
professional artists confirmed that a few seconds of pre-processing
is common for such tools and is thus not a strong limitation for
artists. Table 1 also reports memory usage per frame for storing the
Catmull-Rom splines and the motion offsets.

Once the motion offsets are computed, the stylization method pre-
sented in Section 4 is implemented with Blender “Geometry Nodes”.
We provide preset node graphs implementing a given stylization
function and exposing simple controls (e.g., sliders) for novice artists
and fast prototyping, with interactive feedback provided in the

Table 1. Pre-processing time and memory usage per frame on a computer
with an Intel Core i9-7920X 2.90GHz CPU.

Simple objects Articulated characters

vertices 482 1344 1344 14267
bones - - 2 65
Time / frame 4 ms 5 ms 7 ms 70 ms

Memory usage / frame 10KB 27KB 27 KB 280 KB

Jean Basset, Pierre Bénard, and Pascal Barla

Blender viewport (G2). More experimented artists can freely create
their own node graphs or customize existing ones to define new
styles (G3). We provide several examples in the next section. Note
that all stylization parameters may be keyframed, as done in some
examples shown in the supplemental video.

5.2 Application Examples

All the results presented in this section are available as animations
in the accompanying video, as they are better appreciated in motion.
The “Spot” cow model (Figure 9) is courtesy of Crane et al. [2013],
articulated characters and animations were downloaded from Mix-
amo [Adobe 2024]. The basket ball used in Figures 3 and 10 is
downloaded from [Downdate 2012]. The peanut model from Fig-
ure 4 is downloaded from [Credomo 2016]. Tex Avery’s Daffy Duck
3D model is downloaded from [SteveTheDragon 2019]. The flower
and tree models in Figure 17 are from [Rohmer et al. 2021]. Spintop
model from Figure 19 is downloaded from [JuanG3D 2017]. The
cut-out animation in Figure 18 is courtesy of Joel Graham - “Sketchy
Squirrel”.

Simple object. We present in Figure 9b the result produced by our
method when creating elongated in-betweens for a simple object
without armature, using f; = Sg(8;;1) where Sg is the simple
stylization function from Section 4.1. Our method stretches the
object to cover adjacent frames, hence easing retinal persistence
(G1) and smoothing motion. This example of elongated smearing
is obtained in one click, which helps novice animators give life to
otherwise rigid animations.

Figure 10 shows an example of a smear effect using multiple in-
betweens, illustrating the impact of a proper choice for the spacing
parameter Ay. Indeed, in this case, retinal persistence is achieved
when at least one copy of the object appears at the same position
between two consecutive frames. To ensure that constraint, we
restrict the spacing parameter to Af(Nn) = m, where
Nn € [1,mp + my] is the desired number of overlapping multiples
among consecutive frames. Figure 10 shows a simple example: in
the bottom row, we create overlapping multiples with m; = m, =1
and Nn = 2, yielding Af = 1; whereas in the top row, we directly set
Af = 0.7. The latter configuration leads to a stroboscopic effect as
shown in the supplemental video. In this example, we use the default
stylization from Section 4.2 to compute opacity: & m = Spr(5;, m; 1).

Articulated character. Figure 11 illustrates the generation of elon-
gated in-betweens on an articulated character for different choices
of stylization function. The default function Sg(J;; 2) is shown as a
reference in Figure 11b. As seen in the supplemental video, it pro-
duces a “wobbly” motion effect, as if the character was made of jelly.
To counterbalance this effect, we weight vertex displacement by
velocity, which accentuates (resp. dampens) elongation for fast (resp.
slow) moving vertices. This is shown in Figure 11c, where we use
S;peed(gi; Vi, Pmax) = Pmaxl|Villi. We further stylize the elongated
in-between by locally modulating displacement by a noise value.
We use a 3D Voronoi noise [Worley 1996] applied to the position
p;(0) of vertex i at the start frame of the animation: F; (p;(0), k),
where «k is a controllable scaling factor. The stylization function
becomes: SEOise(Sith K, Pmax) = Pmax|VillF1(pi(0), K)Si—s where

SMEAR: Stylized Motion Exaggeration with ARt-direction

8;— = min(4;, 0) is used to restrict the noisy smearing effect to trail
behind the character, as shown in Figure 11d.

Up until now we have only modulated the motion offset magni-
tudes. As done by Schmid et al. [2010], one may also want to shift
motion offsets toward the past or the future. To this end, we use the
warping function Csp : [0,1] — [0, 1] introduced by Hise [2020],
with s € [0,1] and p € [0,1) controlling the strength and direc-
tion of warping respectively: p < 0.5 (resp. p > 0.5) warps in the
future (resp. the past). The warped motion offsets are then given
by Sl{(s,p) =2GCsp (%) —1 € [-1,1]. They may be used in any
stylization function, for example to create elongated in-betweens in
Figure 12.

Examples of multiple in-betweens and motion lines on an artic-
ulated character are shown in Figure 1. Multiple in-betweens are
positioned with the overlap constraint for retinal persistence, us-
ing Nn = 1, mp = 2 and m, = 1, which yields Af = % In this
case, opacity is controlled by a modified version of the default styl-
ization function (Equation 12) applied to warped motion offsets:
aim = H(||vi|l - vmin)SM(glf(O.S, 0.5), m; 1), where the Heaviside
term H assigns a 0 opacity to vertices moving slower than vp;,. Simi-
larly, we use a modified version of the default stylization function for
motion lines to compute their length: 7, = H(||v¢||=0min)Sz (8¢; 10).

Advanced controls. As shown in Figure 13, applying elongated
smearing to all the bones of a skeleton might result in an excessive
amount of deformation on thin limbs, such as fingers of the hand.
Skeleton pruning deals with this potential issue by assigning ver-
tices of the hand to their parent bone. As a result, the whole hand is
elongated instead of individual fingers (see also Figures 1 and 12).
Pushing this idea to its extreme, one may want to compute the mo-
tion offsets of an articulated character using the method described
in Section 3.1. This is particularly useful when the whole body is
projected in space, as shown in Figure 14.

Stylizing the motion of thin and long objects such as the sword
in Figure 15 is best done by adding a single dedicated bone that
runs along its length, using §;_ since stylization toward the past is
common for sword animations. We complement these motion offsets
with manually painted weights w; € [0, 1] that increase along the
length of the sword. We show results for all three motion stylizations:
elongated in-betweens are obtained with f; = a)iS}Sfpeed(Si_;vi, 15);
multiple in-betweens use mp = 4, my = 0, N = 1 (yielding Af = ‘—11)
and a; m = Spr(10]|v;||w;i8;—, m; 1); and motion line lengths are set
to 7, = Sg.(||ve||lwede—; 20), while their opacity decreases linearly
from start to end. We additionally displace the seed points p; along
their trajectory to leave a gap between motion lines and the sword.

Stylization is easily adapted to work with a reduced frame rate,
which gives the impression of a scene animated “on twos”, as com-
monly done in traditional 2D workflows. This merely requires to
scale f; (for elongated in-betweens), i, (for multiples in-betweens)
or 7p (for motion lines) by the frame rate step. Examples are shown
in the supplemental video for elongated in-betweens.

Additional results. All three motion stylization effects may be used
at once, as shown in Figure 16. Our method may also be applied
to static scenes observed through a moving camera, by computing
motion offsets and vertex trajectories in camera space instead of

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA

world space. Figure 17 shows a simple example with elongated in-
betweens, using per-object stylization functions: f; = Sg(5;—;1)
for the cow and the flower; f; = SEOise(Si_ ; Vi, 10, 1) for the tree.

Our framework works natively on 2D cut-out animations that
rely on textured meshes, as shown in Figure 18 with elongated
in-betweens on a 2D character.

6 DISCUSSION AND PERSPECTIVES

We have presented a simple yet effective approach to motion styl-
ization in 3D based on motion offsets, and we have demonstrated
its adequacy to produce elongated in-betweens, as well as multiple
in-betweens and motion lines, all in 3D with interactive feedback.

Relationship to previous work. Stylizing motion directly in 3D has
two advantages: (1) output meshes may be manually edited at every
frame to fine-tune the style; (2) stylization does not interfere with
shading and rendering since they occur later in the pipeline.

Compared to swept volumes (Figure 9c), our method better pre-
serves the local shape of the mesh and is several orders of magnitude
faster than the state-of-the-art algorithm of Sellan et al. [2021] (about
7 seconds/frame for swept volumes vs. 0.007 seconds/frame for our
motion offsets). In addition, since the topology of the input mesh
is preserved, texture naturally follows mesh deformation, whereas
swept volumes require recomputing new UV mappings.

The method of Schmid et al. [2010] applies motion stylization
(multiple in-betweens and motion lines) at the rendering stage. We
believe that their method and ours do not target the same audience:
manipulating appearance parameters such as opacity or line thick-
ness in 2D might appeal more to compositing artists; whereas a 3D
stylization technique is more adapted to the work of 3D animators
as it naturally integrates in their workflow. We thus consider that
there is potential interest for these two different approaches.

Limitations & Future work. Our algorithm to compute motion
offsets requires the knowledge of the full animation, which makes it
impractical for real-time applications such as video games. However,
if smear frames are only computed in the past, it could be adapted for
such a use case, provided previous vertex positions can be efficiently
evaluated or cached.

Moreover, our motion offsets computation relies on a structure
that summarizes the object motion, i.e., the centroid for simple
shapes and the skeleton for characters. Our method is thus unsuit-
able for visual effects such as fluids, cloth or hair, usually animated
by physical simulations, unless their main motion can be abstracted
by such a structure.

Since our elongated in-betweens are obtained by deformation of
the mesh geometry, their smoothness depends on both the input
tessellation and the amplitude of the displacements. In practice, we
used global subdivision passes of mesh to produce smoother results.
Yet, to reduce geometric complexity, it would be relevant to develop
an automatic adaptive tessellation scheme based on the gradient of
the displacements.

Depending on the strength of the rotation component in the
input motion, our method may produce elongated in-betweens with
self-intersections, that may (or may not) produce visual artifacts in
the final render images. The most pathological cases are surfaces

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA

of revolution rotating around their axis of symmetry. In such a
case, a simple ad hoc workaround consists in removing the rotation
from the object motion for smear stylization and reintroducing
it in UV-space to animate a texture, as illustrated in Figure 19. A
more general solution would require automatically decomposing
the input motion into a set of transformations and letting the artist
decide what component to stylize, which is an interesting avenue
for future work.

Finally, while motion lines and cartoon stylization have been
shown to help observers understand and predict animated mo-
tion [Burr and Ross 2002; Garcia et al. 2008; Geisler 1999], no similar
user experiment has been conducted for elongated in-betweens.
Besides, as already noted in Section 5.2, we observed in our results
that uniform smearing may produce a “wobbly” motion effect which
modifies the perception of the object’s mechanical properties. An
interesting future direction would thus be to explore the impact of
smear frames on motion and material perception.

ACKNOWLEDGEMENTS

We are very grateful to Quentin Auger from “Dada ! Animation”
for his help during and after the interview. We are also grateful to
Amélie Fondevilla, Samuel Bernou, Romain Vergne, Damien Rohmer,
Melvin Even and Panagiotis Tsiapkolis for helpful discussions. This
work is supported by the ANR MoStyle (ANR-20-CE33-0002).

REFERENCES

Adobe. 2024. Mixamo. https://www.mixamo.com/ Accessed: 16-01-2024.

Otman Benchekroun, Jiayi Eris Zhang, Siddartha Chaudhuri, Eitan Grinspun, Yi Zhou,
and Alec Jacobson. 2023. Fast Complementary Dynamics via Skinning Eigenmodes.
ACM Trans. Graph. 42, 4, Article 106 (2023). https://doi.org/10.1145/3592404

David C Burr and John Ross. 2002. Direct evidence that "speedlines” influence motion
mechanisms. Journal of Neuroscience 22, 19 (2002), 8661-8664. https://doi.org/10.
1523/JNEUROSCI.22-19-08661.2002

Edwin Catmull and Raphael Rom. 1974. A class of local interpolating splines. In
Computer aided geometric design. Elsevier, 317-326. https://doi.org/10.1016/B978-0-
12-079050-0.50020-5

Stephen Chenney, Mark Pingel, Rob Iverson, and Marcin Szymanski. 2002. Simulating
cartoon style animation. In Proceedings of the 2nd International Symposium on Non-
photorealistic Animation and Rendering. 133-138. https://doi.org/10.1145/508530.
508553

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,
Robert Sumner, and Markus Gross. 2012. Deformable objects alive! ACM Trans.
Graph. 31, 4 (2012), 1-9. https://doi.org/10.1145/2185520.2185565

Keenan Crane, Ulrich Pinkall, and Peter Schroder. 2013. Robust fairing via conformal
curvature flow. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1-10. https:
//doi.org/10.1145/2461912.2461986

Credomo. 2016. https://blendswap.com/blend/17808

James E Cutting. 2002. Representing motion in a static image: constraints and parallels
in art, science, and popular culture. Perception 31, 10 (2002), 1165-1193.

Downdate. 2012. https://opengameart.org/content/basket-ball-texture

Marek Dvoroziak, Pierre Bénard, Pascal Barla, Oliver Wang, and Daniel Sykora. 2017.
Example-Based Expressive Animation of 2D Rigid Bodies. ACM Trans. Graph. 36, 4,
Article 127 (2017). https://doi.org/10.1145/3072959.3073611

Marcos Garcia, John Dingliana, and Carol O’Sullivan. 2007. A Physically Based De-
formation Model for Interactive Cartoon Animation.. In VRIPHYS. 27-34. https:
//doi.org/10.2312/PE/vriphys/vriphys07/027-034

Marcos Garcia, John Dingliana, and Carol O’Sullivan. 2008. Perceptual evaluation of
cartoon physics: accuracy, attention, appeal. In Proceedings of the 5th Symposium on
Applied Perception in Graphics and Visualization. 107-114. https://doi.org/10.1145/
1394281.1394301

Wilson S Geisler. 1999. Motion streaks provide a spatial code for motion direction.
Nature 400, 6739 (1999), 65-69. https://doi.org/10.1038/21886

Jason Hise. 2020. https://www.desmos.com/calculator/3zhzwbfrxd

Naoya Iwamoto, Hubert PH Shum, Longzhi Yang, and Shigeo Morishima. 2015. Multi-
layer Lattice Model for Real-Time Dynamic Character Deformation. In Computer
Graphics Forum, Vol. 34. Wiley, 99-109. https://doi.org/10.1111/cgf.12749

Jean Basset, Pierre Bénard, and Pascal Barla

N. Jones and J. Keyser. 2005. Real-time geometric motion blur for a deforming polygonal
mesh. In International 2005 Computer Graphics. 26-31. https://doi.org/10.1109/CGL
2005.1500362

JuanG3D. 2017. https://sketchfab.com/3d-models/day31-spinning-top-
d090504b2d994d7c812c14bc963afe90

Niranjan Kalyanasundaram, Damien Rohmer, and Victor Zordan. 2022. Acceleration
Skinning: Kinematics-Driven Cartoon Effects for Articulated Characters. In Graphics
Interface.

Rubaiat Habib Kazi, Tovi Grossman, Cory Mogk, Ryan Schmidt, and George Fitzmaurice.
2016. ChronoFab: Fabricating Motion. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 908-918. https://doi.org/10.1145/
2858036.2858138

Ji-yong Kwon and In-Kwon Lee. 2012. The Squash-and-Stretch Stylization for Character
Motions. IEEE Transactions on Visualization and Computer Graphics 18, 3 (2012),
488-500. https://doi.org/10.1109/TVCG.2011.48

John Lasseter. 1987. Principles of traditional animation applied to 3D computer an-
imation. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques. 35-44. https://doi.org/10.1145/37402.37407

Jiaju Ma, Li-Yi Wei, and Rubaiat Habib Kazi. 2022. A Layered Authoring Tool for Stylized
3D animations. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems. Article 383, 14 pages. https://doi.org/10.1145/3491102.3501894

Matthias Miiller, Bruno Heidelberger, Matthias Teschner, and Markus Gross. 2005.
Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3 (2005),
471-478. https://doi.org/10.1145/1073204.1073216

Paul Noble and Wen Tang. 2007. Automatic expressive deformations for implying and
stylizing motion. The Visual Computer 23 (2007), 523-533. https://doi.org/0.1007/
s00371-007-0125-8

Richard Roberts and Byron Mallett. 2013. A pose space for squash and stretch defor-
mation. In 2013 28th International Conference on Image and Vision Computing New
Zealand (IVCNZ 2013). IEEE, 166-171. https://doi.org/10.1109/IVCNZ.2013.6727010

Damien Rohmer, Marco Tarini, Niranjan Kalyanasundaram, Faezeh Moshfeghifar, Marie-
Paule Cani, and Victor Zordan. 2021. Velocity Skinning for Real-time Stylized
Skeletal Animation. Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.
142654

Nadine Abu Rumman and Marco Fratarcangeli. 2014. Position based skinning of
skeleton-driven deformable characters. In Proceedings of the 30th Spring Conference
on Computer Graphics. 83-90. https://doi.org/10.1145/2643188.2643194

Johannes Schmid, Robert W Sumner, Huw Bowles, and Markus H Gross. 2010. Pro-
grammable motion effects. ACM Trans. Graph. 29, 4 (2010), 57-1.

Silvia Sellan, Noam Aigerman, and Alec Jacobson. 2021. Swept volumes via spacetime
numerical continuation. ACM Trans. Graph. 40, 4 (2021), 1-11. https://doi.org/10.
1145/3450626.3459780

Ken Shoemake. 1985. Animating rotation with quaternion curves. In Proceedings of the
12th annual conference on Computer graphics and interactive techniques. 245-254.
https://doi.org/10.1145/325334.325242

SteveTheDragon. 2019. https://sketchfab.com/3d-models/daffy-duck-
57b3d5631e4649da907977353aece0c8

Frank Thomas and Ollie Johnston. 1981. Disney animation: The illusion of life. (1981).

Jue Wang, Steven M Drucker, Maneesh Agrawala, and Michael F Cohen. 2006. The
cartoon animation filter. ACM Trans. Graph. 25, 3 (2006), 1169-1173. https://doi.
org/10.1145/1141911.1142010

Richard Williams. 2001. The Animator’s Survival Kit. Faber & Faber.

Steven Worley. 1996. A cellular texture basis function. In Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques. 291-294. https:
//doi.org/10.1145/237170.237267

Jiayi Eris Zhang, Seungbae Bang, David LW. Levin, and Alec Jacobson. 2020. Comple-
mentary Dynamics. ACM Transactions on Graphics (2020). https://doi.org/10.1145/
3414685.3417819

Xiuming Zhang, Tali Dekel, Tianfan Xue, Andrew Owens, Qiurui He, Jiajun Wu, Stefanie
Mueller, and William T Freeman. 2018. Mosculp: Interactive visualization of shape
and time. In Proceedings of the 31st Annual ACM Symposium on User Interface Software
and Technology. 275-285. https://doi.org/10.1145/3242587.3242592

https://www.dada-animation.com/
https://www.mixamo.com/
https://doi.org/10.1145/3592404
https://doi.org/10.1523/JNEUROSCI.22-19-08661.2002
https://doi.org/10.1523/JNEUROSCI.22-19-08661.2002
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1145/508530.508553
https://doi.org/10.1145/508530.508553
https://doi.org/10.1145/2185520.2185565
https://doi.org/10.1145/2461912.2461986
https://doi.org/10.1145/2461912.2461986
https://blendswap.com/blend/17808
https://opengameart.org/content/basket-ball-texture
https://doi.org/10.1145/3072959.3073611
https://doi.org/10.2312/PE/vriphys/vriphys07/027-034
https://doi.org/10.2312/PE/vriphys/vriphys07/027-034
https://doi.org/10.1145/1394281.1394301
https://doi.org/10.1145/1394281.1394301
https://doi.org/10.1038/21886
https://www.desmos.com/calculator/3zhzwbfrxd
https://doi.org/10.1111/cgf.12749
https://doi.org/10.1109/CGI.2005.1500362
https://doi.org/10.1109/CGI.2005.1500362
https://sketchfab.com/3d-models/day31-spinning-top-d090504b2d994d7c812c14bc963afe90
https://sketchfab.com/3d-models/day31-spinning-top-d090504b2d994d7c812c14bc963afe90
https://doi.org/10.1145/2858036.2858138
https://doi.org/10.1145/2858036.2858138
https://doi.org/10.1109/TVCG.2011.48
https://doi.org/10.1145/37402.37407
https://doi.org/10.1145/3491102.3501894
https://doi.org/10.1145/1073204.1073216
https://doi.org/0.1007/s00371-007-0125-8
https://doi.org/0.1007/s00371-007-0125-8
https://doi.org/10.1109/IVCNZ.2013.6727010
https://doi.org/10.1111/cgf.142654
https://doi.org/10.1111/cgf.142654
https://doi.org/10.1145/2643188.2643194
https://doi.org/10.1145/3450626.3459780
https://doi.org/10.1145/3450626.3459780
https://doi.org/10.1145/325334.325242
https://sketchfab.com/3d-models/daffy-duck-57b3d5631e4649da907977353aece0c8
https://sketchfab.com/3d-models/daffy-duck-57b3d5631e4649da907977353aece0c8
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/1141911.1142010
https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/237170.237267
https://doi.org/10.1145/3414685.3417819
https://doi.org/10.1145/3414685.3417819
https://doi.org/10.1145/3242587.3242592

SMEAR: Stylized Motion Exaggeration with ARt-direction

- @
-

¢
¢

-~
¢ee ~
@i -

E

Fig. 10. Multiple in-betweens created for a basket ball translating from left
to right (middle), with overlapping multiples for retinal persistence (bottom),
and without this constraint (top).

Fig. 12. Left: elongated in-between created with S;peEd(Si;viﬁ). Right:
same stylization with warped motion offsets 5;(0.5, 0.8) to create a time
shift effect towards the past. Color-coded motion offsets before and after
warping are shown in insets.

(b)

Fig. 13. Left: Elongated in-betweens generated with motion offsets com-
puted considering the hands as single body parts instead of each finger
independently, and with the stylization function Sz.peEd (8i,vi, 6). Right:
Close-up on the right hand, (a) stylized with these motion offsets and (b)
with the motion offsets of Figure 11c.

SIGGRAPH Conference Papers 24, July 27-August 1, 2024, Denver, CO, USA

b

(a) Motion offsets.

g

(d) Multiple
in-betweens.

b) Painted weights.

A\

(c) Elongated
in-between.

(e) Motion lines.

Fig. 15. Various stylization effects (c-e) of a sword slash motion using (a)
motion offsets computed with a single bone to control the axis of separation,
and (b) manually painted weights to control stylization intensity.

Fig. 17. Left: static scene observed by a camera translating from left to right.

Right: when stylizing objects using elongated in-betweens by considering
their motion with respect to the camera, the speed of the observer is con-
veyed through deformations, as if the scene was seen from a train window.

BNfAR il

 lund AN INEY

Fig. 18. Left: 2D cut-out animation (courtesy of Joel Graham - “Sketchy
Squirrel”). Right: elongated in-between created on the cat’s tail using ; =
SE(6i33).

SIGGRAPH Conference Papers "24, July 27-August 1, 2024, Denver, CO, USA Jean Basset, Pierre Bénard, and Pascal Barla

"‘.’ﬁd‘.«‘*’f«f« N .. °

(b) Elongated in-betweens. (c) Swept volumes.

'%
£

(a) Input animation.

Fig. 9. Using (a) the animation of a simple object, we compare (b) elongated in-betweens generated by our method with the simple stylization function
Pi = di, to (c) swept volumes of the object along its trajectory between previous and next frames, computed using the method of Sellan et al. [2021].

iy

(a) Input animation. (b) Bi = Se(61:2).

(b) With skeleton-based motion () With motion weights computed

offsets on the full body motion, with method
from Section 3.1
Fig. 14. Motion offsets and elongated in-between for a frame of a full body -
motion, with 8; = Sg(8;;0.7). Using weights computed on the whole body
as a single object instead of at the skeleton level, we obtain a different
stylization that emphasizes the global motion of the character.

(© fi = S (5i:vi, 6). (d) Bi = SR (;-;v1, 18, 10).

Fig. 11. Elongated in-betweens created with different stylization functions
for the middle frame of a character animation.

N

Fig. 19. Left: the motion of symmetrical objects may raise issues in our
approach. Middle: the rotation component around the axis of revolution
creates artifacts (self-intersections) when the motion is stylized by elongated
in-betweens. Right: a work-around consists in replacing the rotation around
the axis by a translation in UV-space (effectively rotating the texture around
the axis), which yields a more coherent motion stylization.

Fig. 16. The stylization effects achievable by our method may be combined
to create complex motion stylizations.

10

	Abstract
	1 Introduction
	2 Related Work
	3 Motion offsets
	3.1 Simple Object
	3.2 Articulated figure

	4 Stylized Motion
	4.1 Elongated In-betweens
	4.2 Multiples In-betweens
	4.3 Motion lines

	5 Results
	5.1 Implementation
	5.2 Application Examples

	6 Discussion and Perspectives
	References

