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ABSTRACT. We introduce a new approach for estimating the invariant density of a multidimensional
diffusion when dealing with high-frequency observations blurred by independent noises. We consider
the intermediate regime, where observations occur at discrete time instances k∆n for k “ 0, . . . , n, un-
der the conditions ∆n Ñ 0 and n∆n Ñ 8. Our methodology involves the construction of a kernel
density estimator that uses a pre-averaging technique to proficiently remove noise from the data while
preserving the analytical characteristics of the underlying signal and its asymptotic properties. The rate
of convergence of our estimator depends on both the anisotropic regularity of the density and the in-
tensity of the noise. We establish conditions on the intensity of the noise that ensure the recovery of
convergence rates similar to those achievable without any noise. Furthermore, we prove a Bernstein
concentration inequality for our estimator, from which we derive an adaptive procedure for the kernel
bandwidth selection.

Mathematics Subject Classification (2010): 62G05, 62G07, 62G20, 60J60.
Keywords: Non-parametric estimation, high-frequency asymptotics, noisy observation, pre-averaging,
ergodic diffusion, anisotropic density estimation, concentration inequality.

CONTENTS

1. Introduction 2
1.1. Setting 2
1.2. Motivation 3
1.3. Organization of the paper 4
2. Statistical and Probabilistic framework 4
2.1. Notation 4
2.2. The statistical diffusion model 5
3. Estimation procedure 6
4. Upper bounds and hyper-parameter choice 9
4.1. General results 9
4.2. Analysis of the convergence rate 11
4.3. Comments 11
5. Bernstein inequality and adaptive choice of the hyperparameters 12
5.1. Bernstein inequality 12
5.2. Choice of the hyperparameters 13
6. Numerical Analysis 14
7. Probabilistic tools: the Markovian structure of the preaveraged process 16
Acknowledgments 17
References 17
Appendix A. Invertibility of A 19
Appendix B. Proof of Proposition 1 19
Appendix C. Proof of Proposition 2 27
Appendix D. Proof of Proposition 3 28
D.1. Structure and completion of the proof 28
D.2. Proof of Lemma 8 32

Date: April 19, 2024.
1

ar
X

iv
:2

40
4.

12
18

1v
1 

 [
m

at
h.

ST
] 

 1
8 

A
pr

 2
02

4



2 R. MAILLET; G. SZYMANSKI

D.3. Proof of Lemma 9 33
D.4. Proof of Lemma 10 34
D.5. Proof of Lemma 11 35
Appendix E. Proof of the results of Section 4.1 36
E.1. Preliminary results 36
E.2. Proof of Proposition 4 37
E.3. Proof of Proposition 5 38
E.4. Proof of Proposition 6 38
E.5. Proof of Proposition 7 39
Appendix F. Proof of the results of Section 5 39
F.1. Proof of Theorem 1 39
F.2. Proof of Proposition 8 41
Appendix G. Proof of the results of Section 7 44
G.1. Proof of Lemma 2 45
G.2. Proof of Lemma 3 47
G.3. Proof of Corollary 1 47
G.4. Proof of Lemma 4 47

1. INTRODUCTION

1.1. Setting. In this paper, we revisit the classical problem of estimating the distribution of a signal
blurred by additive noise. We focus on a d-dimensional deconvolution model

(1) Yi,n “ Xi,n ` τnξi,n, i “ 0, . . . , n,

where the variables pXi,nqi are stationary with common distribution µ and pξi,nqi,n is an i.i.d se-
quence independent of X . The sequence pτnq represents the noise intensity and is assumed known.
When the pXi,nqi are independent, the noise is Gaussian and the target density is α-Hölder regu-
lar, the best achievable pointwise quadratic rate of estimation is logpnq´α{2ταn , see [Fan91, CL13] for
more details. When τn is of order 1, the resulting convergence rate becomes logarithmic, and the
estimators cannot be used in practice. In this work, we show the situation improves when the pro-
cess pXi,nqi exhibits Markovian properties. Such structure can significantly enhance the efficiency
of denoising the observations.

Throughout this paper, we consider a d-dimensional stochastic process X , defined on an appro-
priate probability space pΩ,A,Pq, governed by the following dynamics

(2) dXt “ bpXtqdt` σpXtqdWt.

Here, W represents a d-dimensional Brownian motion, and the functions b : Rd Ñ Rd and σ : Rd Ñ

Rd b Rd are the transport and diffusion coefficients of X , respectively. We specifically consider the
case where σ is the identity matrix. Under mild conditions on b and σ, the process X is ergodic and
admits a unique stationary distribution, denoted by µb. Furthermore, µb is absolutely continuous
with respect to the Lebesgue measure on Rd and has a density also denoted by µb.

We aim at estimating µb from the pYiqi“1,...,n defined in Equation (1), with

(3) Xi,n “ Xi∆n
, i “ 0, . . . , n,

for some positive sequence p∆nqn. If ∆n is of order 1 or larger, the variables pXi,nq are exponentially
β-mixing and we would retrieve results similar to the i.i.d case. When ∆n Ñ 0 and n∆n Ñ 8, we
can use the Markovian and ergodic structure of (2) to build an estimator of µb with polynomial rate
even when τn “ 1.
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1.2. Motivation. Historically, diffusion models were first introduced as approximations of discrete
Markov chains. Over time, their relevance has significantly expanded across various domains of ap-
plied mathematics [Pap95, Ber93, Hul03, Bai57, Ric13]. Statistical inference for diffusion processes
has attracted extensive study due to the model’s significance in many applied fields. This research
first included both parametric and non-parametric estimation of the parameters b and σ. The esti-
mation of the invariant measure µb is also studied [NZ79, Del80, Bos12], pushed by its association
with various numerical methods, such as Markov Chain Monte Carlo [LP02, Pan08]. Note also that
the non-parametric estimation of µb and the estimation of the transport b are intertwined [Sch13].

Initiated by [Ros56, Par62], non-parametric density estimation has been extensively studied in the
context of i.i.d observations [Tsy09]. A natural estimator of the common density µ of i.i.d. observa-
tions pXi,nqi is given by

pµnpxq “
1

n

n´1
ÿ

k“0

Khpx´Xkq

where we write Khpyq “
ś

i h
´1
i Kpyih

´1
i q for any h “ ph1, . . . , hdq P p0,`8qd and y “ py1, . . . , ydq P

Rd, and where K : R Ñ R is a bounded kernel. Oracle inequalities show that this estimator can
achieve the convergence rate n´α{p2α`dq where α is the Hölder regularity of µ. This rate is opti-
mal, see e.g. [Tsy09] for details. The tuning parameter h needs to be chosen in an adaptive way
to achieve this rate, see [GL08, GL09, GL11]. The extension to ergodic processes is not trivial and
earlier statistical studies focus on two different asymptotic regimes: continuous observations of the
process pXtqtďT with T Ñ 8, or low frequency observations given by pXi∆qi with 0 ď i ď n.
Since X is exponentially β-mixing under mild assumptions on b, low frequency observations nat-
urally relate to the i.i.d. case and present similar convergence rate. On the other hand, continu-
ous observations are can be studied using fine probabilistic tools for ergodic continuous-time Mar-
kovian dynamics [BCG08, CG08, Lez01, Pau15] and precise estimates on the transition densities
[CW97, QRZ03, QZ04]. The seminal works of [DR06, DR07] first established convergence rates of
kernel estimators under continuous observations ofX over a time interval r0, T s. In these works, the
invariant density is still estimated through a kernel based estimator as in the i.i.d. case. [DR06, DR07]
also obtain the convergence rate

T´α{p2α`d´2q

when µb is α-Hölder and d ě 3. When considering an anisotropic framework, the convergence rate
depends on the effective average smoothness [Str18] and minimax rates are derived in [AG21].

Two significant limitations still need to be addressed in this setup: First, what happens if we ac-
cess discrete high-frequency observations of X , i.e. we observe pXi∆n

qi for 0 ď i ď n when ∆n Ñ 0

and n∆n Ñ 8. Secondly, can these methods be applied if these observations are polluted with a
noise.

The question of discrete observations naturally arise with the advent of high-frequency data col-
lection, and in particular in finance [ASJ14]. Hence, understanding the estimation rates under dif-
ferent asymptotic conditions becomes crucial. This includes specifying conditions on ∆n that deter-
mine when continuous or low-frequency observations are more analytically pertinent. While this
topic has only recently received substantial attention, pioneering works like [GHR04] and [CT16],
which explore random sampling times, stand out. However, this question has recently been ad-
dressed in full generalities in [AG23] where the breakeven point between the high frequency obser-
vations similar to continuous observations and low frequency observations similar to the i.i.d. case
is identified and studied. The continuous rate is known to be optimal [AG21] in all dimensions, but
the question of the optimality of the low frequency rate is still an open question, with the exception
of the one dimensional case, solved in [AG22].
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The second limitation in previous studies is to effectively incorporate noise into these analyses.
Noise is an often unavoidable element in practical applications, such as financial modeling, biolog-
ical experiments, and sensor data analysis due to measurement errors or external noise. Underesti-
mating noise can lead to biased and unreliable estimations. This question was extensively studied
in the context of noisy observations of i.i.d random variables. When noise is assumed to have an
additive structure, existing literature uses Fourier inversion and kernel-based methods to recover
the distribution of interest [Dev89, LT89, SC90]. Later works [CH88, Fan91, Fan93] establish mini-
max optimality of this procedure under the assumptions that the noise distribution is known and
has a non-vanishing Fourier transform. It is important to note that in this setup, the convergence
rates are slow. For instance, when the distribution of interest is α-Hölder regular and the noises
are independent standard Gaussian variables, the optimal rate of convergence for any estimator is
only logpnq´α{2. The rates of convergences in such framework has been studied under different set
of assumptions depending on both regularities of the noise and the density of interest in [CL13].
However, literature on noisy ergodic setups remains sparse, with a few notable contributions in-
cluding [Sch11, Sch12]. Unlike the i.i.d. case, the structure of (2) and (3) allows better extraction of
the information hidden by the noise, leading to improved estimation rates. Indeed, using the Hölder
regularity ofX , we can denoise high-frequency data while preserving the analytical properties of the
signal. We achieve this through a pre-averaging technique, as in [JLM`09]. This approach has been
widely studies and could be generalized to other noises, as demonstrated in [JPV10, HP13, JM15] for
high-frequency statistics and [Sch11, Sch12] within an ergodic framework. In this paper, we show
that when the noise is relatively small (see Section 4.1 for details) we can estimate the invariant den-
sity rates to the non-noisy case studied in [AG23]. When the noise τn is relatively large, we can still
estimate the invariant density with convergence rate given by

pτ2n∆nq
α

2`2α .

This rate is polynomial in ∆n even for τn constant, which is a great improvement compared to the
i.i.d. case. Note also that this rate does not depend on the dimension, see Section 4.1 for insights.

1.3. Organization of the paper. In Section 2, we present the statistical model, including the under-
lying assumptions and the probabilistic framework of our analysis. We provide clear definitions for
our observation scheme and outline the requirements for the noise source. In Section 3, we system-
atically construct the kernel estimator for the invariant density pµn,h,p. This estimator differs from
the standard kernel estimator due to the need to preprocess the data, which arises from the presence
of noise. To reduce the impact of noise, we use a preaveraging strategy. Specifically, for some integer
p ě 1, we divide our number of observations by p by averaging them over a range of size p. Section
4 presents the upper bounds for the quadratic risk Er|pµn,h,ppxq´sµbpxq|2s, providing insights into the
optimal hyperparameters selection. Although the obtained rates may not achieve minimax optimal-
ity, they align with the expected non-parametric estimation rates in similar contexts. Furthermore, it
enables us to precisely understand the noise intensity threshold above which averaging is required
to achieve a better convergence rate, given by ∆

1{α
n , whenever sµb is assumed to be α-Hölder. Section

5 includes the derivation of a Bernstein-type concentration inequality allowing adaptive selection of
the bandwidth h. We then proceed to a numerical analysis section (Section 6), which encompasses
experiments and discussions on the estimation procedure. This is followed by a section consolidat-
ing essential probabilistic results instrumental in variance control of our estimator, see Section 7.
Lastly, all proofs are gathered in the Appendix.

2. STATISTICAL AND PROBABILISTIC FRAMEWORK

2.1. Notation. For all x P Rd, we denote by |x|2 :“ x ¨ x the Euclidian norm. Throughout the pa-
per, we denote by PpRdq the space of probability measures on Rd. Moreover, for any differentiable
function, f : Rd Ñ R, ∇f stands for the gradient of f . Similarly, if f admits k derivative in the
i-th component, we denote this derivative by Bk

i f . Finally, for any g : Rd Ñ Rd, ∇ ¨ g denotes the
divergence of g.
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For any σ-finite measure ν on Rd, for any q ě 1, we say that f : Rd Ñ R belongs toLqpνq whenever

}f}
q
Lqpνq

:“

ż

Rd

|fpxq|q νpdxq ă `8.

When ν is the Lesbegue measure on Rd, we only denote Lq and the associated norm } ¨ }q . Finally,
when q “ `8 and ν is the Lebesgue measure, we define

}f}8 :“ sup
xPRd

|fpxq|.

2.2. The statistical diffusion model. We consider a stochastic process X defined on a rich enough
probability space pΩ,A,Pq. For a given Lipschitz continuous function b and probability measure µ on
Rd, we can define a probability Pb

µ under which X is solution of the following stochastic differential
equation

(4) dXt “ bpXtqdt` dWt, LpX0q “ µ,

whereW is a d-dimensional Pb
µ-Brownian motion. We denote by F “ pFtqtě0 the filtration generated

by W . We write Eb
µ for the expectation with respect to Pb

µ. We also use Pb
x and Eb

x instead of Pb
δx

and
Eb
δx

. In the paper, for any probability measure ν P PpRdq, for any q ą 1, we say that f : Rd Ñ R
belongs to Lqpνq whenever

}f}
q
Lqpνq

:“

ż

Rd

|fpxq|q νpdxq ă `8.

When ν is the Lesbegue measure on Rd, we only denote Lq and the associated norm } ¨ }q . In the
following, we always assume the following conditions on b.

Assumption 1. The function b is differentiable and satisfies

|bp0q| ď b0 and @i P t1, . . . , du, ||Bib||8 ď b1{d,

where b0 and b1 are positive constants. This ensures in particular that }∇ ¨ b}8 ď b1.

Assumption 2. There exists a function V : Rd Ñ R differentiable and bounded below by a constant V0 such
that b “ ´∇V and V p0q “ 0.

Assumption 3. There exists rCb ą 0 and rρb ą 0 such that xx, bpxqy ď ´ rCb|x|, @x : |x| ě rρb.

By definition, X solution of (2) is a Markov process. Assumption 1 shows that the drift force
exhibits at most linear growth, which implies that there exists a constant C0 ą 0 such that the
transition density pbtpx, yq for all t ą 0 and for all px, yq P Rd ˆ Rd with |x´ y|2 ă t is satisfies

(5) pbtpx, yq ď C0pt´d{2 ` t3d{2q,

see for example [CW97]. This inequality is crucial to obtain robust upper bounds when estimating
the invariant measure of a stochastic process, as demonstrated, for instance in [DR07, Str18]. As-
sumption 2 is also usual when studying the asymptotic behaviour of a diffusion process. However,
it is not a necessary condition [Bha78, DR06], since the existence and uniqueness of the invariant
measure primarily depend on the asymptotic behaviour of the drift force b and its growth at infinity.
In the present paper, Assumption 2 is needed at a later stage in order to derive upper bounds similar
to (5) for the transition density of the pre-averaged process, see Section G.1.

Under Assumptions 2 and 3, the process X defined by (4) admits a unique stationary distribution
denoted by µb, absolutely continuous with respect to the Lebesgue measure on Rd whose density,
also denoted by µb, is explicitly given for all x P R2d by

µbpxq “ Z´1
V expp´2V pxqq where ZV “

ż

Rd

expp´2V pyqqdy.

Assumption 3 is common to guarantee an exponentially fast convergence towards equilibrium. In
the case where the drift force is derived from a potential V , a direct link exists between the classical
Poincare inequality and Equation 6, and Assumption 3 implies that X satisfies a Poincaré inequality
as shown in [BGL`14]. More precisely, there exists CPI ą 0, depending only on rCb, such that for
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any f P L2pµbq satisfying Eb
µbrfpX0qs “ 0 and any t ě 0, we have

(6) VarbµbrP b
t fpX0qs ď e´2tC´1

PIEb
µbrfpX0q2s,

where pP b
t qtě0 is the semi-group associated to the process X , acting on any measurable functions

f : Rd Ñ R by

(7) @ t ě 0, @x P Rd, P b
t fpxq “ Eb

xrfpXtqs.

It is well known that the accuracy of the estimation of the invariant density µb strongly depends
on the regularity of µb [DR07, Str18, AG21, AG23]. Therefore, we assume that µb belongs to the
anisotropic Hölder class Hdpα,Lq, which is defined below.

Definition 1. Let α “ pα1, . . . , αdq P p0,8qd and L “ pL1, . . . ,Ldq P p0,8qd. A function g : Rd Ñ R is
said to belong to the anisotropic Hölder class Hdpα,Lq of functions if, for all 1 ď i ď d, g is tαiu-differentiable
in the i-th variable and the partial derivatives satisfy for 0 ď k ď tαiu

}Bk
i g}8 ď Li and @t P R,

›

›B
tαiu

i gp¨ ` teiq ´ B
tαiu

i gp¨q
›

›

8
ď Li|t|

αi´tαiu

where pe1, . . . , edq is the canonical basis of Rd.

Definition 2. Let α “ pα1, . . . , αdq P p0,8qd, L “ pL1, . . . ,Ldq P p0,8qd and b0, b1 ą 0. We write
b “ pα,L, b0, b1, V0q and Σpbq the set of functions b : Rd Ñ Rd satisfying Assumption 1 with constants
b0 and b1, Assumption 2 with constant V0, Assumption 3 and such that µb belongs to the anisotropic Hölder
class Hdpα,Lq.

In this paper, we always assume that b belongs to Σpbq, for some b “ pα,L, b0, b1, V0q, with
α1 ď ¨ ¨ ¨ ď αd. Moreover, X is assumed to be observed at discrete times i∆n, for 0 ď i ď n, and
blurred by a noise composed of independent standard Gaussian variables. We observe

Yi,n “ Xi∆n ` τnξi,n,

where ξi,n are i.i.d Gaussian variables, ∆n Ñ 0 and n∆n Ñ 8.

3. ESTIMATION PROCEDURE

In this section, we plan to use a kernel type estimation procedure. We consider a bounded kernel
with compact support K : R Ñ R, that is a measurable function such that

ş

RKpyqdy “ 1. We
assume that it is of order l ě 1, i.e. that for all 1 ď k ď l ´ 1, we have

(8)
ż

R
ykKpyqdy “ 0.

Now for any h “ ph1, . . . , hdq P p0,`8qd and y “ py1, . . . , ydq P Rd, we define

(9) Khpyq “

d
ź

i“1

h´1
i Kpyih

´1
i q.

In the case where the density of interest µb belongs to the anisotropic Hölder class Hdpα,Lq, we
always assume that l ě rαds.

First, note that the natural kernel based estimator of the invariant density in absence of noise does
not work in our context. Indeed, since pYk,nq is a stationary process, the estimator

(10) pµKB,n,h,ppxq “
1

n

n´1
ÿ

k“0

Khpx´ Yk,nq

estimates the density of Y1,n, which is given by

µb ˚ φτnpxq “

ż

Rd

µbpx´ yqφτnpyqdy “

ż

Rd

µbpx´ τnyqφ1pτnyqdy
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where φτ pxq “ p2πτ2q´d{2 expp´|x|2{p2τ2qq. Therefore, the presence of noise in (10) creates an addi-
tional bias satisfying

(11) |µb ˚ φτnpxq ´ µpxq| ď

ż

Rd

|µbpx´ τnyq ´ µbpxq|φ1pτnyqdy

which is of order τn. This bias is dominating the usual bias of kernel based estimators when τn is
large. In particular, when τn is of order 1, the estimator is not consistent. Therefore, we need to
reduce the influence of the noise in the observation.

To that extent, we implement in this paper a preaveraging approach and we compute local av-
erage the observations over batches of size p. This yields to the following modified observations
pp´1

řp´1
ℓ“0 Ykp`ℓ,nq1ďkďtn{pu. Intuitively, this approach should work because of the regularity of X .

Indeed, we have

(12)
1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,n “ Xkp∆n
`

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

`
τn
p

p´1
ÿ

ℓ“0

ξkp`ℓ,n.

This expression can be seen asXkp∆n
`noise and the effective sampling frequency becomes pp∆nq´1.

Moreover, the noise now comes from two sources: in addition to the noise pξi,nqi,n, we now have
a preaveraging error p´1

řp´1
ℓ“0 pXpkp`ℓq∆n

´ Xkp∆nq. Using the pathwise regularity of X , this error
should remain small when p is not too large. Moreover, since the random variable pξi,nqi,n are
independent standard Gaussian variables, we can rewrite p´1

řp´1
ℓ“0 ξkp`ℓ,n “ τnp

´1{2
rξk,n where rξk,n

is also a standard Gaussian variable. We next define a kernel estimator based on the preaveraged
observations. For any non negative integer p and any x P Rd, we define

(13) pνn,h,ppxq “
1

tn{pu

tn{pu´1
ÿ

k“0

Kh

´

x´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n

¯

.

Remark that when p “ 1, this estimator is the usual estimator used for estimating the invariant
density from discrete observations, see [Str18, AG23]. From what precedes, it first seems natural
that pνn,h,p estimates µb ˚ φτnp´1{2 which is the invariant density of Xkp∆n

` τnp
´1{2

rξk,n. However,
the preaveraging error p´1

řp´1
ℓ“0 pXpkp`ℓq∆n

´Xkp∆n
q induces an additional term. Indeed, we have

(14)
1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

“
1

p

p´1
ÿ

ℓ“0

ˆ
ż pkp`ℓq∆n

kp∆n

bpXsqds

˙

`
1

p

p´1
ÿ

ℓ“0

`

Wpkp`ℓq∆n
´Wkp∆n

˘

.

The first sum is negligible compared to the second one. Moreover, p´1
řp´1

ℓ“0 pWpkp`ℓq∆n
´ Wkp∆n

q

is a centered Gaussian variable with variance p12pq´1pp ´ 1qp2p ´ 1q∆n, independent of Xkp∆n .
Therefore, this term has an effect on the estimation comparable to that of τnp´1{2

rξk,n. Combining
these two terms, we deduce that pνn,h,p estimates µb ˚ φ

rτn,p
where

(15) rτn,p “

´τ2n
p

`
pp´ 1qp2p´ 1q∆n

12p

¯1{2

.

This analysis is formalised in the following proposition.

Proposition 1. Under Assumptions 1, 2 and 3, there exists CB ą 0 such that for any p P t1, . . . , r∆
´1{2
n su

and any x P Rd, we have

(16)
ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ µb ˚ φ

rτn,p
pxq

ˇ

ˇ

ˇ
ď CB

#

ř

i h
αi
i if p “ 1,

ř

i h
αi
i `

?
p∆n if p ě 2.

Although bounding the bias of kernel based estimators is usually an easy task, this is not the
case here. The proof of Proposition 1 is indeed quite delicate and can be found in Section B. In-
deed, we cannot use Itô’s formula because, from Equation 9, we see that for any i P t1, . . . , du,
BiKhpxq “ h´1

i

ś

j h
´1
j Kph´1

j xjq which would interfere and create a contribution of order
ś

i h
´1
i .

Instead, using crucially Assumption 2, we use Girsanov’s theorem to remove the contribution of
the drift term in (14). We then control the likelihood introduced via the change of measure which
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introduce the additional term
?
p∆n in (16) when p ě 2.

Proceeding as in (11), we see that (16) implies

(17)
ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ µbpxq

ˇ

ˇ

ˇ
ď rCBp

ÿ

i

hαi
i ` rτn,pq

for some rCB ě CB. This can be improved by a deconvolution procedure. To do so, note that

µb ˚ φ
rτn,p

pxq “ Erµbpx´ rτn,pζqs

where ζ is a standard d-dimensional Gaussian variable. Using the regularity of µb, we can proceed
to a Taylor expansion of µbpx`rτn,ppγ´ζqq around x for all γ “ pγ1, . . . , γdq P t0, . . . , lud. Computing
explicitly the moments of pγ ´ ζq appearing in this expression, we get a explicit expansion of µb ˚

φ
rτn,p

px ` rτn,pγq around µbpxq. We can isolate µbpxq from this expression. Specifically, we introduce
the matrix A “ pak,iq0ďk,iďl, with coefficients given for any k, i P t0, . . . , lu by

(18) ak,i “

k
ÿ

j“0

ˆ

k

j

˙

p´1qjmji
k´j

wheremj stands for the the j-th moment of a standard Gaussian variable. The matrixA is invertible,
as shown in Appendix A. We denote its inverse by A´1, and u “ pu0, . . . , ulq stands for its first
column. Then, for all k P t0, . . . , lu,

l
ÿ

i“0

ui

´

k
ÿ

j“0

p´1qjmji
k´j

j!pk ´ jq!

¯

“

#

1 if k “ 0,

0 otherwise.
(19)

For any multi-index γ “ pγ1, . . . , γdq P t0, . . . , lud, we define uγ “
śd

i“1 uγi , and the following
point-wise estimator

pµn,h,ppxq “
ÿ

uγpνn,h,ppx` γrτn,pq(20)

where the sum holds over all γ “ pγ1, . . . , γdq P t0, . . . , lud. The bias of pµn,h,ppxq is precised in the
following proposition, proved in Section C

Proposition 2. Suppose that b P Σpbq, with α such that α1 ď ¨ ¨ ¨ ď αd. Then there exists a constant rCB

depending only in b so that for any x P Rd, any p P t1, . . . , r∆
´1{2
n su and any h P Rd, we have

ˇ

ˇEb
µbrpµn,h,ppxqs ´ µbpxq

ˇ

ˇ ď CB

#

τα1
n `

řd
i“1 h

αi
i if p “ 1,

?
p∆n `

τα1
n

pα1{2 `
řd

i“1 h
αi
i if p ě 2.

(21)

We now turn to the variance of pµn,h,ppxq. Before stating the upper bound of the variance let us
now define k0 :“ k0pαq such that α1 “ α2 “ ¨ ¨ ¨ “ αk0 ă αk0`1 ď ¨ ¨ ¨ ď αd. Let us also define

(22)

D1 “ tpα, k0q, k0 “ 1 or k0 “ 2 and α2 ă α3u ;

D2 “ tpα, k0q, k0 ě 3u ;

D3 “ tpα, k0q, k0 “ 1 and α2 “ α3u .

The upper bound is stated in the following proposition.

Proposition 3. Suppose that b P Σpbq. Suppose that α “ pα1, . . . , αdq satisfies α1 “ α2 “ ¨ ¨ ¨ “ αk0
ă

αk0`1 ď ¨ ¨ ¨ ď αd, for some k0 P t1, . . . , du. If µ̂n,h,p is the estimator proposed in (20), then there exist
CV ą 0 uniform over Σpbq and n0 ą 0 such that, for n ě n0, the following holds true for all x P Rd and all
h P p0, 1sd.

‚ If d “ 1, then

(23) Varbµbppµn,h,ppxqq ď
CV

Tn

´

p∆nh
´1
1 ` | logph1q|

¯

.

‚ If d “ 2, then

(24) Varbµbppµn,h,ppxqq ď
CV

Tn

´

p∆nh
´1
1 h´1

2 ` | logpp∆nq| ` | logph1h2q|

¯

.
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‚ If d ě 3 and pk0,αq P D1, then

(25) Varbµbppµn,h,ppxqq ď
CV

Tn

´

p∆n

d
ź

i“1

h´1
i `

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i

¯

.

‚ If d ě 3 and pk0,αq P D2, then

(26) Varbµbppµn,h,ppxqq ď
CV

Tn

´

p

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i ` p∆n

d
ź

i“1

h´1
i `

d
ÿ

i“1

| log hi|
¯

.

‚ If d ě 3 and pk0,αq P D3, then

(27) Varbµbppµn,h,ppxqq ď
CV

Tn

´

d
ÿ

i“1

| log hi| ` p∆n

d
ź

i“1

h´1
i ` ph2h3q´1{2

d
ź

i“4

h´1
i

¯

.

The proof of Proposition 3 is delayed to Appendix D. It is important to point out that our results
yield the same upper bounds for the variance term similar to those found in Proposition 1 of [AG23].
The only difference is the presence of a factor p in front of ∆npTn

śd
i“1 hiq

´1. This change is natural
as this term directly comes from the discretisation of the process. Here, the preaveraging induces
a sub-sampling of the data, grouping the observations on windows of length p. The discretisation
step ∆n therefore becomes p∆n. As seen in [AG23], this term does not contribute, except when ∆n

is large. Here, the break-even point also depends on the noise intensity and is detailed in Section
4.1. Note that our proof and the proof Proposition 1 of [AG23] follows the same paths. However, the
introduction of additive noise structure requires new bounds on transition densities of the preaver-
aged process, see Section 7. Note also that although Proposition 3 is stated on the final estimator
pµn,h,ppxq, the same result holds for pνn,h,ppxq. Indeed, in Appendix D, we prove it for pνn,h,ppxq and
the proof for pµn,h,ppxq follows from

(28) Varbµbppµn,h,ppxqq ď

´

ÿ

γ

|uγ |

¯2d

sup
yPRd

Varbµbppνn,h,ppyqq

and the fact that p
ř

γ |uγ |q2d is a constant independent of n.

4. UPPER BOUNDS AND HYPER-PARAMETER CHOICE

We quantify the quality of this estimation procedure by deriving an upper bound for the quadratic
error

Rppµ, b;xq “ Eb
µbr|pµpxq ´ µbpxq|2s.

Using the classical Bias-Variance decomposition of the quadratic error

(29) Rppµn,h,p, b; xq “ Bb
n,h,ppxq2 ` Vb

n,h,ppxq,

where for all x P Rd, we have

Bb
n,h,ppxq “

ˇ

ˇEb
µbrpµn,h,ppxqs ´ µbpxq

ˇ

ˇ and Vb
n,h,ppxq “ Varbµbrpµn,h,ppxqs.

Upper bounds for both Bb
n,h,ppxq and Vb

n,h,ppxq are given by Propositions 2 and 3 respectively. The
variance obtained in Proposition 3 depends on many case and the choice of the hyper-parameters
p and h naturally depends on these cases. In this section, we detail each case and the convergence
rate that can be obtained using the best choices p˚ and h˚. For future use, we write

(30) α “

´1

d

d
ÿ

i“1

α´1
i

¯´1

and α3 “

´ 1

d´ 2

d
ÿ

i“3

α´1
i

¯´1

4.1. General results. Before studying the quadratic risk in this model, we first recall the results from
[AG23] where the estimation of µb is studied from discrete non-noisy observations. In [AG23], the
authors distinguish two regimes depending on ∆n. The breaking point wHF

n between these two
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regimes is defined by

wHF
n “

$

’

’

’

’

&

’

’

’

’

%

logpTnqT´1
n if d “ 1, 2,

logpTnq

´

logpTnq

Tn

¯

α3
p2α3`d´2q

`

1
α1

` 1
α2

˘

if d ě 3 and pα, k0q P D1,

T
´α3

p2α3`d´2q

`

1
α1

` 1
α2

˘

n if d ě 3 and pα, k0q P D2 YD3.

They show that, when ∆n ď wHF
n , the estimator of the invariant measure behaves as in the continu-

ous observation case and therefore exhibits the convergence rate pvHF
n q1{2 defined as

vHF
n “

$

’

’

’

&

’

’

’

%

logpTnqT´1
n if d “ 1, 2,

´

logpTnq

Tn

¯

2α3
2α3`d´2

if d ě 3 and pα, k0q P D1,

T
´

2α3
2α3`d´2

n if d ě 3 and pα, k0q P D2 YD3.

In order to get this convergence rate, when d ě 3 [AG23] identifies the optimal bandwidth choice
given by

h˚,HF
i “

$

’

’

’

&

’

’

’

%

T
´1{2
n if d “ 1, 2,

´

logpTnq

Tn

¯

α3
αip2α3`d´2q

if d ě 3 and pα, k0q P D1,

T
´

α3
αipα3`d´2q

n if d ě 3 and pα, k0q P D2 YD3.

When ∆n ě wHF
n , the estimator of the invariant measure behaves as in the i.i.d. case and exhibits a

convergence rate n
α

2α`d . Here, we want to reproduce this behaviour while also incorporating noise.
In order to get this convergence rate, [AG23] also identifies the optimal bandwidth choice h˚,LF in
that case, given by

h˚,LF
i “ n

´α
αip2α`dq .

More over, the convergence rate of the low frequency estimator is pvLF
n q1{2 where

vLF
n “ n´ 2α

2α`d .

In our case, the effective discretization step is p∆n and therefore, we expect that the switch between
the two regimes of [AG23] appear when p∆n « wHF

n . However, p also needs to be chosen to mini-
mize the quadratic error bound. Applying the same analysis as in [AG23], we then define h˚,p for
each p by

h˚,p
i “

$

&

%

h˚,HF
i if p∆n ď wHF

n ,
´

p
n

¯
α

αip2α`dq

if p∆n ě wHF
n .

Then we get for each p ě 1,

(31) Rppµn,h˚,p,p, b;xq À

#

p∆n1pě2 `
τ2α1
n

pα1
` vHF

n if p∆n ď wHF
n ,

p∆n1pě2 `
τ2α1
n

pα1
` p

p
n q

2α
αip2α`dq if p∆n ě wHF

n .

We then want to simplify the case p∆n ě wHF
n by removing one of the dependence in p. To do so,

we use that the condition p∆n Á wHF
n implies that p∆n Á p

p
n q

2α
2α`d . This statement is formalised in

the following Lemma, proved in Section E.1.

Lemma 1. For all c1 ą 0, there exists c2 ą 0 such that if p∆n ě c1w
HF
n , then p∆n ě c2p

p
n q

2α
2α`d

Using Lemma 1, we simplify (31). If p “ 1, we have

(32) Rppµn,h˚,1,1, b;xq À

#

τ2α1
n ` vHF

n if ∆n ď wHF
n ,

τ2α1
n ` n´ 2α

2α`d if ∆n ě wHF
n .

and for p ě 2, we have

(33) Rppµn,h˚,p,p, b;xq À

#

p∆n `
τ2α1
n

pα1
` vHF

n if p∆n ď wHF
n ,

p∆n `
τ2α1
n

pα1
if p∆n ě wHF

n .
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From these, we see that the optimal choice of p is given by

(34) p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

_ 1

and from this choice, we take h˚
“ h˚,p˚

. Note that this choice ensure that p˚∆
1{2
n is bounded so

that Proposition 2 applies. Four asymptotic regimes can be observed.

Proposition 4 (Small noise intensity, high sampling frequency). Suppose that p˚∆n ď wHF
n and that

τ2α1
n ď ∆n. In that case, we have

p˚ “ 1 and h˚
“ h˚,HF

and we get
Rppµn,h˚,p˚ , b;xq À vHF

n ^ τα1
n .

Proposition 5 (Large noise intensity, high sampling frequency). Suppose that p˚∆n ď wHF
n and that

τ2α1
n ě ∆n. In that case, we have

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚
“ h˚,HF

and we get

Rppµn,h˚,p˚ , b;xq À vHF
n ^

`

τ2n∆n

˘

α1
1`α1 .

Remark 1. In the previous proposition, note that since τ2α1
n ě ∆n, the condition p˚∆n À wHF

n is equivalent

to ∆n À τ´2
n pwHF

n q
1`α1
α1 .

Proposition 6 (Small noise intensity, Low sampling frequency). Suppose that p˚∆n ě wHF
n and that

τ2α1
n ď ∆n. In that case, we have

p˚ “ 1 and h˚
“ h˚,1

and we get
Rppµn,h˚,p˚ , b;xq À n´ 2α

2α`d ^ τ2α1
n .

Proposition 7 (Large noise intensity, Low sampling frequency). Suppose that p˚∆n ě wHF
n and that

τ2α1
n ě ∆n. In that case, we have

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚
“ h˚,p˚

and we get

Rppµn,h˚,p˚ , b;xq À
`

τ2n∆n

˘

α1
1`α1 .

4.2. Analysis of the convergence rate. In this section, we study the convergence rates found previ-
ously in the setup ∆n “ n´θ and τn “ n´κ. Of course, since ∆n Ñ 0 and Tn “ n∆n Ñ 8, we must
impose 0 ă θ ă 1. We also require κ ě 0 for convenience, although a deeper analysis shows that
we can still estimate the invariant measure when κ ą ´θ{p2α1q. For conciseness, we also ignore the
logarithmic factors in the rates wHF

n and vHF
n . We also introduce the following notations

β “
2α

2α ` d
and β3 “

2α3

2α3 ` d´ 2
.

Rewriting the conditions for each proposition shows that
‚ Proposition 4 applies when κ ě θ{p2α1q and θ ě βpα´1

1 ` α´1
2 q{2,

‚ Proposition 5 applies when κ ď θ{p2α1q and κ ě p1 ´ θqβ3p1 ` α1qpα´1
1 ` α´1

2 q{2 ´ θα1,
‚ Proposition 6 applies when κ ě θ{p2α1q and θ ď βpα´1

1 ` α´1
2 q{2,

‚ Proposition 7 applies when κ ď θ{p2α1q and κ ď p1 ´ θqβ3p1 ` α1qpα´1
1 ` α´1

2 q{2 ´ θα1.
We can then identify the domains where each convergence rates operate and we refer to Figure 1 for
an illustration of the different regimes

4.3. Comments. The rate wHF
n is the same in the cases d ě 3, k0 ě 3 and d ě 3, k0 “ 1 and α2 “ α3.

The same remark holds for vHF
n and in these two cases, the convergence rate of the estimator is

therefore the same. We still distinguish these cases here because the proofs differ slightly. As noted
in [AG23], it is not clear that the high-frequency and the low-frequency rates meet when ∆n « wHF

n .
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κ “ θ
2α1

κ

θ
θ “ β

α
´1
1 `α

´1
2

2

κ “
β̄

2α1

θ “
sβ3

sβ3`1

n
´ 2ᾱ

2ᾱ`d
vHF
n

pτ2
n∆nq

α1
1`α1

τ2α1
n

θ “ 1

FIGURE 1. Rates of convergence of sµn,h,ppxq.

´ θα1

1`α1

κ
κ “ θ

2α1
κ “

ᾱ3p1θq

α1p2ᾱ3`d´2q

•

•

FIGURE 2. Evolution of the rate of convergence as a function of κ with fixed θ in a
logarithmic scale.

5. BERNSTEIN INEQUALITY AND ADAPTIVE CHOICE OF THE HYPERPARAMETERS

In this section, we introduce a concentration inequality of Bernstein’s type for the kernel estimator
built in Section 3. This inequality provides a robust framework for analyzing the estimator’s per-
formance and variance. Leveraging this concentration inequality, we develop an adaptive approach
for hyper-parameter selection in a data-driven way.

5.1. Bernstein inequality. Recalling that D1, D2 and D3 are defined in Equation (22), we get the
following result.

Theorem 1 (Bernstein inequality). Suppose that b P Σpbq. Then there exists C, τ positive and uniformly
bounded over Σpbq such that for all n,h, p satisfying p∆n ď 1, we have

Pb
µb

´

|pµn,h,ppxq ´ Eb
µ̄brpµn,h,ppxqs| ą ε

¯

ď K exp
´

´
n2pε

2β2

32npv2pα, n,h, pq ` τβε}Kh}8np log np

¯
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where np “ tn{pu, β “ 1{
?
dℓ}u}2, }u}22 “

ř

γ |uγ |2 and

v2pα, n,h, pq “Varbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq

¯

` 2
8
ÿ

k“1

Covbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq,Khpx´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

.

Moreover, we have the following estimates for v2pα, n,h, pq:

v2pα, n,h, pq ď C

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ph1h2q´1 `
| logpp∆nq|

p∆n
`

| logph1h2q|

p∆n
if d “ 1, 2,

śd
i“1 h

´1
i `

řd
i“1 | logphiq|

p∆n
śd

i“3 hi
if d ě 3 and pα, k0q P D1,

śd
i“1 h

´1
i `

śk0
i“1phiq

2{k0

p∆n
śd

i“1 hi
`

řd
i“1 | log hi|

p∆n
if d ě 3 and pα, k0q P D2,

śd
i“1 h

´1
i `

řd
i“1 | log hi|

p∆n
` 1

p∆nph2h3q1{2
śd

i“4 h1
i

if d ě 3 and pα, k0q P D3.

for some constant C ą 0 uniform over Σpbq and independent of n,h and p.

The Bernstein inequality presented in Theorem 1 is standard and based on [Lem21]. Our proof
requires the derivation of an exponential rate of convergence toward the invariant measure for the
Markov process embedding the preaveraged process pp´1

řp´1
ℓ“0 Ykp`ℓ,nqk. We refer to Section F for

details.

5.2. Choice of the hyperparameters. Bernstein inequality can be used to tune adaptively the pa-
rameter h, following the ideas of [GL08, GL09, GL11]. Fix p ě 1. As previously discussed, for
dimensions d “ 1 and d “ 2, the variance’s upper bound does not rely on the smoothness. Conse-
quently, there is no advantage to adopting a data-oriented adaptive strategy for d ă 3.

For d ě 3, the strategy is to consider a range of possible bandwidths and to select the one that min-
imizes the error. For this aim, we introduce a heuristic representation of the bias and a penalty term
proportional to the variance bound of Proposition ... The optimal bandwidths are those minimizing
the sum of these two latter. Let us begin by introducing the grid

Hp
n Ă

#

h P p0, 1sd :, h1 ď . . . ,ď hd, @l “ 1, . . . , d

ˆ

logpnpq3

np

˙1{d

ď hl ď 1

+

,

where we recall that np stands for tn{pu for the sake of clarity. We also assume that #Hp
n ď Tn.

According to the set of candidate bandwidths, we can introduce the set of candidate estimators:

F pHp
nq :“

␣

µ̂n,h,ppxq : x P Rd, h P Hp
n

(

.

The goal of this section is to choose an estimator in the family F pHp
nq, in a completely data-driven

way. Following the idea in [GL08, GL09, GL11], our selection procedure relies on the introduction
of auxiliary convolution estimators, pµn,ph,ηq,p for ph,ηq P pHp

nq
2 which is the same estimator as the

one introduced in Section 3 but with kernel Kh ˚ Kη . The first important remark is that when the
regularity of the function of interest is unknown, the upper bound on the variance for p fixed can be
rewritten for any h P Hp

n,

vpnphq “
1

Tn

´

p∆n

d
ź

i“1

h´1
i ` min

´

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i , ph2h3q´1{2

d
ź

i“4

h´1
i ,

min
k0ě3

k0
ź

i“1

h
2´k0
k0

i

d
ź

i“k0`1

h´1
i

¯¯

.
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Moreover, one can write:
d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i ď

3
ź

i“1

h
´1
3

i

d
ź

i“4

h´1
i

ðñ h23 ě h1h2

d
ÿ

i“1

| logphiq|.

Using the fact that h1 ď ¨ ¨ ¨ ď hd, we obtain

vpnphq “
1

Tn

˜

p∆n

d
ź

i“1

h´1
i ` min

˜

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i , ph2h3q´1{2

d
ź

i“4

h´1
i

¸¸

.

With this purpose in mind, we introduce the following penalty function

V p
n phq “ sω logpnpqvpnphq,

for some positive constant sω which has to be taken large. Now, following once again the procedure
of [GL08, GL09, GL11], we define for any h P Hp

n,

(35) Ap
nphq “ max

ηPH
p
n

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
.

Finally, we define the choice procedure

h˚
P argminhPH

p
n

tAp
nphq ` V p

n phqu .

Remark 2. The choice of the penalty Ap
nphq and the threshold V p

n phq are standard in the Goldenshulger-
Lepski methodology: Ap

nphq is a kind of proxy for the estimation of the squared bias of pµn,h,ppxq while V p
n phq

is the exact penalty needed to balance the size of the variance of the estimator in h, inflated by a logarithmic
term and tuned with sω ą 0. This enables one to control all the stochastic deviation terms. See section F for
details.

Setting this methodology up, we obtain for any pre-averaging level p, the following Orcale in-
equality

Proposition 8 (Oracle inequality). Assume that Assumptions 1, 2 and 3 hold and that d ě 3, then there
exists n0 P N, such that for any n ě n0,

E
”

ˇ

ˇ

pµn,h˚,p ´ sµbpxq
ˇ

ˇ

2
ı

ď c inf
hPH

p
n

␣

Bb
n,h,ppxq2 ` V n

p phq
(

` c n´γ
p ` p∆n1pě2 `

τ2α1
n

pα1
,

for some c ą 0 and γ ą 1, and where we recall that Bb
n,h,ppxq is defined in Equation (29).

The proof of Proposition 8 is postponed to Section F.

6. NUMERICAL ANALYSIS

In this section, we study the estimators derived in Section 3. We first focus on the case d “ 1.
Following the results of Section 4 bandwidth h is given by h “ T´1

n . The main challenge is thus
to choose the preaveraging parameter p. Theoretically, the best approach would be to consider the
bias-corrected estimator pµn,h,ppxq defined in (20). However, this estimator is unstable, due to the
constant p

ř

γ |uγ |q2d appearing in (28). Indeed, consider for instance the case

V pxq “ x2{4 and bpxq “ ´x{2.

Taking n “ 214, ∆n “ n´1{2 “ 2´7 and τn “ 1, we can compute the bias and the variance of
both pνn,h,ppxq and pµn,h,ppxq. The results are presented in Table 1 with p “ tpτ2n∆

´1
n q1{2u _ 1. In

this example, we can see clearly that the variance increases by a non-negligible factor when doing
the bias-correction procedure and consequently the mean squared error is higher, even if the bias is
substantially smaller.
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Without bias correction With bias correction
Error 1.61e-3 8.2e-3
Bias 1.21e-3 3.48e-4

Variance 1.67 e-3 9.77e-3

TABLE 1. Impact of the bias correction.

Therefore, in most practical applications, the use of the initial estimator pνn,h,ppxq leads to better
results compared to pµn,h,ppxq. Therefore, in the following, we focus on pνn,h,ppxq in our simulations.
In that case, we can choose p with easy asymptotics: indeed, the optimal choice for p minimises the
bias in (17), and thus we take p˚ “ tpτ2n∆

´1
n q1{2u _ 1.

We now illustrate the effectiveness of the pre-averaging strategy and stack it up against the
straightforward method where p “ 1. We still consider the case

V pxq “ x2{4 and bpxq “ ´x{2.

with n “ 214, ∆n “ n´1{2 “ 2´7 and τn “ 1. The results are presented in Table 2 where the pointwise
quadratic error is presented for different values of p and at different points x.

p x “ 0 x “ 0.25 x “ 0.5 x “ 1 x “ 0.75
1 1.29e-1 1.20e-1 9.75e-2 6.80e-2 4.12e-2

16 6.31e-2 5.62e-2 4.36e-2 2.57e-2 1.08e-2
p˚ 1.04e-2 1.08e-2 6.49e-3 2.83e-3 1.70e-3

1024 7.07e-2 5.05e-2 4.06e-2 1.67e-2 2.02e-2
4096 7.49e-1 5.39e-1 3.25e-1 7.27e-2 5.22e-2

TABLE 2. Pointwise quadratic error.

We also illustrate the effectiveness of this method in dimension 2, with the potential V pxq “ |x|2{4.
In that case µb is the density of a standard Gaussian distribution. The following plots provides a
visual comparison between the desired distribution and the outcomes of two estimation techniques
in dimension d “ 2, with the same parameters as in the unidimensional case. The first plot is the
target density. The bottom left plot shows the estimated distribution using no preaveraging method
while the bottom right plot shows the results with preaveraging. As expected, the second method
exhibits better results, confirming that pre-averaging refines the estimation process when the noise
intensity is constant.
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Remark 3 (Non-Gaussian noise). In this paper, we assume for simplicity that the noise is composed of
independent d-dimensional standard Gaussian variables, also independent of the underlying processX . How-
ever, this assumption could be softened. Indeed, we only need that the noise is centered, independent from the
diffusion X , identically distributed and that it has finite moment of order l. In the case that its distribution is
that of a variable ξ, we should replace estimate (16) of Proposition 1 by

ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ Erµbpx´ p´1{2τnrξp ´ rτn,pζqs

ˇ

ˇ

ˇ
ď CB

#

ř

i h
αi
i if p “ 1,

ř

i h
αi
i `

?
p∆n if p ě 2

where ζ is a standard Gaussian variable, rτ2n,p “ pp ´ 1qp2p ´ 1q∆n{12p and rξp “ p´1{2
řp

k“1 ξk with
ξ1, . . . , ξn i.i.d with common distribution ξ. In that case, the bias correction procedure should be changed
accordingly and should be split into two parts. First, we repeat the same procedure with rτ2n,p “ pp´ 1qp2p´

1q∆n{12p to ensure the first bias corrected estimator centres around Erµbpx ´ p´1{2τnrξpqs. Then we repeat
the same procedure with p´1{2τn instead of rτ2n,p and where mj stands for the moment of order j of rξp.

7. PROBABILISTIC TOOLS: THE MARKOVIAN STRUCTURE OF THE PREAVERAGED PROCESS

In this section, we gather some estimates about transition probabilities that will be very useful in
the following proofs. Indeed, the proof of Proposition 3 is based on an in-depth study of the Markov
chain

(36)
´

p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n, Xpk`1qp∆n

¯

kPN
.

First, note that the stationarity of X ensures that this Markov chain is also stationary under Pb
µ̄b .

We write sπb for its stationary distribution on R2d. We now summarize the notations used in the
following.

Notation 1. For any t ą 0, x, y P Rd,

‚ pbtpx; ¨q stands for the transition density of X , that is density of Xt conditionally on X0 “ x;

‚ pbp,n,tpx; ¨q stands for the density of p´1
řp´1

ℓ“0 Xℓ∆n`t conditionally on X0 “ x;

‚ pbp,npx; ¨q “ pp,n,0px; ¨q stands for the density of p´1
řp´1

ℓ“0 Xℓ∆n
conditionally on X0 “ x;

‚ pbp,npx; ¨, ¨q stands for the joint density of pp´1
řp´1

ℓ“0 Xℓ∆n , Xp∆nq conditionally on X0 “ x;

‚ sπbp¨, ¨q is an invariant density of the Markov process pp´1
řp´1

ℓ“0 Xpkp`ℓq∆n
, Xpk`1qp∆n

qkPN.

We now derive some bounds for these densities. The proofs of these results are relegated to
Appendix G. We start with a short time control of the transition density for the pre-averaged process.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then there exists positive constants κ1, λ1 and η1, such
that if p∆n ď η1, we have for any x, y P Rd,

pbp,npx; yq ď
κ1

pp∆nqd{2
exp

´

´ λ1
|y ´ x|2

p∆n
` V pxq

¯

.(37)

This lemma is arguably the most technical result in this section. Its proof, postponed to Appendix
G.1, is strongly inspired by Theorem 4 in [GG08] where a similar result is shown for a unidimen-
sional diffusion. As noted in [GG08], their approach cannot readily apply in a multidimensional
setting because of a non-trivial time change. In our case the diffusion coefficient is assumed to be
a real constant, and the outcomes can be extended. Our motivation for undertaking this proof also
lies in the requirement to ensure uniformity of the bounds with respect to p, n. Moreover, here we
want to get rid of the uniform boundedness of the drift term b. Its proof is based on the Girsanov
theorem to remove the drift contribution. Then we condition at each time i

n so that on each interval
ri{n, pi ` 1q{ns, the Brownian Motion is a Brownian bridge. Then sharp estimates can be obtained
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using the properties of the Brownian Bridge.

We now study the transition density of X in short time.

Lemma 3. Under Assumptions 1, 2 and 3, there exists a positive constant κ3, such that for any t P p0, 1q,
b P Σpbq, and z P Rd:

pbtpx; zq ď
κ3
td{2

exp
´

´
|x´ z|2

2t
` V pxq ´ V pzq

¯

.(38)

This Lemma is particularly useful when t ! 1. In that case, it is usually stated in the weaker
form (5). The sharper bound depending explicitly in the potential V allow for better estimates in
Proposition 3. Combining Lemmas 2 and 3, we easily get the following corollary.

Corollary 1. Under Assumption 1 and 2, let us assume that p∆n ď η1, where η1 ą 0 is defined in Lemma
2. Then, for each x, y P Rd, and any t P p0, 1q

pbp,n,tpx, yq ď κ1p2πq´d{2eb1{2pp∆n ` 2tλ1q´d{2 exp
´

´
λ1

2t` p∆n
|x´ y|2

¯

.

We finish this section with a result concerning the invariant density of (36).

Lemma 4. For all px, yq P R2d, there exists a constant κ2 independent of p, n and b such that

sπbpy, zq ď
κ2

pp∆nqd{2
exp

´

´ V pzq ´
λ1
p∆n

|y ´ z|2
¯

.
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In the following sections, we assume that Assumptions 1, 2 and 3 hold and that p∆n ď 1. Fur-
thermore a À b stands for a ď Cb where C can change from line to line and depending only on
b.

APPENDIX A. INVERTIBILITY OF A

We show that the matrixA defined in Section 3 is invertible. To that extent, we compute explicitly
detpAq and we show that it does not vanish. First, we write ak,i,j “

`

k
j

˘

p´1qjmji
k´j for 0 ď j ď k

so that the pk, iq-th coefficient of A defined in Equation (18) is given by ak,i “
řk

j“0 ak,i,j . By multi-
linearity of the determinant, we have then

detpAq “

0
ÿ

j0“0

1
ÿ

j1“0

¨ ¨ ¨

ℓ
ÿ

jl“0

detppak,i,jkqk,iq

“

0
ÿ

j0“0

1
ÿ

j1“0

¨ ¨ ¨

ℓ
ÿ

jl“0

detppik´jkqk,iq

l
ź

k“0

´

ˆ

k

jk

˙

p´1qjkmjk

¯

.

Note now that detppik´jkqk,iq “ 0 when two lines are the same. This happens when k´ jk “ k1 ´ jk1

for some k ‰ k1. Thus detppik´jkqk,iq “ 0 except when the k ´ jk, 0 ď k ď ℓ are all distinct. Since
0 ď jk ď k, we show by induction that the only possibility is j0 “ j1 “ ¨ ¨ ¨ “ jl “ 0 so that

detpAq “ detppikqk,iq

ℓ
ź

k“0

´

ˆ

k

0

˙

p´1q0m0

¯

“
ź

0ďkăiďℓ

pi´ kq

where the last equality is obtained using the expression of the Vandermonde determinant and using
m0 “ 1 (by definition).

APPENDIX B. PROOF OF PROPOSITION 1

In this Section, we aim at studying the expectation Eb
µbrpνn,h,ppxqs. Let us assume in all the proof

that there exists L ą 0 such that

(39) p2∆n ď L,

for all n ě 1. By definition of pνn,h,p in Equation (13) and by stationarity of X under Pb
µb , we have

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEb
y

”

Kh

´

x´
τn
p1{2

rξi,n ´
1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

dy.

Recall that Pb
y is the probability measure under which X0 “ y almost surely. When p “ 1, we

observe that p´1
řp´1

ℓ“0 Xℓ∆n “ y holds almost surely under Pb
y . This is not the case when p ą 1.

Instead, we have
1

p

p´1
ÿ

ℓ“0

Xℓ∆n
“ y `

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

.
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The second part of the right hand side can be seen as a noise term that we decompose as

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

“
1

p

p´1
ÿ

ℓ“0

ˆ
ż pkp`ℓq∆n

kp∆n

bpXsqds

˙

`
1

p

p´1
ÿ

ℓ“0

`

Wpkp`ℓq∆n
´Wkp∆n

˘

.

We remove the effects of the drift b through the Girsanov Theorem. For all admissible drift b, we
define

N b
t “

ż t

0

bpXsq ¨ dWs.

The following technical lemma is needed to apply the Girsanov Theorem.

Lemma 5. There exists δ0 ą 0 such that for any T ą 0 and x P Rd,

sup
tPr0,T´δs

Eb
x

”

exp
´1

2
pxN byt`δ ´ xN b

t ytq

¯ı

ď C1,

for every 0 ď δ ď δ0 and some C1 that depends on b.

Proof. Using Assumption 1, we get that for any t P r0, T s,

|Xt| ď |X0| ` b0T ` |b|lip

ż t

0

|Xs|ds` sup
tPr0,T s

|Bt|.

Therefore, from Gronwall Lemma, we have for all p ě 1 and all 0 ď t ď T

Er|Xt|
2ps ď 32p´1e2pt|b|lipp|x|2p ` T p ` pb0T q2pq.(40)

Moreover, for any δ ą 0 and t P r0, T ´ δs, using Jensen inequality,

Eb
x

”

exp
´1

2

ż t`δ

t

|bpXsq|2ds
¯ı

ď
1

δ

ż t`δ

t

Eb
x

”

exp
´δ

2
|bpXsq|2

¯ı

ds.

Using Assumption 1, we get the following bound

Eb
x

”

exp
´1

2

ż t`δ

t

|bpXsq|2ds
¯ı

ď
1

δ

ż t`δ

t

Eb
x

”

exp
´δ

2
p|b0|2 ` |b|2lip|Xs|2q

¯ı

ds

ď
eδ|b0|

2

δ

ż t`δ

t

Eb
x

”

exp
´δ

2
|b|lip|Xs|2

¯ı

ds.

Now, for s P rt, t` δs, we have

Eb
x

”

exp
´δ

2
|b|lip|Xs|2

¯ı

“ 1 `
ÿ

kě1

´δ|b|lip
2

¯pEb
xr|Xs|2ps

p!
.

From Equation (40), we get that Eb
x

”

exp
´

δ
2 |bpXsq|2

¯ı

ă `8, for all δ ą 0, which proves Lemma
5. □

By Novikov’s criterion – in its version developed in the classical textbook [KS91], Lemma 5.14,
p.198 – Lemma 5 shows that the local martingale Eb

tpNq “ expp´N b
t ´ 1{2xN bytq is indeed a (non-

local) martingale under Pb
x so we can apply Girsanov theorem. Let Qb

x be the probability defined by
its restriction to Ft by

dQb
x

dPb
x

ˇ

ˇ

ˇ

ˇ

t

“ Eb
tpNq.

Note that under Qb
x, the process WQb

definied for t ě 0 by

WQb

t “ Wt `

ż t

0

bpXsqds “ Xt ´X0(41)

is a d-dimensional Brownian motion. Then we have, using the Markov property

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEb
yrpνn,h,ppxqs dy

“

ż

Rd

µbpyqEQb

y

”

Kh

´

x´
τn
p1{2

rξi,n ´
1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

dy.
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Moreover, we have p´1
řp´1

ℓ“0 Xℓ∆n
“ X0 ` p´1

řp´1
ℓ“0 W

Qb

ℓ∆n
and thus for all t ě 0

dPb
y

dQb
y

ˇ

ˇ

ˇ

ˇ

ˇ

t

“ exp
´

ż t

0

bpy `WQb

s q ¨ dWQb

s ´
1

2

ż t

0

|bpy `WQb

s q|2ds
¯

.

and

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEQb

y

”

Kh

´

x´ y ´
τn
p1{2

rξi,n ´
1

p

p´1
ÿ

ℓ“0

WQb

ℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

dy.

Note that in the expectation on the right hand side, dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

is entirely determined by WQb

which is

a standard Brownian motion under Qb. Therefore, we have

EQb

y

”

Kh

´

x´ y ´
τn
p1{2

rξi,n ´
1

p

p´1
ÿ

ℓ“0

WQb

ℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

“E
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n ´
1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

M b
p∆n

pyq

ı

where W is a standard Brownian motion, rξ0,n is a standard Gaussian variable and where M b
t pyq is

defined by

M b
t pyq “ exp

´

ż t

0

bpy `Wsq ¨ dWs ´
1

2

ż t

0

|bpy `Wsq|
2
ds
¯

.

Note that pM b
t pyqqt can be seen as the solution of the stochastic differential equation

M b
t pyq “ 1 `

ż t

0

M b
s pyqbpy `Wsq ¨ dWs.

Using Assumption 2 and Ito’s formula, we have

M b
t pyq “ exp

´

V pyq ´ V py `Wtq ´
1

2

ż t

0

|bpy `Wsq|2 ` ∇ ¨ bpy `Wsqds
¯

.(42)

This expression ensures that y ÞÑ M b
t pyq is continuous, and therefore M b

t pY q is measurable for any
random variable Y . Then we have

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n ´
1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

M b
p∆n

pyq

ı

dy

“ B1pxq `B2pxq

where

B1pxq :“

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n ´
1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯ı

dy,(43)

B2pxq :“

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n ´
1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

pM b
p∆n

pyq ´ 1q

ı

dy(44)

and we study each term separately. More precisely, we will prove the bounds

|B1pxq ´ Erµbpx´ rτn,pζqs| À

d
ÿ

i“1

hαi
i and |B2| À

a

p∆n

which prove Proposition 1.

Control of B1pxq. Note that p´1
řp´1

ℓ“0 Wℓ∆n
is a centred Gaussian variable with covariance matrix

pp´ 1qp2p´ 1q{p12pq∆nId, independent from rξ0,n. Therefore, we get:

B1pxq “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´ rτn,pζ
¯ı

dy,
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where rτ2n,p “ τ2n{p` pp´ 1qp2p´ 1q∆n{12p is defined in Equation (15), and ζ is a standard Gaussian
random variable on Rd. Moreover, we have

ˇ

ˇB1pxq ´ Erµbpx´ rτn,pζqs
ˇ

ˇ “

ˇ

ˇ

ˇ
E
”

ż

Rd

Kpzqrµb px´ hd z ´ rτn,pζq ´ µbpx´ rτn,pζqs

ı
ˇ

ˇ

ˇ
,

where h d z “ ph1z1, . . . , hdzdq. We then use a Taylor expansion and the Hölder regularity of the
density µb and the level of the kernel K, we get

ˇ

ˇ

ˇ
E
”

ż

Rd

Kpzqrµb px´ hd z ´ rτn,pζq ´ µbpx´ rτn,pζqs

ıˇ

ˇ

ˇ
À

d
ÿ

i“1

ş

|zj |
αj |Kpzq|dz

tαiu!
hαi
i À

d
ÿ

i“1

hαi
i .

Control of B2pxq. First, when p “ 1, we have
ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n

¯

pM b
p∆n

pyq ´ 1q

ı

dy “ 0

since pM b
t pyqqt is a martingale independent of rξ0,n. For p ě 2, the situation becomes more intricate.

We first state the following lemma.

Lemma 6. Under Assumptions 1, 2 and 3, there exists a constant M ą 0 which is uniform over Σpbq, such
that for all x P Rd

|bpxqe´V pxq| ď M.

Proof. First, note that the function x ÞÑ bpxqe´V pxq is continuous and hence bounded on any compact
set. Precisely, this function is bounded on the ball centered to 0 and of radius 2rρb, where rρb is
defined in Assumption 3. We now consider x, such that |x| ě 2rρb. With a classical Taylor expansion
argument, we get that V pxq ě V0 ` rCb|x|{2.

Moreover, Assumption 1 ensures that

|bpxq| ď C1p1 ` |x|q,

for some constant C1 ą 0 so we get

|bpxqe´V pxq| ď C1p1 ` |x|qe´ rCb|x|`V0 ,

which is bounded, concluding the proof. □

We can now come back to the control of B2pxq, we write W
n

p “ p´1
řp´1

k“0Wk∆n for conciseness.
Note that since rξi,n and W

n

p are independent, we have

(45)

B2pxq “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n ´W
n

p

¯

pM b
p∆n

pyq ´ 1q

ı

dy

“ E
”

ż

Rd

µbpyqKh

´

x´ y ´
τn
p1{2

rξ0,n ´W
n

p

¯

pM b
p∆n

pyq ´ 1qdy
ı

“ E
”

ż

Rd

Kh

´

x´ y ´
τn
p1{2

rξ0,n

¯

µb
´

y ´W
n

p

¯´

M b
p∆n

´

y ´W
n

p

¯

´ 1
¯

dy
ı

“

ż

Rd

E
”

Kh

´

x´ y ´
τn
p1{2

rξ0,n

¯ı

E
”

µb
´

y ´W
n

p

¯´

M b
p∆n

´

y ´W
n

p

¯

´ 1
¯ı

dy.

Since
ż

Rd

|Khpxq| dx “

ż

Rd

|Kpxq| dx,

the proof of Proposition 1 is down to proving that

|Erµbpy ´W
n

p qpM b
p∆n

py ´W
n

p q ´ 1qs| À
a

p∆n

uniformly for y P Rd.

Step 1. The main idea of the proof is to perform a Taylor expansion of our quantity of interest
around y. To do so, let us introduce for any y P Rd, s ě 0 and j P t1, . . . , du,

Y j
y,s :

R Ñ Rd

u ÞÑ py1 `W 1
s , . . . , yj´1 `W j´1

s , u`W j
s , yj`1 `W j`1

s , . . . , yd `W d
s q.
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We also define for all s ě 0, j P t1, . . . , du and y P Rd the function ϕjy,s for u P R by

ϕjy,spuq “ M b
s py1, . . . , yj´1, u, yj`1, . . . , ydq.

The purpose of this first step is to show that for any s ě 0, j P t1, . . . , du and y P Rd, the function ϕjy,s
is continuously differentiable. Since µb is continuously differentiable and for any z P Rd M b

t pzq is
positive, it is equivalent to prove that logpϕjy,sq is continuously differentiable. In fact for any y P Rd,
we write

logpM b
t pyqq “ ´

d
ÿ

i“1

ż t

0

bipy `WsqdW i
s `

1

2

ż t

0

|bipy `Wsq|2 ds,

where W i and bi stand for the i-th component of W and b respectively. Moreover, using the fact that
b is continuously differentiable in any direction, we obtain

bipY j
y,spyjqq “

ż yj

0

Bjb
ipY j

y,spuqqdu` bipY j
y,sp0qq.

Then we can rewrite the previous equation

logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż t

0

´

ż yj

0

Bjb
ipY j

y,spuqqdu` bipY j
y,sp0qq

¯

dW i
s

)

´
1

2

d
ÿ

i“1

!

ż t

0

ˇ

ˇ

ˇ

ż yj

0

Bjb
ipY j

y,spuqqdu` bipY j
y,sp0qq

ˇ

ˇ

ˇ

2

ds
)

.

It is clear that the second double integral is continuously differentiable with respect to yj . The
situation is less straightforward for the first one due to the stochastic integral. We plan to use the
following Fubini’s Theorem for stochastic integrals.

Theorem 2 (Theorem 2.2 in [Mar12]). Let pX,Σ, µq be a σ-finite measure space. Let S “ M ` A be a
continuous semimartingale. Let ψ : Xˆ r0, T s Ñ R be progressively measurable and such that almost surely,
we have,

ż

X

˜

ż T

0

|ψpx, tq|2dxMyt

¸
1
2

dµpxq ă 8,

ż

X

ż T

0

|ψpx, tq|dAtdµpxq ă 8.

Then, for all t P r0, T s, one has that almost surely
ż

X

ż t

0

ψpr, xq dSr dµpxq “

ż t

0

ż

X

ψpr, xq dµpxq dSr.

Using the boundedness of the partial derivatives, we can easily see that this result applies in our
case. Therefore, we get

logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż yj

0

´

ż t

0

Bjb
ipY j

y,spuqqdW i
s

¯

du`

ż t

0

bipY j
y,sp0qqdW i

s

)

´
1

2

d
ÿ

i“1

!

ż t

0

ˇ

ˇ

ˇ

ż yj

0

Bjb
ipY j

y,spuqqdu` bipY j
y,sp0qq

ˇ

ˇ

ˇ

2

ds
)

.

Note also that Y j
y,spuq and Y j

y,sp0q do not depend on yj by definition. Therefore, for all 1 ď j ď d,
and for all y P Rd, the function ϕjy,s is differentiable. Moreover, we have

Bj logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż t

0

Bjb
ipy `WsqdWs `

ż t

0

pbiBjb
iqpy `Wsqds

)

,(46)

as y ` Ws “ Y j
y,spyjq. We now want to prove that these partial derivatives are continuous. To do so,

we plan to apply component by component the following Kolmogorov–Chentsov theorem, due to
[AL14]
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Theorem 3 (Theorem 3.1. of [AL14]). Let D Ă Rd be a bounded domain of cone type and let X : ΩˆD Ñ

R be a random field on D. Assume that there exist m ě 1, p ą 1, ϵ P p0, ps, and C ą 0 such that the weak
derivatives BβX are in LppΩ ˆDq and

E
´

ˇ

ˇBβXpxq ´ BβXpyq
ˇ

ˇ

p
¯

ď C|x´ y|d`ϵ

for all x, y P D and any multi-index β P Nn with |β| ď d. Then X has a modification that is locally of class
C̄t for all t ă d` mintϵ{p, 1 ´ d{pu.

For all u, v P R, p ą 1, and t ě 0, we obtain
ˇ

ˇ

ˇ

d

du
logpϕy,tpuqq ´

d

du
logpϕy,tpvqq

ˇ

ˇ

ˇ

p

À

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

dWs

ˇ

ˇ

ˇ

p

`

ˇ

ˇ

ˇ

ż t

0

`

bpY j
y,spuqq ´ bpY j

y,spuqq
˘

BjbpY
j
y,spuqqds

ˇ

ˇ

ˇ

p

`

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

bpY j
y,spvqqds

ˇ

ˇ

ˇ

p

.

Now, taking the expectation, we get

E
„

ˇ

ˇ

ˇ

d

du
logpϕjy,spuqq ´

d

du
logpϕjy,spvqq

ˇ

ˇ

ˇ

p
ȷ

À I ` II ` III,

where

I “ E
„

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

dWs

ˇ

ˇ

ˇ

p
ȷ

;

II “ E
„

ˇ

ˇ

ˇ

ż t

0

`

bpY j
y,spuqq ´ bpY j

y,spvqq
˘

BjbpY
j
y,spuqds

ˇ

ˇ

ˇ

p
ȷ

;

III “ E
„

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuq ´ BjbpY

j
y,spvqq

˘

bpY j
y,spvqqds

ˇ

ˇ

ˇ

p
ȷ

.

We first control the term I using the Burkholder-Davis-Gundy’s inequality and we get

I ď

ˇ

ˇ

ˇ

ż t

0

E
“

|BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq|2

‰

ds
ˇ

ˇ

ˇ

p{2

.

Moreover, we know that Bjb is pαj ´ 1q ^ 1-Hölder in the j-th variable. Using that αj ě 2, we know
that Bjb is Lipschitz continuous. Then,

I À tp{2|u´ v|p.

For the second term, we use the boundedness of the partial derivatives to get

II À tp|u´ v|p.

Moreover, for the last term, using the fact that b is at most linear and the control of moments of order
p of the Brownian motion, we get

III À |u´ v|p,

where the constant here may depend on py1, . . . , yj´1, yj`1, . . . , ydq and t. Finally, as αj ě 2, we have
that p ě 1{ε, for some ε P p0, ps. Applying Theorem 3, we get that ϕjy,t is continuously differentiable
on R.

Step 2. For any t ě 0, we define ψ : Rd Q y ÞÑ µbpyqpM b
t pyq ´ 1q. Moreover, recall that we write

W
n

p “ p´1
řp´1

ℓ“0 Wℓ∆n . From the previous step, we write for any y P Rd,

ψ
`

y ´W
n

p q ´ ψpyq “

d
ÿ

j“1

Ej ,
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where

Ej “ ψ
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

j
, yj`1, . . . , yd

˘

´ ψ
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

j´1
, yj , . . . , yd

˘

,

for any j P t2, . . . , d´ 1u, and

E1 “ ψ
``

y ´W
n

p

˘

1
, y2, . . . , ydq

˘

´ ψpy1, . . . , ydq,

Ed “ ψ
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

d

˘

´ ψ
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

d´1
, yd

˘

.

Then, using Step 1, we have for any j P t1, . . . , du

Ej “

ż 1

0

pBjψq
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

j´1
,
`

y ´ λW
n

p

˘

j
, yj`1, . . . , yd

˘

pW
n

p qj dλ.

Then, we have

pp∆nq´1{2|Erψpy ´W
n

p q ´ ψpyqs|

ď

d
ÿ

j“1

E

«

ˇ

ˇ

ˇ

ˇ

ż 1

0

pBjψq
``

y ´W
n

p

˘

1
, . . . ,

`

y ´W
n

p

˘

j´1
,
`

y ´ λW
n

p

˘

j
, yj`1, . . . , yd

˘

pW
n

p qj dλ

ˇ

ˇ

ˇ

ˇ

2
ff1{2

.

We now introduce the following notation for any λ P p0, 1q,

Y j
y,n,ppλq “

´

py ´W
n

p q1, . . . , py ´W
n

p qj´1, py ´ λW
n

p qj , yj`1, . . . , yd

¯

Moreover, we have the following decomposition

E

«

ˇ

ˇ

ˇ

ˇ

ż 1

0

BjψpY j
y,n,ppλqqdλ

ˇ

ˇ

ˇ

ˇ

2
ff

À I ` II,

where

I “

ż 1

0

E
“

|Bj µ̄
bpY j

y,n,ppλqqpM b
p∆n

pY j
y,n,ppλqq ´ 1q|2

‰

dλ

II “

ż 1

0

E
“

|µbpY j
y,n,ppλqqBjpM b

p∆n
pY j

y,n,ppλqq ´ 1q|2
‰

dλ.

In order to control the term I, we write

I “ Z´1
V

ż 1

0

E
”

ˇ

ˇbjpY j
y,n,ppλqq expp´2Y j

y,n,ppλqq
`

M b
p∆n

pY j
y,n,ppλqq ´ 1

˘
ˇ

ˇ

2
ı

dλ.

Moreover, using Lemma 6, we get that

I À 1 `

ż 1

0

E
“

|M b
p∆n

pY j
y,n,ppλqq|2|

‰

dλ.

Finally, using Equation (42) we obtain for any λ P p0, 1q,

M b
p∆n

pY j
y,n,ppλqq “ exp

´

V pY j
y,n,ppλqq ´ V pY j

y,n,ppλq `Wtq

´
1

2

ż t

0

|bpY j
y,n,ppλq `Wsq|2 ` ∇ ¨ bpY j

y,n,ppλq `Wsqds
¯

.

Finally, leveraging on the fact that V is bounded from below, and both sµb and ∇ ¨ b are bounded, we
get

I À 1.

Step 3. We now move on to the control of term II. First, for any j P t1, . . . , du we have

BjM
b
p∆n

pY j
y,n,ppλqq

Mb
p∆n

pY j
y,n,ppλqq

“ ´

d
ÿ

i“1

ˆ
ż p∆n

0

Bjb
i
pY j

y,n,ppλq ` WsqdW i
s `

ż p∆n

0

biBjb
i
pY j

y,n,ppλq ` Wsqds

˙

Then we have II ď IIA ` IIB , where

IIA “ 2

ż 1

0

E

«

|µbpY j
y,n,ppλqqM b

p∆n
pY j

y,n,ppλqq

d
ÿ

i“1

ż p∆n

0

Bjb
ipY j

y,n,ppλq `Wsq dW i
s |2

ff

dλ
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IIB “ 2

ż 1

0

Er|µ̄bpY j
y,n,ppλqqM b

p∆n
pY j

y,n,ppλqq

d
ÿ

i“1

ż p∆n

0

pbiBjb
iqpY j

y,n,ppλq `Wsq|2sdλ

Moreover using consecutively Jensen and Cauchy-Schwarz inequalities, we obtain

IIA À

d
ÿ

i“1

ż 1

0

E
”
ˇ

ˇ

ˇ
µbpY j

y,n,ppλqqM b
p∆n

pY j
y,n,ppλqq

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

2ı

dλ

À

d
ÿ

i“1

ż 1

0

Er|µbpY j
y,n,ppλqqM b

p∆n
pY j

y,n,ppλqq|4s1{2E
”
ˇ

ˇ

ˇ

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

4ı1{2

dλ.

Moreover, from Equation (42) and the boundedness of µ̄b, we get once again
ż 1

0

E
”

ˇ

ˇµbpY j
y,n,ppλqqM b

p∆n
pY j

y,n,ppλqq
ˇ

ˇ

4
ı1{2

À 1.

Then, we only need to deal for each i P t1, . . . , du with

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

ż p∆n

0

Bjb
ipY j

y,n,ppλq `Wuq dW i
u

ˇ

ˇ

ˇ

ˇ

ˇ

4
fi

fl .

Let Gp,∆n “ σpWk∆n , 0 ď k ď pq, the σ-field generated by the discrete observation of W at times
k∆n for k P t0, . . . , pu, so that conditionally on Gp,∆n

,

$

’

&

’

%

dWu “ Ik du` dW˚,k
u ,

dW˚,k
u “

´W˚,k
u

pk`1q∆n´u du` dBk
u,

(47)

in distribution, where for each k P t0, . . . , p´ 1u

Ik :“
Wpk`1q∆n

´Wk∆n

∆n
,

W˚,k is a Brownian Bridge on rk∆n; pk ` 1q∆ns, and Bk is a d-dimensional Brownian motion inde-
pendent of Gp,∆n . Then, we write

Eb
”
ˇ

ˇ

ˇ

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

4ı

“ Eb
”

Eb
”
ˇ

ˇ

ˇ

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

“Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À

´

Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqIiℓ du
ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

` Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq
W˚,ℓ,i

u

pℓ` 1q∆n ´ u
du

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

` Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqdBℓ,i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı¯

.

Using both boundedness of the partial derivatives and Jensen inequality, we get

Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqIiℓ du
ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À p3∆4
nE

”

p´1
ÿ

ℓ“0

I4ℓ

ı

À p4∆2
n.

For the second term, let us remark that by definition of the Brownian Bridge, for any i P t1, . . . , du,
ℓ P t0, . . . , p ´ 1u and u P rℓ∆n, pl ` 1q∆ns, we have W˚,ℓ,i

u is gaussian variable with ErW˚,ℓ,i
u s “ 0

and VarrW˚,ℓ,i
u s “ u, as W˚,ℓ,i

ℓ∆n
“ W

˚,ℓ,i
pℓ`1q∆n

“ 0. This allows us to obtain

Er|W˚,ℓ,i
u |4s “

ppℓ` 1q∆n ´ uq4pu´ ℓ∆nq4

∆4
n

.
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Using once again the boundedness of sµb, we obtain

Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq
W˚,ℓ,i

u

pℓ` 1q∆n ´ u
du

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À p4∆2
n.

Lastly, we use the Burkholder-Davis-Gundy Inequality to handle the final term. Every previous step
has paved the way for this one. Conditionally to Gp,∆n , we have that for each i P t1, . . . , du

´

ż t

0

Bjb
ipY j

y,n,ppλq `WuqdBℓ,i
u

¯

tě0
,

is a martingale. This would not have been true without the conditioning. Then, we get

Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqdBℓ,i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À

´

ż p∆n

0

Bjb
ipY j

y,n,ppλq `Wuq2du
¯2

À p2∆2
n.

We obtain

Eb
”
ˇ

ˇ

ˇ

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WuqdW i
u

ˇ

ˇ

ˇ

4ı

À p4∆2
n.

Combining this to (47) gives IIA À p2∆n which is bounded, thanks to Equation (39).

Step 4. Control of IIB . Using Cauchy-Schwarz inequality, we get

IIB À

d
ÿ

i“1

ż 1

0

Eb
”
ˇ

ˇ

ˇ

ż p∆n

0

b

µbpY j
y,n,ppλqqpbiBjb

iqpY j
y,n,ppλq `Wuqdu

ˇ

ˇ

ˇ

4ı1{2

dλ.(48)

Moreover for i P t1, . . . , du and λ P p0, 1q,

E
”
ˇ

ˇ

ˇ

ż p∆n

0

b

µbpY j
y,n,ppλqqpbiBjb

iqpY j
y,n,ppλq `Wuqdu

ˇ

ˇ

ˇ

4ı

À pp∆nq3
ż p∆n

0

ErµbpY j
y,n,ppλqq

2
pbiBjb

iqpY j
y,n,ppλq `Wuq4sdu

À pp∆nq3
ż p∆n

0

ErµbpY j
y,n,ppλqq

2
bipY j

y,n,ppλq `Wuq4sdu

À pp∆nq4,

where, at the last line we used a similar argument as the one of the proof of Lemma 6 to bound
EbrµbpY j

y,n,ppλqq
2
bipY j

y,n,ppλq ` Wuq4s uniformly in n, p, y, u, i and λ. Therefore IIB À pp∆nq2, and
II À 1.

Conclusion. Combining the previous four steps, we have

|Erµbpy ´W
n

p qpM b
p∆n

py ´W
n

p q ´ 1qs| À
a

p∆n

and therefore, for all x P Rd,

(49) B2pxq À
a

p∆n,

which concludes the proof.

APPENDIX C. PROOF OF PROPOSITION 2

We now plan to use Proposition 1 to prove the estimate (21). Recall that for all x P Rd, pµn,h,ppxq is
defined in Equation (20) by

pµn,h,ppxq “
ÿ

uγpνn,h,ppx` γrτn,pq

where the sum holds over all γ “ pγ1, . . . , γdq P t0, . . . , ℓud. Thus Proposition 1 ensures that (21) is
proved once we control the following quantity

ˇ

ˇ

ÿ

uγErµbpx` rτn,ppγ ´ ζqqs ´ µbpxq
ˇ

ˇ(50)
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We first provide a technical Lemma in dimension d “ 1.

Lemma 7. Let f : R Ñ R be a α-Hölder function and ζ be a standard real Gaussian variable. Then we have

ˇ

ˇ

l
ÿ

γ“0

uγErfpx` τpγ ´ ζqqs ´ fpxq
ˇ

ˇ ď τα
L

tαu

l
ÿ

γ“0

Er|γ ´ ζ|αs.

Proof. By Taylor formula and using the α-Hölder property of f , we get the existence of ε P r0, 1s such
that

l
ÿ

γ“0

uγErfpx` τpγ ´ ζqqs “

l
ÿ

γ“0

uγ

tαu´1
ÿ

k“0

f pkqpxq

k!
Erpγ ´ ζqks `Rα,lpεq

“

tαu´1
ÿ

k“0

f pkqpxq

k!

l
ÿ

γ“0

uγ

k
ÿ

β“0

k!

β!pk ´ βq!
p´1qβmβγ

k´β `Rα,lpεq,

where

Rα,lpεq “ E
”

l
ÿ

γ“0

f ptαuqpx` ετpγ ´ ζqq

ptαuq!
pτεqtαupγ ´ ξqtαu

ı

.

Then, from Equation (19), we get that
řl

γ“0 uγ
řtαu´1

k“0 f pkqpxqErpγ´ ζqks{k! “ fpxq. Moreover as f is
α-Hölder, we conclude that

Rα,lpεq ď τα
L

tαu

l
ÿ

γ“0

Er|γ ´ ζ|αs.

□

We now extend Lemma 7 to our setup using an appropriate induction. We first introduce θ “

θpx,γ, n, pq “ x` γrτn,p P Rd. We prove by induction on 0 ď I ď d that for any 0 ď γI`1, . . . , γd ď l,

ˇ

ˇ

l
ÿ

γI“0

. . .
l
ÿ

γ1“0

I
ź

i“1

uγi
Erµbpθ ´ rτn,pζqs ´ Erµbpx1, . . . , xI , θI`1 ´ rτn,pζI`1, . . . , θd ´ rτn,pζdqs|,

is bounded up to some constant by
řI

i“1 rτ
αi
n,p. For I “ 0, this is trivial and for I “ d, the second

expectation does not contain any random variable any-more and thus equals µbpxq, which proves
Equation (50). Let I ă d at which this property is proved. We fix 0 ď γI`2, . . . , γd ď l. We have

l
ÿ

γI`1“0

. . .
l
ÿ

γ1“0

I`1
ź

i“1

uγi
Erµbpθ ´ rτn,pζqs “

l
ÿ

γI`1“0

uγI`1

l
ÿ

γI“0

. . .
l
ÿ

γ1“0

I
ź

i“1

uγi
Erµbpθ ´ rτn,pζqs

Recall also that by Assumption, µb is αI`1-Hölder regular in the pI ` 1q-th variable. Therefore, by
induction and using Lemma 7 we get

ˇ

ˇ

ˇ

l
ÿ

γI`1“0

uγI`1
Erµbpx1, . . . , xI , θI`1 ´ rτn,pζI`1, . . . , θd ´ rτn,pζdq|ζI`2, . . . , ζds

´ µbpx1, . . . , xI`1, θI`2 ´ rτn,pζI`2, . . . , θd ´ rτn,pζdq

ˇ

ˇ

ˇ
À rταI`1

n,p .

Note that Lemma 7 ensures that the last inequality holds up to a constant uniformly in n, p, b.

APPENDIX D. PROOF OF PROPOSITION 3

D.1. Structure and completion of the proof. First note that by (28), it enough to prove Proof of
Proposition 3 with pνn,h,ppxq instead of pµn,h,ppxq. We now introduce the main notations used in this
proof. Let np “ tn{pu. For each j, we write

rξj “
1

?
p

p´1
ÿ

ℓ“0

ξj`ℓ
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so that prξjqj is a sequence of i.i.d standard d-dimensional Gaussian variables. Then we write

(51) Cb
ppk;xq “ Covbµb

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξk , Khpx´ p´1

p´1
ÿ

ℓ“0

Xℓ∆n `
τn
?
p
rξ0

¯

.

for each k and x, and

Cb
ppk;x, u, vq “ Covbµb

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` uq ,Khpx´ p´1

p´1
ÿ

ℓ“0

Xℓ∆n
` vq

¯

(52)

Db
ppk;x, u, vq “ Eb

µbrKhpx´
1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` uqKhpx´

1

p

p´1
ÿ

ℓ“0

Xℓ∆n
` vqs(53)

for each k, x, u and v. Note that for k ą 0, the noises rξ0 and rξk are independent and therefore

Cb
ppk;xq ď

ż

Rd

ż

Rd

Cb
ppk;x, u, vqχp,npduqχp,npdvq(54)

where χp,n stands for the law of τnp´1{2
rξ0 so that χp,npduq “ φτnp´1{2puqdu. Moreover, we also have

(55) Cb
ppk;xq ď

ż

Rd

ż

Rd

Db
ppk;x, u, vqχp,npduqχp,npdvq

By definition of pνn,h,ppxq, we have

Varbµbppνn,h,ppxqq “ Varbµb

´ 1

np

np´1
ÿ

k“0

Khpx´
1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

“
1

n2p

np´1
ÿ

i,j“0

Covbµb

´

Khpx´
1

p

p´1
ÿ

ℓ“0

Xpip`ℓq∆n
`
τn
?
p
rξiq ,Khpx´

1

p

p´1
ÿ

ℓ“0

Xpjp`ℓq∆n
`
τn
?
p
rξjq

¯

.

Since X and ξ are both ergodic and mutually independent, we deduce that

Varbµb

´ 1

np

np´1
ÿ

k“0

Khpx´
1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

“
2

n2p

np´1
ÿ

k“0

pnp ´ kqCb
ppk;xq.(56)

We now present several bounds on the coefficients Cb
ppk;xq.

Lemma 8 (Instantaneous correlations). For each k ě 0, we have

Cb
ppk;xq À

d
ź

i“1

h´1
i .

Lemma 9 (Short-term correlations). For any 1 ď k1 ď d and any k ě 2, we have

Cb
ppk;xq À pkp∆nq´k1{2

d
ź

i“k1`1

h´1
i .

Lemma 10 (Mid-term correlations). For any k ě 1 such that pk ´ 1qp∆n ě 1, we have

Cb
ppk;xq À 1.

Lemma 11 (Long-term correlations). For any k ě 1, we have

Cb
ppk;xq À e´C´1

PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2

.

Following [AG23], the rest of the proof consists in identifying the best way to combine these
lemmas with (56), depending on d and k0. Recall that k0 is such that α1 “ ¨ ¨ ¨ “ αk0 ă αk0`1 ď ¨ ¨ ¨ ď

αd. We now introduce 0 ď j1 ď j2 ď j3 ď j4 such that j3 “ rpp∆nq´1s and

j4 “ max

˜

min

˜[

´2CPI log
śd

i“1 hi
p∆n

_

, np

¸

, j3

¸

.
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Then we have

1

n2p

np´1
ÿ

k“0

pnp ´ kqCb
ppk;xq “

1

n2p

´

j1
ÿ

k“0

`

j2
ÿ

k“j1`1

`

j3
ÿ

k“j2`1

`

j4
ÿ

k“j3`1

`

np´1
ÿ

k“j4`1

¯

pnp ´ kqCb
ppk;xq.

For the first sum, we use Lemma 8 so that we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi
pj1 ` 1q.

For the second and third sums, we use Lemma 9 for some 1 ď k1 ď d and 1 ď k2 ď d to be chosen
later. In that case, we get

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´k1{2
d
ź

i“k1`1

h´1
i ,

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´k2{2
d
ź

i“k2`1

h´1
i . .

Since j3k∆n ě 1, we use Lemma 10 for the fourth sum and we get

1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À

1

np
pj4 ´ j3q.

Using the definition of j4, we have

1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À min

˜

´2CPI log
śd

i“1 hi
npp∆n

, 1

¸

.

Using also that npp∆n Á Tn, we get

(57)
1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À min

˜

řd
i“1 | log hi|

Tn
, 1

¸

.

For the last sum, we use Lemma 11 and we have

1

n2p

np´1
ÿ

k“j4`1

pnp ´ kqCb
ppk;xq À

1

np

np´1
ÿ

k“j4`1

Cb
ppk;xq

À
1

np

np´1
ÿ

k“j4`1

e´C´1
PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2

À
1

Tn
e´C´1

PI j4p∆n

´

d
ź

i“1

h´1
i

¯2

.

Using the definition of j4, we have

(58)
1

n2p

np´1
ÿ

k“j4`1

pnp ´ kqCb
ppk;xq À

1

Tn
`

1

Tn
e´C´1

PITn

´

d
ź

i“1

h´1
i

¯2

.

Case d “ 1, 2. Taking j1 “ 0, j2 “ j3 and k1 “ d, we obtain

2

n2p

j2
ÿ

k“j1`1

Cb
ppk;xq À

2

n2p

j2
ÿ

k“1

pnp ´ kq
1

kp∆n

À
logpj2q

npp∆n
“

| logpp∆nq|

Tn
.

and therefore

Varbµbppνn,h,ppxqq À
p∆n

Tn

d
ź

i“1

h´1
i `

| logpp∆nq|

Tn
`

d
ÿ

i“1

| logphiq|

Tn
`

1

Tn
e´CTn

˜

d
ź

i“1

h´1
i

¸2

.
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Case d ě 3, k0 “ 1 and α2 ă α3 or k0 “ 2. We take k1 “ 2 and k2 “ d and

j1 “

Z

h1h2
p∆n

^

and j2 “

[

p
ś

iě3 hiq
2

d´2

p∆n

_

.

Therefore we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

h1h2
p∆n

`
1

np

d
ź

i“1

h´1
i

À
1

Tn
śd

i“3 hi
`

1

np

d
ź

i“1

h´1
i

and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´1
d
ź

i“3

h´1
i

À n´1
p logpj2{j1qpp∆nq´1

d
ź

i“3

h´1
i

À T´1
n

d
ÿ

i“1

| logphiq
d
ź

i“3

h´1
i

and

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´d{2

À n´1
p j

1´d{2
2 pp∆nq´d{2

À T´1
n p

ź

iě3

hiq
´1.

Combining these three bounds with (57) and (58), we get

Varbµbppνn,h,ppxqq À
1

Tn
śd

i“3 hi
`

1

np

d
ź

i“1

h´1
i `

1

Tn

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i

which proves (25).

Case d ě 3, k0 ě 3. We take k1 “ k0 and k2 “ d and

j1 “

—

—

—

—

–

´

śk0

i“1 hi

¯2{k0

p∆n

ffi

ffi

ffi

ffi

fl

and j2 “

Z

1

p∆n

^

.

Therefore, we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

´

śk0

i“1 hi

¯2{k0

p∆n
`

1

np

d
ź

i“1

h´1
i

À
1

Tn

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i `

1

np

d
ź

i“1

h´1
i ,

and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´k0{2
d
ź

i“k0`1

h´1
i

À n´1
p j

1´k0{2
1 pp∆nq´k0{2

d
ź

i“k0`1

h´1
i
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À T´1
n

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i ,

and using that j3 ď j2 ` 1

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p pj2 ` 1q´d{2pp∆nq´d{2 À
1

np
.

Combining these three bounds with (57) and (58), we get

Varbµbppνn,h,ppxqq À T´1
n

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i `

1

np

d
ź

i“1

h´1
i `

řd
i“1 | log hi|

Tn

which proves (26).

Case d ě 3, k0 “ 1 and α2 “ α3 We take k1 “ 1 and k2 “ 3,

j1 “ 0 and j2 “

Z

h2h3
p∆n

^

.

Therefore, we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´1{2
d
ź

2

h´1
i

À n´1
p j

1{2
2 pp∆nq´1{2

d
ź

i“2

h´1
i

À T´1
n ph2h3q´1{2

d
ź

i“4

h´1
i

and

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´3{2
d
ź

i“4

h´1
i

À n´1
p j

´1{2
2 pp∆nq´3{2

d
ź

i“4

h´1
i

À T´1
n ph2h3q´1{2

d
ź

i“4

h´1
i

Combining these three bounds with (57) and (58), we get

Varbµbppνn,h,ppxqq À

řd
i“1 | log hi|

Tn
`

1

np
śd

i“1 hi
`

1

Tn
?
h2h3

d
ź

i“4

h´1
i

which proves (27).

D.2. Proof of Lemma 8. Since X and ξ are both ergodic and mutually independent we have by
Cauchy-Schwarz inequality

Cb
ppk;xq ď VarbµbpKhpx´ p´1

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξkqq

ď Eb
µb

”

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξkq2

ı

.
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Using the notations of Section 7, we know that p´1
řp´1

ℓ“0 Xpkp`ℓq∆n
` τnp

´1{2
rξk has a density under

Pp
µb given by

µb
p,npzq :“

ż

Rd

ż

Rd

µbpyqpbp,npy; uqφτnp´1{2pz ´ uqdy du

Moreover, for all z P Rd,

|µb
p,npzq| ď }sµb}8

ż

Rd

ˆ
ż

Rd

pbp,npy; uq dy

˙

φτnp´1{2pz ´ uq du

ď }sµb}8.

Then, performing a change of variable gives

Cb
ppk;xq “

ż

Rd

µb
p,npzqKhpx´ zq2 dz “

´

d
ź

i“1

h´1
i

¯

ż

Rd

µb
p,npx` hzqKpzq2 dz À

d
ź

i“1

h´1
i

since K P L2 .

D.3. Proof of Lemma 9. First recall from Section 7 that the process

pp´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
, Xpk`1qp∆n

qkPN

is stationary with law denoted sπb on R2d. Using also that X is a Markov process, we get that for all
pu, vq P Rd ˆ Rd, we have

Db
ppk;x, u, vq

“

ż

Rd

ż

Rd

EbrKhpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` vq|Xp∆n “ zsKhpx´ rω ` vqπ̄bprω; zqdz drω

“

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωqpbp,n,pk´1qp∆n
pz; ωqsπbprω; zq drω dω dz.

where pbp,n,pk´1qp∆n
is also defined in Section 7. Moreover, we know from Lemma 4 that there exists

λ1 ą 0 such that

sπbprω; zq À
1

pp∆nqd{2
e´V pzq´

λ1
p∆n

|rω´z|
2

À
1

pp∆nqd{2
e´

λ1
p∆n

|rω´z|
2

.

From Corollary 1, we also have

pbp,n,pk´1qp∆n
px, yq À

1

p2pk ´ 1qpλ1qd{2pp∆nqd{2
exp

´

´
λ1

p1 ` 2pk ´ 1qq∆n
|x´ y|2

¯

.

Then, we combine these two estimates using Lemma 15. For all ω, rω P Rd, we have
ż

Rd

pbp,n,pk´1qp∆n
pz, rωqsπbpω, zqdz À

1

pp1 ` pk ´ 1qλ1qp∆nqd{2
exp

´

´
|ω ´ rω|2

p1 ` pk ´ 1qλ1qp∆n

¯

.

Then,

Db
ppk;x, u, vq À

ż

Rd

ż

Rd

|Khpx` v ´ ωqKhpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drωdω

ď

ż

Rd

|Khpx` v ` ωq|

ż

Rd

|Khpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drωdω.

where s “ p1 ` pk ´ 1qλ1qp∆n. We first focus on the inner integral. We recall that for any z “

pz1, . . . , zdq P Rd,

Khpzq “

d
ź

i“1

h´1
i Kph´1

i ziq,
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and using that K is integrable, we obtain for any i P t1, . . . , du,

(59)

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯
ˇ

ˇ

ˇ

1
?
s
exp

´

´
|ωi ´ rωi|

2

s

¯

drωi À

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯
ˇ

ˇ

ˇ

1
?
s
drωi

À
1

?
s

ż

R

ˇ

ˇ

ˇ
Kppωiq

ˇ

ˇ

ˇ
dpωi

À
1

?
s
.

Using that K is bounded, we also have

(60)

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯
ˇ

ˇ

ˇ

1
?
s
exp

´

´
|ωi ´ rωi|

2

s

¯

drωi À

ż

R

1
?
shi

exp
´

´
|ωi ´ rωi|

2

s

¯

drωi

À
1

hi
.

Combining the bounds given by Equations (59) and (59), we obtain that for any 1 ď k1 ď d,
ż

Rd

|Khpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drω À
1

sk1{2
śd

i“k1`1 hi
,

and therefore we have

Db
ppk;x, u, vq À

1

sk1{2
śd

i“k1`1 hi

ż

Rd

|Khpx` v ` ωq|dω À
1

sk1{2
śd

i“k1`1 hi
.

By definition of s, we obtain

Db
ppk;x, u, vq À

1

pkp∆nqk1{2
śd

i“k1`1 hi
.

The results on Cb
ppk;xq follows by integrating (55).

D.4. Proof of Lemma 10. We begin by extending the bound on pbp,n,tp¨, ¨q given by Corollary 1 for
t ą 1. In fact, for x, y P Rd and t ą 1, we get using Markov property

pbp,n,tpx; yq “

ż

Rd

pbtpx; zqpbp,npz; yqdz.

Moreover, using the fact that X is a Markov process, we have that

pbp,n,tpx; yq “

ż

Rd

´

ż

Rd

pb1{2px, ωqpbt´1{2pω, zqdω
¯

pbp,npz; yqdz

From Lemma 3, we know that

pb1{2px, ωq À exp
`

´ |x´ ω|2 ` V pxq ´ V pωq
˘

and therefore using that V is bounded below, we have

pbp,n,tpx; yq À eV pxq

ż

Rd

´

ż

Rd

pbt´1{2pω; zqdω
¯

pbp,npz; yqdz À eV pxq.

Moreover, we know from Lemma 4 that there exists λ1 ą 0 such that

sπbprω; zq À
1

pp∆nqd{2
e´V pzq´

λ1
p∆n

|rω´z|
2

.

Proceeding as for Lemma 9, we have

Db
ppk;x, u, vq

“

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωqpbp,n,pk´1qp∆n
pz; ωqsπbprω; zq drω dω dz

À

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωq
1

pp∆nqd{2
e´

λ1
p∆n

|rω´z|
2

drω dω dz.
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Using that

1

pp∆nqd{2

ż

Rd

exp
´

´
λ1
p∆n

|z ´ ω|2
¯

dz “

´4π

λ1

¯d{2

,

we obtain

Db
ppk;x, u, vq À

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωq drω dω

and using the usual change of variable and the fact that |K| is integrable, we get

Db
ppk;x, u, vq À 1.

The result on Cb
ppk;xq follows by integrating (55).

D.5. Proof of Lemma 11. For h “ ph1, . . . , hdq P p0, 1qd and y P Rd, we define

Khpyq “

ż

Rd

Khpx´ y ` uqχp,npduq,

and

Kc
hpyq “ Khpyq ´ EµbrKhp

1

p

p´1
ÿ

ℓ“0

Xℓ∆n
qs.

Then we have by definition

Cb
ppk;xq ď

ż

Rd

ż

Rd

Cb
ppk;x, u, vqχp,npduqχp,npdvq

ď Eb
µb

”

Kh

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kh

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

´ Eb
µb

”

Kh

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı2

,

ď Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

.

Moreover, we write tAk, k ě 0u for the natural filtration induced by the lifted Markov chain
pp´1

řp´1
ℓ“0 Ykp`ℓ,n, Xpk`1qp∆n

qkPN. Then using Cauchy-Schwarz inequality, we have

ˇ

ˇ

ˇ
Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ıˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Eb
µb

”

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
A0

ı

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı
ˇ

ˇ

ˇ

ď Eb
µb

”

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
A0

ı2ı1{2

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯2ı1{2

.

The second expectation is treated as in Lemma 8 and we have

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯2ı1{2

À

d
ź

i“1

h´1
i .

For the first one, we use that X is a stationary Markov process to get

Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
A0

ı2ı

“ Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
Fp∆n

ı2ı

“

ż

Rd

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

|Xp∆n
“ x

ı2

µbpdxq

“

ż

Rd

Eb
”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
Xkp∆n

ı

|Xp∆n
“ x

ı2

µbpdxq
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Defining φ : y ÞÑ Eb
”

Kc
h

´

1
p

řp´1
ℓ“0 Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
Xkp∆n

“ y
ı

, we get that for any x P Rd,

EbrφpXkp∆nq|Xp∆n “ xs “ Eb
xrφpXpk´1qp∆n

qs “ P b
pk´1qp∆n

φpxq,

where pP b
t q is defined in Equation (7). Moreover, from the definition of Kc, we get Eb

µbrφpX0qs “ 0.
Then, using Equation (6), we have

Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
Fp∆n

ı2ı

“ VarbµbrP b
pk´1qp∆n

φpX0qs

ď e´2C´1
PI pk´1qp∆nEb

µbrφpX0q2s.

Moreover, for all x P Rd, |φpxq| ď 2}Kc
h}8 ď 2}Kh}8. Then, we have }φ}8 À

śd
i“1 h

´1
i . Combining

all previous inequalities, we get

Cb
ppk;xq À e´C´1

PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2

.

APPENDIX E. PROOF OF THE RESULTS OF SECTION 4.1

E.1. Preliminary results. In this section, we aim at proving Lemma 1 and other results used in
the proof of the results of Section 4.1. We start by introducing a concise notation. We say that
Apθq À Bpθq implies Cpθq À Dpθq, if for all c1 ą 0, there exists c2 ą 0 such that Apθq ď c1Bpθq

implies Cpθq ď c2Dpθq. We define similarly the equivalence between Apθq À Bpθq and Cpθq À Dpθq.
We can now state the main Lemma of this section.

Lemma 12. For p ě 1, the condition p∆n À wHF
n is equivalent to p∆n À rwHF

n,p with

rwHF
n,p “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

`

p
n

˘
1
2 log

´

n
p

¯
1
2

if d “ 1, 2
´

p
n

¯
α

2α`d p 1
α1

` 1
α2

q

log
´

n
p

¯

if d ě 3 and pα, k0q P D1,
´

p
n

¯
2α

2α`d
1

α1 if d ě 3 and pα, k0q P D2,

´

p
n

¯
α

p2α`dq

´

1
α1

` 1
α2

¯

if d ě 3 and d ě 3 and pα, k0q P D3.

Proof. First note that since Tn “
np∆n

p , the condition

p∆n À T´u
n logpTnqv

for some u, v ě 0, is equivalent to

p∆n À

´ p

n

¯
u

1`u

log
´n

p

¯
v

1`u

.

If u “ α3

2α3`d´2

´

1
α1

` 1
α2

¯

, we have

u “
1

2 ` d´2
α3

α1 ` α2

α1α2
“

1

2 ` d
α ´ 1

α1
´ 1

α2

α1 ` α2

α1α2
“

αpα1 ` α2q

α1α2p2α ` dq ´ αpα1 ` α2q

and therefore
u

1 ` u
“

αpα1 ` α2q

α1α2p2α ` dq
“

α

2α ` d

´ 1

α1
`

1

α2

¯

,

which proves the case d ě 3 and k0 “ 1 with α2 ă α3 or k0 “ 2. The other cases are done similarly.
□

A particular case is the case where p “ 1, restated as follows

Lemma 13. The condition ∆n À wHF
n is equivalent to ∆n À rwHF

n with rwHF
n “ rwHF

n,1

Proof of Lemma 1. From Lemma 12, we know that p∆n À wHF
n is equivalent to p∆n À rwHF

n,p . Using
that α1 ą 2, we check that

rwHF
n,p ě

´ p

n

¯
2α

2α`d
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and therefore we have Lemma 1. □

E.2. Proof of Proposition 4. Suppose that p˚∆n ď wHF
n and that τ2α1

n ď ∆n and recall that in that
case, we take

p˚ “ 1 and h˚
“ h˚,HF

From Proposition 2, we see by plugging these values that

Bb
n,h,ppxq À τ2α1

n ` vHF
n .

Note also that | logph˚
i q| is of the order of logpTnq and that by definition of h˚, we have

vHF
n À T´1

n

$

’

’

’

’

&

’

’

’

’

%

řd
i“1 | logph˚

i q| if d “ 1, 2
řd

i“1 | logph˚
i q|

śd
i“3ph˚

i q´1 if d ě 3 and pα, k0q P D1

p
śk0

i“1ph˚
i qp2´k0q{k0

śd
i“k0`1ph˚

i q´1 if d ě 3 and pα, k0q P D2

ph˚
2h

˚
3 q´1{2

śd
i“4ph˚

i q´1 if d ě 3 and pα, k0q P D3.

Therefore, by factorizing by vHF
n the variance bound from Proposition 3, we have

Vb
n,h˚,p˚ pxq À vHF

n p1 ` rHF
n q,

with

rHF
n “

$

’

’

’

’

&

’

’

’

’

%

0 if d “ 1, 2

∆nph˚
1h

˚
2 q´1 logpTnq´1 if d ě 3 and pα, k0q P D1

∆n

śk0

i“1ph˚
i q´2{k0 ` logpTnq

śk0

i“1ph˚
i q´2{k0

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

logpTnqph˚
2h

˚
3 q1{2

śd
i“4 h

˚
i ` ∆nh

´1
1 ph˚

2h
˚
3 q´1{2 if d ě 3 and pα, k0q P D3

and it remains to prove that in each case, the remainder can be ignored so that Vb
n,h,ppxq À vHF

n .
First note that the condition ∆n À wHF

n and the definition of h˚ ensures that

∆n À

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

h˚
1 logpTnq if d “ 1

h˚
1h

˚
2 logpTnq if d “ 2

h˚
1h

˚
2 logpTnq if d ě 3 and pα, k0q P D1

śk0

i“1ph˚
i q2{k0 if d ě 3 and pα, k0q P D2

h˚
1 ph˚

2h
˚
3 q1{2 if dd ě 3 and pα, k0q P D3

and therefore

rHF
n À

$

’

’

&

’

’

%

0 if d “ 1, 2 or d ě 3 and pα, k0q P D1

logpTnq
śk0

i“1ph˚
i q´2{k0

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

logpTnqph˚
2h

˚
3 q1{2

śd
i“4 h

˚
i if d ě 3 and pα, k0q P D3

Then we easily check that if d ě 3 and k0 ě 3, we have

logpTnq

k0
ź

i“1

ph˚
i q´2{k0

d
ź

i“1

h˚
i “ logpTnqT

´
ᾱ2

ᾱ3`d´2

řd
j“k0`1 1{αj

n Ñ 0.

Analogously, if d ě 3 and k0 “ 1 with α2 “ α3, we have

logpTnqph˚
2h

˚
3 q´1{2

d
ź

i“4

h˚
i “ logpTnqc`1T´c

n Ñ 0,

with

c “
ᾱ3

2ᾱ3 ` d´ 2

˜

1

2α2
`

1

2α3
`

d
ÿ

i“4

1

αi

¸

ą 0

so that
Vb

n,h˚,p˚ pxq À vHF
n

which concludes the proof of Proposition 4.
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E.3. Proof of Proposition 5. Suppose that p˚∆n ď wHF
n and that τ2α1

n ě ∆n and recall that in that
case, we take

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚
“ h˚,HF

From Proposition 2, we see by plugging these values that

Bb
n,h˚,p˚ pxq À

τ2α1
n

pp˚qα1
` pp˚∆nq1{2 ` vHF

n À
`

τ2n∆n

˘

α1
1`α1 ` vHF

n .

For the variance, we proceed as for Proposition 5: using that p˚∆n À wHF
n ad h˚

“ h˚,HF , we
have from Proposition 3 that

Vb
n,h˚,p˚ pxq À vHF

n .

so we can conclude.

E.4. Proof of Proposition 6. Suppose that ∆n ě wHF
n and that τ2α1

n ď ∆n and recall that in that
case, we take

p˚ “ 1 and h˚
“ h˚,1

“ h˚,LF

From Proposition 2, we see by plugging these values that

Bb
n,h,ppxq À τ2α1

n ` vHF
n .

We now study the variance. First, note that

T´1
n ∆n

d
ź

i“1

ph˚
i q´1 “ n

´2α
2α`d “ vLF

n .

Therefore, by factorizing by vLF
n the variance bound from Proposition 3 and using that | logph˚

i q| is
of the order of logpnq, we have

Vb
n,h˚,p˚ pxq À vLF

n p1 ` rLF
n q,

with

rLF
n “

$

’

’

’

’

&

’

’

’

’

%

0 if d “ 1, 2

∆´1
n logpnqh˚

1h
˚
2 if d ě 3 and pα, k0q P D1

∆´1
n

śk0

i“1ph˚
i q2{k0 ` logpnq∆´1

n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

logpnq∆´1
n

śd
i“1 h

˚
i ` ∆´1

n h1ph˚
2h

˚
3 q1{2 if d ě 3 and pα, k0q P D3

Using Lemma 13 and the fact that ∆n Á wHF
n , we know that ∆n Á rwHF

n . Using also the definition
of h˚, we check that

(61) ∆n Á

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

h˚
1 | logph˚

1 q| if d “ 1

h˚
1h

˚
2 | logph˚

1h
˚
2 q| if d “ 2

h1h2 logpnq if d ě 3 and pα, k0q P D1
śk0

i“1ph˚
i q2{k0 if d ě 3 and pα, k0q P D2

h˚
1 ph˚

2h
˚
3 q1{2 if d ě 3 and pα, k0q P D3.

and therefore

Vb
n,h˚,p˚ pxq À vLF

n

$

’

’

&

’

’

%

1 if d “ 1, 2 or d ě 3 and pα, k0q P D1

1 ` logpnq∆´1
n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

1 ` logpnq∆´1
n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D3.

We conclude the proof of Proposition 6 using (61) to get

logpnq∆´1
n

d
ź

i“1

h˚
i À

$

’

’

&

’

’

%

logpnq
śk0

i“1ph˚
i qp2´k0q{k0

śd
i“k0`1 h

˚
i if d ě 3 and pα, k0q P D2

ph˚
2h

˚
3 q1{2

śd
i“4 h

˚
i if d ě 3 and pα, k0q P D3.

so that

logpnq∆´1
n

d
ź

i“1

h˚
i Ñ 0,
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as n Ñ 8.

E.5. Proof of Proposition 7. Suppose that p˚∆n ě wHF
n and that τ2α1

n ě ∆n. and recall that in that
case, we take

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚
“ h˚,p˚

From Proposition 2, we see by plugging these values that

Bb
n,h˚,p˚ pxq À

`

τ2n∆n

˘

α1
1`α1 `

´p˚

n

¯
2α

2α`d

For the variance, we proceed as for Proposition 6: using that p˚∆n Á wHF
n (and therefore that

p˚∆n Á rwHF
n by Lemma 1) and h˚

“ h˚,p˚

, we have from Proposition 3 that

Vb
n,h˚,p˚ pxq À

´p˚

n

¯
2α

2α`d

and thus

Rppµn,h˚,p˚ , b; xq À pτ2n∆nq
α1

1`α1 `

´p˚

n

¯
2α

2α`d

.

It remains to prove that pτ2n∆nq
α1

1`α1 is always dominating here. This term is indeed of the order of
p˚∆n. By Lemma 12, we have p˚∆n Á rwHF

n,p˚ so it is enough to prove that

(62)
´p˚

n

¯
2α

2α`d

À rwHF
n,p˚

Moreover, since p˚∆n Ñ 0, it is clear that p˚{n Ñ 0. Using the definition of rwHF
n,p˚ , we see that (62) is

equivalent to
$

’

’

’

’

’

&

’

’

’

’

’

%

2ᾱ ě d if d “ 1, 2
α

2α`d p 1
α1

` 1
α2

q ě 2α
2α`d if d ě 3 and pα, k0q P D1

2α
2α`d

1
α1

ě 2α
2α`d if d ě 3 and pα, k0q P D2

α
p2α`dq

´

1
α1

` 1
α2

¯

ě 2α
2α`d if d ě 3 and pα, k0q P D3.

These inequalities always hold since α1 ą 1 and α2 ą 1 so we can conclude.

APPENDIX F. PROOF OF THE RESULTS OF SECTION 5

F.1. Proof of Theorem 1. The main idea of this proof is to use general results for Markov chains to
the lifted Markov chain

´

p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n, Xpk`1qp∆n

¯

kPN
.(63)

We first introduce few definitions for Markov chains and we refer to [KM12] for more details. Con-
sider a Markov chain Υ on a given space pX,Xq. We say that Υ is ψ-ireeductible and aperiodic if
there exists a σ-finite measure ψ on pX,Xq such that for all A P X such that ψpAq ą 0, any x P X and
any n large enough, we have

Pnpx,Aq ą 0

where P denotes the transition semigroup of Υ. We say that Υ is geometrically ergodic if it admits
an invariant measure π and functions ρ : X Ñ p0, 1q and ρ : X Ñ r1,8q such that for all n ě 0 and
for π-almost x P X, we have

}Pnpx, ¨q ´ π}TV ď Cpxqρpxqn.

Intuitively, geometrically ergodic converge fast to their invariant distribution starting from almost
any point. Therefore, they must satisfy concentration properties such as Bernstein inequality. In this
section, we plan to use the following result, from [Lem21].

Theorem 4 (Theorem 1.1 in [Lem21]). Let Υ be a geometrically ergodic Markov chain with state space X,
and let π be its unique stationary probability measure. Moreover, let f : X Ñ R be a bounded measurable
function such that Eπf “ 0. Furthermore, let x P X. Then, we can find constants K, τ ą 0 depending only
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on x and the transition probability P p¨, ¨q such that for all t ą 0,

Px

˜

1

N

N´1
ÿ

i“0

f pΥiq ą t

¸

ď K exp

ˆ

´
N2t2

32Nσ2
Mrv ` τt}f}8N logN

˙

,

where

σ2
Mrv “ Varπ pf pΥ0qq ` 2

8
ÿ

i“1

Covπ pf pΥ0q , f pΥiqq

denotes the asymptotic variance of the process pf pΥiqqi.

We want to apply this Theorem to (63) and we need to check that this chain is geometrically
ergodic. An easy way to check for geometric ergodicity is to use Chapter 15 from [MT12]: any
ψ-ireeductible and aperiodic Markov chain satisfying the drift condition V4 stated below is geomet-
rically ergodic.

Assumption V4. There exists a function W : X Ñ r1,8q, a set C P X and constants δ ą 0 and b ă 8

such that

(64) PW ď p1 ´ δqW ` b1C

and such that there exists n ě 1, ε ą 0 and a probability measure ν on pX,Xq such that

(65) Pnpx,Aq ě ε1CpxqνpAq

for all x P X and A P X. In that case, we say that W is a Lyapunov function and C is a small set.

Thus the plan is to prove that the lifted chain (63) is ψ-ireeductible and aperiodic and satisfies
Assumption V4.

First remark that the Markov chain pXpk∆n
qk is clearly aperiodic and ψ-irreductible. In fact for

any x P Rd and any Borelian A P BRd of positive Lebesgue measure, and for any k ě 1, we have

(66) Pb
`

Xpk∆n P A
ˇ

ˇX0 “ x
˘

ą 0.

We deduce that the lifted Markov chain (63) is also aperiodic and ψ-irreductible by using that the
density pbp,npx; ¨, ¨q is almost everywhere positive.

Moreover, using Assumption 3, we know that the chain is geometrically ergodic. Combined
with aperiodicity and ψ-irreductibility, this ensures that pXpk∆nqk satisfies Assumption V4 and we
consider W and C as in Assumption V4. We want to prove that the same property hold for (63). We
consider ĂW : px, yq ÞÑ W pyq and rC “ Rd ˆ C. Then, for all px, yq P Rd ˆ Rd, we have

PĂW px, yq “ E
”

ĂW
´

p´1
p´1
ÿ

ℓ“0

Yp`ℓ,n, X2p∆n

¯
ˇ

ˇ

ˇ
p´1

p´1
ÿ

ℓ“0

Yp`ℓ,n “ x,Xp∆n
“ y

ı

“ E
”

ĂW
´

p´1
p´1
ÿ

ℓ“0

Yp`ℓ,n, X2p∆n

¯
ˇ

ˇ

ˇ
Xp∆n

“ y
ı

.

and therefore

PĂW px, yq ď λĂW px, yq ` b1Cpyq.

We only need to check that rC is indeed a small set. We alreadu know thatC is a small set and therefore
there exists δ ą 0 and ν P PpRdq such that for some k ě 1,

@x P C, @B P BRd , P kpx,Bq ě δνpBq.

We now define the following probability measure on R2d

rνpdx,dyq “

ż

Rd

pbp,npy;x, zqdz νpdxq dy.
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Then, for all px̄, xq P rC, we get for any Borel set of Rd, B̄, B P BRd , conditioning with respect to
Xpk∆n and using the Markov property:

Pk`1ppx̄, xq, B̄ ˆBq “

ż

Rd

pkp∆npx, x1q

ż

B̄ˆB

pbp,npx1; y, zq dy dz dx1

ě δ

ż

B̄ˆB

ż

Rd

pbp,npx1; y, zqνpdx1q dy dz

ě δrνpB̄ ˆBq,

where we used that x P C and C is a small set.

We are now ready to apply Theorem 4 to (63). We apply it with fpx1, x2q “ Khpx ´ x1q for all
x1, x2 P Rd. Thus we get

Pb
µb

´

|pνn,h,ppxq ´ Erpνn,h,ppxqs| ą ε
¯

ď K exp
´

´
N2ε2

32Nv2pα, n,h, pq ` τε}Kh}8N logN

¯

where N “ tn{pu, and

v2pα, n,h, pq “Varbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq

¯

` 2
8
ÿ

k“1

Covbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq,Khpx´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

.

In order to control the variance term, everything works exactly as in the proof of Proposition 3,
except for the last term as the sum is infinite.

F.2. Proof of Proposition 8. In this section, we will repeatedly use estimates of the form

(67)
ż 8

ν

exp p´zrq dz ď 2r´1ν1´r exp p´νrq , ν, r ą 0, ν ě p2{rq1{r.

and

(68) exp

ˆ

´
azp

b` czp{2

˙

ď exp

ˆ

´
azp

2b

˙

` exp

ˆ

´
azp{2

2c

˙

, a, b, c, z ą 0.

Before delving into the proof of Proposition 8, let us state and prove the following Lemma

Lemma 14. Under Assumptions 1, 2, 3, there exists γ ą 1 such that for any h P Hn
p ,

Eb
sµbrAp

nphqs À V n
p phq ` Bn,h,ppxq2 ` n´γ

p `
a

p∆n `
τ2α1
n

pα1
.

Proof of Lemma 14. For any η P Hp
n, we have

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
À In,ph,ηpxq ` IIn,ph,ηpxq ` IIIn,ph,ηpxq. (69)

where

In,ph,ηpxq “

!

|pµn,η,ppxq ´ Erpµn,η,ppxqs|
2

´ V p
n pηq

)

`
,

IIn,ph,ηpxq “

!

ˇ

ˇ

pµn,ph,ηq,ppxq ´ Erpµn,ph,ηq,ppxqs
ˇ

ˇ

2
´ V p

n pηq

)

`
,

IIIn,ph,ηpxq “

ˇ

ˇ

ˇ
Eb
sµbrpµn,η,ppxqs ´ Eb

sµbrpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ

2

.

Let us begin with the term In,ph,ηpxq. We write

Eb
sµb

„"

ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ

2

´ V p
n pηq

*

`

ȷ

“

ż `8

V p
n pηq

P
sµb

´ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ
ě z1{2

¯

dz

ď K

ż `8

V p
n pηq

exp

˜

´
n2pβ

2z

32npv2pα, n,η, pq ` τβ}Kη}np logpnpqz1{2

¸

dz,
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where we used at the last line the concentration inequality of Bernstein’s type given by Theorem 1.
Then, using Equation (68), we obtain

Eb
sµb

„"

ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ

2

´ V p
n pηq

*

`

ȷ

À I ` II,

where

I :“ K

ż `8

V p
n pηq

exp

ˆ

´
npβ

2z

32v2pα, n,η, pq

˙

dz ;

II :“ K

ż `8

V p
n pηq

exp

ˆ

´
npβz

1{2

τ logpnpq}Kη}8

˙

dz.

The first term can be computed explicitly

I “
32Kv2pα, n,η, pq

npβ2
exp

ˆ

´
npβ

2V p
n pηq

32v2pα, n,η, pq

˙

.

Moreover, by definition of v2pα, n,η, pq in Theorem 1, and considering the fact that η1 ď ¨ ¨ ¨ ď ηd,
we obtain v2pα, n,η, pq “ npv

p
npηq. Then,

I Àvpnpηq exp

ˆ

´
sω logpnpqβ2

32

˙

.

Moreover, we know that

vpnpηq “
1

Tn
max

#

p∆n

d
ź

i“1

η´1
i ,min

#

d
ÿ

i“1

| logpηiq|

d
ź

i“3

η´1
i , pη2η3q´1{2

d
ź

i“4

η´1
i

++

.

Using the particular structure of the grid Hp
n, we obtain vpnphq À 1 ` np{Tn, and

(70) I À n
´

sωβ2

32
p

ˆ

1 `
np
Tn

˙

.

For the second term II, using Equation (67) we obtain

II À
logpnpq}Kη}8

a

V p
n pηq

np
exp

ˆ

´
βnpV

p
n pηq1{2

τ logpnpq}Kη}8

˙

.

Moreover, we know that }Kη}8 À
śd

i“1 η
´1
i . Then,

logpnpq}Kη}8

a

V p
n pηq

np
À
vpnphq1{2 logpnpq2sω1{2

np
śd

i“1 ηi
.

Using the definition of vpnphq, we obtain
d
ź

i“1

η´1
i vpnphq

1{2
“

1
?
Tn

max

#

a

p∆n

d
ź

i“1

h
´3{2
i ,

min

#

ph1h2q
´1

d
ÿ

i“1

| logphiq|

d
ź

i“3

h
´3{2
i , h´1

1 ph2h3q
´5{4

d
ź

i“4

h
´3{2
i

++

Using once again the lower bound on the ηi for i “ 1, . . . , d, we obtain
d
ź

i“1

η´1
i vpnphq1{2 À 1 `

?
np

?
Tn
.

Finally, we can write

(71)
npV

p
n pηq1{2

logpnpq}Kη}8

Á sω1{2 logpnpq

In fact,

npV
p
n pηq1{2

logpnpq}Kη}8

Á
sω1{2np

śd
i“1 ηiv

p
npηq1{2

logpnpq1{2
,
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and
d
ź

i“1

ηiv
p
npηq1{2 “

˜

d
ź

i“1

ηi

¸1{2
1

?
Tn

max

$

&

%

a

p∆n, min

$

&

%

˜

d
ÿ

i“1

| logpηiq|η1η2

¸1{2

,
?
η1pη2η3q1{4

,

.

-

,

.

-

This ensures that
d
ź

i“1

ηiv
p
npηq1{2 ě

1
?
np

˜

d
ź

i“1

ηi

¸1{2

ě
logpnpq3{2

np
,

implying Equation (71). Finally, this ensures that for any h,η P Hp
n, we have

(72) In,ph,ηpxq À
n
1´sωβ{32
p

Tn
`
n
1{2´sω1{2β{τ
p

?
Tn

.

For the term IIn,ph,ηpxq. Observe that such a term can be treated exactly as the previous one noting
that

}Kh ˚ Kη}8 ď }Kη}8}K}1 and }Kh ˚ Kη}1 ď }K}21.

In fact, following the proofs of Lemmas 8, 9, 10 and 11, we get that for all ε ą 0

Pb
µb

´
ˇ

ˇ

ˇ
pµn,ph,ηq,ppxq ´ Eb

µ̄brpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ
ą ε

¯

ď K exp
´

´
npε

2β2

32v2pα, n,η, pq ` τβε}Kη}8 log np

¯

.

Finally, we obtain the same bound for IIn,ph,ηpxq,

IIn,ph,ηpxq À
n
1´sωβ{32
p

Tn
`
n
1{2´sω1{2β{τ
p

?
Tn

.

Finally, we consider the term IIIn,ph,ηpxq. We recall

IIIn,ph,ηpxq “

ˇ

ˇ

ˇ
Eb
sµbrpµn,η,ppxqs ´ Eb

sµbrpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ

2

.

In following, let us denote µηpxq “ Eb
sµbrpµn,η,ppxqs and µph,ηqpxq “ Eb

sµbrpµn,ph,ηq,ppxqs. Moreover,
recalling that rτn,p is defined in Equation (15) and denoting by sρn,p the law of the preaveregaed
process defined in Equation (12) under Pb

sµb , we write

(73)

µph,ηqpxq “
ÿ

γ

uγEb
sµb

“

pνn,ph,ηq,ppx` γrτn,pq
‰

“
ÿ

γ

uγ

ż

Rd

Kh ˚ Kηpx` γrτn,p ´ yqsρn,ppdyq

“
ÿ

γ

uγ ppKh ˚ Kηq ˚ sρn,pq px` γrτn,pq

“ Kη ˚

˜

ÿ

γ

uγKh ˚ sρn,pp¨ ` γrτn,pq

¸

pxq

“ Kη ˚ µhpxq.

Now, let us perform the same decomposition as in Section B (see more precisely Equations (43) and
(44)), and write

µηpxq “
ÿ

γ

uγEb
sµbrpνn,η,ppx` γrτn,pqs

“
ÿ

γ

uγB1px` γrτn,pq `
ÿ

γ

uγB2px` γrτn,pq.

For the second term on the right hand side, we obtain thanks to Equation (49) that

(74)
ÿ

γ

uγB2px` γrτn,pq À
a

p∆n.
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Moreover,
ÿ

γ

uγB1px` γrτn,pq “
ÿ

γ

uγKη ˚ psµb ˚ φ
rτn,p

qpx` γrτn,pq

“ Kη ˚

˜

ÿ

γ

uγpsµb ˚ φ
rτn,p

qp¨ ` γrτn,pq

¸

pxq.

Moreover, it is easy to see using the definition of puγqγ , that for any z P Rd,
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

uγpsµb ˚ φ
rτn,p

qpz ` γrτn,pq ´ µ̄bpzq

ˇ

ˇ

ˇ

ˇ

ˇ

À
τ2α1
n

pα1
.

Then, we can write

(75) µηpxq “ Kη ˚ sµbpxq ` εn,ppxq,

for some function εn,p such that for all x P Rd, |εn,ppxq| À
?
p∆n ` τ2α1

n {pα1 . Then, combining
Equations (73) and (75), we obtain that for all x P Rd,

IIIn,ph,ηpxq À Bn,h,ppxq2 ` p∆n `
τ2α1
n

pα1
.

Finally, using #Hp
n À Tn, we obtain that

sup
ηPH

p
n

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
À Bn,h,ppxq2 ` n1´sωβ{32

p

`
a

Tnn
1{2´sω1{2β{τ
p ` p∆n `

τ2α1
n

pα1
.

Finally, using the fact that Tn ď np and taking sω ą 2τ2{β2 _ 64{β, we get the expected result. □

We are now ready to move on to the proof of Proposition 8.

Proof of Proposition 8. Let us consider h P Hp
n, then one can write

Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

À Eb
sµb

”

ˇ

ˇ

pµn,h,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

` Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ pµn,h,ppxq
ˇ

ˇ

2
ı

.

We know that the first term on the right-hand side can be controlled in the following way

Eb
sµb

”

ˇ

ˇ

pµn,h,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

ď Bn,h,ppxq2 ` V p
n phq.

For the second term, we obtain

Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ pµn,h,ppxq
ˇ

ˇ

2
ı

À Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ pµn,ph˚,hq,ppxqs
ˇ

ˇ

2
ı

`Eb
sµb

”

ˇ

ˇ

pµn,h,ppxq ´ pµn,ph˚,hq,ppxq
ˇ

ˇ

2
ı

.

This finally gives

Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

À Eb
sµbrAp

nphqs ` V p
n phq ` Eb

sµb

”

ˇ

ˇ

pµn,h,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

.

Moreover, using the result of Lemma 14, we obtain

Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ sµbpxq
ˇ

ˇ

2
ı

À inf
hPH

p
n

tBn,h,ppxq2 ` V p
n phqu ` n´γ ` p∆n ` τ2α1

n {pα1 ,

for some γ ą 1.
□

APPENDIX G. PROOF OF THE RESULTS OF SECTION 7

First recall the following technical lemma which extensively used in the following.

Lemma 15. For a1, a2 P Rd, ν1, ν2 ě 0, such that ν1 ` ν2 ą 0, we have
ż

Rd

e´ν1|x´a1|
2

´ν2|x´a2|
2

dx “
κ1

pν1 ` ν2qd{2
e´

ν1ν2
ν1`ν2

|a1´a2|
2

,
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for some constant κ1 ą 0 depending only on the dimension d.

G.1. Proof of Lemma 2. We first consider the joint density of pp´1
řp´1

k“0Xk∆n , Xp∆nq conditional
on X0 “ x, denoted pbp,npx; ¨, ¨q. We claim that under the assumptions of Lemma 2, there exists
constants C1, λ1, c1 and η1 ą 0 such that if p∆n ď η1, we have for any x, y, z

pbp,npx; y, zq ď
C1

pp∆nqd
exp

´

´ λ1
|y ´ x|2 ` |z ´ x|2

p∆n
` V pxq ´ V pzq

¯

(76)

Using Lemma 15, (37) is a mere consequence of (76): since V pzq is bounded below, it suffices to
integrate (76) with respect to z to get (37). The rest of this proof is devoted to showing (76).

Note first that pbp,npx; y, zq “ pp∆nq´dqbp,npx;
a

1{pp∆nqpy´xq,
a

1{pp∆nqpz´xqq where qbp,npx; ¨, ¨q

is the joint density of pp´1pp∆nq´1{2
řp´1

k“0pXk∆n ´xq, pp∆nq´1{2pXp∆n ´xqq under the condition that
X0 “ x. Therefore, it is enough to prove that

qbp,npx; y, zq ď c´1
2 e´c2py2

`z2
q`V pxq´V px`pp∆nq

1{2zq,(77)

for some c2 ą 0. The methodology we use to prove (77) closely resembles the one of Theorem
4 in [GG08]; we refer to the comments of Lemma 2 for more details. We introduce the process
X

p,n
t “ pp∆nq1{2pXtp∆n

´ xq which satisfies

dXp,n
t “ bp,npX

p,n
t qdt` dW p,n

t ,

whereW p,n is a d-dimensional Brownian motion and bp,npwq “ pp∆nq1{2bpx`pp∆nq1{2wq. Moreover,

1

p
p

1

p∆n
q1{2

p´1
ÿ

k“0

pXk∆n
´ xq “

1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p and p

1

p∆n
q1{2pXp∆n

´ xq “ X
p,n
1 .

Let us now define the stochastic process

pE
p,n
t qtě0 “

ˆ

expp´

ż t

0

bp,npXp,n
s qdW p,n

s ´ 1{2

ż t

0

|bp,npXp,n
s q|2 dsq

˙

tě0

.

Under Assumption 1, we get that Novikov criterion holds following the steps of the proof of Lemma
5. This ensures that pE

p,n
t qtě0 is a martingale with constant expectation equal to 1. Then it defines

a change of measure and we can consider a probability measure Qb
x, under which we get rid of the

influence of the drift for the dynamic of Xn,p. More precisely, we define the probability measure Qb
x

on σptW p,n
t , t ď 1uq by

dQb
x

dPb
x

“ exp
´

´

ż 1

0

bp,npX
p,n
t qdW p,n

t ´
1

2

ż 1

0

|bp,npX
p,n
t q|2 dt

¯

.

Using the Itô formula, we obtain

dPb
x

dQb
x

“ exp
´

ż 1

0

bp,npX
p,n
t qdXp,n

t ´
1

2

ż 1

0

|bp,npX
p,n
t q|2 dt

¯

“ exp
´

Bp,npX
p,n
t q ´

1

2

ż 1

0

|bp,npX
p,n
t q|2 ` ∇ ¨ bp,npX

p,n
t qdt

¯

,

where for all w P Rd,Bp,npwq :“ V pxq´V px`pp∆nq1{2wq. Now let f and g be two bounded positive
functions. Then we have

Ex

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q

ı

“ EQb
x

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q exp

´

Bp,npX
p,n
t q ´

1

2

ż 1

0

|bp,npX
p,n
t q|2 ` ∇ ¨ bp,npX

p,n
t qdt

¯ı

.

Moreover, we have ∇ ¨ bp,npwq ď Cp∆n. Since Girsanov Theorem ensures that Xp,n is a Brownian
motion under Qb

x, we get the bound

Eb
x

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q

ı

ď C1Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

gpW1qeBp,npW1q
ı

,(78)
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for some Brownian motion W and some constant C1, which does not depends on p nor n. Therefore,
it is enough to prove that

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

gpW1qeBp,npW1q
ı

ď C 1
1

ż

Rd

ż

Rd

fpuqgpvqe´C1
2p|u|

2
`|v|

2
q`Bp,npvq dudv(79)

holds for some positive constants C 1
1 and C 1

2. Again, this is closely related to Lemma 4 of [GG08].
Recall that W˚

t “ Wt ´ tW1 defines a Brownian bridge on r0, 1s, independent of W1. Thus, if hpvq “

gpvqeBp,npvq, we get:

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

hpW1q

ı

“ Eb
”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
W1

¯

hpW1q

ı

(80)

“ Eb
”

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
W1

¯

hpW1q

ˇ

ˇ

ˇ
W1

ıı

“ Eb
”

ψb
p,npW1q

ı

,

where for all ω P Rd,

ψb
p,npωq “ Eb

”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
ω
¯

hpωq

ı

.

We know that the Brownian Bridge W˚ itself admits the following decomposition, see e.g [GG08]:

W˚
t “ ξηt ` W˚˚

t ,

where ξ is a standard random variable, η is the deterministic function

ηt “

#

t if t P r0, 1{2s,

p1 ´ tq if t P r1{2, 1s,

and W˚˚ is the process on r0, 1s constructed as the concatenation of two independent Brownian
bridges, on r0, 1{2s and r1{2, 1s respectively. Moreover in this decomposition the random variable η
and the process W˚˚ are independent. Then,

ψb
p,npωq “ hpωqE

«

f

˜

ξ

p

p´1
ÿ

ℓ“0

ηℓ{p `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω

¸ff

.(81)

Let cp “ p´1
řp´1

ℓ“0 ηℓ{p, which is bounded uniformly in p. Using the independence between ξ and
W˚˚, we have:

Eb
”´ξ

p

p´1
ÿ

ℓ“0

ηℓ{p `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω
¯ı

“ Eb
”

ż

Rd

f
´

cpv `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω
¯ 1

p2πqd{2
e´|v|

2
{2 dv

ı

“ Eb
”

ż

Rd

fpuqp
?
2πcpq´de

´ 1
2c2p

|u´ 1
p

řp´1
ℓ“0 W˚˚

ℓ{p
´

p´1
2p ω|

2

du
ı

.

We then use the fact that for ε P p0, 1q, |x´ y|2 ě ε{p1 ` εq|x|2 ´ ε|y|2, to get

Eb
“

ψb
p,npW1q

‰

ď

ż

Rd

1

p
?
2πcpqd

fpuqe
´

|u|2ε

2c2pp1`εq
`

c2pεpp´1q2|ω|2

4c2pp2 E
”

ec
´2
p ε suptPr0,1s |W˚˚

t |
2
ı

.(82)

Using that W˚˚ is a concatenation of two Brownian bridges, we know that there exists ε` ą 0 and
Cε such that for all ε ď ε`,

E
”

ec
2
pε suptPr0,1s |W˚˚

t |
2
ı

ď Cε.

Moreover, thanks to the boundedness of cp with respect to p, we get that Cε does not depend on p.
Then, plugging (82) into Equation (80), we get that for ε ď ε`,

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

hpW1q

ı

ď
Cε

p
?
2πcpqd

ż

Rd

ż

Rd

fpuqhpvqe
´

c2pu2ε

2p1`εq
`

c2pεpp´1q2|v|2

4p2 e´|v|
2

{2 dudv
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ď
Cε

p
?
2πcpqd

ż

Rd

ż

Rd

fpuqgpvqeBp,npvqe
´ u2ε

2c2pp1`εq
`

εpp´1q2|v|2

4c2pp2 e´|v|
2

{2 dudv.

Then, we get Equation (79) as soon as ε ă minp2cpp
2{pp´ 1q2, ε`q, which concludes the proof.

G.2. Proof of Lemma 3. We consider φ : Rd Ñ R non-negative bounded with compact support.
From Girsanov Theorem, we can show that for any x P Rd,

Eb
xrφpXtqs ď p2πq´d{2eb1t{2

eV pxq

td{2

ż

Rd

φpyqe´
|x´y|2

2t ´V pyqdy

and we conclude using t ď 1, and the boundedness of µ̄b.

G.3. Proof of Corollary 1. First note that since X is a Markov process, we have

pbp,n,tpx; yq “

ż

Rd

pbtpx; zqpbp,npz; yqdz.

Using the bounds given by Lemmas 2 and 3, combined with Lemma 15, we get

pbp,n,tpx; yq À pp∆n ` 2tλ1q´d{2 exp
´ λ1
p∆n ` 2t

|x´ y|2 ` V pxq

¯

.

G.4. Proof of Lemma 4. Note that since the distribution ofX0 is µ̄b which is the invariant measure of
X , the distribution of pp´1

řp´1
ℓ“0 Xℓ∆n

, Xp∆n
q is sπb. Thus for any non negative functionφ : RdˆRd Ñ

R, we have

Eb
µ̄b

”

φ
´1

p

p´1
ÿ

ℓ“0

Xℓ∆n
, Xp∆n

¯ı

“

ż

Rd

Eb
x

”

φ
´1

p

p´1
ÿ

ℓ“0

Xℓ∆n
, Xp∆n

¯ı

µ̄bpxq dx

“

ż

Rd

ż

Rd

ż

Rd

φpy, zqpbp,npx; y, zqµ̄bpxqdxdz dy.

From Equation (76), we get
ż

Rd

ż

Rd

ż

Rd

φpy, zqpbp,npx; y, zqµ̄bpxqdx dz dy

ď
C1

pp∆nqd

ż

Rd

ż

Rd

ż

Rd

φpy, zq exp

ˆ

´λ1
|y ´ z|2 ` |z ´ x|2

p∆n

˙

e´V pzq`V pxq e
´2V pxq

ZV
dxdz dy

ď
C1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd

ż

Rd

ż

Rd

φpy, zqe´V pzq
´

ż

Rd

exp
`

´
λ1
p∆n

p|y ´ x|2 ` |z ´ x|2q
˘

dx
¯

dy dz.

Use Lemma 15 to control the integral in the variable x, and get
ż

Rd

ż

Rd

ż

Rd

φpy, zqpp,npx; y, zqµ̄bpxqdx dz dy

ď
C1κ1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd{2

ż

Rd

ż

Rd

φpy, zqe´V pzq exp
´

´
λ1

2p∆n
|y ´ z|2

¯

dy dz.

We can conclude that for all py, zq P R2d, we have

sπbpy, zq ď
C1κ1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd{2

exp
´

´
λ1

2p∆n
|y ´ z|2 ´ V pzq

¯

.
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