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FUJITA-KATO SOLUTIONS AND OPTIMAL TIME DECAY FOR THE
VLASOV-NAVIER-STOKES SYSTEM IN THE WHOLE SPACE

RAPHAEL DANCHIN

ABSTRACT. We are concerned with the construction of global-in-time strong solutions for
the incompressible Vlasov-Navier-Stokes system in the whole three-dimensional space. One
of our goals is to establish that small initial velocities with critical Sobolev regularity H'/?
and sufficiently well localized initial kinetic distribution functions give rise to global and
unique solutions. This constitutes an extension of the celebrated result for the incompress-
ible Navier-Stokes equations (NS) that has been established in 1964 by Fujita and Kato [8].
If in addition the initial velocity is in L', we establish that the total energy of the system
decays to 0 with the optimal rate t~3/2, like for the weak solutions of (NS), see [15, 16].

Our results partly rely on the use of a higher order energy functional that controls the
regularity H' of the velocity and seems to have been first introduced by Li, Shou and
Zhang in [12] in the context of nonhomogeneous Vlasov-Navier-Stokes system. In the small
data case, we show that this energy functional decays with the rate t75/2,

This paper is concerned with the proof of the existence of global-in-time strong solutions
and the study of large time asymptotics for the following so-called Vlasov-Navier-Stokes
system in R3 x R3:

O f +v-Vuf+div, (f(u—v)) =0,
(VNS) Ou+u-Vyu—Ayu+ VP = flv—u)dv,

R3
divu = 0.

This system is a toy model for describing the dynamics of a spray, that is, a cloud of particles
that are immersed in an incompressible viscous homogeneous fluid. The kinetic distribution
function f = f(t,7,v) then represents the density of particles with velocity v € R3, that
are located at x € R3 at time t > 0, while u = u(t, ) stands for the ambient velocity field
obeying the classical incompressible (and homogeneous) Navier-Stokes equations, under the
influence of a drag term, the so-called Brinkman force.

For f = 0, System (VNS) reduces to the celebrated incompressible Navier-Stokes equa-
tions
ou+u-Vu—Au+ VP =0,

NS
(VS) divu = 0,

and the question arises as to which results for (NS) can be extended to (VNS).

2010 Mathematics Subject Classification. 35Q30, 35Q83, 76D05, 76D03.
Key words and phrases. Vlasov-Navier-Stokes, Fujita-Kato solutions, optimal decay rate, global solutions,
large time behavior.
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2 RAPHAEL DANCHIN

Like for (NS), there is an energy balance associated to (VNS), namely

d . 1 1
(0.1) B0+ Do=0 with Ep:= 5““”%2@1&3) + §H|U|2f||L1(Rngg)

and Do := HVUH%%Rg) + 1 flu— U|2||L1(Rngg)-

One can thus expect to have a global finite energy weak solutions theory similar to that
established by J. Leray for (NS), in [11]. Such solutions have indeed been constructed by
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa in [5] who leveraging a suitable
approximation scheme and compactness arguments to prove an analogous of Leray’s theo-
rem, for (VNS). More precisely, in the case where the fluid domain is the three-dimensional
torus T3, any initial data (fo,ug) such that

fo € L®(T2 xR, |v*fo € LY (T? x R®) and wg € L3(T?) with divug =0

gives rise to a global-in-time distributional solution verifying

t 1 1
Ey(t) +/ Dydr < Ey = 5““0”%2(]1@:;) + §H|U|2fo\|L1(Rngg), ae t €Ry.
0

The result of [5] also holds in three-dimensional bounded domains [1], in the two-dimensional
torus, and can be adapted to the R? or R? setting if fy is suitably well localized (see the
appendix of [9]). Furthermore, as for (NS), in the 2D case, weak solutions are unique in the
energy class (again, see [9]).

To continue the analogy with (NS), one can study whether smoother initial data generate
smoother solutions. In particular, in the three dimensional case, if assuming that ug is small
in the Sobolev space HY 2(R3) and that fy satisfies appropriate conditions, do we have a
global and unique solution ? A positive answer to this question would provide a result
similar to that of H. Fujita and T. Kato [8] for (NS) in a three-dimensional bounded domain
(and adapted to the R3 situation by J.-Y. Chemin in [6]).

In the present paper, we focus on the R? case. We want to establish the existence and
uniqueness of global solutions for (VNS) supplemented with an initial velocity satisfying
Fujita-Kato type assumption, and to specify the rate of convergence to 0 of the energy Fj,
and the long time behavior of f. To our knowledge, proving global existence and uniqueness
for critical regularity is new. As for the proof of the long time behavior, it has been studied
recently by D. Han Kwan in [7]. We here reach the optimal time decay for Ey, and also
specify the rate of decay for the following higher order energy functional:

(0.2) By = || Vul)3, —I—/ flu —v|? dv d.

1. MAIN RESULTS

Although our final goal is to investigate (VNS) supplemented with initial velocity in
the critical Sobolev space H'/2(R3), we shall first consider the smoother situation where g
belongs to the Sobolev space H!(R?). This is motivated by the fact that in the small solutions
regime, the functional F; defined in (0.2) satisfies a quasi conservation law, in the spirit of
(0.1) whenever the density p defined in (1.6) stays bounded and Vu is in L*(R,; L*°). In
this setting, one can achieve optimal time decay estimates (that is, with the rate of the
heat equation) for both Ey and Fj: we shall first establish the following result, which turns
out to be the key to our second one, pertaining to initial velocities in the nonhomogeneous
Sobolev space H/?(R?).



Theorem 1.1. Assume that the initial distribution function fy satisfies
(1.1) fo € L'REX R NL®(RE x RE) and |v]*fo € L' (RE; L™ (RY))
and that ug is a divergence free vector-field in L'(R?) N H(R3).
There exists a small constant cy depending only on
HUOHLl(R3)7 HfOHLl(R3><]R3)7 HfOHLl(Rg;Loo(Rg)) and |H’U’ fOHLl R3; L% (R3))
such that if

(1.2) ||u0||§11(R3)+/ 02 fo dv d < co,

then (VINS) admits a unique global solution (f,u, P) satisfying the energy balance:
¢
(1.3) Ey(t) —I—/ Dodr = Eypg for allt >0,
0

and such that:
o ucCy(Ry; HY)YNL2(Ry; L™), Vu € LY(Ry; L), V?u € L*(R, x R3),
e VP e L3R, x R?),
o [ € LS Ry IX(RE x RY)), [0 f € Lo(Ry; L' (R L=(RY))) and
(1.4) 1f )l msxrsy = Mo := || foll 1 (rsxrsy for all t€R,.
Furthermore, optimal time decay estimates hold for Ey and Eq, namely
(1.5) Eo(t) < Cot™? and Ey(t) < C1t™%/2,
for some positive constants Cy and C7 depending only on suitable norms of the initial data.
Remark 1.2. In contrast with the (NS) situation, we do not know how to prove global results
without assuming more integrability on uy than that which is given by (1.2). In fact, in

order to keep under control the following hydrodynamical quantities (density, momentum
and distribution energy)?:

(1.6) p(t,z) ::/f(t,a:,v) dv, j(t,z) ::/vf(t,x,v) dv, ma(t,z) ::/]vlzf(t,a:,fu) dv

we need Vu to be small in L'(R,; L™). This latter property requires sufficient decay for .
Remark 1.3. As e.g. in the work [18] by J. Xu and S. Kawashima dedicated to partially
dissipative systems, it is enough to have ug in the homogeneous Besov space B / (R3).
The use of this space that corresponds to the critical embedding L'(R3) — B_g/ 2(}R?’)

motivated by the fact that it lends itself much better to parabolic estimates than L.

Instead of ug € B, 3/2(R3) one can just assume that uy € By % (R?) for some o € (1,3/2).
Then, the decay exponents for Ey and E7 are o and o +1, respectlvely In terms of Lebesgue
spaces, the condition o > 1 corresponds to ug € L for some p < 6/5.

As observed in e.g. [10], having decay estimates at hand for the velocity allows to get
some insight on the long time asymptotics of f, p and j. To state it precisely, we need
to introduce the Wasserstein distance Wi (u,v) between two measures on R3 x R3. In our
context, it can be defined by:

Wi (p,v) := sup / odp(x,v) — / pdv(z,v), ¢ € COHR? x R3), “va¢“Lm—1}

Hn all the paper, integration is performed on R?, unless otherwise specified.
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Corollary 1.4. Under the assumptions of Theorem 1.1, we have for some constant Cy
depending only on the norms of the data:

(L.7) 1 = pu) (Bl + Wi f(E), p(t) @ Sury) < Cot /™.
Furthermore, there exists a vector-field joo in L*(R3) such that
(1.8) lp(t) = po + div oo [lyjr—11 < Cot /4.

Remark 1.5. This result has to be compared with that of [7] where it is stated that
Wi(f(t), p(t) @ Sy—pg) < C1(t)"3/**% for all &> 0.

Having the decay rate 5/4 might indicate that the monokinetic distribution p(t) ® y—y ) is
a better approximation of f than just p(t) ® d,—¢. Having a decay information for E; and
not only for Fy is the key to this improvement.

Let us now come to the main aim of the paper: establishing a Fujita-Kato type result
for (VNS). Again, in order to get a global result, we need to assume that uy has enough
integrability. For technical reasons, we also need fy to have a better localization than in
Theorem 1.1, namely that for some ¢ > 5, we have?

(1.9) Ny(fo):== sup  (v)?fo(z,v) <oo with (v):=+/1+ |v]?.
(z,v)ER3 xR3
Theorem 1.6. Let ug be a divergence free vector-field in L'(R?) N HY2(R3), and assume

that fo satisfies (1.1) and that Ny(fo) < oo for some q > 5. Then, there exists a constant cg
depending only on |luol[z1, || foll 113 xrsy and Ny(fo) such that, if

||UOH§{1/2(R3) +/ |U|2f0 dvdzr < ¢,

then (VNS) admits a unique global solution satisfying the energy equality (1.3), the mass
conservation (1.4), u € L>(Ry; L N H3?)NCy(Ry; H'Y?), and u satisfies the log Lipschitz
property stated in (5.10). Furthermore, we have optimal time decay estimates for Ey and
Ey, namely (1.5), and the asymptotics (1.7) and (1.8) hold true.

Remark 1.7. If we assume that ug is small in the critical Besov space B217/12 (a ‘large’ subspace

of HY 2), then it suffices to make the hypothesis (1.1) on fo. In fact, the constructed solution
turns out to satisfy Vu € L'(R,;L>) so that one can bound p, j and my as in Theorem
1.1 without requiring a stronger localization of fy.

Let us give an overview of the main ideas leading to our results.

The first step in proving Theorem 1.1 is to establish global-in-time a priori estimates for
Ey, Ey and t[|0ul|3,. These estimates are conditional: they are valid on [0, (for smooth
enough solutions) provided that it is known that p is bounded and that Vu is in L' (0, T; L>).
At this stage, no additional integrability is required for ug.

The second step is dedicated to the proof of optimal time decay estimates for Fy and Fj.
In contrast with the recent work [7], we shall not use the Shonbeck Fourier splitting method
of [15] (as it looks to entail a small loss in the decay rate) but rather an older approach
that seems to originate from a work of J. Nash [14] on parabolic equations. Schematically,

21t should be noted that a similar condition was required in the previous works dedicated to (VNS) in the
whole space and plane (see [7] and [9]). Whether it may be avoided is an open question.
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the idea goes as follows. Assume that there exist nonnegative Lyapunov functional £ and
dissipation rate such that

d
(1.10) %ﬁ +H <0 ae onRj.

Suppose in addition that we have at hand the control of a ‘lower order’ functional N:
(1.11) N <Ny ae. onR,.

Finally assume that £ is an ‘intermediate’ functional between N and H in the sense that
there exist 6 € (0,1) and C' > 0 such that:

(1.12) L<CHINTY,
Then, inserting this inequality in (1.10) gives

%ﬁ +oLM? <0 with ¢ :=C VNP,

and thus, after time integration,

6

In the present situation, £ will be either Ey or Fq, and H will be the corresponding dissipa-

tion rate, that is Dy in the first case, and the functional D; defined in (2.5), in the second

case. Finally, for N we use ||ul| p5-3/2 (rather than the L! norm). For some reason however,
2,00

(1.13) L(t) < £(0) <1 410 co,c;e@t>_ﬁ.

we do not manage to get the optimal rates first time. We first prove decay t=3/2 for F,
which will enable us to bound the Brinkman force in L*(R; x R3 x R3). Then, in a second
step, we obtain the optimal rates for both Ey and FEj.

Let us also underline that establishing (1.12) might be not so straightforward since FEj,
Dy, F1 and Dp contain two terms that are hardly comparable. Fortunately, being in the
small solutions regime will spare us considering different cases, depending on whether one
or the other term is dominant.

In the third step, we have to get rid of the a priori assumptions on the solution we made
hitherto. Ensuring the smallness of Vu in L'(R; L) is the key. It will be obtained by
combining the time decay results of the second step with the energy estimates of the first
step and suitable Gagliardo-Nirenberg or Sobolev inequalities.

The next step is uniqueness. To this end, we follow the method of [9] that relies on the
control of suitably weighted L? norms for the difference of velocities and of the characteristics
associated to the transport equation for the distribution function (see the definition in (A.1)).
The situation here is simpler since we have Vu in L'(R,; L) and it is thus possible to
conclude by means of the classical Gronwall lemma. Nevertheless, we give some details since
this proof will be a model one to investigate the more complicated situation of uniqueness for
Fujita-Kato type solutions, and will be also useful in the next step, dedicated to constructing
global solutions.

The last step is dedicated to the proof of existence of a global solution. To do so, we
use a Friedrichs regularization of the velocity equation and of the velocity field in the first
equation of (VNS) (in order to keep the symmetric structure of the overall system). These
‘regularized’ solutions turn out to satisfy the same estimates as those of (VNS). Furthermore,
by modifying suitably the proof of uniqueness, one can show the (strong) convergence to
solutions of (VNS) in the energy space.
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To get Theorem 1.6, the first step is to establish a short time existence result for ug in
the Sobolev space HY2. As in [7], by looking at the velocity equation as a Navier-Stokes
equation with a source term (namely the Brinkman force), we succeed in getting a solution
on, say, the time interval [0, 1] provided the data are small enough. This solution is shown to
have a log Lipschitz velocity, which enables us to adapt the method of [9] (based on Osgood
lemma) to the 3D case. Next, since the constructed solution is H' for almost every positive
time and as the negative Besov regularity is under control for small time, even if u is only a
H'/2 type solution, one can combine this result with the previous one to complete the proof
of Theorem 1.6.

We end this section pointing out some interesting open questions related to our results.

e For (NS), assuming only that g is small in H'/2 allows to get global-in-time result
(see [8] or the adaptation to the R? setting by J.-Y. Chemin in [6]). Can we do
without any additional integrability integrability condition on ug in Theorems 1.1
and 1.6 7

e The localization requirement for fy is rather strong and not natural inasmuch as it
does not come into play (at least not directly) in the control of the energy functionals
FEp and Ej. Is it enough to make the same assumptions as in Theorem 1.1 ?

e Can we compare the solutions of (VNS) to those of the following pressureless Euler-
Navier-Stokes system:

Op + div (pw) = 0,
O (pw) + div (pw © w) + p(w —u) =0,
Ou+u-Vu—Au+ VP = p(w — u),

divu = 0.

(ENS)

Note that here, in the large time asymptotics, we rather proved that v behaves as
the solution of the incompressible Navier-Stokes equations with no source term, and
that the density p tends to be transported by its flow.

The rest of the paper unfolds as follows. The next section is devoted to the proof of
(conditional) energy estimates for smooth enough solutions of (VNS). Then, in Section 3,
we establish the optimal decay estimates for Fy and FEj, and deduce the key Lipschitz
control of the velocity field. Section 4 is devoted to completing the proof of Theorem 1.1
while Section 5 deals with the proof of Theorem 1.6 and Remark 1.7. Some technical results
concerning the properties of the flow associated to the transport equation of (VNS) are
postponed in Appendix.

Notation: For any normed space X, index ¢ € [1,00] and time 7' € [0,00], we shall
denote ||z (x) = |1z() || x| Lao,ry and omit T if it is co. In the case where z has several
components in X, we keep the same notation for the norm. It will be sometimes convenient
to use the short notation u; (resp. f;) to designate the time derivative of u (resp. f).

Finally, the notation C' stands for harmless positive real numbers, and we shall often
write A < B instead of A < C'B. To emphasize the dependency with respect to parameters
ai,--- ,an, we adopt the notation Cy, ... 4,



2. ENERGY ESTIMATES

Throughout this section, we assume that we are given a smooth solution (f,u, P) on the
time interval [0, T'], with sufficient decay. Our goal is to derive a priori estimates for Ey, E;
and t[|u||3, that are ‘closable’ for all time in the small data case.

As a first, let us recall that (0.1) can be obtained by taking the L?(R3; R3) scalar product
of the velocity equation of (VNS) with u, integrating the equation of f on R? x R3 with
respect to the measure |v|? dz dv and performing suitable integration by parts (see e.g. [5]).

Next, in order to bound the energy functional E; defined in (0.2), the starting point is to
take the L?(R?;R3) scalar product of the velocity equation of (VNS) with u;. This gives

2dtHVuHL2 + JJuell3 o :—/(u-Vu)-utda:+//ut-((v—u)f)dvdx.

The convection term may be handled as follows for all £ > 0:

(2.1)

- / (u- V) - wr da < [ull o[ Vall s el
3/2 1/2
< cuwu 2l 362 | 2
C
2 6
< Jluelizs + S19%ul3s + S vullss.

To bound the last term of (2.1), we use the decomposition

//ut-((v—u)f)dvdx——ia//\v—u\ fdvdx + — / |v — ul* fy dv dx
:—aa//\v—u\ fdvdx——//]v—u]zfu Vafdvdx

—/ lv — uldiv, (f(v —u)) dvdz

=——— v — ul|? fdv dx + flo—u)- (v-Vu)dvdx
2dt
—/ flv—ul? dv dz.

Hence we have

(2.2) //ut'((v—u)f)dvdx——ia//|v—u| fdvdx—l—//f v—u)-(u-Vu)dvdr
+//f(v—u)-((v—u)-Vu)dvdx—//f|v—u|2dvdx.

The first and last terms are parts of E; and of D; (defined in (0.2) and (2.5) below),
respectively. For the third term, we have

/ fo—=u)-((v—u)-Vu)dvdx < ||Vul|/p~F.

Finally, observe that by Cauchy-Schwarz inequality with respect to the v variable, we have

(2.3) H/f(v—u) de; < llpllie //f|v—u|2dxdv.
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Hence

//f(v ) (u V) dvde < | /f(v—u) o] Jlullzs [Vl
1/ 12 3/2 1/2
<2 ([[ stu= P ave) " IvalfZIvul;

€ 1 C
<21Vl [ - oPdods+ S ol 1Tl

Using the definition of E; in (0.2), we conclude that for all £ > 0,

d
(24) GE+ e+ [[ flu—oP dodo < VPl
+ C||Vu| g~ By + Ce™ max(1, HpH%w)HVuH%z

To close the estimate, one has to bound ||V?ul|z2. This may be done by using the elliptic
regularity provided by the following Stokes system:

—Au+VP:—ut—u'Vu—F/f(v—u)dv, divu = 0.

We have ,
V%, VP25 < 3|22 + 3w - Va3 + 3H/f(v — ) d””m'

So, handling the convection term as above and using (2.3), we discover that
V20, VPl < 3l + CIVallfa|Vull + 3lolle [[ flo— uf? dodo,
which, leveraging Young inequality, leads to
V20, 9P| < 6l + CIVule + ol [[ flo—uf dodo.

Let R := max(1, ||p||r~) and

1 1 1
(2.5) Dy := §\|ut||%2 + muv%, VP|3; + 5/ flu —v|* dx dv.
Using the above inequality and reverting to (2.4) with ¢ = R~!, we end up with
d
(2.6) B+ D1 < C|[Vul =By + CR?||Vul)f..

In order to control E; by means of the above inequality, we need both p to be bounded and
Vu to be in L'(0,T; L>°). According to (A.5) and provided fy belongs to L'(R3; L>(R3)),
the first property stems from the second one (from (A.3), more exactly). Owing to Sobolev
embedding, achieving this key Lipschitz control requires our controlling the LP norm of V2u
for some p > 3, or in the Lorentz space L>'. Toward this, we shall use elliptic estimates for
the following Stokes system:

(2.7) —Au+VP=—-u—u-Vu— [ f(v—u)dy, divu = 0.
R3

Since our approach heavily relies on energy arguments, it is tempting to look for a control of
Vug in L2, owing to the embedding H'(R3) < LS(R?), which, following the approach of [12]
suggest us to consider the higher order energy functional Fy := HutH%Q However, since we
only have 1y in H', one cannot expect to get a uniform control of E5(t). Even for the heat
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equation, this will require H? regularity. For scaling reasons, it is natural to compensate the
missing space derivative by the weight /¢ that is, to look for uniform estimates of ¢FEs(t).

To proceed, let us differentiate the velocity equation with respect to time:

utt—i-u-Vut—FVPt—Aut—i-put—i-ut'Vu:—/(u—v)ftdv

(2.8) :/(u—v)(v-fo)dv—k/(v—u)fdv.
Taking the L?(R3;R3) scalar product with tu; yields
1d

1
S SIVEul s+ IVEVulds + Vot il — Sl

= —/(tut) - (u - Vu) dz —I—//(v Vi f)(u—v) - (tuy) dv dz + //(tut) (v —u)fdvdz.
In light of (2.2), we have

//(tut)-(v—u)fdvda:: —%%//ﬂv—u|2fdvdx—|—//tf(v—u)-(u-Vu)dvdx

—i—//tf(v—u) . ((v—u)-Vu)dvda:—%//f\v—u!zdvdx.
Therefore, setting

By o= Jue|% + / / flo—uPdvde and Dy = |Vue|Ze + |yBuele,

we discover that

1d 1 1
(2.9) =—(tE2) +tDy + 3 //f|v —ul?dvdr = §||ut\|%2 - /(tut) (ug - Vu) dzx

2dt
+ / / (v Vaf)u — ) - (tur) dode
+//tf(v—u)'(u-Vu)dvda:+//tf(v—u)-((v—u)-Vu)dvdx.

For the second term of the right-hand side, combining Holder, Sobolev, Gagliardo-Nirenberg
(to bound the L3 norm) and, eventually, Young inequalities gives

—/(tUt) (ug - V) de < [[Veue o[ VEue| 2|Vl s
< JIVEVuls + VTl Vel g2 V2wl
To handle the third term, we integrate by parts and use that v = u + (v — u), getting :
//(U-fo)(u—fu) (tug)dvde =1 + I + I3 := //t(v—u)v'Vutfdvda:
—//tut-(u'Vu)fdvd:E+//tut-((u—v)-Vu)fdvdm.

Combining Cauchy-Schwarz and Young inequalities, we easily get for all ¢ > 0,

€ 1
I, < ZH\/tmg Vut||%2 + B //tf|v — ul? dv dz.
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Next, we have
1
I < [l 2 /Pt uell 2l Vul| o | vul s

1
< IVt ulLz + Ctllpl o= Vull 2 [ V*ul 2

1 1
< SIVPTule + 512l + Cllpl [ Ful ViVl

and, using (2.3) and Gagliardo-Nirenberg inequality to bound the L3 norm,
Vi [y

1
< VBVl + Clolooe [Vul o 9ulle [ el uf dvda.

Is < |Vtue o[ Vull s

L2

Next, we write that

1o 1/2
[t =)t vy dodz < ol2 ( J[ 10— u dx) IVEullgo [Vl 15

1/2
<C|p| 2 ( [[ero=uas dx) IVE Va2 [Vl 29 2

1
<5 [[tfl0 = ul dodo + Clollo [Vull o |9 ul 2 VE V.

Finally, it is obvious that
//tf(v —u)- (v —wu)-Vu)dvdr < ||Vu| e //tf\u—v[2dvda;.

Therefore, choosing € = HmzHZio, reverting to (2.9) and using the definition of D; and E;
for i =0,1,2, we end up with

d
(2.10) E(t&) +tDo +/ flv—ul* dvdx < 24RDy + 2(1 + ||mal| g )tDy

+C|lpl|3Do(tE1)? + C|lp|| Lo v/RDo Dy tEy + (2| V| + C|lpl oo v/RDo D1 )t Es.
Let us set

E(t) =22+ [[ma|le)(tE1 () + 2E0(t)) + 25RE (T) + tE(t)
and D(t) := 2(1 + ||ma||r=)Do(t) + 2tD1(t) + RD1(t) + tDy(t).
Using a suitable combination of the above inequality with (0.1), (2.6) and the fact that

(2.11)

d d
—(tE]) =t—F D
g tE) =t Br+ Do,
we discover that
d
(2.12) a5+D§0(U5+1>5+HpH%mDog?) with U = ||V 1.

Consequently, as long as CR%2E < 1/2, we just have
d 1
(2.13) T3P s C(U + Dy)é.

The next step is to apply Gronwall lemma so as to get a control of £ in terms of the initial
data. The only issue is to control ¢||us[|2, near t = 0 (note that for the heat equation, the
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fact that ug € H' does not guarantee that ||ug ;2 is bounded for t — 0). To do so, we
observe that, according to (2.12), the function

Et) = ¢=C Jo(U+Do) are(t)

is nonincreasing, hence has a limit in RT U {400} at 0. Next, under our above smallness
condition, Inequality (2.6) guarantees in particular that (say)

t
/ ”UtH%Z < 2E170.
0

Hence, for all ¢ € Ry, there exists to € (0,¢) such that tollu(fo)||7. < 2E10. Remembering

the definition of £ and of € , one can thus conclude that one can find arbitrarily small positive
to for which

E(to) < C(1+ [1(0)? foll L2 (r2:120(r2))) (o0 + E10)-

Now, reverting to (2.13) and using Gronwall lemma and (0.1), we end up with

t
£(t) + / Dd7s0<1+u<p,m2>um>(uuouip+ / forvrzdvda:)eCféHWHM%CEO,O.
0

Provided we have (A.3) the term ||(p, m2)||L~ may be bounded by means of (A.5) and of
(A.6). In the end, we get an absolute constant ¢y such that, whenever

(2.14) (1 + 1) foll 1 (r3:220 Ry (ol 32 +/ folv? dv dx) < o,

we have

t
(2.15) 5(t)+/ DdTéC(1+||<v>2fo||L;<Rs;Lgo(R3)>)<||uOH?{1 +/ folvlzdvdx>eCE°v°.
0

3. DECAY ESTIMATES AND CONTROL OF THE LIPSCHITZ NORM OF THE VELOCITY

The present section is devoted to proving optimal time decay for the energy functionals
Ep and E; associated to global solutions to (VNS) satisfying the smallness condition (A.3).
Although our ultimate goal is to establish (1.5), we will first prove a non-optimal decay
estimate for F; that is, nevertheless, sufficient to control the Brinkman force in L' (R, x R3).
This latter control will enable us to bound the norm of u in B2_ 242 uniformly in time, then
to get (1.5) with the optimal exponents. In the last part of the section, we shall combine

these estimates with a bootstrap argument so as to justify (A.3) in the case of small data.

Step 1: Propagation of negative reqularity I. We plan to use the approach presented in
Section 1 with the Lyapunov functional £ = E; and the dissipation rate H = D;. Having
in mind the following classical interpolation inequality:

2 110 1-0 o+1
(3.1) IVulle S IV:ullzallully s o> =1, 0= "=,
the ‘low order’ functional A/ with be a negative Besov norm of u that can be uniformly
bounded in time.

According to (1.13), choosing o = 3/2 would give the desired decay rate 5/2. However, at
this stage of the proof, we do not know whether the Brinkman force is sufficiently integrable
with respect to time, so that we are not able to bound [u(t)|| ;s/> uniformly in time.

2,00
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To get round the difficulty, we consider the norm of v in B2_ ;{2, which, in principle, should
give the decay t~%/2 for E;. This turns out to be enough to bound the Brinkman force in
L' (R x R3). Then, it will be possible to apply again the whole procedure with the optimal

exponents.

This being said, we rewrite the velocity equation of (VNS) as
(3.2) Ou — Au = —Pdiv (u - Vu) + 77< flv—u) dv)-
R3

Now, using the maximal regularity estimates stated in e.g. [4, (3.39)] and the fact that P is
a continuous projector on any homogeneous Besov space, we get? for all ¢ > 0,

Ol s+l < ol s + lla- Vel s +H/ F(o —w)do .
By % , By & L{(By ) R3 Zf(B;i)

2,00

To bound the last term, we use that, according to Cauchy-Schwarz inequality, we have

(3.3) /‘/f(u—v)dv dr < <//fdvda:>1/2<//f]v—u\2dvdx>1/2.

Hence, combining with the embedding

(3.4) L2(0, 4 LY(R®)) < L2(0,; B, 2 (RY)),

we get

(v—wu)dv < (v—wu)dv

R 22,2 "~ e LAY

1/2
< —vl? !
~ Hf‘|L°°(R+;L1(R§><R§))Hf|u vl ||L1(R+><R§><R2) .

Using the relations (1.3) and (1.4), we end up with

Furthermore, combining (3.4), Cauchy-Schwarz inequality and (1.3) yields

(v—wu)dv

< Cy\/MyEy .

~ ._3
R L3 (B, %)

\IU'VUIIEZ(BA S Nl Vaull gz <l e @) I Vull 22 < V2 Eo.
ACON

=)

In conclusion, we have for all ¢ > 0,

3.5
I U

2

< HUOHBf% +Cy/MyEy o+ CEpp =: Cp.
2,00

.1
?(BQQ,OO)

3The reader is referred to [4, Def. 2.67] for the definition of norms || - HZT(B; (r3y)- The only property
t oo

that we need to know here is that ”ZHE{(BS ®3)) < HZ”L{(BS (r3)) With equality if and only if 7 = oc.
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Step 2: A non optimal decay estimate for Ey. From (3.1) and (3.5), we infer that
—4 3 5/3
IVl 2 05" (19ull72) ™"
Therefore, if we set

U= ||Vullp=, R:=max(l,|p|r=), X1:=|Vulf. and Y;:= //f|u—v|2d:17dv,

and use (2.6), we end up with

d _

2B+ 2 X7 4 Y, < CUE, + CRAX? with ¢ == Cy*?/8.
So, assuming the following a priori bound:
(3.6) CRAX!® < ¢,
we get

d ~
(3.7) thl F XY 1Y <0 with Z(t) = e ChUDdz0) for Z e {B, X1, Y1}
Note that B _
Y1 < By < Eqp.

Since we restricted our attention to the case of small data (meaning in particular that F o

is small), one may assume with no loss of generahty that Y1 > cOY1 5/3

(3.7) gives after a suitable harmless change of ¢/:

, and thus Inequality

d ~ ~5/3

thl +GEYE <.
Hence, provided (A.3) holds, we have
(3.8) Ei(t) < CEyo(1 + agt) /2

with ag depending only on the initial data, on My, Eoo and [[uo|[ 5-1/2-
2,00

From this inequality, one can point out more integrability of D;. Indeed, assuming that
(3.9) CR3F, <1,
Inequality (2.6) implies that
d
(3.10) EEI + Dy < C(U + Do)El.
Let us set for some § € (0,3/2),

Bi(t) == (1 + agt)Pe=CloW+Ddrp (1) and Dy (t) := (1 + agt)Pe~CloW+Do)dr D (1),
Then (3.10) implies that
d - . ~
EEl + Dy < Bao(1 + agt)’ ' Ey.

Hence, using the bound (3.8) and observing that t — (1 + agt)? /2 is integrable on R, we
end up with?
26

7E .
572 — 50

/Ot(l +a07')51~)1( )dr <

t ~
4Note that, if taking 8 = 3/2, then one gets / (1+ao7)*/ 2Dy (1) dr < 2(1 4+ log (14-aot)) E1 0.
0
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Therefore, assuming (A.3) and (3.9) gives
t
(3.11) (3/2 — 5)/ (1+aor)’Dy(r)dr < CeCFoo By, B e(0,3/2).
0

Step 3. Propagation of negative reqularity II. Leveraging (3.11) with some 8 € (1,3/2)
ensures that the Brinkman force belongs to L'(Ry x R3). Indeed, remembering (3.3) and
using Cauchy-Schwarz inequality, one can write that

(3.12) /R /'/f(u—v)du dudt < \/Mo/[R V(L a0t)? Da(t) (1 + agt) /2t < Co .

This additional information will enable us to control ||u(t)]

-3 since maximal regularity
B
2,00

estimates for (3.2) also ensure that

ol g+l <ol g + -Vl H/ o —u)d
L Bzoo

2By %) L (B3 o0) By&% Ll(B )

To bound the last term, we combine (3.12) with the embeddings
L1(0,t x B?) < LM(0, 4 B 2 (R?)) — LL(By 2, (R?).
For the convection term, we use
Jw- VUHL}(Ll) < ||UHL§(L2)HVU||L§(L2)
and the interpolation inequality®

”UHLf(LZ)

2/3 1/3
Sl g 19l

t

Combining with the inequality

1/2 1/2
[ <\|u||/ 3 [l

3 .1
L3 (B, 3) Ly (B, 2)  Li(B?

we discover that

4/3 1/3 1/3
la- Vullgy oy S IVul oo el u ||/
Ly

200 BZoo)

Hence, owing to (0.1) and (3.12), we have

2/3” H2/3 A + CO-

[l 3 1 < Juoll . 3+C‘E
o) B, 2 L§°(B,, )le(B o)

L§®(By 2)N LY(B2

Consequently, using Young inequality and (0.1), one can conclude that there exists C}
depending only on Ep,o, on [[u|| . 3 such that if Ey ¢ is small enough and (A.3) is satisfied,
B

2,00
then we have
(3.13) [l < (Y, t > 0.

gl

- 1
Ly (By, %) L{(B3 )

5The reader should not be intimidated by the use of tilde norms. The regularity exponent behaves as
usual, and the Lebesgue exponent, according to Holder inequality, see [4, Section 2.6.3].
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Step 4. Optimal decay for the energy functionals. Since

3/5( 112/5
lulze < IValz ul*?, .
B. 2
2,00
Inequality (3.13) ensures that
5/3
2 —af3( Ly o
IVl = 5 (Ghulzs)
At this stage, one can mimic the proof of (3.8), (3.11) and eventually get for some positive
numbers ag and Ky depending only on suitable norms of the data that

(3.14) sup ((1+a0t)3/2E0(t))+(3/2—a)/ (14aot)*Do(t) dt < KoEop, € (1,3/2).
teR4 Ry

One can also improve the decay of E; and D; by a factor 1 : it suffices to use (3.1) with

o = 3/2 which, owing to (3.13), gives

—4/5 7/5
V222 = Cy P (IIVu22) "

~

Hence, we have for a new constant ¢y depending only on Hu0||373/2, Eyp and E p,
2,00

d 7/5 3 v3

EEl +2c0 X, + Y1 < CUE, +CR’X3.

Defining El, )Afl and 371 as before, we discover that whenever C R3X f /5 < ¢y, we have

d ~ ~ ~
B+ 200X1"° + Y1 <0,

which leads for all g € (1,5/2) to

(3.15)  sup ((1+ aot)2E1(t)) + (5/2 — B) / (1 4+ agt)? Dy (t) dt < Ko(Eoo + E1p).

teR4 Ry

Step 5: The Lipschitz bound. The Lipschitz bound will follow from the embedding:

(3.16) I2llzee S IVZ 15,
where the Lorentz space L3! is defined by real interpolation as follows:
(317) L3’1 = [L2, Loo]l/g’l.

Now, taking advantage of the regularity properties of the Stokes system (2.7) that are also
valid in L*! (just argue by interpolation from Lebesgue spaces), we can write that

IV2ulsa S Junllas + - Fulzaa + | [ 0= w)dy

31
Therefore we have

(3.18) / (|Vul g dt < / (HutHLSJ + ||lu- Vul| g1 + H/f(v —u) de >dt.
i ; 3.1

On the one hand, since we also have L>! = [L2, L6]1/271, one can write owing to H! < L6

that
(3.19) el zon S (el 35 1V |1

On the other hand, using Holder inequality and (3.16), one can write that
lu- Vulgsn < ullp=|Vul 1 S (IVulFon S 1Vull 2]Vl 2.
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Finally, we have by (3.17) and (2.3) that

H/f(v—u) dv‘ Lo < H/f(v—u)dei/jH/f(U—u) dUHIL/:

1/3
1/3 . 1
< ol ( / / flo — ul? dv dw) (e + lpllooe lullz)

Hence, since
1/2 1/2
lullze S | Vul[ 22V 2u) 2,

we obtain

/3
[ -], <1l ( [ s wavas) QI LT

Therefore, reverting to (3.18) and remembering the definition of Dy, Dy and D, we discover
that we have for some constant C'r depending only on ||p||r~ and [|j| re,

/ V|| oo dt < CR/ (Dy*Dy/* + DY D) + D)* + DY DY/ %)t
0 0

In order to show that the right-hand side is finite, we take « (resp. ) close enough to 3/2
n (3.14) (resp. 5/2 in (3.15)) and observe that the above inequality may be rewritten

/0 HVuHLoodtgcR/O (t—1/4(1+a0t)—5/4((1+a0t)ﬁD1)1/4(tD2)1/4+D3/2Di/2

+ (14agt) /3((1+agt)? D)3 + (1+agt) ™12 ((14agt)* Do)/ 2((1+agt)? Dy )*/12) dt.

Using Holder inequality, Inequality (2.15) and the decay estimates (3.14) and (3.15), one
can conclude that the right-hand side may be bounded in terms of the initial data whenever
B> 2 and a4 53 > 2, which is indeed possible® for a and 3 close enough to 3/2 and 5/2,
respectively. Hence

/ IVull~ < Co
0

with Cp depending only on the norms of the initial data and tending to 0 when Ey o + E1
tends to 0. Let us underline that we do not need [uol| ;-s/2 to be small.
2,00

4. PROVING THEOREM 1.1

This section is devoted to the proof of our first main result. We shall first present a
stability result that will entail the uniqueness in Theorem 1.1, and will be also used in the
second part dedicated to the existence. The last part is devoted to the study of the large
time behavior for the distribution function.

6In accordance with Remark 1.3, if assuming that uo € B;g07 the same approach would give o = ¢ and
B = o + 1. This gives the restriction o > 1.



17

4.1. A stability result. Since the result we have in mind will be also useful to prove the
strong convergence of the solutions to some approximate (VNS) system (see the next part),
we shall here consider the following slightly more general system

O f +v-Vuf+div, (f(w—v)) =0,
(4.1) atu—AzH—w'Vu+/f(w—v)dv+VP:S,
dive = 0.

Both the transport field w and the source term S are given sufficiently smooth time-
dependent vector-fields.

Our goal is to prove a stability estimate for (4.1), that implies a uniqueness result for
(VNS) in the functional framework of Theorem 1.1. To do this, we shall adapt the approach
of [9] . Let us underline that the proof here is simpler since the characteristics associated to
the first equation of (4.1) are Lipschitz.

So, let us consider two solutions u; and ug of (4.1) associated with vector-fields w; and wy,
source terms S and S, and initial velocities (ug 1 and ug2). For simplicity, we shall assume
that We shall allow for possibly different but will keep the initial distribution function fy is
the same for the two solutions.

Let us set Of := fo — f1, ou := us — u1, ow := wy — wy and &9 := Sy — 5. We denote by
pi and mg; the density (resp. energy) associated with f; through (1.6). We also introduce
the characteristics Z; = (X1,V7) and Zy = (X2, V2) associated with wy and ws respectively
(instead of u), through System (A.1), and use the notation Y;(t,z,v) := Y;(t;0,z,v) for
Y € {V, X, Z}. Finally, we set:

X =Xo—Xq, WV =V,-V, and & :=75— 7.
The system satisfied by du reads:

8t6u+w1'V(?LL—A&L+p2&U:P<5S—&U'VuQ+/5f(v—w1)dv>,
divdu = 0.

(4.2)

Taking the L?(R3;R3) scalar product with du immediately gives

1d

(4.3) 24

6ul|Z> + [V ull72 + |l/p2 dul72
—/(&U'VUQ)'&Ld$+/ 5f(v—w1)'5udvdw+/5u-55dx.

For the first term of the right-hand side, combining Hoélder, Sobolev and Young inequalities
yields

1
(4.4) —/(&u +Vug) - dudz < 5 |[Vul[fz + Cl[Vuz|Fs w72
To handle the second term (let us call it 6F'), using Formula (A.2) for f; and f, gives

(4.5) 5F—e3t/ (FoZ5 M (8)) — FolZ7 M) (v — wn) - Gudv do.

Performing the changes of variables (¢/,v') = Zy '(t,z,v) and (2/,v") = Z{'(t,z,v), re-
spectively and using the properties of the flow that have been recalled in Appendix, we
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obtain

6F = //(Vg(t) —wi(t, Xa(t))) - du(t, Xa(t)) fodv' da’
- //(Vl(t) —wi(t, X1(t))) - du(t, X1(t)) fodv' da'.
We further decompose oF into A; + Ay + As + Ay with
Ay(t) = // Fola,0)V (2, 0) - Gult, Xo(t,z,v)) dv da
As(t) := // Jo(@,v) (wi(t, X1(t, 2,0)) —wi(t, Xa(t,2,v))) - du(t, X1 (¢, x,v)) dv dx
As(t) := // fo(z, v)wi (¢, Xo(t, 2, v)) (du(t, X1 (t,z,v)) — du(t, Xa(t, z,v))) dv dz
Ay(t) ::/ folz, 0)Vi(t,z,v) - (&ult, Xo(t, z,v)) — du(t, X1(t,z,v))) dv dx.
For bounding A;, we use Young inequality:
A< %H\/%av\\; + % /fo(x,v)y@(t,xg(t,x,vw da v,
From (A.2), we deduce that
/J”o(x,v)]@(t,Xg(t,x,v))IZda:dv :/ folt, 2, 0)|dult, @) dv do = || /F2du(t)]| 2.

Hence

1 1
(4.6) A < §H\/%5VH%2 + §Hx/E5u(t)lliz-

Next, as Vuy is bounded, using Cauchy-Schwarz inequality and a change of variable gives

Ay < |[Vaon | e / / fole, )| 8X (£, 2, 0)|6u(t, Xy (¢, 2, v)) | dod
1/2
< IVl VT s [ foCowlbute s 0,0 0)? v

1/2
< [V [Ty 12 ( / f1<t,x,v>|6u<t,:c>|2dvd:c) .
Hence we have

(4.7) Ay < [[Vwrl|zee |V Fo0X | 2 | v/p1 dull .

In order to bound Az and A4, we need to resort to the following inequality (see [17]) that
involves Hardy’s maximal function:

(4.8) 2(y) = 2(z)| < Clo —y|(M(V2)(y) + M(Vz)(x))-
This enables us to write that
(49) A3 5 /f0($7 U)|w1 (tv X2(t7 €L, U))| (M(V&L)(t7 Xl (t7 €L, U))
+ M(Véu)(t, Xo(t,z,v))) X (t, z,v) dedv.
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Now, from the usual change of variable, (A.2) and the continuity of the maximal function
on L?, we gather that for j = 1,2,

J [ 0aea006)? fodvs = [ 0a(90)° ( I dv) 4z S [1pjl o |V

Hence, reverting to (4.9) gives

(4.10) A < 1—0HV5MHL2 + Cllwt|[Foo (o1, p2) | 2w 1V F0X |72

Term Ay is the most involved. To handle it, we observe that A4 < Ay 1+ Ay + Ay 3 where
Avs = [ [ folar o) (,,0)|8X (0, ,0) (V) 1, Xt ) ded
and, for j = 1,2,

A47j:/ Jo(z,v)|0X (¢, z,v)||V;(t,z,v)| M (Vu)(t, X, (t,z,v)) dvde.

By Cauchy-Schwarz inequality, change of variable, formula (A.2) and the continuity in L?
of the maximal function, we have for j = 1,2,

1/2
Ayj < IV fodX || 2 </ FolVi2(M(Véu)(X;))? dvdaz)

< ||\/%5X||L2 I 12| M (V)| 2
(4.11) < 1—OHV5LL||L2 + Cllma < llv/ fo 0X |72
Similarly,
1
(4.12) Asz < 75 IVaullze + Clip2lle= |V [ I/ fo 6X |72

Putting together Inequalities (4.4), (4.6), (4.7), (4.10), (4.11) and (4.12) yields

d
(1.13) Sl + V8l + | VFzoule <2 [ 85 dude + |V F V|
+ C (Vs 2alldw )2 + o2 1V wi e |/ Fo 6X | 2l 2

+ (IGr, p2)llze wnlfFoe + [[(ma,, mag)llzee + llp2llee |V I[70) 1V fo 5X|!2Lz)'

We have to keep in mind that (A.8) implies that

t

(4.14) WV (t,z,v) = / es_t(wg(s,Xg(s,x,v)) - wl(S,Xl(s,x,v))) ds,
0

and thus

(4.15) IVl z2(0,4200) < lwillz20,65000) + w2l 220,410y

To complete the proof, we have to look at the time evolution of ||v/fo 0Z(t)|| 123 xrs). Using
(A.1), we see that

5Xt =0/ and 5Vt = 'I,UQ(XQ) — wl(Xl) — V.
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Hence

3 IVR It VT 2 = [ [ 5080 dude + [ [ fo(walc) = wn (1) -V o

< SV XIBs + 5l T VI3 + Bi + Bo
with
By = //fo(wl(X2) —w(X1)) -V dvde and Bp:= //fo(w2(X2) — w1 (X)) -0V dvdz.
It is obvious that

(4.16) B < HleHLoo/ Fol6X |0V | do da,

Bz [[ Sl g [[ oo olaute Xa(e)? deds

1 1
(4.17) < 5/ f0|6V|2+§/ Folt, 2, 0) 0w (1) dvda.
Hence, we end up with
d
(4.18) E\I\/ﬁﬂ\l%z < (1+ [[Vwrllz=)[V/ fo 6Z|[72 + [1V/p2 w72

Putting this inequality together with (4.15) and (4.13) yields
d

(4.19) - (lléu7. + IV fo 6Z|72) + [V éul| 72 + [lv/P2 dull 7 < 2/@5* ~dudz + ||y/p2 dwl|7
+ C<||VU2||isH5ulliz + (L + ol 2D Vwi e + 1) (ldulla + [V Fo 52125)

+ (o1, p2)llzoe lwn oo + [[(ma,1, ma2) e + (o2l oo [ (w1, w2) | £2(0,62500) 11V fo 5XH%2>'

By Gronwall lemma the above inequality readily implies the uniqueness part of Theorem
1.1 (take S; = So = 0, wy = u; and wy = uy). Indeed, we then have Vuy in L} (R, ;L>),

loc

Vug in L?(Ry; L), u1, ug belong to L2 (Ry; L) and p1, p2, ma 1, ma 2 are in LS (Ry; L™).

loc loc

4.2. The proof of existence. We consider the following Friedrichs approximation of the
Vlasov-Navier-Stokes system for all n € N:

Orf +v -V f +divy, (f(Jnu—v)) =0,
(v—u)dv),

where the spectral orthogonal projector .J,, of L?(R3;R3) is defined by .J,, = Plpon (D).
Note that the range of .J, is the space

L} = {z € L*(R3R?), divz =0 and SuppZz C B(0,n)}

(VNS,)
Ou+ Jp(u- Vyu) — Agu = Jn<
RS

Let us admit temporarily that System (VN S,,) supplemented with initial data ( fo, J,ug) has
a unique solution (f™,u") on some time interval [0,7] such that f™ satisfies the properties
stated in Theorem 1.1 and u™ belongs to the space

ER=c([0,T); L2).
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Owing to the spectral localization, the vector-field u™ belongs to all Sobolev spaces and since
Jou™ = u™ and J, is a L? orthogonal projector, all the energy estimates of Sections 2 are
valid for (f™,u™). In fact, from (2.15) and a bootstrap argument, we see that provided we
have (A.3) on [0,7] and the smallness condition (1.2) is satisfied, then

(4.20) E™(t) + / "D
0

< 000 (14 10 fllgwsazsoy) (Ml + [ ol o) )

where the functionals D™ and £" corresponding to (f",u") are defined as in (2.11).

—0

As J, is also continuous on all Besov spaces Bz’oo, one can repeat the computations of
Section 3 and eventually get the key Lipschitz control (A.3). This allows to continue the
solution (f™,u™) for all positive time.

In short, we have constructed a sequence (f", u™),en of global approximate solutions, that
satisfy (4.20) and all the estimates of Sections 2 and 3, uniformly with respect to n (since
the right-hand side may be bounded independently of n). Furthermore, the distribution f”
satisfies the estimates (A.2) to (A.5), in particular

(4.21) 1/ (t)]| oo (5 <3y < €[ foll oo msxmsy  for all ¢ > 0.
From Inequalities (4.20) and (4.21), we deduce that, up to subsequence,
f"—=f in L*® and v" —u in L®Ry;HY)YNL] (Ry; H?) weak .

We claim that (u™),en converges strongly to u in the energy space. In fact, we are going to
show that it is a Cauchy sequence in C([0,7]; L?) N L?(0,T; H') for all T > 0. To prove it,
we observe that for all n € N, the velocity field u" satisfies the second equation of (VN.S)
with source term

S" i (P — J) (" - V) + (P — ) /f"(u" o).

Now, owing to the spectral cut-off, Inequality (2.3), Holder and Gagliardo-Nirenberg in-
equality, we have
)

1/2
< ot (19w IR+ 12 ([ e = o dvae) ).

Hence, introducing the functionals EJ, D§, E} and D} like in (0.1), (0.2) and (2.5), we
discover that for all ¢t > 0,

157151 < n—l(nu" Vs + H [ =i

t t
[ 15" ar < on2 ([ (14 DYER? + Mol sy D) )

Note also that
y

| Jnuo — Jmuollpz < n”luol jn for m >n > 0.

Therefore, taking advantage of Inequalities (4.19) and (4.20) and of Gronwall lemma, one can
conclude that for all n € N and m > n, we have for some increasing function Cy depending
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on the data, but independent of n,

™ — um) ()2 + / IV (™ — )2, dr < Colt) n~.

This completes the proof of our claim.

Since the convergence is strong in the energy space, it is now easy to conclude that
(f,u) satisfies (VNS) in the sense of distributions. Furthermore, since for all n € N, the
approximate solution (f™ u") satisfies the energy balance

t
§<||u"<t>||%2+ / f"(t)|v|2dvd:n>+ / <||Vu"||%2+ / f|v—u"|2dvd:n>dr

1
— 5 (1g1R= + fflo dvas).
the strong convergence guarantees that (f, ) satisfies (1.3).

Finally, that u € C(Ry; H') stems from the fact that u satisfies a heat equation with
initial data in H' and right-hand side in L? (R ; L?).

For completeness, let us explain how to solve (VN S,,) locally in time for fixed n € N and
small enough 7' > 0. Toward this, we consider the map ® defined on Ef. by ®(w) = u, where
u stands for the solution of the linear parabolic equation

(4.22) ou — Au = J, </ flo—w)dv—w- Vu), uli—o = Jnuo,

and f stands for the unique bounded solution of the (linear) transport equation :

(4.23) Of+v-Vof +divy (f(w—2)) =0,  fli=o = fo.

To implement the fixed point theorem, it will be convenient to endow E7. with the following

norm :
T 1/2
ol o= ( sup 1@z + [ IVaARaar)
t€[0,T] 0

Since w € EZ, we actually have w € C([0, T]; C1?) owing to the spectral localization, which
guarantees the existence and uniqueness of a solution to (4.23), that can be computed by
the method of characteristics (see (A.2)).

We claim that if 7" is small enough, then ® has a fixed point in E7.. Indeed, by a method
similar to that used for establishing (0.1), we readily get

2dt<”uHL2+/ f\v\2dvdx>+HVUHL2+//f\v u]zdvdx—/ fw—u)-(v—u)dvdx.

Combining Hélder, Sobolev and Young inequalities gives

1
//f(w—u).(v—u)dvdxg/ f|v—u|2dvd:17—|—ZHpHLoon—uH%g

where p denotes the mass associated to f through (1.6).

To continue the proof, we assume that

T
(4.24) / IVl dr < 6,
0
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where ¢ is chosen as in (A.3). This ensures that

1ol Lo 0,75200) < 2| foll L1 (r3; 100 (R3))-

Then, the above inequality combined with Gronwall’s lemma gives for all ¢ € [0, 71,
t
@25) s +2 | [9ultar

tfoll? ) zs. oo
< <HUO”%2 +//f0‘v‘2 dvdm+tHfO“Ll(R%;LOO(R?C))HwH%OO(OJZLZ))6 0 LL(R3;L°(RS)) .

Let us assume that w belongs to the closed ball B g2.(0, M) of E with M defined by

a2 =2(14 ol + [[ o avde )

The spectral localization of w guarantees that

1/2 1/2
Vel < CIVwl L2 Vulf2 < On?| Ve,

whence .
| 19wl < €n¥2T1 2 .
Since we want (4.24) to be sat(;sﬁed, we conclude that if 7" is such that
(4.26) Cn*PTV2M <6, T||foll71(ms,roo(re)) < log2 and || foll ot (g Loy TM? < 1,
then (4.25) ensures that u is in BE% (0, M), too.

In order to complete the proof of the existence of a fixed point in B B (0, M), it suffices to
show that ® is a contracting mapping on this ball. To do this, we consider two elements w;
and wy of BE%(O, M) with T satisfying (4.26). Then, both u; := ®(w;) and uy := ®(w2) are
in B fo (0, M). Let us denote by f; the distribution associated to w; through the transport
equation (4.23). In order to get the desired property of contraction, one can adapt the
method leading to the stability estimate (4.19), to the following system verified by (f;, u;)
with ¢ = 1,2:

Oru; — A + Jp <wi -V + /fi(wi — ) dv> =0,
Ofi+v-Vafi+divy (fi(w; —v)) = 0.
Note that the only difference compared to System (4.1) is the orthogonal projector J, in
the first equation. However, .J,, restricted to L2 is just the identity so that it has no effect
in the energy estimates, and (4.19) still holds. Now, remembering that (4.24) and (4.26) are

satisfied, and taking advantage of the control on p; and my; provided by (A.5) and (A.6),
we get

d
LU +oH < C([[Vuzl3s + |p2llLee )W + Cpy (1 + lwi 7o + |Vt || o) OU,
with Cf, depending only on || fol|11(r3;1o0(r3));
U (t) = o) 72 + IV FodZ (B2, V(1) := |Gw(t)|7o and SH(t) := [|Vou(t)]

Hence, using Gronwall lemma gives

t t ¢ ,
U (t) +/ 0H dr < C/ ¢Cro Sz (At llwr][F oo+ VwrllLoo) dr (Cy, + HVU2H%3)5W dr.
0 0
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Recall that w; satisfies (4.24). Furthermore, the spectral localization of w; and wugy ensures
that
lwillzee < Cn'2Jlwyr2 and [[VugFs < Cn?llug|l7..

Hence, for small enough ¢, we have
¢
H&i”%m(o,t;m) +/0 IVoul|7> dr < 2Ct(Cy, + ”3M)H5w”%oo(o,t;m)v

which implies that the map @ is contractive in B E;(O, M), if T is small enough.
The Banach fixed point theorem allows to conclude that ® admits a (unique) fixed point
in Bgr (0, M). O

4.3. Convergence of the distribution of particles. Here we prove Corollary 1.4. Having
the time decay of Fy at hand, establishing the convergence of the distribution function f is
a tiny modification of [10]. Indeed, by definition of p(t) and of the Wasserstein distance W)
between f(t) and p(t) ® d,) and of p(t), we have

Wi(F ()00 @ 8,0) = sup / / £t 2,0) ((z,0) — o, ult, 2))) do de.

Va,wéllLoo

Using the definition of the Lipschitz norm, then Cauchy-Schwarz inequality and (1.4), one
can write for all function ¢ with Lipschitz norm equal to 1,

//f(t,x,v)((b(a:,fu) — ¢(z,u(t,z)))dx dv < // f(t,z,v)|v —u(t,z)| dv dx

< ( [otaz [[ s =P a da:) -
< /My Eq(t).

Keeping (1.5) in mind completes the proof of the decay for the Wasserstein distance.
We also have (1.7) since, by definition of p and of 7,

130 — (Ol < [[ 10— uv]dv s
< VM Eq(1).
Finally, integrating the first equation of (VNS) with respect to the v variable gives
Op +divy =0,
and thus

(4.27) Mw:m_@«AZM>

Now, we have j = (j — pu) + pu with j — pu satisfying (1.7). Hence (j — pu) is in L' (R, ; L1).
Furthermore, by Holder and Sobolev inequality, and using (1.4), we have

(o) ()]l < Nlp(t) | possllut)lls < CM o) 2 IV ult)]| -

From Theorem 1.1, the density p is uniformly bounded on Ry, and ||Vu(t)| 2 decays ac-
cording to (1.5). Hence pu is also in L'(R,; L'). One can thus set

o
Joo ::/ jdr and pso = po — div jeo
0
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so that (4.27) implies that

poo = p(t) = —div </too(j — pu) d7'+/too,0ud7'>'

Taking advantage of (1.5) and of the above bounds for j — pu and pu, one readily gets (1.8).

5. THE FuJiITA-KATO THEOREM FOR THE VLASOV-NAVIER-STOKES SYSTEM

This section is devoted to the proof of Theorem 1.6, that is, to the extension of Theorem
1.1 to the case where ug has only critical Sobolev regularity H1/2.
The key step is to establish that if |[ugl| 712 and Ey are small enough, then u(t) remains

in HY2 until time ¢ = 1 and possesses the log Lipschitz regularity that is needed for getting
uniqueness within the class of Fujita-Kato solutions. All these properties will be achieved
by a bootstrap argument, assuming beforehand that |[u[|z1(g1,) is small enough. As a
result, we shall obtain some ¢y € (0,1) for which the smallness condition (1.2) is satisfied

by (f(to),u(to)). As proving the propagation of the regularity B, / is not an issue, all the
hypotheses of Theorem 1.1 are satisfied at time ¢y, which allows to construct a solution on
the time interval [to, c0) with the properties stated therein (in particular the optimal decay
rates for Ey and E7). The uniqueness result that will be proved below ensures that the two
solutions coincide on [tg, 1], which will yield the full statement of Theorem 1.6.

5.1. The incompressible Navier-Stokes equations with source term. In order to
perform the key step, we consider the following Navier-Stokes equation with source term:

o +u-Vu—Au+ VP =S5 e LY30,T; L*(R?)),
(5.1) divu =0,
u|t:0 =1up € H/?,

We denote by up, the solution to the linearized equation, namely uy := ulL + u% with

t
(5.2) uk(t) == e®ug and ul(t) ::/ eEIAPS(7) dr
0

where (') stands for the heat semi-group and P for the orthogonal projector on diver-
gence free vector-fields.

Proposition 5.1. The solution ulL to the free heat equation with initial data ug belongs to
C(Ry; HY2) N L2(0,T; By?) N LY (R H?)

where L*(Ry; H%?) stands for the superspace of L*(R.; H??) that has been defined in [6,
Def. 2.67], and we have

63 lubllpmgin + 0l pge, + 1eblizs e, gors) < Clluol e
The solution u% to the heat equation with source term S belongs to

C(0,T]: HY?) 1 L2(0,T; By}) n LY3(0, T H),
and satisfies

(5.4) HUZLHLOO(QT;HUZ) + ||u%||L2(O’T;Bg/12) + ||U2L||L4/3(R+;H2) < C||S||L4/3(0,T;L2)'
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Finally, there exists a universal constant ¢ such that if
(5.5) [woll grar2 + 1S Lass 0,02y < €
then (5.1) admits a unique solution u on [0,T] with
U= —ul —ud in C([0,T); ByY) N LX(0,T; ByY) N LY0, T3 By,
and we have
(5:6)  Wll oo o vy H UM oo iy N 1 o ) < O (IluollFps 2+ 1511775 0.1 12))

Proof. The first two parts of the proposition follow from standard properties of the heat
flow (see e.g. [4, Chap. 3]) as regards the fact that the linear solution belongs to the two
extremal spaces, and the observation by D. Arsénio in [2] and D. Arsenio and H. Houamed

[3] that the solution actually belongs to L2(0, T} Bg/f) instead of just L2(0,T; H3/?). To
prove the last part of the statement, we observe that u satisfies

ou— Au+ VP =—u-Vu, divi=0 and ul—g=0.

Hence, using again parabolic maximal regularity in Besov spaces (see [4, Chap. 3]) yields
for all ¢t € [0,T],

||u||L°°(0tBl/2 + ||u||L2 0tB3/2 + ||u||L1(0 t.B5/2 < CHU ' quLl(OtBl/z)

1/2 3/2 1/2

Now, taking advantage of the product law B X B — B and of Cauchy-Schwarz

inequality with respect to the time variable, we obtaln

[l 2y + [l 3/2) + [[ul

LY(0,:B57%)
< C(lug|?

Lo=(0,t; By L2(0,t;B5

3/2) + ||UL|| 3/2) + |||

L2(0,t;B3 L2(0,t;B3 L2(0t33/2))

Provided the smallness condition (5.5) is satisfied, it is easy to work out from this inequality

a fixed point scheme so as to construct a solution w of (5.1) with the desired properties. [

5.2. Controlling the solution on an interval of size 1. We aim at applying Proposition
51 with S = j — pu and T = 1. As a first, let us observe that owing to Cauchy-Schwarz
inequality, we have

T
15 = pula iy < lellsworassy [ [ [ plo—uP dvdat
0 Jr3/r3

Hence, taking advantage of Identity (1.3) and of Inequality (A.9), we discover that, provided
q > 3, we have for some constant C; depending only on ¢,

2 1/2
(5.7) 15 — pull 2 0,rxms) < Coe® (1 + ”quL/l OTLoo))qu/on/ :

Let us take 7' = 1. Then, remembering (5.3) and (5.5), using the embedding B2/2 — L™
and Holder inequality (to bound S suitably), one can find an absolute positive constant ¢
such that if

(5.8) ol 12 < ¢ and |7 — pullp2(0,1xrs) < ¢,

then we have in particular

(5.9) [ullLr(0,1;200) < Cllul] < Cec

L2(0,1;85/%)
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Hence, assuming with no loss of generality that C'c < 1 and using (5.7) with 7' = 1, we
gather that the second part of (5.8) is satisfied provided that

263/2Cqul/2Eé/2 <ec
Using a bootstrap argument we conclude that if
Juol| g2 < ¢ and  NyEg < ¢®/(4C2€?)

then (VNS) supplemented with initial data uy and fy admits a solution on the time interval
[0, 1] that satisfies the basic identity balance (1.3) and all the properties stated in Proposition
5.1 with T' = 1. Taking ¢ smaller if needed, one can ensure the Lipschitz smallness condition
(A.3) on [0,1] so that we have for all t € [0, 1],

1 ()L g Loo sy + M0 ()l L1 @iz @)y S Il follr@s;zoemay) + 101 foll L rs;Loe ma))-
Note that Proposition 5.1 combined with interpolation also guarantees that

el 0,1,y < Cc

and since [[ul|goo (01,22 is small (as Epp is small), there exists” some ¢y € (0,1) such that
lu(to)l| g1 < 2Cc. Consequently, taking ¢ smaller if needed, one can apply Theorem 1.1 with
initial data f(to) and u(tp). Combining with the uniqueness result that will be proved in the
next part, we conclude that it is possible to continue our solution beyond ¢ = ¢( into a global-
in-time H'! type solution, which satisfies the regularity and time decay properties stated in
Theorem 1.1. This completes the global existence part of Theorem 1.6, with optimal time
decay.

5.3. Uniqueness. Compared to Theorem 1.1, the difficulty is that the solution (f, u, P) of
Theorem 1.6 does not need to satisfy Vu € Lj, (Ry; L™) in the case where ug is in H 172 for

the simple reason that e'®ug does not satisfy this property. We claim however that for all
T >0 and n € (0,1/2), we have

T
(5.10) / ulles, dt - with @y :=r(1 - log 7)1,
0
where, for all continuous increasing function w : Ry — Ry with w(0) = 0, we have used the
notation
”f”C’ = sup |f(y) — f($)| .
v TH#y w(‘y - ‘TD

Following the proof of the 2D case that has been proposed in [9], we shall see that it ensures
uniqueness in the framework of Fujita-Kato’s solutions.

To prove (5.10), let us split u into u + u}; + u2L where ulL and u2L have been defined in
(5.2) with S = j — pu. The properties of (f,u) already ensure that S € L? (R.y;L?). Hence,
Proposition 5.1 gives us that ui and u are in El(O, T, H5/2) for all T' > 0, so that these two
functions are also in L'(0,T;Cg, ) for all n € (0,1/2) since LY(0,T; H%?) is embedded in
LY(0,T; Cg,) (see [4, p. 237)).

That S € L} (Ry; L?) does not ensure that 7 is in L], .(R4; Cg, ) (one can only guarantee
that u? € L? (Ry; H?)). However, since in addition p and j are bounded then, remembering

loc

that u € L?(Ry;L>®), we have S € L? (Ry;L*) and thus, by real interpolation, that

loc

7By using an energy method in the spirit of that of Section 2, it is actually possible to prove that
t/4|Vu(t)|| 2 < Ce for all t € [0,1].
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S € L2 (Ry; L) (where L3! stands for the Lorentz space we defined in (3.17)). Then,

loc

parabolic maximal regularity gives V?u? € L? (Ry;L>1) and thus Vu? € L? (R4; L) by

loc loc

embedding. This completes the proof of (5.10).

One can now tackle the proof of uniqueness. We assume that we are given two solutions
(f1,u1, P1) and (f2,ue, Py) fulfilling the properties listed in Theorem 1.6 and (5.10). We
assume in addition that p;, j; and mg; are in L*°(0,7"; L*°) for i = 1,2. According to (A.9),
(A.10) and (A.11), this is ensured if N; < oo for some ¢ > 5.

Then, in order to prove uniqueness, we start again from (4.3), bounding the first term of
the right-hand side according to (4.4) and still splitting JF' (defined in (4.5)) into A; + As +
A3z + Ay, Term A has to be treated differently as before as we do not have any control on
IVuq||zse. The second change is that when bounding dZ, one cannot use (4.16). Now, by
using Cauchy-Schwarz inequality and (A.2) with Z = Z;, we get

1/2
Ay < ||\/p10ul| 12 </ folz,v)|uy (t, X1(t,z,v)) — u1(t, Xo(t, z,v))|* dv da;)

Let wy : 7 — r(2 — logr)?>~27. Remembering (5.10), one can assert that there exists an
integrable function v on [0, 7] such that

/ (£ X1 (1)) — wn (£, Xa(8)2 fo dv da < a2(2) // (18X (O)]) fo dv da.

Observe that the function w, is concave and increasing on some nontrivial interval [0, 7]
and that we have |6X (t,z,v)|? < 7o pointwise for all ¢ € [0, T] and (z,v) € R? x R3 provided
T > 0 is small enough. Indeed, relation (A.7) implies that

¢
X (t,z,v) = / (eT_t — 1) (UQ(T, Xo(1,2,v)) —uy (7, X1 (T,x,v))) dr,
0
and thus
16X (t,2,v)| <Vt ([uallr2(0,00) + U2l 2(0,4:2))-

Therefore, assuming with no loss of generality that the total mass M, defined in (1.4) is
equal to 1, Jensen inequality allows us to get

Aa(t) < a(t)|ly/pr dull 2 (wy(1V/ fo 8X |72))

1/2

Similarly, we have

1/2
B(t) < W Fo oV ()2 ( [ e x00) = . X0 fo o dx)

< a@)V fodV (£)ll L2
Let Y := |[ul|2, + ||[v/fo 6Z|[%,. In the end we get the following inequality:

d

+ (14 VualI7s + (1, p2) | oo lua |70 + [1(m2,1, ma.2) | oo + Nl p2ll 20w [ (u, u2) || £2(0.4:200)) Y-

< (L+ [lp1llee) 2aw, (Y)

~

Note that p1, p2, ma 1, m2 2 are bounded, uy, us are in L? (0,75 L) and « is integrable. Since
the modulus of continuity w, satisfies Osgood’s condition, that is

ro
/ w;l(r) dr = 0o for some 1y > 0,
0
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one can conclude that Y = 0 on [0,7] (apply e.g. [4, Lem. 3.4]). This completes the proof
of the uniqueness part of Theorem 1.6.

For the sake of completeness, let us briefly explain how to construct a global solution
satisfying the properties of Theorem 1.6. One can for instance consider the regularized
system (V' N.S,,) used to build a solution in Theorem 1.1. Again, the spectral cut-off has not
effect on the estimates, which allows to bound the sequence of approximate solutions in the
desired space. In order to prove the strong convergence and justify the energy balance (1.3),
one can adapt the proof of uniqueness to the case of source terms, like we did for Theorem
1.1, but in the functional framework of Theorem 1.6. The details are left to the reader.

5.4. The case of an initial velocity in Bé/f Here we justify Remark 1.7: we explain
how to handle the case where the initial data (fo,ug) satisty (1.1) and

HUOHB;/f(RS) +/ |U|2f0 dvdr <c << 1.

tA

Compared to the case ug € H/2, the key difference lies in the fact that ui = e"2uyg satisfies

up € Cy(Rus By)? N L' (Ry; BYY),
which implies that Vu} € LY(R; L) with

o0
/ |Vul||L= < Ce.
0

Consequently, one can bound p and mg in L%°(0, 7 x R3) (and thus j) according to (A.5) and
(A.6) whenever (A.3) holds true. Now, these latter properties enable us to bound S := j—pu
in L2 (Ry;L°) and one can argue like in Subsection 5.2 to prove (A.3) on, say, the time
interval [0, 1].

The rest of the proof goes as before. Compared to Theorem 1.6, the gain is that we do
not need to assume any longer that N,(fy) < oo for some ¢ > 5.

APPENDIX A. THE CONTROL OF THE FLOW, AND APPLICATIONS

Most of the regularity estimates that were used in this paper required boundedness of
suitable Lebesgue norms of the density p (and, to a lesser extent, of the momentum j or of
the distribution energy ms).

In order to derive these bounds, one can take advantage of formulae for p, j and msy
in terms of the characteristics Z := (X, V) associated to the f equation. More precisely,
looking at (t,z,v) € Ry x R? x R? as parameters, we consider the following system of ODEs:

0s X (s;t,x,v) = V(s;t,x,v)
(A1) OV (s;t,x,v) = u(s; X(s;t,x,v)) — V(s;t,z,v)
X(t;t,x,v) =2 and V(tt,z,v) =wv.
In other words, Z = (X, V) is the flow of the time-dependent vector-field
F(t,x,v) = (v,u(t,z) —v), (t,x,v) € Ry x R x R,
The Cauchy-Lipschitz theorem ensures that for (A.1) to be solvable, it suffices that u €

L} (Ry; W), Furthermore, since Div, ,F = —3, we have

det Dy Z(s;t,x,v) = 3t=9)
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The solution of the first equation of (VNS) then reads:
(A-2) f(t,z,0) = ¥ fo(X(0:t,2,0), V (08, ,v)),
and thus

,O(t,$) = f(t,x,v) dv = e3t/ fO(X(O;t7$7’U)7 V(O;t,$,’0)) dv.
R3 R3

According to [10, Lemma 4.4], there exists an absolute constant ¢ such that if
T
(A.3) / |IVul e dt <6,
0

then for all ¢ € [0, 7] and = € R?, the map Iy, : v — V(0;t,2,v) is a bilipschitz homeomor-
phism on R? satisfying

(A.4) det D, Ty .(v) > €3 /2.
So, performing the change of variable w = I'; ;(v) in (A.2), we get
p(t,z) = e /RS Jo(X(0; t,a:,F;; (w)), w)det DwF;;(w) dw,
and thus, owing to (A.4),
(A.5) Ip(t, )| < 2[| foll L1 (r3;Loo (m3))-

Similarly, we have
ma(t,x) = ¥ / (02 fo (X (0,2, 0), V(0s£,,0)) do
R3
_ o / T a0) 2 fo(X(0: £, 2, Ty L (w)), w)det Dy Ty} (w) duw.
RS

In order to bound |T'; Hw)|?, we integrate the second line of (A.1) on [0, ], getting

¢
I‘t_;(w) — et <w+/ esu(s,X(s;t,x,FZ%(w)))ds),
0
whence .
Tt < el [ e futs) ds

Therefore, using again (A.4), it is easy to get

t 2
ma(t, ) < 4e~ 2ol foll sz + 4( /0 e u(s) = ds) TA——

Now, we have, according to Gagliardo-Nirenberg and Cauchy-Schwarz inequalities,

t 2 t t
(/ S Hu(s)| L= ds> < C’(/ 22 ds> / V|| 2 || V20l 2 ds.
0 0 0

Using Cauchy-Schwarz inequality for bounding the last integral and remembering Inequali-
ties (1.3) and (2.15), one can find Cjy depending only on the initial data such that

(A.6) my(t,x) < de™*|[[v]? foll 11 (3 Lo (ra)) + Co(1 — €72 foll 11 (ms; Lo (m3)) -

Note that the above computations actually allow to obtain a control of f and of |v|?f in
L (Ry; LY (RG; L= (RY)))-
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We now look at the situation where we do not assume any longer that (A.3) holds, but
where u satisfies the log Lipschitz property (5.10). Then, Osgood lemma (see e.g. [4,
Chap. 3]) still guarantees that System (A.1) has a unique solution. Furthermore, direct
manipulations reveal that

(A7) X(sit,z,0) =2+ (1 — %o + / (7% = D)u(r, X(73t,2,v)) dr,

(A.8) V(sit,x,v) = e v — /t e Pu(r, X(1;t,2,v)) dr.
This implies that for all ¢ € [0, T], W(sa have

lv| < e HV(0;t,z,v)| + /Ot e"Hlu(T)| Lo dr.
Hence, since f(t,x,v) = €3 fo(Z(0;t,x,v)), we have for all ¢ > 3,

pt,z) = /f(t,a:,v) dv = 3 /<v>qf0(Z(O;t,x,v)) (v)" 1 dv
sup (v)? fo( (O;t,m,v)))

veER3

<sup (05, z,0)) fo(Z(0;t, x,v))

UER3

( e u(r uLoodT)qsupf()(Z(o;t,x,v)))-

veR3
Denoting Ny = sup (4 )ers xrs (v)? fo(x, v), one can conclude that

(A.9) o)l < Cae (1 + ull 11 0,100y ) * No-
Similarly, we have, if ¢ > 3,

jt,z) = /vf(t,:n,v) dv = e?’t/v@)qfo(Z(O;t,x,v)) (v) 1 dv

< Cq+1€3t <Sllp <U>q+1f0(z(0; l,z, U))) ’

vER3
Hence,
. +1
(A.10) 1)z < Corre®™ (1+ s sze)) ™ Ny
The same argument leads to
+2
(A.11) [ma(®)|re < Corae™ (14 [lull progz)) ™ Noto:
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