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FUJITA-KATO SOLUTIONS AND OPTIMAL TIME DECAY FOR THE

VLASOV-NAVIER-STOKES SYSTEM IN THE WHOLE SPACE

RAPHAËL DANCHIN

Abstract. We are concerned with the construction of global-in-time strong solutions for
the incompressible Vlasov-Navier-Stokes system in the whole three-dimensional space. One
of our goals is to establish that small initial velocities with critical Sobolev regularity H1/2

and sufficiently well localized initial kinetic distribution functions give rise to global and
unique solutions. This constitutes an extension of the celebrated result for the incompress-
ible Navier-Stokes equations (NS) that has been established in 1964 by Fujita and Kato [8].
If in addition the initial velocity is in L1, we establish that the total energy of the system
decays to 0 with the optimal rate t−3/2, like for the weak solutions of (NS), see [15, 16].

Our results partly rely on the use of a higher order energy functional that controls the
regularity H1 of the velocity and seems to have been first introduced by Li, Shou and
Zhang in [12] in the context of nonhomogeneous Vlasov-Navier-Stokes system. In the small

data case, we show that this energy functional decays with the rate t−5/2.

This paper is concerned with the proof of the existence of global-in-time strong solutions
and the study of large time asymptotics for the following so-called Vlasov-Navier-Stokes
system in R

3 × R
3:

(V NS)





∂tf + v · ∇xf + divv
(
f(u− v)

)
= 0,

∂tu+ u · ∇xu−∆xu+∇xP =

∫

R3

f(v − u) dv,

divu = 0.

This system is a toy model for describing the dynamics of a spray, that is, a cloud of particles
that are immersed in an incompressible viscous homogeneous fluid. The kinetic distribution
function f = f(t, x, v) then represents the density of particles with velocity v ∈ R

3, that
are located at x ∈ R

3 at time t ≥ 0, while u = u(t, x) stands for the ambient velocity field
obeying the classical incompressible (and homogeneous) Navier-Stokes equations, under the
influence of a drag term, the so-called Brinkman force.

For f ≡ 0, System (VNS) reduces to the celebrated incompressible Navier-Stokes equa-
tions

(NS)

{
∂tu+ u · ∇u−∆u+∇P = 0,

divu = 0,

and the question arises as to which results for (NS) can be extended to (VNS).
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2 RAPHAËL DANCHIN

Like for (NS), there is an energy balance associated to (VNS), namely

d

dt
E0 +D0 = 0 with E0 :=

1

2
‖u‖2L2(R3

x)
+

1

2
‖|v|2f‖L1(R3

x×R3
v)

(0.1)

and D0 := ‖∇u‖2L2(R3
x)

+ ‖f |u− v|2‖L1(R3
x×R3

v)
.

One can thus expect to have a global finite energy weak solutions theory similar to that
established by J. Leray for (NS), in [11]. Such solutions have indeed been constructed by
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa in [5] who leveraging a suitable
approximation scheme and compactness arguments to prove an analogous of Leray’s theo-
rem, for (VNS). More precisely, in the case where the fluid domain is the three-dimensional
torus T3, any initial data (f0, u0) such that

f0 ∈ L∞(T3 × R
3), |v|2f0 ∈ L1(T3 × R

3) and u0 ∈ L2(T3) with divu0 = 0

gives rise to a global-in-time distributional solution verifying

E0(t) +

∫ t

0
D0 dτ ≤ E0,0 :=

1

2
‖u0‖2L2(R3

x)
+

1

2
‖|v|2f0‖L1(R3

x×R3
v)
, a.e. t ∈ R+.

The result of [5] also holds in three-dimensional bounded domains [1], in the two-dimensional
torus, and can be adapted to the R

2 or R
3 setting if f0 is suitably well localized (see the

appendix of [9]). Furthermore, as for (NS), in the 2D case, weak solutions are unique in the
energy class (again, see [9]).

To continue the analogy with (NS), one can study whether smoother initial data generate
smoother solutions. In particular, in the three dimensional case, if assuming that u0 is small
in the Sobolev space Ḣ1/2(R3) and that f0 satisfies appropriate conditions, do we have a
global and unique solution ? A positive answer to this question would provide a result
similar to that of H. Fujita and T. Kato [8] for (NS) in a three-dimensional bounded domain
(and adapted to the R

3 situation by J.-Y. Chemin in [6]).
In the present paper, we focus on the R

3 case. We want to establish the existence and
uniqueness of global solutions for (VNS) supplemented with an initial velocity satisfying
Fujita-Kato type assumption, and to specify the rate of convergence to 0 of the energy E0,
and the long time behavior of f. To our knowledge, proving global existence and uniqueness
for critical regularity is new. As for the proof of the long time behavior, it has been studied
recently by D. Han Kwan in [7]. We here reach the optimal time decay for E0, and also
specify the rate of decay for the following higher order energy functional:

(0.2) E1 := ‖∇u‖2L2 +

∫∫
f |u− v|2 dv dx.

1. Main results

Although our final goal is to investigate (VNS) supplemented with initial velocity in

the critical Sobolev space H1/2(R3), we shall first consider the smoother situation where u0
belongs to the Sobolev spaceH1(R3). This is motivated by the fact that in the small solutions
regime, the functional E1 defined in (0.2) satisfies a quasi conservation law, in the spirit of
(0.1) whenever the density ρ defined in (1.6) stays bounded and ∇u is in L1(R+;L

∞). In
this setting, one can achieve optimal time decay estimates (that is, with the rate of the
heat equation) for both E0 and E1: we shall first establish the following result, which turns
out to be the key to our second one, pertaining to initial velocities in the nonhomogeneous
Sobolev space H1/2(R3).
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Theorem 1.1. Assume that the initial distribution function f0 satisfies

(1.1) f0 ∈ L1(R3
x × R

3
v) ∩ L∞(R3

v × R
3
x) and |v|2f0 ∈ L1(R3

v;L
∞(R3

x))

and that u0 is a divergence free vector-field in L1(R3) ∩H1(R3).

There exists a small constant c0 depending only on

‖u0‖L1(R3), ‖f0‖L1(R3×R3), ‖f0‖L1(R3
v;L

∞(R3
x))

and ‖|v|2f0‖L1(R3
v;L

∞(R3
x))

such that if

(1.2) ‖u0‖2H1(R3) +

∫∫
|v|2f0 dv dx ≤ c0,

then (V NS) admits a unique global solution (f, u, P ) satisfying the energy balance:

(1.3) E0(t) +

∫ t

0
D0 dτ = E0,0 for all t > 0,

and such that:

• u ∈ Cb(R+;H
1) ∩ L2(R+;L

∞), ∇u ∈ L1(R+;L
∞), ∇2u ∈ L2(R+ × R

3),

• ∇P ∈ L2(R+ × R
3),

• f ∈ L∞
loc(R+;L

∞(R3
v × R

3
x)), |v|2f ∈ L∞(R+;L

1(R3
v;L

∞(R3
x))) and

(1.4) ‖f(t)‖L1(R3×R3) = M0 := ‖f0‖L1(R3×R3) for all t ∈ R+.

Furthermore, optimal time decay estimates hold for E0 and E1, namely

(1.5) E0(t) ≤ C0t
−3/2 and E1(t) ≤ C1t

−5/2,

for some positive constants C0 and C1 depending only on suitable norms of the initial data.

Remark 1.2. In contrast with the (NS) situation, we do not know how to prove global results
without assuming more integrability on u0 than that which is given by (1.2). In fact, in
order to keep under control the following hydrodynamical quantities (density, momentum
and distribution energy)1:

(1.6) ρ(t, x) :=

∫
f(t, x, v) dv, j(t, x) :=

∫
vf(t, x, v) dv, m2(t, x) :=

∫
|v|2f(t, x, v) dv

we need ∇u to be small in L1(R+;L
∞). This latter property requires sufficient decay for u.

Remark 1.3. As e.g. in the work [18] by J. Xu and S. Kawashima dedicated to partially

dissipative systems, it is enough to have u0 in the homogeneous Besov space Ḃ
−3/2
2,∞ (R3).

The use of this space that corresponds to the critical embedding L1(R3) →֒ Ḃ
−3/2
2,∞ (R3) is

motivated by the fact that it lends itself much better to parabolic estimates than L1.

Instead of u0 ∈ Ḃ
−3/2
2,∞ (R3), one can just assume that u0 ∈ Ḃ−σ

2,∞(R3) for some σ ∈ (1, 3/2).
Then, the decay exponents for E0 and E1 are σ and σ+1, respectively. In terms of Lebesgue
spaces, the condition σ > 1 corresponds to u0 ∈ Lp for some p < 6/5.

As observed in e.g. [10], having decay estimates at hand for the velocity allows to get
some insight on the long time asymptotics of f, ρ and j. To state it precisely, we need
to introduce the Wasserstein distance W1(µ, ν) between two measures on R

3 × R
3. In our

context, it can be defined by:

W1(µ, ν) := sup
{∫∫

φdµ(x, v) −
∫∫

φdν(x, v), φ ∈ C0,1(R3 × R
3), ‖∇x,vφ‖L∞ = 1

}
·

1In all the paper, integration is performed on R
3, unless otherwise specified.
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Corollary 1.4. Under the assumptions of Theorem 1.1, we have for some constant C0

depending only on the norms of the data:

(1.7) ‖(j − ρu)(t)‖L1 +W1(f(t), ρ(t) ⊗ δv=u(t)) ≤ C0t
−5/4.

Furthermore, there exists a vector-field j∞ in L1(R3) such that

(1.8) ‖ρ(t)− ρ0 + div j∞‖Ẇ−1,1 ≤ C0t
−1/4.

Remark 1.5. This result has to be compared with that of [7] where it is stated that

W1(f(t), ρ(t) ⊗ δv=0) ≤ C1〈t〉−3/4+ε for all ε > 0.

Having the decay rate 5/4 might indicate that the monokinetic distribution ρ(t)⊗ δv=u(t) is
a better approximation of f than just ρ(t) ⊗ δv=0. Having a decay information for E1 and
not only for E0 is the key to this improvement.

Let us now come to the main aim of the paper: establishing a Fujita-Kato type result
for (VNS). Again, in order to get a global result, we need to assume that u0 has enough
integrability. For technical reasons, we also need f0 to have a better localization than in
Theorem 1.1, namely that for some q > 5, we have2

(1.9) Nq(f0) := sup
(x,v)∈R3×R3

〈v〉qf0(x, v) < ∞ with 〈v〉 :=
√

1 + |v|2.

Theorem 1.6. Let u0 be a divergence free vector-field in L1(R3) ∩ Ḣ1/2(R3), and assume

that f0 satisfies (1.1) and that Nq(f0) < ∞ for some q > 5. Then, there exists a constant c0
depending only on ‖u0‖L1 , ‖f0‖L1(R3×R3) and Nq(f0) such that, if

‖u0‖2H1/2(R3)
+

∫∫
|v|2f0 dv dx ≤ c0,

then (V NS) admits a unique global solution satisfying the energy equality (1.3), the mass

conservation (1.4), u ∈ L2(R+;L
∞ ∩ Ḣ3/2) ∩ Cb(R+;H

1/2), and u satisfies the log Lipschitz

property stated in (5.10). Furthermore, we have optimal time decay estimates for E0 and

E1, namely (1.5), and the asymptotics (1.7) and (1.8) hold true.

Remark 1.7. If we assume that u0 is small in the critical Besov space B
1/2
2,1 (a ‘large’ subspace

of H1/2), then it suffices to make the hypothesis (1.1) on f0. In fact, the constructed solution
turns out to satisfy ∇u ∈ L1(R+;L

∞) so that one can bound ρ, j and m2 as in Theorem
1.1 without requiring a stronger localization of f0.

Let us give an overview of the main ideas leading to our results.
The first step in proving Theorem 1.1 is to establish global-in-time a priori estimates for

E0, E1 and t‖∂tu‖2L2 . These estimates are conditional : they are valid on [0, T ] (for smooth

enough solutions) provided that it is known that ρ is bounded and that∇u is in L1(0, T ;L∞).
At this stage, no additional integrability is required for u0.

The second step is dedicated to the proof of optimal time decay estimates for E0 and E1.
In contrast with the recent work [7], we shall not use the Shonbeck Fourier splitting method
of [15] (as it looks to entail a small loss in the decay rate) but rather an older approach
that seems to originate from a work of J. Nash [14] on parabolic equations. Schematically,

2It should be noted that a similar condition was required in the previous works dedicated to (VNS) in the
whole space and plane (see [7] and [9]). Whether it may be avoided is an open question.
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the idea goes as follows. Assume that there exist nonnegative Lyapunov functional L and
dissipation rate such that

(1.10)
d

dt
L+H ≤ 0 a.e. on R+.

Suppose in addition that we have at hand the control of a ‘lower order’ functional N :

(1.11) N ≤ N0 a.e. on R+.

Finally assume that L is an ‘intermediate’ functional between N and H in the sense that
there exist θ ∈ (0, 1) and C > 0 such that:

(1.12) L ≤ CHθN 1−θ.

Then, inserting this inequality in (1.10) gives

d

dt
L+ c0L1/θ ≤ 0 with c0 := C−1/θN 1−1/θ

0 ,

and thus, after time integration,

(1.13) L(t) ≤ L(0)
(
1 +

1− θ

θ
c0L

1−θ
θ

0 t

)− θ
1−θ

·

In the present situation, L will be either E0 or E1, and H will be the corresponding dissipa-
tion rate, that is D0 in the first case, and the functional D1 defined in (2.5), in the second
case. Finally, for N we use ‖u‖

Ḃ
−3/2
2,∞

(rather than the L1 norm). For some reason however,

we do not manage to get the optimal rates first time. We first prove decay t−3/2 for E1,
which will enable us to bound the Brinkman force in L1(R+ ×R

3 × R
3). Then, in a second

step, we obtain the optimal rates for both E0 and E1.
Let us also underline that establishing (1.12) might be not so straightforward since E0,

D0, E1 and D1 contain two terms that are hardly comparable. Fortunately, being in the
small solutions regime will spare us considering different cases, depending on whether one
or the other term is dominant.

In the third step, we have to get rid of the a priori assumptions on the solution we made
hitherto. Ensuring the smallness of ∇u in L1(R+;L

∞) is the key. It will be obtained by
combining the time decay results of the second step with the energy estimates of the first
step and suitable Gagliardo-Nirenberg or Sobolev inequalities.

The next step is uniqueness. To this end, we follow the method of [9] that relies on the
control of suitably weighted L2 norms for the difference of velocities and of the characteristics
associated to the transport equation for the distribution function (see the definition in (A.1)).
The situation here is simpler since we have ∇u in L1(R+;L

∞) and it is thus possible to
conclude by means of the classical Gronwall lemma. Nevertheless, we give some details since
this proof will be a model one to investigate the more complicated situation of uniqueness for
Fujita-Kato type solutions, and will be also useful in the next step, dedicated to constructing
global solutions.

The last step is dedicated to the proof of existence of a global solution. To do so, we
use a Friedrichs regularization of the velocity equation and of the velocity field in the first
equation of (VNS) (in order to keep the symmetric structure of the overall system). These
‘regularized’ solutions turn out to satisfy the same estimates as those of (VNS). Furthermore,
by modifying suitably the proof of uniqueness, one can show the (strong) convergence to
solutions of (VNS) in the energy space.
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To get Theorem 1.6, the first step is to establish a short time existence result for u0 in
the Sobolev space H1/2. As in [7], by looking at the velocity equation as a Navier-Stokes
equation with a source term (namely the Brinkman force), we succeed in getting a solution
on, say, the time interval [0, 1] provided the data are small enough. This solution is shown to
have a log Lipschitz velocity, which enables us to adapt the method of [9] (based on Osgood
lemma) to the 3D case. Next, since the constructed solution is H1 for almost every positive
time and as the negative Besov regularity is under control for small time, even if u is only a
H1/2 type solution, one can combine this result with the previous one to complete the proof
of Theorem 1.6.

We end this section pointing out some interesting open questions related to our results.

• For (NS), assuming only that u0 is small in Ḣ1/2 allows to get global-in-time result
(see [8] or the adaptation to the R

3 setting by J.-Y. Chemin in [6]). Can we do
without any additional integrability integrability condition on u0 in Theorems 1.1
and 1.6 ?

• The localization requirement for f0 is rather strong and not natural inasmuch as it
does not come into play (at least not directly) in the control of the energy functionals
E0 and E1. Is it enough to make the same assumptions as in Theorem 1.1 ?

• Can we compare the solutions of (VNS) to those of the following pressureless Euler-
Navier-Stokes system:

(ENS)





∂tρ+ div (ρw) = 0,

∂t(ρw) + div (ρw ⊗ w) + ρ(w − u) = 0,

∂tu+ u · ∇u−∆u+∇xP = ρ(w − u),

divu = 0.

Note that here, in the large time asymptotics, we rather proved that u behaves as
the solution of the incompressible Navier-Stokes equations with no source term, and
that the density ρ tends to be transported by its flow.

The rest of the paper unfolds as follows. The next section is devoted to the proof of
(conditional) energy estimates for smooth enough solutions of (VNS). Then, in Section 3,
we establish the optimal decay estimates for E0 and E1, and deduce the key Lipschitz
control of the velocity field. Section 4 is devoted to completing the proof of Theorem 1.1
while Section 5 deals with the proof of Theorem 1.6 and Remark 1.7. Some technical results
concerning the properties of the flow associated to the transport equation of (VNS) are
postponed in Appendix.

Notation: For any normed space X, index q ∈ [1,∞] and time T ∈ [0,∞], we shall
denote ‖z‖Lq

T (X) :=
∥∥‖z(t)‖X‖Lq(0,T ) and omit T if it is ∞. In the case where z has several

components in X, we keep the same notation for the norm. It will be sometimes convenient
to use the short notation ut (resp. ft) to designate the time derivative of u (resp. f).

Finally, the notation C stands for harmless positive real numbers, and we shall often
write A . B instead of A ≤ CB. To emphasize the dependency with respect to parameters
a1, · · · , an, we adopt the notation Ca1,··· ,an .
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2. Energy estimates

Throughout this section, we assume that we are given a smooth solution (f, u, P ) on the
time interval [0, T ], with sufficient decay. Our goal is to derive a priori estimates for E0, E1

and t‖ut‖2L2 that are ‘closable’ for all time in the small data case.

As a first, let us recall that (0.1) can be obtained by taking the L2(R3;R3) scalar product
of the velocity equation of (VNS) with u, integrating the equation of f on R

3 × R
3 with

respect to the measure |v|2 dx dv and performing suitable integration by parts (see e.g. [5]).

Next, in order to bound the energy functional E1 defined in (0.2), the starting point is to
take the L2(R3;R3) scalar product of the velocity equation of (VNS) with ut. This gives

(2.1)
1

2

d

dt
‖∇u‖2L2 + ‖ut‖2L2 = −

∫
(u · ∇u) · ut dx+

∫∫
ut · ((v − u)f) dv dx.

The convection term may be handled as follows for all ε > 0:

−
∫

(u · ∇u) · ut dx ≤ ‖u‖L6‖∇u‖L3‖ut‖L2

≤ C‖∇u‖3/2
L2 ‖∇2u‖1/2

L2 ‖ut‖L2

≤ 1

4
‖ut‖2L2 +

ε

2
‖∇2u‖2L2 +

C

ε
‖∇u‖6L2 .

To bound the last term of (2.1), we use the decomposition
∫∫

ut · ((v − u)f) dv dx = −1

2

d

dt

∫∫
|v − u|2f dv dx+

1

2

∫∫

R3

|v − u|2ft dv dx

= −1

2

d

dt

∫∫
|v − u|2f dv dx− 1

2

∫∫
|v − u|2v · ∇xf dv dx

+
1

2

∫∫
|v − u|2divv

(
f(v − u)

)
dv dx

= −1

2

d

dt

∫∫
|v − u|2fdv dx+

∫∫
f(v − u) · (v · ∇u)dv dx

−
∫∫

f |v − u|2 dv dx.

Hence we have

(2.2)

∫∫
ut · ((v − u)f) dv dx = −1

2

d

dt

∫∫
|v − u|2f dv dx+

∫∫
f(v − u)·(u · ∇u) dv dx

+

∫∫
f(v − u) · ((v − u) · ∇u) dv dx−

∫∫
f |v − u|2 dv dx.

The first and last terms are parts of E1 and of D1 (defined in (0.2) and (2.5) below),
respectively. For the third term, we have

∫∫
f(v − u) · ((v − u) · ∇u) dv dx ≤ ‖∇u‖L∞E1.

Finally, observe that by Cauchy-Schwarz inequality with respect to the v variable, we have

(2.3)
∥∥∥
∫

f(v − u) dv
∥∥∥
2

L2
≤ ‖ρ‖L∞

∫∫
f |v − u|2 dx dv.
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Hence∫∫
f(v − u) · (u · ∇u) dv dx ≤

∥∥∥
∫

f(v − u) dv
∥∥∥
L2
‖u‖L6‖∇u‖L3

≤ C‖ρ‖1/2L∞

(∫∫
f |u− v|2 dv dx

)1/2

‖∇u‖3/2
L2 ‖∇2u‖1/2

L2

≤ ε

4
‖∇2u‖2L2+

1

2

∫∫
f |u− v|2dv dx+

C

ε
‖ρ‖2L∞‖∇u‖6L2 .

Using the definition of E1 in (0.2), we conclude that for all ε > 0,

(2.4)
d

dt
E1 + ‖ut‖2L2 +

∫∫
f |u− v|2 dv dx ≤ ε‖∇2u‖2L2

+ C‖∇u‖L∞E1 + Cε−1max(1, ‖ρ‖2L∞ )‖∇u‖6L2 .

To close the estimate, one has to bound ‖∇2u‖L2 . This may be done by using the elliptic
regularity provided by the following Stokes system:

−∆u+∇P = −ut − u · ∇u+

∫
f(v − u) dv, divu = 0.

We have

‖∇2u,∇P‖2L2 ≤ 3‖ut‖2L2 + 3‖u · ∇u‖2L2 + 3
∥∥∥
∫

f(v − u) dv
∥∥∥
2

L2
.

So, handling the convection term as above and using (2.3), we discover that

‖∇2u,∇P‖2L2 ≤ 3‖ut‖2L2 + C‖∇u‖3L2‖∇2u‖L2 + 3‖ρ‖L∞

∫∫
f |v − u|2 dx dv,

which, leveraging Young inequality, leads to

‖∇2u,∇P‖2L2 ≤ 6‖ut‖2L2 + C‖∇u‖6L2 + 6‖ρ‖L∞

∫∫
f |v − u|2 dx dv.

Let R := max(1, ‖ρ‖L∞ ) and

(2.5) D1 :=
1

2
‖ut‖2L2 +

1

24R
‖∇2u,∇P‖2L2 +

1

2

∫∫
f |u− v|2 dx dv.

Using the above inequality and reverting to (2.4) with ε = R−1, we end up with

(2.6)
d

dt
E1 +D1 ≤ C‖∇u‖L∞E1 + CR3‖∇u‖6L2 .

In order to control E1 by means of the above inequality, we need both ρ to be bounded and
∇u to be in L1(0, T ;L∞). According to (A.5) and provided f0 belongs to L1(R3

v;L
∞(R3

x)),
the first property stems from the second one (from (A.3), more exactly). Owing to Sobolev
embedding, achieving this key Lipschitz control requires our controlling the Lp norm of ∇2

xu
for some p > 3, or in the Lorentz space L3,1. Toward this, we shall use elliptic estimates for
the following Stokes system:

(2.7) −∆u+∇P = −ut − u · ∇u−
∫

R3

f(v − u) dv, divu = 0.

Since our approach heavily relies on energy arguments, it is tempting to look for a control of
∇ut in L2, owing to the embedding Ḣ1(R3) →֒ L6(R3), which, following the approach of [12]
suggest us to consider the higher order energy functional E2 := ‖ut‖2L2 . However, since we

only have u0 in H1, one cannot expect to get a uniform control of E2(t). Even for the heat
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equation, this will require H2 regularity. For scaling reasons, it is natural to compensate the
missing space derivative by the weight

√
t that is, to look for uniform estimates of tE2(t).

To proceed, let us differentiate the velocity equation with respect to time:

utt + u · ∇ut +∇Pt −∆ut + ρut + ut · ∇u = −
∫

(u− v)ft dv

=

∫
(u− v)(v · ∇xf) dv +

∫
(v − u)f dv.(2.8)

Taking the L2(R3;R3) scalar product with tut yields

1

2

d

dt
‖
√
t ut‖2L2 + ‖

√
t∇ut‖2L2 + ‖√ρt ut‖2L2 −

1

2
‖ut‖2L2

= −
∫

(tut) · (ut · ∇u) dx+

∫∫
(v · ∇xf)(u− v) · (tut) dv dx+

∫∫
(tut) · (v − u)f dv dx.

In light of (2.2), we have
∫∫

(tut) · (v − u)f dv dx = −1

2

d

dt

∫∫
t|v − u|2f dv dx+

∫∫
tf(v − u)·(u · ∇u) dv dx

+

∫∫
tf(v − u) · ((v − u) · ∇u) dv dx− 1

2

∫∫
f |v − u|2 dv dx.

Therefore, setting

E2 := ‖ut‖2L2 +

∫∫
f |v − u|2 dv dx and D2 := ‖∇ut‖2L2 + ‖√ρ ut‖2L2 ,

we discover that

(2.9)
1

2

d

dt
(tE2) + tD2 +

1

2

∫∫
f |v − u|2 dv dx =

1

2
‖ut‖2L2 −

∫
(tut) · (ut · ∇u) dx

+

∫∫
(v · ∇xf)(u− v) · (tut) dv dx

+

∫∫
tf(v − u) · (u · ∇u) dv dx+

∫∫
tf(v − u) · ((v − u) · ∇u) dv dx.

For the second term of the right-hand side, combining Hölder, Sobolev, Gagliardo-Nirenberg
(to bound the L3 norm) and, eventually, Young inequalities gives

−
∫
(tut) · (ut · ∇u) dx ≤ ‖

√
t ut‖L6‖

√
t ut‖L2‖∇u‖L3

≤ 1

4
‖
√
t∇ut‖2L2 + C‖

√
t ut‖2L2‖∇u‖L2‖∇2u‖L2 .

To handle the third term, we integrate by parts and use that v = u+ (v − u), getting :
∫∫

(v · ∇xf)(u− v) · (tut) dv dx = I1 + I2 + I3 :=

∫∫
t(v − u)v · ∇ut f dv dx

−
∫∫

tut · (u · ∇u) f dv dx+

∫∫
tut · ((u− v) · ∇u) f dv dx.

Combining Cauchy-Schwarz and Young inequalities, we easily get for all ε > 0,

I1 ≤
ε

4
‖
√
tm2 ∇ut‖2L2 +

1

ε

∫∫
tf |v − u|2 dv dx.
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Next, we have

I2 ≤ ‖ρ‖1/2L∞‖√ρt ut‖L2‖∇u‖L3‖
√
tu‖L6

≤ 1

2
‖√ρt ut‖2L2 + Ct‖ρ‖L∞‖∇u‖3L2‖∇2u‖L2

≤ 1

2
‖√ρt ut‖2L2 +

1

2
‖∇2u‖2L2 + C‖ρ‖2L∞‖∇u‖2L2‖

√
t∇u‖4L2

and, using (2.3) and Gagliardo-Nirenberg inequality to bound the L3 norm,

I3 ≤ ‖
√
tut‖L6‖∇u‖L3

∥∥∥
√
t

∫
(v − u)f

∥∥∥
L2

≤ 1

4
‖
√
t∇ut‖2L2 + C‖ρ‖L∞‖∇u‖L2‖∇2u‖L2

∫∫
tf |v − u|2 dv dx.

Next, we write that
∫∫

tf(v − u) · (u · ∇u) dv dx ≤ ‖ρ‖1/2L∞

(∫∫
tf |v − u|2 dv dx

)1/2
‖
√
t u‖L6‖∇u‖L3

≤C‖ρ‖1/2L∞

(∫∫
tf |v − u|2 dv dx

)1/2
‖
√
t∇u‖L2‖∇u‖1/2

L2 ‖∇2u‖1/2
L2

≤ 1

2

∫∫
tf |v − u|2 dv dx+ C‖ρ‖L∞‖∇u‖L2‖∇2u‖L2‖

√
t∇u‖2L2 .

Finally, it is obvious that
∫∫

tf(v − u) · ((v − u) · ∇u) dv dx ≤ ‖∇u‖L∞

∫∫
tf |u− v|2 dv dx.

Therefore, choosing ε = ‖m2‖−1
L∞ , reverting to (2.9) and using the definition of Di and Ei

for i = 0, 1, 2, we end up with

(2.10)
d

dt
(tE2) + tD2 +

∫∫
f |v − u|2 dv dx ≤ 24RD1 + 2

(
1 + ‖m2‖L∞

)
tD1

+ C‖ρ‖2L∞D0(tE1)
2 + C‖ρ‖L∞

√
RD0D1 tE1 +

(
2‖∇u‖L∞ + C‖ρ‖L∞

√
RD0D1

)
tE2.

Let us set

(2.11)
E(t) := 2(2 + ‖m2‖L∞)(tE1(t) + 2E0(t)) + 25RE1(t) + tE2(t)

and D(t) := 2(1 + ‖m2‖L∞)D0(t) + 2tD1(t) +RD1(t) + tD2(t).

Using a suitable combination of the above inequality with (0.1), (2.6) and the fact that

d

dt
(tE1) = t

d

dt
E1 +D0,

we discover that

(2.12)
d

dt
E +D ≤ C

(
UE +DE + ‖ρ‖2L∞D0E2

)
with U := ‖∇u‖L∞ .

Consequently, as long as CR2E ≤ 1/2, we just have

(2.13)
d

dt
E +

1

2
D ≤ C

(
U +D0

)
E .

The next step is to apply Gronwall lemma so as to get a control of E in terms of the initial
data. The only issue is to control t‖ut‖2L2 near t = 0 (note that for the heat equation, the
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fact that u0 ∈ Ḣ1 does not guarantee that ‖ut‖L2 is bounded for t → 0). To do so, we
observe that, according to (2.12), the function

Ẽ(t) := e−C
∫ t
0
(U+D0) dτE(t)

is nonincreasing, hence has a limit in R
+ ∪ {+∞} at 0. Next, under our above smallness

condition, Inequality (2.6) guarantees in particular that (say)
∫ t

0
‖ut‖2L2 ≤ 2E1,0.

Hence, for all t ∈ R+, there exists t0 ∈ (0, t) such that t0‖ut(t0)‖2L2 ≤ 2E1,0. Remembering

the definition of Ẽ and of E , one can thus conclude that one can find arbitrarily small positive
t0 for which

E(t0) ≤ C
(
1 + ‖〈v〉2f0‖L1

v(R
3;L∞

x (R3))

)(
E0,0 + E1,0

)
·

Now, reverting to (2.13) and using Gronwall lemma and (0.1), we end up with

E(t) +
∫ t

0
D dτ ≤ C(1 + ‖(ρ,m2)‖L∞)

(
‖u0‖2H1 +

∫∫
f0|v|2 dv dx

)
eC

∫ t
0 ‖∇u‖L∞ dτeCE0,0 .

Provided we have (A.3) the term ‖(ρ,m2)‖L∞ may be bounded by means of (A.5) and of
(A.6). In the end, we get an absolute constant c0 such that, whenever

(2.14)
(
1 + ‖〈v〉2f0‖L1

v(R
3;L∞

x (R3))

)(
‖u0‖2H1 +

∫∫
f0|v|2 dv dx

)
≤ c0,

we have

(2.15) E(t) +
∫ t

0
D dτ ≤ C

(
1 + ‖〈v〉2f0‖L1

v(R
3;L∞

x (R3))

)(
‖u0‖2H1 +

∫∫
f0|v|2 dv dx

)
eCE0,0 .

3. Decay estimates and control of the Lipschitz norm of the velocity

The present section is devoted to proving optimal time decay for the energy functionals
E0 and E1 associated to global solutions to (VNS) satisfying the smallness condition (A.3).
Although our ultimate goal is to establish (1.5), we will first prove a non-optimal decay
estimate for E1 that is, nevertheless, sufficient to control the Brinkman force in L1(R+×R

3).

This latter control will enable us to bound the norm of u in Ḃ
−3/2
2,∞ uniformly in time, then

to get (1.5) with the optimal exponents. In the last part of the section, we shall combine
these estimates with a bootstrap argument so as to justify (A.3) in the case of small data.

Step 1: Propagation of negative regularity I. We plan to use the approach presented in
Section 1 with the Lyapunov functional L = E1 and the dissipation rate H = D1. Having
in mind the following classical interpolation inequality:

(3.1) ‖∇u‖L2 . ‖∇2u‖θL2‖u‖1−θ
Ḃ−σ

2,∞

, σ > −1, θ =
σ + 1

σ + 2
,

the ‘low order’ functional N with be a negative Besov norm of u that can be uniformly
bounded in time.

According to (1.13), choosing σ = 3/2 would give the desired decay rate 5/2. However, at
this stage of the proof, we do not know whether the Brinkman force is sufficiently integrable
with respect to time, so that we are not able to bound ‖u(t)‖

Ḃ
−3/2
2,∞

uniformly in time.
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To get round the difficulty, we consider the norm of u in Ḃ
−1/2
2,∞ , which, in principle, should

give the decay t−3/2 for E1. This turns out to be enough to bound the Brinkman force in
L1(R+×R

3). Then, it will be possible to apply again the whole procedure with the optimal
exponents.

This being said, we rewrite the velocity equation of (VNS) as

(3.2) ∂tu−∆u = −Pdiv (u · ∇u) + P
(∫

R3

f(v − u) dv

)
·

Now, using the maximal regularity estimates stated in e.g. [4, (3.39)] and the fact that P is
a continuous projector on any homogeneous Besov space, we get3 for all t ≥ 0,

‖u(t)‖
Ḃ

−
1
2

2,∞

+ ‖u‖
L̃2
t (Ḃ

1
2
2,∞)

≤ ‖u0‖
Ḃ

−
1
2

2,∞

+ ‖u · ∇u‖
L̃2
t (Ḃ

−
3
2

2,∞)
+

∥∥∥∥
∫

R3

f(v − u) dv

∥∥∥∥
L̃2
t (Ḃ

−
3
2

2,∞)

.

To bound the last term, we use that, according to Cauchy-Schwarz inequality, we have

(3.3)

∫ ∣∣∣∣
∫

f(u− v) dv

∣∣∣∣dx ≤
(∫∫

f dv dx

)1/2(∫∫
f |v − u|2 dv dx

)1/2

.

Hence, combining with the embedding

(3.4) L2(0, t;L1(R3)) →֒ L2(0, t; Ḃ
− 3

2
2,∞(R3)),

we get
∥∥∥∥
∫

R3

f(v − u) dv

∥∥∥∥
L̃2
t (Ḃ

−
3
2

2,∞)

.

∥∥∥∥
∫

R3

f(v − u) dv

∥∥∥∥
L2
t (L

1)

.

(
‖f‖L∞(R+;L1(R3

x×R3
v))

‖f |u− v|2‖L1(R+×R3
x×R3

v)

)1/2

.

Using the relations (1.3) and (1.4), we end up with

∥∥∥∥
∫

R3

f(v − u) dv

∥∥∥∥
L̃2
t (Ḃ

−
3
2

2,∞)

≤ C
√

M0E0,0.

Furthermore, combining (3.4), Cauchy-Schwarz inequality and (1.3) yields

‖u · ∇u‖
L̃2
t (Ḃ

−
3
2

2,∞)
. ‖u · ∇u‖L2

t (L
1) ≤ ‖u‖L∞

t (L2)‖∇u‖L2
t (L

2) ≤
√
2E0,0.

In conclusion, we have for all t ≥ 0,

(3.5) ‖u‖
L∞

t (Ḃ
−

1
2

2,∞)
+ ‖u‖

L̃2
t (Ḃ

1
2
2,∞)

≤ ‖u0‖
Ḃ

−
1
2

2,∞

+ C
√

M0E0,0 + CE0,0 =: C0.

3The reader is referred to [4, Def. 2.67] for the definition of norms ‖ · ‖L̃r
t
(Ḃs

2,∞
(R3)). The only property

that we need to know here is that ‖z‖L̃r
t
(Ḃs

2,∞
(R3)) ≤ ‖z‖Lr

t
(Ḃs

2,∞
(R3)) with equality if and only if r = ∞.
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Step 2: A non optimal decay estimate for E1. From (3.1) and (3.5), we infer that

‖∇2u‖2L2 & C
−4/3
0

(
‖∇u‖2L2

)5/3
.

Therefore, if we set

U := ‖∇u‖L∞ , R := max(1, ‖ρ‖L∞), X1 := ‖∇u‖2L2 and Y1 :=

∫∫
f |u− v|2 dx dv,

and use (2.6), we end up with

d

dt
E1 + 2c′0X

5/3
1 + Y1 ≤ CUE1 + CR3X3

1 with c′0 := C
−4/3
0 /8.

So, assuming the following a priori bound:

(3.6) CR3X
4/3
1 ≤ c′0,

we get

(3.7)
d

dt
Ẽ1 + c′0X̃

5/3
1 + Ỹ1 ≤ 0 with Z̃(t) := e−C

∫ t
0 U(τ) dτZ(t) for Z ∈ {E1,X1, Y1}.

Note that
Ỹ1 ≤ Ẽ1 ≤ E1,0.

Since we restricted our attention to the case of small data (meaning in particular that E1,0

is small), one may assume with no loss of generality that Ỹ1 ≥ c′0Ỹ
5/3
1 , and thus Inequality

(3.7) gives after a suitable harmless change of c′0:

d

dt
Ẽ1 + c′0Ẽ

5/3
1 ≤ 0.

Hence, provided (A.3) holds, we have

(3.8) E1(t) ≤ CE1,0(1 + a0t)
−3/2

with a0 depending only on the initial data, on M0, E0,0 and ‖u0‖Ḃ−1/2
2,∞

.

From this inequality, one can point out more integrability of D1. Indeed, assuming that

(3.9) CR3E1 ≤ 1,

Inequality (2.6) implies that

(3.10)
d

dt
E1 +D1 ≤ C(U +D0)E1.

Let us set for some β ∈ (0, 3/2),

Ě1(t) := (1 + a0t)
βe−C

∫ t
0 (U+D0) dτE1(t) and Ď1(t) := (1 + a0t)

βe−C
∫ t
0 (U+D0) dτD1(t).

Then (3.10) implies that

d

dt
Ě1 + Ď1 ≤ βa0(1 + a0t)

β−1Ẽ1.

Hence, using the bound (3.8) and observing that t 7→ (1+ a0t)
β−5/2 is integrable on R+, we

end up with4 ∫ t

0
(1 + a0τ)

βD̃1(τ) dτ ≤ 2β

3/2 − β
E1,0.

4Note that, if taking β = 3/2, then one gets

∫ t

0

(1+a0τ )
3/2D̃1(τ ) dτ ≤ 2

(
1 + log (1+a0t)

)
E1,0.
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Therefore, assuming (A.3) and (3.9) gives

(3.11) (3/2 − β)

∫ t

0
(1 + a0τ)

βD1(τ) dτ ≤ C eCE0,0 E1,0, β ∈ (0, 3/2).

Step 3. Propagation of negative regularity II. Leveraging (3.11) with some β ∈ (1, 3/2)
ensures that the Brinkman force belongs to L1(R+ × R

3). Indeed, remembering (3.3) and
using Cauchy-Schwarz inequality, one can write that

(3.12)

∫

R+

∫ ∣∣∣∣
∫

f(u− v) dv

∣∣∣∣dxdt ≤
√

M0

∫

R+

√
(1 + a0t)β D1(t) (1 + a0t)

−β/2 dt ≤ C0,β.

This additional information will enable us to control ‖u(t)‖
Ḃ

−
3
2

2,∞

since maximal regularity

estimates for (3.2) also ensure that

‖u‖
L∞

t (Ḃ
−

3
2

2,∞)
+ ‖u‖

L̃1
t (Ḃ

1
2
2,∞)

≤ ‖u0‖
Ḃ

−
3
2

2,∞

+ ‖u · ∇u‖
L̃1
t (Ḃ

−
3
2

2,∞)
+

∥∥∥∥
∫

R3

f(v − u) dv

∥∥∥∥
L̃1
t (Ḃ

−
3
2

2,∞)

.

To bound the last term, we combine (3.12) with the embeddings

L1(0, t× R
3) →֒ L1(0, t; Ḃ

− 3
2

2,∞(R3)) →֒ L̃1
t (Ḃ

− 3
2

2,∞(R3)).

For the convection term, we use

‖u · ∇u‖L1
t (L

1) ≤ ‖u‖L2
t (L

2)‖∇u‖L2
t (L

2)

and the interpolation inequality5

‖u‖L2
t (L

2) . ‖u‖2/3
L̃2
t (Ḃ

−
1
2

2,∞)
‖∇u‖1/3

L2
t (L

2)
.

Combining with the inequality

‖u‖
L̃2
t (Ḃ

−
1
2

2,∞)
≤ ‖u‖1/2

L∞

t (Ḃ
−

3
2

2,∞)
‖u‖1/2

L̃1
t (Ḃ

1
2
2,∞)

,

we discover that

‖u · ∇u‖L1
t (L

1) . ‖∇u‖4/3
L2
t (L

2)
‖u‖1/3

L∞

t (Ḃ
−

3
2

2,∞)
‖u‖1/3

L̃1
t (Ḃ

1
2
2,∞)

.

Hence, owing to (0.1) and (3.12), we have

‖u‖
L∞

t (Ḃ
−

3
2

2,∞)∩L̃1
t (Ḃ

1
2
2,∞)

≤ ‖u0‖
Ḃ

−
3
2

2,∞

+ CE
2/3
0,0 ‖u‖

2/3

L∞

t (Ḃ
−

3
2

2,∞)∩L̃1
t (Ḃ

1
2
2,∞)

+ C0.

Consequently, using Young inequality and (0.1), one can conclude that there exists C ′
0

depending only on E0,0, on ‖u0‖
Ḃ

−
3
2

2,∞

such that if E1,0 is small enough and (A.3) is satisfied,

then we have

(3.13) ‖u‖
L∞

t (Ḃ
−

3
2

2,∞)
+ ‖u‖

L̃1
t (Ḃ

1
2
2,∞)

≤ C0, t > 0.

5The reader should not be intimidated by the use of tilde norms. The regularity exponent behaves as
usual, and the Lebesgue exponent, according to Hölder inequality, see [4, Section 2.6.3].
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Step 4. Optimal decay for the energy functionals. Since

‖u‖L2 . ‖∇u‖3/5
L2 ‖u‖2/5

Ḃ
−

3
2

2,∞

,

Inequality (3.13) ensures that

‖∇u‖2L2 ≥ C
−4/3
0

(
1

2
‖u‖2L2

)5/3

.

At this stage, one can mimic the proof of (3.8), (3.11) and eventually get for some positive
numbers a0 and K0 depending only on suitable norms of the data that

(3.14) sup
t∈R+

(
(1+a0t)

3/2E0(t)
)
+(3/2−α)

∫

R+

(1+a0t)
αD0(t) dt ≤ K0E0,0, α ∈ (1, 3/2).

One can also improve the decay of E1 and D1 by a factor 1 : it suffices to use (3.1) with
σ = 3/2 which, owing to (3.13), gives

‖∇2u‖2L2 & C
−4/5
0

(
‖∇u‖2L2

)7/5
.

Hence, we have for a new constant c0 depending only on ‖u0‖Ḃ−3/2
2,∞

, E0,0 and E1,0,

d

dt
E1 + 2c0X

7/5
1 + Y1 ≤ CUE1 + CR3X3

1 .

Defining Ẽ1, X̃1 and Ỹ1 as before, we discover that whenever CR3X
8/5
1 ≤ c0, we have

d

dt
Ẽ1 + 2c0X̃

7/5
1 + Ỹ1 ≤ 0,

which leads for all β ∈ (1, 5/2) to

(3.15) sup
t∈R+

(
(1 + a0t)

5/2E1(t)
)
+ (5/2 − β)

∫

R+

(1 + a0t)
βD1(t) dt ≤ K0(E0,0 + E1,0).

Step 5: The Lipschitz bound. The Lipschitz bound will follow from the embedding:

(3.16) ‖z‖L∞ . ‖∇z‖L3,1 ,

where the Lorentz space L3,1 is defined by real interpolation as follows:

(3.17) L3,1 := [L2, L∞]1/3,1.

Now, taking advantage of the regularity properties of the Stokes system (2.7) that are also
valid in L3,1 (just argue by interpolation from Lebesgue spaces), we can write that

‖∇2u‖L3,1 . ‖ut‖L3,1 + ‖u · ∇u‖L3,1 +
∥∥∥
∫

f(v − u) dv
∥∥∥
L3,1

.

Therefore we have

(3.18)

∫ ∞

0
‖∇u‖L∞ dt .

∫ ∞

0

(
‖ut‖L3,1 + ‖u · ∇u‖L3,1 +

∥∥∥
∫

f(v − u) dv
∥∥∥
L3,1

)
dt.

On the one hand, since we also have L3,1 = [L2, L6]1/2,1, one can write owing to Ḣ1 →֒ L6

that

(3.19) ‖ut‖L3,1 . ‖ut‖1/2L2 ‖∇ut‖1/2L2 .

On the other hand, using Hölder inequality and (3.16), one can write that

‖u · ∇u‖L3,1 ≤ ‖u‖L∞‖∇u‖L3,1 . ‖∇u‖2L3,1 . ‖∇u‖L2‖∇2u‖L2 .
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Finally, we have by (3.17) and (2.3) that

∥∥∥
∫

f(v − u) dv
∥∥∥
L3,1

.
∥∥∥
∫

f(v − u) dv
∥∥∥
2/3

L2

∥∥∥
∫

f(v − u) dv
∥∥∥
1/3

L∞

. ‖ρ‖1/3L∞

(∫∫
f |v − u|2 dv dx

)1/3(
‖j‖L∞ + ‖ρ‖L∞‖u‖L∞

)1/3·

Hence, since

‖u‖L∞ . ‖∇u‖1/2
L2 ‖∇2u‖1/2

L2 ,

we obtain

∥∥∥
∫

f(v − u) dv
∥∥∥
L3,1

≤ ‖ρ‖1/3L∞

(∫∫
f |v − u|2 dv dx

)1/3(
‖j‖1/3L∞+‖ρ‖1/3L∞‖∇u‖1/6

L2 ‖∇2u‖1/6
L2

)
·

Therefore, reverting to (3.18) and remembering the definition of D0, D1 and D2, we discover
that we have for some constant CR depending only on ‖ρ‖L∞ and ‖j‖L∞ ,

∫ ∞

0
‖∇u‖L∞ dt ≤ CR

∫ ∞

0

(
D

1/4
1 D

1/4
2 +D

1/2
0 D

1/2
1 +D

1/3
1 +D

1/12
0 D

5/12
1

)
dt.

In order to show that the right-hand side is finite, we take α (resp. β) close enough to 3/2
in (3.14) (resp. 5/2 in (3.15)) and observe that the above inequality may be rewritten

∫ ∞

0
‖∇u‖L∞ dt ≤ CR

∫ ∞

0

(
t−1/4(1+a0t)

−β/4((1+a0t)
βD1)

1/4(tD2)
1/4 +D

1/2
0 D

1/2
1

+ (1+a0t)
−β/3((1+a0t)

βD1)
1/3 + (1+a0t)

−α+5β
12 ((1+a0t)

αD0)
1/12((1+a0t)

βD1)
5/12

)
dt.

Using Hölder inequality, Inequality (2.15) and the decay estimates (3.14) and (3.15), one
can conclude that the right-hand side may be bounded in terms of the initial data whenever
β > 2 and α + 5β > 2, which is indeed possible6 for α and β close enough to 3/2 and 5/2,
respectively. Hence

∫ ∞

0
‖∇u‖L∞ ≤ C0

with C0 depending only on the norms of the initial data and tending to 0 when E0,0 +E1,0

tends to 0. Let us underline that we do not need ‖u0‖Ḃ−3/2
2,∞

to be small.

4. Proving theorem 1.1

This section is devoted to the proof of our first main result. We shall first present a
stability result that will entail the uniqueness in Theorem 1.1, and will be also used in the
second part dedicated to the existence. The last part is devoted to the study of the large
time behavior for the distribution function.

6In accordance with Remark 1.3, if assuming that u0 ∈ Ḃ−σ
2,∞, the same approach would give α = σ and

β = σ + 1. This gives the restriction σ > 1.
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4.1. A stability result. Since the result we have in mind will be also useful to prove the
strong convergence of the solutions to some approximate (VNS) system (see the next part),
we shall here consider the following slightly more general system

(4.1)





∂tf + v · ∇xf + divv
(
f(w − v)

)
= 0,

∂tu−∆u+ w · ∇u+

∫
f(w − v) dv +∇P = S,

div v = 0.

Both the transport field w and the source term S are given sufficiently smooth time-
dependent vector-fields.

Our goal is to prove a stability estimate for (4.1), that implies a uniqueness result for
(VNS) in the functional framework of Theorem 1.1. To do this, we shall adapt the approach
of [9] . Let us underline that the proof here is simpler since the characteristics associated to
the first equation of (4.1) are Lipschitz.

So, let us consider two solutions u1 and u2 of (4.1) associated with vector-fields w1 and w2,
source terms S1 and S2, and initial velocities (u0,1 and u0,2). For simplicity, we shall assume
that We shall allow for possibly different but will keep the initial distribution function f0 is
the same for the two solutions.

Let us set δf := f2 − f1, δu := u2 − u1, δw := w2 − w1 and δS := S2 − S1. We denote by
ρi and m2,i the density (resp. energy) associated with fi through (1.6). We also introduce
the characteristics Z1 = (X1, V1) and Z2 = (X2, V2) associated with w1 and w2 respectively
(instead of u), through System (A.1), and use the notation Yj(t, x, v) := Yj(t; 0, x, v) for
Y ∈ {V,X,Z}. Finally, we set:

δX := X2 −X1, δV := V2 − V1 and δZ := Z2 − Z1.

The system satisfied by δu reads:

(4.2)





∂tδu+w1 · ∇δu−∆δu+ ρ2δw = P
(
δS − δw · ∇u2 +

∫
δf(v − w1) dv

)
,

div δu = 0.

Taking the L2(R3;R3) scalar product with δu immediately gives

(4.3)
1

2

d

dt
‖δu‖2L2 + ‖∇δu‖2L2 + ‖√ρ2 δu‖2L2

= −
∫

(δw · ∇u2) · δu dx+

∫∫
δf(v −w1) · δu dv dx+

∫
δu · δS dx.

For the first term of the right-hand side, combining Hölder, Sobolev and Young inequalities
yields

(4.4) −
∫

(δw · ∇u2) · δu dx ≤ 1

10
‖∇δu‖2L2 + C‖∇u2‖2L3‖δw‖2L2 .

To handle the second term (let us call it δF ), using Formula (A.2) for f1 and f2 gives

(4.5) δF = e3t
∫∫ (

f0(Z
−1
2 (t))− f0(Z

−1
1 (t))

)
(v − w1) · δu dv dx.

Performing the changes of variables (x′, v′) = Z−1
2 (t, x, v) and (x′, v′) = Z−1

1 (t, x, v), re-
spectively and using the properties of the flow that have been recalled in Appendix, we



18 RAPHAËL DANCHIN

obtain

δF =

∫ ∫ (
V2(t)− w1(t,X2(t))

)
· δu(t,X2(t)) f0 dv

′ dx′

−
∫ ∫ (

V1(t)− w1(t,X1(t))
)
· δu(t,X1(t)) f0 dv

′ dx′.

We further decompose δF into A1 +A2 +A3 +A4 with

A1(t) :=

∫∫
f0(x, v)δV (t, x, v) · δu(t,X2(t, x, v)) dv dx

A2(t) :=

∫∫
f0(x, v)

(
w1(t,X1(t, x, v)) − w1(t,X2(t, x, v))

)
· δu(t,X1(t, x, v)) dv dx

A3(t) :=

∫∫
f0(x, v)w1(t,X2(t, x, v))

(
δu(t,X1(t, x, v)) − δu(t,X2(t, x, v))

)
dv dx

A4(t) :=

∫∫
f0(x, v)V1(t, x, v) ·

(
δu(t,X2(t, x, v)) − δu(t,X1(t, x, v))

)
dv dx.

For bounding A1, we use Young inequality:

A1 ≤
1

2
‖
√

f0 δV ‖2L2 +
1

2

∫
f0(x, v)|δu(t,X2(t, x, v))|2 dx dv.

From (A.2), we deduce that
∫
f0(x, v)|δu(t,X2(t, x, v))|2 dx dv =

∫∫
f2(t, x, v)|δu(t, x)|2 dv dx = ‖√ρ2δu(t)‖2L2 .

Hence

(4.6) A1 ≤
1

2
‖
√

f0 δV ‖2L2 +
1

2
‖√ρ2δu(t)‖2L2 .

Next, as ∇u1 is bounded, using Cauchy-Schwarz inequality and a change of variable gives

A2 ≤ ‖∇w1‖L∞

∫∫
f0(x, v)|δX(t, x, v)||δu(t,X1(t, x, v))| dvdx

≤ ‖∇w1‖L∞‖
√

f0δX‖L2

(∫∫
f0(x, v)|δu(t,X1(t, x, v))|2 dvdx

)1/2

≤ ‖∇w1‖L∞‖
√

f0δX‖L2

(∫∫
f1(t, x, v)|δu(t, x)|2 dvdx

)1/2

.

Hence we have

(4.7) A2 ≤ ‖∇w1‖L∞‖
√

f0δX‖L2‖√ρ1 δu‖L2 .

In order to bound A3 and A4, we need to resort to the following inequality (see [17]) that
involves Hardy’s maximal function:

(4.8) |z(y)− z(x)| ≤ C|x− y|
(
M(∇z)(y) +M(∇z)(x)

)
·

This enables us to write that

(4.9) A3 .

∫
f0(x, v)|w1(t,X2(t, x, v))|

(
M(∇δu)(t,X1(t, x, v))

+M(∇δu)(t,X2(t, x, v))
)
δX(t, x, v) dxdv.
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Now, from the usual change of variable, (A.2) and the continuity of the maximal function
on L2, we gather that for j = 1, 2,

∫∫
(M(∇δu)(Xj))

2 f0 dvdx =

∫
(M(∇δu))2

(∫
fj dv

)
dx . ‖ρj‖L∞‖∇δu‖2L2 .

Hence, reverting to (4.9) gives

(4.10) A3 ≤
1

10
‖∇δu‖2L2 + C‖w1‖2L∞‖(ρ1, ρ2)‖L∞‖

√
f0δX‖2L2 .

Term A4 is the most involved. To handle it, we observe that A4 ≤ A4,1 +A4,2 +A4,3 where

A4,3 =

∫∫
f0(x, v)δV (t, x, v)|δX(t, x, v)|M(∇δu)(t,X2(t, x, v)) dvdx

and, for j = 1, 2,

A4,j =

∫∫
f0(x, v)|δX(t, x, v)||Vj (t, x, v)|M(∇δu)(t,Xj (t, x, v)) dvdx.

By Cauchy-Schwarz inequality, change of variable, formula (A.2) and the continuity in L2

of the maximal function, we have for j = 1, 2,

A4,j ≤ ‖
√

f0 δX‖L2

(∫∫
f0|Vj |2(M(∇δu)(Xj))

2 dvdx

)1/2

≤ ‖
√

f0 δX‖L2‖m2,j‖1/2L∞‖M(∇δu)‖L2

≤ 1

10
‖∇δu‖2L2 + C‖m2,j‖L∞‖

√
f0 δX‖2L2 .(4.11)

Similarly,

(4.12) A4,3 ≤
1

10
‖∇δu‖2L2 + C‖ρ2‖L∞‖δV ‖2L∞‖

√
f0 δX‖2L2 .

Putting together Inequalities (4.4), (4.6), (4.7), (4.10), (4.11) and (4.12) yields

(4.13)
d

dt
‖δu‖2L2 + ‖∇δu‖2L2 + ‖√ρ2 δu‖2L2 ≤ 2

∫
δS · δu dx + ‖

√
f0 δV ‖2L2

+ C
(
‖∇u2‖2L3‖δw‖2L2 + ‖ρ1‖1/2L∞‖∇w1‖L∞‖

√
f0 δX‖L2‖δu‖L2

+
(
‖(ρ1, ρ2)‖L∞‖w1‖2L∞ + ‖(m2,1,m2,2)‖L∞ + ‖ρ2‖L∞‖δV ‖2L∞

)
‖
√

f0 δX‖2L2

)
·

We have to keep in mind that (A.8) implies that

(4.14) δV (t, x, v) =

∫ t

0
es−t

(
w2(s,X2(s, x, v)) − w1(s,X1(s, x, v))

)
ds,

and thus

(4.15) ‖δV ‖L2(0,t;L∞) ≤ ‖w1‖L2(0,t;L∞) + ‖w2‖L2(0,t;L∞).

To complete the proof, we have to look at the time evolution of ‖√f0 δZ(t)‖L2(R3×R3). Using
(A.1), we see that

δXt = δV and δVt = w2(X2)− w1(X1)− δV.
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Hence

1

2

d

dt
‖
√

f0 δZ‖2L2+‖
√

f0 δV ‖2L2 =

∫∫
f0δX ·δV dvdx +

∫∫
f0
(
w2(X2)− w1(X1)

)
·δV dvdx

≤ 1

2
‖
√

f0 δX‖2L2 +
1

2
‖
√

f0 δV ‖2L2 +B1 +B2

with

B1 :=

∫∫
f0
(
w1(X2)− w1(X1)

)
·δV dvdx and B2 :=

∫∫
f0
(
w2(X2)−w1(X2)

)
·δV dvdx.

It is obvious that

B1 ≤ ‖∇w1‖L∞

∫∫
f0|δX||δV | dv dx,(4.16)

B2 ≤
1

2

∫∫
f0|δV |2 + 1

2

∫∫
f0(x, v)|δw(t,X2(t))|2 dvdx

≤ 1

2

∫∫
f0|δV |2 + 1

2

∫∫
f2(t, x, v)|δw(t)|2 dvdx.(4.17)

Hence, we end up with

(4.18)
d

dt
‖
√

f0 δZ‖2L2 ≤ (1 + ‖∇w1‖L∞)‖
√

f0 δZ‖2L2 + ‖√ρ2 δw‖2L2 .

Putting this inequality together with (4.15) and (4.13) yields

(4.19)
d

dt

(
‖δu‖2L2 + ‖

√
f0 δZ‖2L2

)
+ ‖∇δu‖2L2 + ‖√ρ2 δu‖2L2 ≤ 2

∫
δS · δu dx+ ‖√ρ2 δw‖2L2

+ C

(
‖∇u2‖2L3‖δu‖2L2 +

(
(1 + ‖ρ1‖1/2L∞)‖∇w1‖L∞ + 1

)(
‖δu‖2L2 + ‖

√
f0 δZ‖2L2

)

+
(
‖(ρ1, ρ2)‖L∞‖w1‖2L∞ + ‖(m2,1,m2,2)‖L∞ + ‖ρ2‖L∞‖(w1, w2)‖L2(0,t;L∞)

)
‖
√

f0 δX‖2L2

)
·

By Gronwall lemma the above inequality readily implies the uniqueness part of Theorem
1.1 (take S1 = S2 = 0, w1 = u1 and w2 = u2). Indeed, we then have ∇u1 in L1

loc(R+;L
∞),

∇u2 in L2(R+;L
3), u1, u2 belong to L2

loc(R+;L
∞) and ρ1, ρ2,m2,1,m2,2 are in L∞

loc(R+;L
∞).

4.2. The proof of existence. We consider the following Friedrichs approximation of the
Vlasov-Navier-Stokes system for all n ∈ N:

(V NSn)





∂tf + v · ∇xf + divv
(
f(Jnu− v)

)
= 0,

∂tu+ Jn(u · ∇xu)−∆xu = Jn

(∫

R3

f(v − u) dv

)
,

where the spectral orthogonal projector Jn of L2(R3;R3) is defined by Jn = P1B(0,n)(D).
Note that the range of Jn is the space

L2
n :=

{
z ∈ L2(R3;R3), div z = 0 and Supp ẑ ⊂ B̄(0, n)

}
·

Let us admit temporarily that System (V NSn) supplemented with initial data (f0, Jnu0) has
a unique solution (fn, un) on some time interval [0, T ] such that fn satisfies the properties
stated in Theorem 1.1 and un belongs to the space

En
T := C([0, T ];L2

n).



21

Owing to the spectral localization, the vector-field un belongs to all Sobolev spaces and since
Jnu

n = un and Jn is a L2 orthogonal projector, all the energy estimates of Sections 2 are
valid for (fn, un). In fact, from (2.15) and a bootstrap argument, we see that provided we
have (A.3) on [0, T ] and the smallness condition (1.2) is satisfied, then

(4.20) En(t) +

∫ t

0
Dn dτ

≤ CeCE0,0

((
1 + ‖〈v〉2f0‖L1

v(R
3;L∞

x (R3))

)(
‖Jnu0‖2H1 +

∫∫
f0|v|2 dv dx

))

where the functionals Dn and En corresponding to (fn, un) are defined as in (2.11).

As Jn is also continuous on all Besov spaces Ḃ−σ
2,∞, one can repeat the computations of

Section 3 and eventually get the key Lipschitz control (A.3). This allows to continue the
solution (fn, un) for all positive time.

In short, we have constructed a sequence (fn, un)n∈N of global approximate solutions, that
satisfy (4.20) and all the estimates of Sections 2 and 3, uniformly with respect to n (since
the right-hand side may be bounded independently of n). Furthermore, the distribution fn

satisfies the estimates (A.2) to (A.5), in particular

(4.21) ‖fn(t)‖L∞(R3×R3) ≤ e3t‖f0‖L∞(R3×R3) for all t ≥ 0.

From Inequalities (4.20) and (4.21), we deduce that, up to subsequence,

fn ⇀ f in L∞ and un ⇀ u in L∞(R+;H
1) ∩ L2

loc(R+;H
2) weak ∗ .

We claim that (un)n∈N converges strongly to u in the energy space. In fact, we are going to
show that it is a Cauchy sequence in C([0, T ];L2) ∩ L2(0, T ;H1) for all T > 0. To prove it,
we observe that for all n ∈ N, the velocity field un satisfies the second equation of (V NS)
with source term

Sn := (P − Jn)(u
n · ∇un) + (P − Jn)

∫
fn(un − v) dv.

Now, owing to the spectral cut-off, Inequality (2.3), Hölder and Gagliardo-Nirenberg in-
equality, we have

‖Sn‖Ḣ−1 ≤ n−1

(
‖un · ∇un‖L2 +

∥∥∥∥
∫

fn(un − v) dv

∥∥∥∥
L2

)

≤ Cn−1

(
‖∇un‖3/2

L2 ‖∇2un‖1/2
L2 + ‖ρn‖1/2L∞

(∫∫
fn|un − v|2 dv dx

)1/2)
·

Hence, introducing the functionals En
0 , D

n
0 , E

n
1 and Dn

1 like in (0.1), (0.2) and (2.5), we
discover that for all t ≥ 0,

∫ t

0
‖Sn‖2

Ḣ−1 dτ ≤ Cn−2

(∫ t

0

(
Dn

1 +Dn
0 (E

n
1 )

2 + ‖f0‖L1(R3
v;L

∞(R3
x))

Dn
0

)
dτ

)
·

Note also that

‖Jnu0 − Jmu0‖L2 ≤ n−1‖u0‖Ḣ1 for m > n > 0.

Therefore, taking advantage of Inequalities (4.19) and (4.20) and of Gronwall lemma, one can
conclude that for all n ∈ N and m > n, we have for some increasing function C0 depending
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on the data, but independent of n,

‖(um − un)(t)‖2L2 +

∫ t

0
‖∇(um − un)‖2L2 dτ ≤ C0(t) n

−2.

This completes the proof of our claim.

Since the convergence is strong in the energy space, it is now easy to conclude that
(f, u) satisfies (VNS) in the sense of distributions. Furthermore, since for all n ∈ N, the
approximate solution (fn, un) satisfies the energy balance

1

2

(
‖un(t)‖2L2 +

∫∫
fn(t)|v|2 dv dx

)
+

∫ t

0

(
‖∇un‖2L2 +

∫∫
f |v − un|2 dv dx

)
dτ

=
1

2

(
‖un0‖2L2 +

∫
f0|v|2 dv dx

)
,

the strong convergence guarantees that (f, u) satisfies (1.3).

Finally, that u ∈ C(R+;H
1) stems from the fact that u satisfies a heat equation with

initial data in H1 and right-hand side in L2
loc(R+;L

2).

For completeness, let us explain how to solve (V NSn) locally in time for fixed n ∈ N and
small enough T > 0. Toward this, we consider the map Φ defined on En

T by Φ(w) = u, where
u stands for the solution of the linear parabolic equation

(4.22) ∂tu−∆u = Jn

(∫
f(v − w) dv − w · ∇u

)
, u|t=0 = Jnu0,

and f stands for the unique bounded solution of the (linear) transport equation :

(4.23) ∂tf + v · ∇xf + divv
(
f(w − v)

)
= 0, f |t=0 = f0.

To implement the fixed point theorem, it will be convenient to endow En
T with the following

norm :

‖z‖En
T
:=

(
sup
t∈[0,T ]

‖z(t)‖2L2 +

∫ T

0
‖∇z‖2L2 dt

)1/2

.

Since w ∈ En
T , we actually have w ∈ C([0, T ];C1,0) owing to the spectral localization, which

guarantees the existence and uniqueness of a solution to (4.23), that can be computed by
the method of characteristics (see (A.2)).

We claim that if T is small enough, then Φ has a fixed point in En
T . Indeed, by a method

similar to that used for establishing (0.1), we readily get

1

2

d

dt

(
‖u‖2L2 +

∫∫
f |v|2 dv dx

)
+‖∇u‖2L2 +

∫∫
f |v−u|2 dv dx =

∫∫
f(w−u) · (v−u) dv dx.

Combining Hölder, Sobolev and Young inequalities gives
∫∫

f(w − u) · (v − u) dv dx ≤
∫∫

f |v − u|2 dv dx+
1

4
‖ρ‖L∞‖w − u‖2L2

where ρ denotes the mass associated to f through (1.6).

To continue the proof, we assume that

(4.24)

∫ T

0
‖∇w‖L∞ dτ ≤ δ,
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where δ is chosen as in (A.3). This ensures that

‖ρ‖L∞(0,T ;L∞) ≤ 2‖f0‖L1(R3
v ;L

∞(R3
x))

.

Then, the above inequality combined with Gronwall’s lemma gives for all t ∈ [0, T ],

(4.25) ‖u(t)‖2L2 + 2

∫ t

0
‖∇u‖2L2 dτ

≤
(
‖u0‖2L2 +

∫∫
f0|v|2 dv dx+ t‖f0‖L1(R3

v;L
∞(R3

x))
‖w‖2L∞(0,t:L2)

)
e
t‖f0‖2

L1(R3v ;L
∞(R3x)) ·

Let us assume that w belongs to the closed ball B̄En
T
(0,M) of En

T with M defined by

M2 = 2

(
1 + ‖u0‖2L2 +

∫∫
f0|v|2 dv dx

)
·

The spectral localization of w guarantees that

‖∇w‖L∞ ≤ C‖∇w‖1/2
Ḣ1

‖∇w‖1/2
Ḣ2

≤ Cn3/2‖∇w‖L2 ,

whence ∫ T

0
‖∇w‖L∞ ≤ Cn3/2T 1/2‖w‖En

T
.

Since we want (4.24) to be satisfied, we conclude that if T is such that

(4.26) Cn3/2T 1/2M ≤ δ, T‖f0‖2L1(R3
v;L

∞(R3
x))

≤ log 2 and ‖f0‖L1(R3
v ;L

∞(R3
x))

TM2 ≤ 1,

then (4.25) ensures that u is in B̄En
T
(0,M), too.

In order to complete the proof of the existence of a fixed point in B̄En
T
(0,M), it suffices to

show that Φ is a contracting mapping on this ball. To do this, we consider two elements w1

and w2 of B̄En
T
(0,M) with T satisfying (4.26). Then, both u1 := Φ(w1) and u2 := Φ(w2) are

in B̄En
T
(0,M). Let us denote by fi the distribution associated to wi through the transport

equation (4.23). In order to get the desired property of contraction, one can adapt the
method leading to the stability estimate (4.19), to the following system verified by (fi, ui)
with i = 1, 2: 



∂tui −∆ui + Jn

(
wi · ∇ui +

∫
fi(wi − v) dv

)
= 0,

∂tfi + v · ∇xfi + divv
(
fi(wi − v)

)
= 0.

Note that the only difference compared to System (4.1) is the orthogonal projector Jn in
the first equation. However, Jn restricted to L2

n is just the identity so that it has no effect
in the energy estimates, and (4.19) still holds. Now, remembering that (4.24) and (4.26) are
satisfied, and taking advantage of the control on ρi and m2,i provided by (A.5) and (A.6),
we get

d

dt
δU + δH ≤ C

(
‖∇u2‖2L3 + ‖ρ2‖L∞

)
δW +Cf0

(
1 + ‖w1‖2L∞ + ‖∇w1‖L∞

)
δU,

with Cf0 depending only on ‖f0‖L1(R3
v ;L

∞(R3
x))

,

δU(t) := ‖δu(t)‖2L2 + ‖
√

f0δZ(t)‖L2 , δW (t) := ‖δw(t)‖2L2 and δH(t) := ‖∇δu(t)‖2L2 .

Hence, using Gronwall lemma gives

δU(t) +

∫ t

0
δH dτ ≤ C

∫ t

0
eCf0

∫ t
τ (1+‖w1‖2L∞+‖∇w1‖L∞) dτ ′

(
Cf0 + ‖∇u2‖2L3

)
δW dτ.
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Recall that w1 satisfies (4.24). Furthermore, the spectral localization of w1 and u2 ensures
that

‖w1‖L∞ ≤ Cn1/2‖w1‖L2 and ‖∇u2‖2L3 ≤ Cn3‖u2‖2L2 .

Hence, for small enough t, we have

‖δu‖2L∞(0,t;L2) +

∫ t

0
‖∇δu‖2L2 dτ ≤ 2Ct(Cf0 + n3M)‖δw‖2L∞(0,t;L2),

which implies that the map Φ is contractive in B̄En
T
(0,M), if T is small enough.

The Banach fixed point theorem allows to conclude that Φ admits a (unique) fixed point
in B̄En

T
(0,M). �

4.3. Convergence of the distribution of particles. Here we prove Corollary 1.4. Having
the time decay of E1 at hand, establishing the convergence of the distribution function f is
a tiny modification of [10]. Indeed, by definition of ρ(t) and of the Wasserstein distance W1

between f(t) and ρ(t)⊗ δu(t) and of ρ(t), we have

W1(f(t), ρ(t)⊗ δu(t)) = sup
‖∇x,vφ‖L∞=1

∫∫
f(t, x, v)

(
φ(x, v)− φ(x, u(t, x))

)
dv dx.

Using the definition of the Lipschitz norm, then Cauchy-Schwarz inequality and (1.4), one
can write for all function φ with Lipschitz norm equal to 1,

∫∫
f(t, x, v)

(
φ(x, v) − φ(x, u(t, x))

)
dx dv ≤

∫∫
f(t, x, v)|v − u(t, x)| dv dx

≤
(∫

ρ(t) dx

∫∫
f(t)|v − u(t)|2 dv dx

)1/2

≤
√

M0 E1(t).

Keeping (1.5) in mind completes the proof of the decay for the Wasserstein distance.

We also have (1.7) since, by definition of ρ and of j,

‖j(t)− (ρu)(t)‖L1 ≤
∫∫

f(t)|v − u(t)| dv dx

≤
√

M0 E1(t).

Finally, integrating the first equation of (VNS) with respect to the v variable gives

∂tρ+ div j = 0,

and thus

(4.27) ρ(t) = ρ0 − div

(∫ t

0
j dτ

)
·

Now, we have j = (j−ρu)+ρu with j−ρu satisfying (1.7). Hence (j−ρu) is in L1(R+;L
1).

Furthermore, by Hölder and Sobolev inequality, and using (1.4), we have

‖(ρu)(t)‖L1 ≤ ‖ρ(t)‖L6/5‖u(t)‖L6 ≤ CM
5/6
0 ‖ρ(t)‖1/6L∞‖∇u(t)‖L2 .

From Theorem 1.1, the density ρ is uniformly bounded on R+, and ‖∇u(t)‖L2 decays ac-
cording to (1.5). Hence ρu is also in L1(R+;L

1). One can thus set

j∞ :=

∫ ∞

0
j dτ and ρ∞ := ρ0 − div j∞
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so that (4.27) implies that

ρ∞ − ρ(t) = −div

(∫ ∞

t
(j − ρu) dτ +

∫ ∞

t
ρu dτ

)
·

Taking advantage of (1.5) and of the above bounds for j−ρu and ρu, one readily gets (1.8).

5. The Fujita-Kato theorem for the Vlasov-Navier-Stokes system

This section is devoted to the proof of Theorem 1.6, that is, to the extension of Theorem
1.1 to the case where u0 has only critical Sobolev regularity H1/2.

The key step is to establish that if ‖u0‖Ḣ1/2 and E0 are small enough, then u(t) remains

in Ḣ1/2 until time t = 1 and possesses the log Lipschitz regularity that is needed for getting
uniqueness within the class of Fujita-Kato solutions. All these properties will be achieved
by a bootstrap argument, assuming beforehand that ‖u‖L1(0,1;L∞) is small enough. As a
result, we shall obtain some t0 ∈ (0, 1) for which the smallness condition (1.2) is satisfied

by (f(t0), u(t0)). As proving the propagation of the regularity Ḃ
−3/2
2,∞ is not an issue, all the

hypotheses of Theorem 1.1 are satisfied at time t0, which allows to construct a solution on
the time interval [t0,∞) with the properties stated therein (in particular the optimal decay
rates for E0 and E1). The uniqueness result that will be proved below ensures that the two
solutions coincide on [t0, 1], which will yield the full statement of Theorem 1.6.

5.1. The incompressible Navier-Stokes equations with source term. In order to
perform the key step, we consider the following Navier-Stokes equation with source term:

(5.1)





∂tu+ u · ∇u−∆u+∇P = S ∈ L4/3(0, T ;L2(R3)),

divu = 0,

u|t=0 = u0 ∈ Ḣ1/2.

We denote by uL the solution to the linearized equation, namely uL := u1L + u2L with

(5.2) u1L(t) := et∆u0 and u2L(t) :=

∫ t

0
e(t−τ)∆PS(τ) dτ

where (et∆)t>0 stands for the heat semi-group and P for the orthogonal projector on diver-
gence free vector-fields.

Proposition 5.1. The solution u1L to the free heat equation with initial data u0 belongs to

C(R+; Ḣ
1/2) ∩ L2(0, T ; Ḃ

3/2
2,1 ) ∩ L̃1(R+; Ḣ

5/2)

where L̃1(R+; Ḣ
5/2) stands for the superspace of L1(R+; Ḣ

5/2) that has been defined in [6,
Def. 2.67], and we have

(5.3) ‖u1L‖L∞(R+;Ḣ1/2) + ‖uL‖L2(0,T ;Ḃ
3/2
2,1 )

+ ‖u1L‖L̃1(R+;Ḣ5/2)
≤ C‖u0‖Ḣ1/2 .

The solution u2L to the heat equation with source term S belongs to

C([0, T ]; Ḣ1/2) ∩ L2(0, T ; Ḃ
3/2
2,1 ) ∩ L4/3(0, T ; Ḣ2),

and satisfies

(5.4) ‖u2L‖L∞(0,T ;Ḣ1/2) + ‖u2L‖L2(0,T ;Ḃ
3/2
2,1 )

+ ‖u2L‖L4/3(R+;Ḣ2) ≤ C‖S‖L4/3(0,T ;L2).
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Finally, there exists a universal constant c such that if

(5.5) ‖u0‖Ḣ1/2 + ‖S‖L4/3(0,T ;L2) ≤ c,

then (5.1) admits a unique solution u on [0, T ] with

ũ := u− u1L − u2L in C([0, T ]; Ḃ1/2
2,1 ) ∩ L2(0, T ; Ḃ

3/2
2,1 ) ∩ L1(0, T ; Ḃ

5/2
2,1 ),

and we have

(5.6) ‖ũ‖
L∞(0,T ;Ḃ

1/2
2,1 )

+‖ũ‖
L2(0,T ;Ḃ

3/2
2,1 )

+‖ũ‖
L1(0,T ;Ḃ

5/2
2,1 )

≤ C
(
‖u0‖2Ḣ1/2+‖S‖2

L4/3(0,T ;L2)

)
·

Proof. The first two parts of the proposition follow from standard properties of the heat
flow (see e.g. [4, Chap. 3]) as regards the fact that the linear solution belongs to the two
extremal spaces, and the observation by D. Arsénio in [2] and D. Arsenio and H. Houamed

[3] that the solution actually belongs to L2(0, T ; Ḃ
3/2
2,1 ) instead of just L2(0, T ;H3/2). To

prove the last part of the statement, we observe that ũ satisfies

∂tũ−∆ũ+∇P = −u · ∇u, div ũ = 0 and ũ|t=0 = 0.

Hence, using again parabolic maximal regularity in Besov spaces (see [4, Chap. 3]) yields
for all t ∈ [0, T ],

‖ũ‖
L∞(0,t;Ḃ

1/2
2,1 )

+ ‖ũ‖
L2(0,t;Ḃ

3/2
2,1 )

+ ‖ũ‖
L1(0,t;Ḃ

5/2
2,1 )

≤ C‖u · ∇u‖
L1(0,t;Ḃ

1/2
2,1 )

.

Now, taking advantage of the product law Ḃ
1/2
2,1 × Ḃ

3/2
2,1 → Ḃ

1/2
2,1 and of Cauchy-Schwarz

inequality with respect to the time variable, we obtain

‖ũ‖
L∞(0,t;Ḃ

1/2
2,1 )

+ ‖ũ‖
L2(0,t;Ḃ

3/2
2,1 )

+ ‖ũ‖
L1(0,t;Ḃ

5/2
2,1 )

≤ C
(
‖u1L‖2L2(0,t;Ḃ

3/2
2,1 )

+ ‖u2L‖2L2(0,t;Ḃ
3/2
2,1 )

+ ‖ũ‖2
L2(0,t;Ḃ

3/2
2,1 )

)
·

Provided the smallness condition (5.5) is satisfied, it is easy to work out from this inequality
a fixed point scheme so as to construct a solution u of (5.1) with the desired properties. �

5.2. Controlling the solution on an interval of size 1. We aim at applying Proposition
5.1 with S = j − ρu and T = 1. As a first, let us observe that owing to Cauchy-Schwarz
inequality, we have

‖j − ρu‖2L2(0,T×R3) ≤ ‖ρ‖L∞(0,T×R3)

∫ T

0

∫

R3

∫

R3

ρ|v − u|2 dv dx dt.

Hence, taking advantage of Identity (1.3) and of Inequality (A.9), we discover that, provided
q > 3, we have for some constant Cq depending only on q,

(5.7) ‖j − ρu‖L2(0,T×R3) ≤ Cqe
3T/2

(
1 + ‖u‖q/2

L1(0,T ;L∞)

)
N1/2

q E
1/2
0 .

Let us take T = 1. Then, remembering (5.3) and (5.5), using the embedding Ḃ
3/2
2,1 →֒ L∞

and Hölder inequality (to bound S suitably), one can find an absolute positive constant c
such that if

(5.8) ‖u0‖Ḣ1/2 ≤ c and ‖j − ρu‖L2(0,1×R3) ≤ c,

then we have in particular

(5.9) ‖u‖L1(0,1;L∞) ≤ C‖u‖
L2(0,1;Ḃ

3/2
2,1 )

≤ Cc.
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Hence, assuming with no loss of generality that Cc ≤ 1 and using (5.7) with T = 1, we
gather that the second part of (5.8) is satisfied provided that

2e3/2CqN
1/2
q E

1/2
0 ≤ c.

Using a bootstrap argument we conclude that if

‖u0‖Ḣ1/2 < c and NqE0 < c2/(4C2
q e

3)

then (VNS) supplemented with initial data u0 and f0 admits a solution on the time interval
[0, 1] that satisfies the basic identity balance (1.3) and all the properties stated in Proposition
5.1 with T = 1. Taking c smaller if needed, one can ensure the Lipschitz smallness condition
(A.3) on [0, 1] so that we have for all t ∈ [0, 1],

‖f(t)‖L1(R3
v;L

∞(R3
x))

+ ‖|v|2f(t)‖L1(R3
v ;L

∞(R3
x))

. ‖f0‖L1(R3
v ;L

∞(R3
x))

+ ‖|v|2f0‖L1(R3
v;L

∞(R3
x))

.

Note that Proposition 5.1 combined with interpolation also guarantees that

‖u‖L4(0,1;Ḣ1) ≤ Cc

and since ‖u‖L∞(0,1;L2) is small (as E0,0 is small), there exists7 some t0 ∈ (0, 1) such that
‖u(t0)‖Ḣ1 ≤ 2Cc. Consequently, taking c smaller if needed, one can apply Theorem 1.1 with
initial data f(t0) and u(t0). Combining with the uniqueness result that will be proved in the
next part, we conclude that it is possible to continue our solution beyond t = t0 into a global-
in-time H1 type solution, which satisfies the regularity and time decay properties stated in
Theorem 1.1. This completes the global existence part of Theorem 1.6, with optimal time
decay.

5.3. Uniqueness. Compared to Theorem 1.1, the difficulty is that the solution (f, u, P ) of

Theorem 1.6 does not need to satisfy ∇u ∈ L1
loc(R+;L

∞) in the case where u0 is in Ḣ1/2 for

the simple reason that et∆u0 does not satisfy this property. We claim however that for all
T > 0 and η ∈ (0, 1/2), we have

(5.10)

∫ T

0
‖u‖Cω̃η

dt with ω̃η := r(1− log r)1−η,

where, for all continuous increasing function ω : R+ → R+ with ω(0) = 0, we have used the
notation

‖f‖Cω := sup
x 6=y

|f(y)− f(x)|
ω(|y − x|) ·

Following the proof of the 2D case that has been proposed in [9], we shall see that it ensures
uniqueness in the framework of Fujita-Kato’s solutions.

To prove (5.10), let us split u into ũ + u1L + u2L where u1L and u2L have been defined in
(5.2) with S = j− ρu. The properties of (f, u) already ensure that S ∈ L2

loc(R+;L
2). Hence,

Proposition 5.1 gives us that u1L and ũ are in L̃1(0, T ; Ḣ5/2) for all T > 0, so that these two

functions are also in L1(0, T ;Cω̃η
) for all η ∈ (0, 1/2) since L̃1(0, T ; Ḣ5/2) is embedded in

L1(0, T ;Cω̃η
) (see [4, p. 237]).

That S ∈ L2
loc(R+;L

2) does not ensure that u2L is in L1
loc(R+;Cω̃η

) (one can only guarantee

that u2L ∈ L2
loc(R+; Ḣ

2)). However, since in addition ρ and j are bounded then, remembering
that u ∈ L2(R+;L

∞), we have S ∈ L2
loc(R+;L

∞) and thus, by real interpolation, that

7By using an energy method in the spirit of that of Section 2, it is actually possible to prove that
t1/4‖∇u(t)‖L2 ≤ Cc for all t ∈ [0, 1].
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S ∈ L2
loc(R+;L

3,1) (where L3,1 stands for the Lorentz space we defined in (3.17)). Then,
parabolic maximal regularity gives ∇2u2L ∈ L2

loc(R+;L
3,1) and thus ∇u2L ∈ L2

loc(R+;L
∞) by

embedding. This completes the proof of (5.10).

One can now tackle the proof of uniqueness. We assume that we are given two solutions
(f1, u1, P1) and (f2, u2, P2) fulfilling the properties listed in Theorem 1.6 and (5.10). We
assume in addition that ρi, ji and m2,i are in L∞(0, T ;L∞) for i = 1, 2. According to (A.9),
(A.10) and (A.11), this is ensured if Nq < ∞ for some q > 5.

Then, in order to prove uniqueness, we start again from (4.3), bounding the first term of
the right-hand side according to (4.4) and still splitting δF (defined in (4.5)) into A1 +A2+
A3 +A4. Term A2 has to be treated differently as before as we do not have any control on
‖∇u1‖L∞ . The second change is that when bounding δZ, one cannot use (4.16). Now, by
using Cauchy-Schwarz inequality and (A.2) with Z = Z1, we get

A2 ≤ ‖√ρ1 δu‖L2

(∫∫
f0(x, v)|u1(t,X1(t, x, v)) − u1(t,X2(t, x, v))|2 dv dx

)1/2

Let ωη : r 7→ r(2 − log r)2−2η . Remembering (5.10), one can assert that there exists an
integrable function α on [0, T ] such that

∫∫
|u1(t,X1(t))− u1(t,X2(t))|2 f0 dv dx ≤ α2(t)

∫∫
ωη(|δX(t)|2) f0 dv dx.

Observe that the function ωη is concave and increasing on some nontrivial interval [0, r0]
and that we have |δX(t, x, v)|2 ≤ r0 pointwise for all t ∈ [0, T ] and (x, v) ∈ R

3×R
3 provided

T > 0 is small enough. Indeed, relation (A.7) implies that

δX(t, x, v) =

∫ t

0

(
eτ−t − 1

)(
u2(τ,X2(τ, x, v)) − u1(τ,X1(τ, x, v))

)
dτ,

and thus
|δX(t, x, v)| ≤

√
t
(
‖u1‖L2(0,t;L∞) + ‖u2‖L2(0,t;L∞)

)
·

Therefore, assuming with no loss of generality that the total mass M0 defined in (1.4) is
equal to 1, Jensen inequality allows us to get

A2(t) ≤ α(t)‖√ρ1 δu‖L2

(
ωη(‖

√
f0 δX‖2L2)

)1/2
.

Similarly, we have

B1(t) ≤ ‖
√

f0 δV (t)‖L2

(∫∫
|u1(t,X1(t))− u1(t,X2(t))|2 f0 dv dx

)1/2

≤ α(t)‖
√

f0 δV (t)‖L2

Let Y := ‖δu‖2L2 + ‖√f0 δZ‖2L2 . In the end we get the following inequality:

d

dt
Y + ‖∇δu‖2L2 . (1 + ‖ρ1‖L∞)1/2αωη(Y )

+
(
1+‖∇u2‖2L3 +‖(ρ1, ρ2)‖L∞‖u1‖2L∞ +‖(m2,1,m2,2)‖L∞ +‖ρ2‖L∞‖(u1, u2)‖L2(0,t;L∞)

)
Y.

Note that ρ1, ρ2,m2,1,m2,2 are bounded, u1, u2 are in L2(0, T ;L∞) and α is integrable. Since
the modulus of continuity ωη satisfies Osgood’s condition, that is

∫ r0

0
ω−1
η (r) dr = ∞ for some r0 > 0,
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one can conclude that Y ≡ 0 on [0, T ] (apply e.g. [4, Lem. 3.4]). This completes the proof
of the uniqueness part of Theorem 1.6.

For the sake of completeness, let us briefly explain how to construct a global solution
satisfying the properties of Theorem 1.6. One can for instance consider the regularized
system (V NSn) used to build a solution in Theorem 1.1. Again, the spectral cut-off has not
effect on the estimates, which allows to bound the sequence of approximate solutions in the
desired space. In order to prove the strong convergence and justify the energy balance (1.3),
one can adapt the proof of uniqueness to the case of source terms, like we did for Theorem
1.1, but in the functional framework of Theorem 1.6. The details are left to the reader.

5.4. The case of an initial velocity in Ḃ
1/2
2,1 . Here we justify Remark 1.7: we explain

how to handle the case where the initial data (f0, u0) satisfy (1.1) and

‖u0‖B1/2
2,1 (R3)

+

∫∫
|v|2f0 dv dx ≤ c ≪ 1.

Compared to the case u0 ∈ Ḣ1/2, the key difference lies in the fact that u1L = et∆u0 satisfies

u1L ∈ Cb(R+; Ḃ
1/2
2,1 ∩ L1(R+; Ḃ

5/2
2,1 ),

which implies that ∇u1L ∈ L1(R+;L
∞) with
∫ ∞

0
‖∇u1L‖L∞ ≤ Cc.

Consequently, one can bound ρ and m2 in L∞(0, T×R
3) (and thus j) according to (A.5) and

(A.6) whenever (A.3) holds true. Now, these latter properties enable us to bound S := j−ρu
in L2

loc(R+;L
∞) and one can argue like in Subsection 5.2 to prove (A.3) on, say, the time

interval [0, 1].
The rest of the proof goes as before. Compared to Theorem 1.6, the gain is that we do

not need to assume any longer that Nq(f0) < ∞ for some q > 5.

Appendix A. The control of the flow, and applications

Most of the regularity estimates that were used in this paper required boundedness of
suitable Lebesgue norms of the density ρ (and, to a lesser extent, of the momentum j or of
the distribution energy m2).

In order to derive these bounds, one can take advantage of formulae for ρ, j and m2

in terms of the characteristics Z := (X,V ) associated to the f equation. More precisely,
looking at (t, x, v) ∈ R+×R

3×R
3 as parameters, we consider the following system of ODEs:

(A.1)





∂sX(s; t, x, v) = V (s; t, x, v)

∂sV (s; t, x, v) = u(s;X(s; t, x, v)) − V (s; t, x, v)

X(t; t, x, v) = x and V (t; t, x, v) = v.

In other words, Z = (X,V ) is the flow of the time-dependent vector-field

F (t, x, v) = (v, u(t, x) − v), (t, x, v) ∈ R+ ×R
3 × R

3.

The Cauchy-Lipschitz theorem ensures that for (A.1) to be solvable, it suffices that u ∈
L1
loc(R+;W

1,∞). Furthermore, since Divx,vF = −3, we have

detDx,vZ(s; t, x, v) = e3(t−s).
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The solution of the first equation of (VNS) then reads:

(A.2) f(t, x, v) = e3tf0
(
X(0; t, x, v), V (0; t, x, v)

)
,

and thus

ρ(t, x) =

∫

R3

f(t, x, v) dv = e3t
∫

R3

f0
(
X(0; t, x, v), V (0; t, x, v)

)
dv.

According to [10, Lemma 4.4], there exists an absolute constant δ such that if

(A.3)

∫ T

0
‖∇u‖L∞ dt ≤ δ,

then for all t ∈ [0, T ] and x ∈ R
3, the map Γt,x : v 7→ V (0; t, x, v) is a bilipschitz homeomor-

phism on R
3 satisfying

(A.4) detDvΓt,x(v) ≥ e3t/2.

So, performing the change of variable w = Γt,x(v) in (A.2), we get

ρ(t, x) = e3t
∫

R3

f0(X(0; t, x,Γ−1
t,x (w)), w)detDwΓ

−1
t,x(w) dw,

and thus, owing to (A.4),

(A.5) |ρ(t, x)| ≤ 2‖f0‖L1(R3
v;L

∞(R3
x))

.

Similarly, we have

m2(t, x) = e3t
∫

R3

|v|2f0
(
X(0; t, x, v), V (0; t, x, v)

)
dv

= e3t
∫

R3

|Γ−1
t,x(w)|2f0(X(0; t, x,Γ−1

t,x (w)), w)detDwΓ
−1
t,x(w) dw.

In order to bound |Γ−1
t,x(w)|2, we integrate the second line of (A.1) on [0, t], getting

Γ−1
t,x(w) = e−t

(
w +

∫ t

0
esu

(
s,X(s; t, x,Γ−1

t,x(w))
)
ds

)
,

whence
∣∣Γ−1

t,x(w)
∣∣ ≤ e−t|w|+

∫ t

0
es−t‖u(s)‖L∞ ds.

Therefore, using again (A.4), it is easy to get

m2(t, x) ≤ 4e−2t‖|v|2f0‖L1(R3
v;L

∞(R3
x))

+ 4

(∫ t

0
es−t‖u(s)‖L∞ ds

)2

‖f0‖L1(R3
v ;L

∞(R3
x))

.

Now, we have, according to Gagliardo-Nirenberg and Cauchy-Schwarz inequalities,
(∫ t

0
es−t‖u(s)‖L∞ ds

)2

≤ C

(∫ t

0
e2s−2t ds

)∫ t

0
‖∇u‖L2‖∇2u‖L2 ds.

Using Cauchy-Schwarz inequality for bounding the last integral and remembering Inequali-
ties (1.3) and (2.15), one can find C0 depending only on the initial data such that

(A.6) m2(t, x) ≤ 4e−2t‖|v|2f0‖L1(R3
v ;L

∞(R3
x))

+ C0(1− e−2t)‖f0‖L1(R3
v;L

∞(R3
x))

.

Note that the above computations actually allow to obtain a control of f and of |v|2f in
L∞(R+;L

1(R3
v;L

∞(R3
x))).
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We now look at the situation where we do not assume any longer that (A.3) holds, but
where u satisfies the log Lipschitz property (5.10). Then, Osgood lemma (see e.g. [4,
Chap. 3]) still guarantees that System (A.1) has a unique solution. Furthermore, direct
manipulations reveal that

X(s; t, x, v) = x+ (1− et−s)v +

∫ t

s

(
eτ−s − 1

)
u(τ,X(τ ; t, x, v)) dτ,(A.7)

V (s; t, x, v) = et−sv −
∫ t

s
eτ−su(τ,X(τ ; t, x, v)) dτ.(A.8)

This implies that for all t ∈ [0, T ], we have

|v| ≤ e−t|V (0; t, x, v)| +
∫ t

0
eτ−t‖u(τ)‖L∞ dτ.

Hence, since f(t, x, v) = e3tf0(Z(0; t, x, v)), we have for all q > 3,

ρ(t, x) =

∫
f(t, x, v) dv = e3t

∫
〈v〉qf0(Z(0; t, x, v)) 〈v〉−q dv

≤ Cqe
3t

(
sup
v∈R3

〈v〉qf0(Z(0; t, x, v))

)

≤ Cqe
3t

(
sup
v∈R3

〈V (0; t, x, v)〉qf0(Z(0; t, x, v))

+

(∫ t

0
e−τ‖u(τ)‖L∞ dτ

)q

sup
v∈R3

f0(Z(0; t, x, v))

)
·

Denoting Nq = sup (x,v)∈R3×R3〈v〉qf0(x, v), one can conclude that

(A.9) ‖ρ(t)‖L∞ ≤ Cqe
3t
(
1 + ‖u‖L1(0,t;L∞)

)q
Nq.

Similarly, we have, if q > 3,

j(t, x) =

∫
vf(t, x, v) dv = e3t

∫
v〈v〉qf0(Z(0; t, x, v)) 〈v〉−q dv

≤ Cq+1e
3t

(
sup
v∈R3

〈v〉q+1f0(Z(0; t, x, v))

)
·

Hence,

(A.10) ‖j(t)‖L∞ ≤ Cq+1e
3t
(
1 + ‖u‖L1(0,t;L∞)

)q+1
Nq+1.

The same argument leads to

(A.11) ‖m2(t)‖L∞ ≤ Cq+2e
3t
(
1 + ‖u‖L1(0,t;L∞)

)q+2
Nq+2.
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