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Ultracold atoms confined in a dipole trap are submitted to a potential whose depth is proportional to the
real part of their dynamic dipole polarizability. The atoms also experience photon scattering whose rate is
proportional to the imaginary part of their dynamic dipole polarizability. In this article we calculate the complex
dynamic dipole polarizability of ground-state erbium, a rare-earth atom that was recently Bose condensed. The
polarizability is calculated with the sum-over-state formula inherent to second-order perturbation theory. The
summation is performed on transition energies and transition dipole moments from ground-state erbium, which
are computed using the Racah-Slater least-squares fitting procedure provided by the COWAN codes. This allows
us to predict nine unobserved odd-parity energy levels of total angular momentum J = 5, 6, and 7, in the range
25 000–31 000 cm−1 above the ground state. Regarding the trapping potential, we find that ground-state erbium
essentially behaves like a spherically symmetric atom, in spite of its large electronic angular momentum. We
also find a mostly isotropic van der Waals interaction between two ground-state erbium atoms, characterized by
a coefficient C iso

6 = 1760 a.u. To the contrary, the photon-scattering rate shows a pronounced anisotropy since it
strongly depends on the polarization of the trapping light.

DOI: 10.1103/PhysRevA.89.022505 PACS number(s): 31.15.ag, 31.15.ap, 32.10.Dk

I. INTRODUCTION

In the field of ultracold atomic and molecular matter,
quantum gases composed of particles with a strong intrinsic
permanent dipole moment, referred to as dipolar gases, have
attracted a great deal of interest over the past few years, as
they can be manipulated by external electric or magnetic fields
[1–4]. Due to the long-range and anisotropic particle-particle
interactions, dipolar gases offer the possibility to produce and
study highly correlated quantum matter, which is crucial for
quantum information, or for the simulation of many-body or
condensed-matter physics [5,6]. The production of ultracold
heteronuclear bialkali molecules (which carry a permanent
electric dipole moment in their own frame), in the ground
electronic state [7,8], in the lowest rovibronic level [9,10], and
even in the lowest hyperfine level [11] was a ground-breaking
result, as it demonstrated the possibility to control both the
internal and external molecular degrees of freedom [12].

Alternatively open-shell atoms possess a permanent mag-
netic dipole moment that is determined by their total angular
momentum. The latter has the smallest possible nonzero value
for alkali-metal atoms, namely, 1/2, but it can be significantly
larger for transition-metal or rare-earth atoms. In the context
of ultracold matter, the first Bose-Einstein condensates of
highly magnetic atoms, obtained with chromium [13,14],
were also crucial achievements. Later on, lanthanides started
to draw much attention: Ultracold erbium atoms were pro-
duced in a magneto-optical trap [15,16]. More recently
Bose-Einstein condensation was reached with erbium [17,18]
and dysprosium [19–23] and noncondensed ultracold gases
of thulium [24,25] and holmium [26] were also produced.
These achievements stimulated both theoretical [27–31] and
experimental studies [32–34], which complemented the work
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on ytterbium, the heavier (closed-shell) lanthanide element
(see, for example, [35] and references therein).

In the present paper we investigate theoretically the optical
trapping of ground-state 3H6 erbium atoms. The efficiency
of the trapping mechanism relies on the knowledge of the
dynamic dipole polarizability, which is a complex quantity
depending on the trapping laser frequency ω and determining
the trapping potential depth and the photon-scattering rate. We
compute the dynamic dipole polarizability with a sum-over-
state formula, whose versatility enables us to calculate both
the real and imaginary parts of the polarizability at any desired
frequency. Two theoretical values of the static (ω = 0) dipole
polarizability have been reported in the literature [36,37],
which were calculated with purely ab initio methods. However,
as shown in recent papers, modeling lanthanides with such
methods is a hard task. In the present work the relevant tran-
sition energies from the ground state and the related transition
dipole moments are extracted from a semiempirical approach
combining quantum-chemical calculations and experimental
data. One central objective of this article is to determine to
what extent the nonspherical electronic distribution of erbium
induces an anisotropic response to the trapping light.

Unlike alkali-metal atoms, lanthanide atoms are charac-
terized by a complex electronic structure with an open 4f

and/or 5d subshells and a closed 6s shell. Since the electronic
angular momentum associated with such configurations is
large, the electronic distribution associated with a particular
Zeeman sublevel is not spherically symmetric. In addition, the
excitation of the core electrons occurring around 10 000 cm−1

above the ground-state energy gives rise to very rich and
complex spectra whose interpretation was an important con-
tribution to atomic physics in the past four decades [38,39].
Today the knowledge of the spectroscopy of neutral and
charged lanthanides including erbium is still incomplete
[40–42]. Therefore, using the Racah-Slater least-squares fit-
ting method implemented in the COWAN suite of codes [38],
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we adjust calculated and experimental energy levels. This
allows us to give a revised theoretical interpretation of the
spectrum of neutral erbium and to predict nine yet unobserved
levels accessible from the ground state through electric dipole
transition.

Since we manipulate a great deal of atomic data in this
paper, it is necessary to label atomic levels precisely in
addition to knowing their energy with respect to the ground
state [43]. Strictly speaking, the only good quantum numbers
are J , the total (orbital plus spin) angular momentum; MJ ,
its projection on a quantization axis z; and p, the parity.
For particular states, e.g., the lowest states of erbium, the
total orbital and spin angular momenta L and S, respectively,
are almost good quantum numbers. We also use the leading
electronic configuration whose weight depends on the state
under consideration (see the Appendix). For example, ground-
state erbium is of even parity and its total angular momentum is
J = 6. It is of 3H character (L = 5, S = 1) up to 99%, the rest
being 1I ; its leading configuration is [Xe]4f 126s2. Since our
calculations are mostly based on the Wigner-Eckart theorem,
we will often label the atomic levels as |βJMJ 〉, where β

stands for all quantum numbers but J and MJ .
The paper is organized as follows. In Sec. II we give all

the formulas necessary to characterize the optical trapping of
non-spherically-symmetric atoms, in particular the potential
depth and the photon-scattering rate induced by the trapping
light. Section III is dedicated to the spectroscopy of erbium.
We recall the main steps of the present approach based on
the COWAN suite of codes and present our results for energies
and transition dipole moments. In Sec. IV we report on our
results and estimated accuracies for the polarizabilities of
ground-state erbium. The reader interested in the final results
is invited to go to Sec. IV C. Section V contains a summary
and concluding remarks, emphasizing the van der Waals
interactions between two erbium atoms determined here. More
details on the atomic structure calculations are reported in
the Appendix, including tables for fitting parameters used
to model the erbium spectrum, energies, Landé factors, and
configuration weights.

II. OPTICAL TRAPPING OF NONSPHERICAL ATOMS

When spherically symmetric atoms, such as 2S alkali-metal
or 1S alkaline-earth atoms, are submitted to an electromagnetic
wave of angular frequency ω and intensity I (r), with r the
atomic center-of-mass position in the laboratory frame xyz

(z being chosen as the quantization axis) they experience a
potential energy [44] independent of the polarization of the
field

U (r; ω) = − 1

2ε0c
Re[αscal(ω)] × I (r), (1)

which is due to the second-order ac Stark effect. In Eq. (1),
αscal(ω) is the (complex) scalar dynamic dipole polarizability
of the atom, Re[· · · ] denotes the real part, ε0 is the vacuum
permittivity, and c is the speed of light. The presence of the
electromagnetic field also induces photon scattering with a rate
equal to [44]

�(r; ω) = 1

�ε0c
Im[αscal(ω)] × I (r), (2)

where Im[αscal(ω)] is the imaginary part of the scalar dynamic
dipole polarizability.

The complex polarizability is calculated by using the
second-order time-dependent perturbation theory, which is
cautiously discussed in Ref. [45], and by assigning to each
excited level a complex energy Eβ ′J ′ − i�γβ ′J ′/2, γβ ′J ′ being
the inverse lifetime of the level |β ′J ′〉 [46]. This gives

αscal(ω) = 1

3(2J + 1)

∑
β ′J ′

(
|〈β ′J ′‖d‖βJ 〉|2

Eβ ′J ′ − EβJ − i
�γβ′J ′

2 − �ω

+ |〈β ′J ′‖d‖βJ 〉|2
Eβ ′J ′ − EβJ − i

�γβ′J ′
2 + �ω

)
, (3)

with 〈β ′J ′‖d‖βJ 〉 the reduced transition dipole moment. Then
considering that the laser frequency is far from any atomic
resonance, namely, Eβ ′J ′ − EβJ − �ω � �γβ ′J ′/2, and a for-
tiori Eβ ′J ′ − EβJ + �ω � �γβ ′J ′/2 since the atoms are in the
ground state, we can separate real and imaginary parts

Re[αscal(ω)] = 2

3(2J + 1)

∑
β ′J ′

(Eβ ′J ′−EβJ )|〈β ′J ′‖d‖βJ 〉|2
(Eβ ′J ′ − EβJ )2 − �2ω2

,

(4)

Im[αscal(ω)] = 1

3(2J + 1)

∑
β ′J ′

(Eβ ′J ′ − EβJ )2 + �
2ω2

[(Eβ ′J ′ − EβJ )2 − �2ω2]2

× �γβ ′J ′ |〈β ′J ′‖d‖βJ 〉|2. (5)

In contrast, the response of non-spherically-symmetric
atoms such as erbium to an electromagnetic field depends
on its polarization and on the magnetic sublevel MJ . In the
general case of an elliptically polarized light with unit vector
of polarization e, the trapping potential equals [47]

U ell
MJ

(r; θp,θk,A; ω)

= − 1

2ε0c
I (r)

{
Re[αscal(ω)] + A cos θk

MJ

2J
Re[αvect(ω)]

+ 3M2
J − J (J + 1)

J (2J − 1)
× 3 cos2 θp − 1

2
Re[αtens(ω)]

}
,

(6)
where θp is such that |e · ez|2 = cos2 θp, θk is the angle between
z and the wave vector k, and A is the ellipticity parameter.
Similarly to Eqs. (1) and (2), the photon-scattering rate �ell

MJ

is obtained by replacing Re[· · · ] by Im[· · · ] in Eq. (6). The
quantities αvect(ω) and αtens(ω) are, respectively, the vector and
tensor dynamic dipole polarizabilities, given by

Re[αvect(ω)] = 2
∑
β ′J ′

X
(1)
JJ ′

�ω|〈β ′J ′‖d‖βJ 〉|2
(Eβ ′J ′ − EβJ )2 − �2ω2

, (7)

Im[αvect(ω)] = 2
∑
β ′J ′

X
(1)
JJ ′

�
2ωγβ ′J ′ (Eβ ′J ′ − EβJ )

[(Eβ ′J ′ − EβJ )2 − �2ω2]2

× |〈β ′J ′‖d‖βJ 〉|2, (8)

Re[αtens(ω)] = 4
∑
β ′J ′

X
(2)
JJ ′

(Eβ ′J ′ − EβJ )|〈β ′J ′‖d‖βJ 〉|2
(Eβ ′J ′ − EβJ )2 − �2ω2

,

(9)
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Im[αtens(ω)] = 2
∑
β ′J ′

X
(2)
JJ ′

(Eβ ′J ′ − EβJ )2 + �
2ω2

[(Eβ ′J ′ − EβJ )2 − �2ω2]2
�γβ ′J ′

× |〈β ′J ′‖d‖βJ 〉|2, (10)

where X
(k)
JJ ′ are angular factors [48]

X
(1)
JJ ′ = (−1)J+J ′

√
6J

(J + 1)(2J + 1)

{
1 1 1
J J J ′

}
, (11)

X
(2)
JJ ′ = (−1)J+J ′

√
5J (2J − 1)

6(J + 1)(2J + 1)(2J + 3)

{
1 1 2
J J J ′

}
,

(12)

where the quantities in curly brackets are Wigner 6j sym-
bols [49].

The particular case of a circular right (left) polarization
is obtained by setting A = 1 (−1) in Eq. (6). For a linearly
polarized field, corresponding to A = 0, the trapping depends
neither on the angle θk nor on the vector polarizability. In this
case θp ≡ θ is the angle between the polarization vector e and
the quantization axis z. The trapping potential U lin

MJ
is obtained

from Eq. (6),

U lin
MJ

(r; θ ; ω) = U ell
MJ

(r; θp ≡ θ,θk,A = 0; ω), (13)

and similarly �lin
MJ

(r; θ ; ω) = �ell
MJ

(r; θp ≡ θ,θk,A = 0; ω).

III. THEORETICAL INTERPRETATION OF THE
NEUTRAL ERBIUM SPECTRUM

Equations (4), (5), and (7)–(10) above show that the
polarizabilities crucially depend on the transition energies
and transition dipole moments from the erbium ground state.
Therefore, the quality of those data as well as the method to
calculate them represents a central issue of this work.

The initial steps that led to the critical compilation of erbium
energy levels were summarized by Martin et al. [50] and later
reported in [43]. After 1978, systematic studies of hyperfine
effects in 4f n5d6s6p configurations of neutral lanthanide
atoms addressed the case of neutral erbium (Er I), but the
fine-structure study preceding the determination of magnetic
dipole and electric quadrupole parameters had to be limited to
the terms of 4f 115d6s6p arising from the ground term 4I of
the 4f 11 core [51].

A first step in the description of Er I levels by means of
the COWAN suite of codes [38] was used in an experimental
determination of transition probabilities [42]. The COWAN

codes led to energies and eigenfunctions by least-squares
determination of radial parameters in appropriate sets of
interacting electronic configurations, following the Racah-
Slater method as recalled in [52]. The case of Er I turned
out to be more complex than the one of singly ionized erbium
(Er II) [40] because in neutral lanthanide atoms the lower
levels of many excited configurations overlap the upper part
of low-lying configurations. Before 1976, some levels with
7s, 8s, and 6d electrons were identified by means of very se-
lective decays [from 4f 126s(7s,8s,6d) to 4f 126s6p and from
4f 115d6s7s to 4f 115d6s6p] and of hazy emission line profiles

that are common for such transitions in lanthanide atoms.
The semiempirical designations were tabulated in [43,50].
Concerning configurations involving valence electrons, i.e.,
5d, 6s, 6p, and 6d electrons, estimates by Brewer [53,54]
place the lowest levels of odd-parity configurations 4f 125d6p,
4f 115d3, 4f 116s6p2, and 4f 136s in the energy range 37 000–
43 000 cm−1 above the ground level 4f 126s2 3H6. In the even-
parity configurations, 4f 115d26p, 4f 126p2, and 4f 125d2

should be present above 38 500 ± 2000 cm−1. Among those
configurations that are still unobserved experimentally, the
three with a 4f 11 core generate 10 914 levels and the four
others 1258 levels. Despite the progress of available computers
since the earlier studies, the applicability of the parametric
fitting in the Racah-Slater method is decreased when thousands
of adjustable parameters are introduced by several tens of
configurations. Therefore, we chose to restrict the number
of electronic configurations included in the model. In the
even-parity configurations, since we focus on the Er I ground
state, we consider the lowest configuration 4f 126s2. In the
odd-parity configurations, we added the high-lying electronic
configurations 4f 125d6p and 4f 136s to the known low-lying
ones 4f 115d6s2, 4f 126s6p, and 4f 115d26s.

Let us briefly recall the principle of the calculations with
the COWAN suite, which relies on four programs named RCN,
RCN2, RCG, and RCE.

(i) First, for each configuration taken separately, the RCN

program calculates the monoelectronic wave functions using
the relativistic Hartree-Fock, usually referred to as HFR
method. The wave functions are obtained by solving the
Schrödinger equation, using a central-field potential describing
electrostatic interactions and some relativistic corrections, i.e.,
mass-velocity, Darwin, and spin-orbit terms.

(ii) Then the RCN2 program calculates various radial
integrals. For a given configuration, the direct and exchange
Coulombic integrals Fk(n	n′	′) and Gk(n	n′	′) (for equivalent
and nonequivalent electrons) and the spin-orbit energy ζn	

for each subshell are computed. For each couple of con-
figurations, the configuration-interaction Coulombic integrals
Rk(n	n′	′,n′′	′′n′′′	′′′) are evaluated. The radial integrals are
treated in step (iv) as adjustable parameters.

(iii) Using those radial integrals, the RCG program diag-
onalizes the atomic Hamiltonian in an appropriate angular
momentum basis, e.g., for a given value of J . From the
resulting eigenenergies and eigenvectors, it models the atomic
spectrum by calculating in particular the Einstein coefficients
for all possible electric dipole transitions.

(iv) The energies calculated by RCG are then compared to the
tabulated experimental levels. A fit of the atomic parameters
is performed by the RCE program in order to minimize the
mean error between experimental and theoretical energies.
This produces a new set of parameters that serves as input
for the final computation of the atomic spectrum by RCG [step
(iii)].

It is important to stress that the basis functions used
by the codes are the numerical functions obtained after
the HFR calculation for each configuration, which are then
appropriately combined to describe the atom in the desired
angular momentum coupling scheme, i.e., LS, jj , or others.
Note, finally, that we used both the McGuinness [55] and the
Kramida [56] versions of COWAN codes.
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The set of optimal atomic parameters that yields the input
for the final call of RCG is given in the Appendix (see
Tables IV and V). In the odd-parity configuration, Nlev = 208
levels of the mixed configurations 4f 115d6s2, 4f 115d26s, and
4f 126s6p are used to determine Npar = 24 free parameters,
88 other parameters being constrained. The mean error is
65 cm−1. The sizes of the basis sets are 525 for J = 5, 435 for
J = 6, and 324 for J = 7. The results are listed in Tables VI
and VII of the Appendix. The general agreement between
experimental and theoretical Landé factors is a first indication
of the quality of the eigenfunctions. The only noticeable
exception is the inversion of the close J = 5 levels at 28 026
and 28 129 cm−1. We also see nine theoretical levels that have
not yet been observed experimentally. We predict those levels
in a range of energy between 25 600 and 30 700 cm−1 above
the ground state, suggesting that they could be detected by
direct transitions from the latter with current experimental
devices [41,42].

IV. CALCULATION OF ERBIUM POLARIZABILITIES

A. Data sets of transition energies and dipole moments

The output of the previous calculations consists in a list
of 1284 transition energies and Einstein coefficients from
ground-state erbium. We call that list the data set T (after
“theoretical”). From the Einstein coefficients, we can extract
the squared reduced transition dipole moments necessary to
compute the polarizabilities [see Eqs. (4), (5), and (7)–(10)],
using the relation [38]

|〈β ′J ′‖d‖3H6〉|2 = 3(2J ′ + 1)πε0�
4c3Aβ ′J ′

E3
β ′J ′

, (14)

where Aβ ′J ′ is the Einstein coefficient characterizing the
transition between |β ′J ′〉 and the ground state and where the
energy of the ground state has been set to zero.

We have seen in the previous section how the atomic param-
eters Fk(n	n′	′), Gk(n	n′	′), ζn	, and Rk(n	n′	′,n′′	′′n′′′	′′′)
have been adjusted to obtain the best possible agreement
between theoretical and experimental energy levels. This
adjustment is necessary to correct the defects of the HFR wave
functions obtained with RCN. However, these wave functions
are also used by RCN2 to calculate the monoelectronic radial
matrix elements 〈n′	′|r̂|n	〉, which are the building blocks of
the Einstein coefficients computed by RCG. Therefore, a step
of optimization of those radial matrix elements is also needed,
which is the purpose of the present subsection.

We thus define the standard error on Einstein coefficients

σ =
⎛
⎝∑

β ′J ′

(
Atheor

β ′J ′ − A
expt
β ′J ′

)2

Nlev − Npar

⎞
⎠

1/2

, (15)

where Nlev and Npar are the numbers of levels |β ′J ′〉 and
adjusted parameters, respectively. We minimize σ in Eq. (15)
by varying the monoelectronic radial integrals 〈n′	′|r̂|n	〉, thus
introducing a scaling factor fn	n′	′ (analogous to those defined
in the Appendix)

〈n′	′|r̂|n	〉 = fn	n′	′ 〈n′	′|r̂|n	〉HFR, (16)

where 〈n′	′|r̂|n	〉HFR is the relativistic Hartree-Fock radial
integral calculated by RCN2.

In order to compare theoretical and experimental Einstein
coefficients, we consider the data set E (after “experimental”)
of the 33 transitions towards the erbium ground state, which
was experimentally detected by Lawler et al. [42]. Moreover,
we extract from the lines of the data set T those that have an
experimental counterpart; this gives the data set T′. The scaling
factors fn	n′	′ are adjusted in order to obtain the best possible
agreement between the Einstein coefficients of the data set T′
and E. Then the optimal scaling factors will be applied to the
monoelectronic radial matrix elements composing the Einstein
coefficients of data set T.

B. Convergence and uncertainty

Now we discuss the convergence and reliability of our
calculations, taking mostly the example of the real part of
the scalar static dipole polarizability Re[αscal(ω = 0)] [see
Eq. (4)]. This quantity is not relevant in the context of optical
trapping, but there exist two theoretical values in the literature
to which our results can be compared: 153 a.u. from Ref. [37]
and 166 a.u. from Ref. [36]. The conclusions drawn for ω = 0
can actually be extended to the first main resonances up to
ω � 20 000 cm−1. Note that the imaginary part of the scalar
static dipole polarizability will be examined separately.

1. Influence of data sets and scaling factors

First, the influence of the different data sets with no
adjustment on the scaling factors, i.e., fn	n′	′ = 1, is addressed
(see the first three rows of Table I). The values obtained with
the two theoretical data sets T and T′ clearly exceed the value
obtained with the experimental data set E. To have better
agreement between E and T′, we should use radial scaling
factors smaller than unity. In addition, since for zero or small
frequencies the scalar polarizability [Eq. (4)] is a sum of
positive terms and since the set of experimental lines is a
priori incomplete, the value from data set E (132 a.u.) can be
regarded as the lower bound for αscal(0).

Given the configurations of odd parity that we include
in our calculation of the erbium spectrum (see Sec. III),
the transition-dipole-moment matrix elements involve two
monoelectronic radial integrals: 〈4f |r̂|5d〉, coming from the
transitions between the 4f 126s2 and 4f 115d6s configurations,
and 〈6s|r̂|6p〉, coming from the transitions between the
4f 126s2 and 4f 126s6p configurations. We calculated the

TABLE I. Static scalar dipole polarizability Re[αscal(ω = 0)]
for the different data sets and different scaling factors f for the
monoelectronic radial matrix elements (see the text). The number of
levels Nlev of each data set is also indicated for the sake of clarity.

Data set Nlev Scaling factor f Re[αscal(0)]

E 33 132
T′ 33 1 200
T 1284 1 226
T 1284 0.81 148
T 1284 0.77 134
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standard error on Einstein coefficients (15) between sets E
and T′ and found that (i) it is much less sensitive to f4f,5d than
to f6s,6p and (ii) the standard error is minimal (σ = 1.36 × 107

s−1 with Nlev = 33 and Npar = 2) for f6s,6p = 0.77. Due
to conclusion (i) we take identical scaling factors f6s,6p =
f4f,5d = f in what follows. The corresponding polarizability
is 118 and 134 a.u. for data sets T′ and T, respectively. A closer
look at the result shows that this scaling factor minimizes the
error on the strongest line, whose upper level is the one of
J = 7 at 24 943 cm−1.

We made another test by searching the factor f giving the
same static dipole polarizability for the data sets T′ and E. We
found f = 0.81 and a polarizability of 148 a.u. when applied
to the set T. The two “optimal” scaling factors (f = 0.77 and
0.81) are rather close to each other. The difference can be
explained because the second test allows for compensation
effects between theoretical Einstein coefficients larger and
smaller than the experimental ones.

In conclusion, we take the results obtained with the two
previous tests, i.e., 134 a.u. with f = 0.77 and 148 a.u. with
f = 0.81, as our lower and upper bounds of uncertainty and
consider the mean value f = 0.79 as our optimal scaling
factor. Therefore, we obtain Re[αscal(ω = 0)] = 141 ± 7 a.u.,
which is in good agreement with, although smaller than,
the two literature values. It is important to stress that the
uncertainty that we estimate here is only due to the calculation
of the optimal scaling factor f . In particular, it does not take
into account the uncertainty of the experimental results giving
the data set E.

2. Convergence on excited energy levels

Now that the question of scaling factors is solved, we
discuss the convergence of the sum-over-state formulas inside
the list of excited states in data set T. Namely, we truncate
Eqs. (4), (5), (9), and (10) up to a given excited state |N〉 =
|βNJN 〉 of energy EN and plot the resulting polarizabilities
αN

scal(ω = 0) and αN
tens(ω = 0) as functions of EN [note that

αvect(ω = 0) = 0].
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FIG. 1. (Color online) Convergence of the real part of the static
scalar polarizability Re[αN

scal(ω = 0)] (solid line) and the static tensor
polarizability Re[αN

tens(ω = 0)] (dotted line), with respect to the
excited states of data set T. Equations (4) and (9) are truncated up to
the excited state of energy EN .

In Fig. 1 we focus on the real part of the scalar and
tensor polarizabilities. We see that they are converged for
EN ≈ 60 000 cm−1, where they reach at least 99% of their
total value. In addition, the scalar polarizability reaches already
90% of its total value at EN ≈ 30 000 cm−1, that is, when the
strongest lines have been included in the sum. In comparison,
the lowest energies associated with configurations not included
in our calculation are estimated around 40 000 cm−1 above
the ground state [53,54]. The convergence is visible on the
tensor polarizability, although less spectacular, because the
angular factor X

(2)
JJ ′ [Eq. (12)] can change sign with J ′. This

fast convergence is due to the (Eβ ′J ′ − EβJ )−1 factor in Eq. (7),
which enhances the importance of low-energy transitions; it is
also inherent to the erbium spectrum, which is composed of a
few strong lines among many weak lines.

3. Imaginary part of the static scalar polarizability

In order to calculate the imaginary part of the polar-
izabilities, we need, in addition to transition energies and
transition dipole moments, the lifetimes of all the excited
states. Calculating the lifetime of a given state |β ′J ′〉 would
require the Einstein coefficient of all the downward transitions
from this state. Since we do not have this information here, we
will rather make the assumption that all the excited states |β ′J ′〉
can only decay to the ground state. Within this approximation
the inverse lifetime of the state |β ′J ′〉 is equal to the Einstein
coefficient of the transition to the ground state

γβ ′J ′ ≈ Aβ ′J ′ . (17)

where Aβ ′J ′ is given in Eq. (14).
We can check this hypothesis by calculating the imaginary

part of the static polarizabilities with the data set E. Indeed,
for the 33 transitions towards the erbium ground state reported
in [42], the lifetime of the upper level was measured with the
same device [41]. Therefore, we can calculate Im[αscal(0)] us-
ing, on the one hand, the approximation (17) and, on the other
hand, the measured lifetimes. We obtain very good agreement
between the two methods, i.e., respectively, Im[αscal(0)] =
1.42 × 10−6 and 1.43 × 10−6 a.u. Im[αtens(0)] = −3.33 ×
10−7 and −3.41 × 10−7 a.u. (note that Im[αvect(0)] = 0). This
result may seem surprising in view of the dense spectrum of
erbium; however, it turns out that Eq. (17) is a very good
approximation for the lowest excited states and the strongest
transitions, present in data set E and which are prevailing for
the imaginary part of the polarizabilities.

Figure 2 shows the imaginary part of the static polarizabil-
ities as a function of EN . For the sake of coherence we have
used the same scaling factor f = 0.79 as for the real part of
the polarizabilities. The convergence with EN is even faster
than for the real part: At EN = 30 000 cm−1, Im[αN

scal(0)] and
Im[αN

tens(0)] differ by less than 1% from their final values given
in Table II.

C. Results

In order to present our results in a convenient way for
experimental purposes, we give the polarizabilities of erbium
in atomic units (units of a3

0 , with a0 = 0.052 917 721 092 nm
the Bohr radius), but also the corresponding relevant quantities
in physical units. The trapping potential (in temperature units
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FIG. 2. (Color online) Convergence of the imaginary part of the
scalar static polarizability Im[αN

scal(ω = 0)] (solid line) and the static
tensor polarizability Im[αN

tens(ω = 0)] (dashed line), with respect to
the excited states of data set T. Equations (5) and (10) are truncated
up to the excited state of energy EN .

K) corresponds to the real part of the polarizability (in a.u.)

U = 2πa3
0

kBc
Re(α) × I (18)

(with I in W m−2) and the photon-scattering rate (in s−1)
corresponds to the imaginary part of the polarizability (in a.u.)

� = 4πa3
0

�c
Im(α) × I. (19)

In what follows we assume an intensity of 1 GW m−2, typical
for a tight dipole trap (obtained for a laser power of 15 W and
a Gaussian beam waist of 100 μm), which gives the potential
(in μK GW−1 m2) U = 0.224 946 55 × Re(α) and the rate (in
s−1 GW−1 m2) � = 5.890 015 5 × 104 × Im(α).

In Fig. 3 we plot the real part of the erbium polarizabilities
and the corresponding trapping potentials as functions of the
laser frequency (in cm−1) and wavelength (in nm). We see a
dense pattern of resonances for ω � 11 000 cm−1, but most
of them are narrow, which corresponds to weak transitions
from the ground state, and the background profile of the
polarizabilities is inherited from the strong lines. In Table II we
focus on two frequencies: ω = 0, to compare our results to the

TABLE II. Real and imaginary parts of the scalar, vector, and
tensor dynamic dipole polarizabilities in atomic units, at ω = 0 and
9398 cm−1 (λ = 1064 nm), compared with available literature values.
���������Polarizability

ω (cm−1)
0 9398

Re[αscal(ω)] 141 164
153 [37]
166 [36]

Re[αvect(ω)] 0 −0.943
Re[αtens(ω)] −2.52 −3.93

−2.73 [36]
Im[αscal(ω)] 1.51 × 10−6 2.34 × 10−6

Im[αvect(ω)] 0 −1.74 × 10−6

Im[αtens(ω)] −4.21 × 10−7 −6.90 × 10−7
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FIG. 3. (Color online) Real part of the (a) scalar and (b) vector
and tensor (dashed and dotted lines, respectively) dynamic dipole po-
larizabilities in atomic units and corresponding trap depths obtained
for an intensity of 1 GW m−2, as functions of the trapping frequency
ω (or wavelength λ).

literature, and ω = 9398 cm−1 (λ = 1064 nm), a widespread
laser-trapping frequency, which is in the case of erbium far
from any resonance. Our scalar and tensor polarizabilities are
in good agreement, although smaller than the results from
Refs. [36,37], which were calculated with purely ab initio
methods.

The most striking feature, however, is that the vector
and tensor contributions are found to be extremely small
compared to the scalar contribution. This means that the
trapping potential exerted on erbium atoms is almost isotropic,
in the sense that it does not depend on the respective
orientation of the electronic cloud and the light polarization.
One possible explanation of that phenomenon is the following:
The anisotropic response to the trapping light should be due
to the electrons of the unfilled 4f shell; however, the latter is
so contracted that the anisotropy is by far dominated by the
isotropic response of the outermost 6s electrons.

The situation is drastically different for the imaginary part,
for which the scalar, vector, and tensor polarizabilities are
of the same order of magnitude (see Fig. 4 and Table II).
The corresponding scaled photon-scattering rates are ∼ 0.1
s−1 GW−1 m2. After a cycle of absorption and spontaneous
emission, a fraction of the atoms are too hot to be kept in the
trap. Therefore, the atomic lifetime in the trap will strongly
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respectively) in atomic units and corresponding photon-scattering
rates obtained for an intensity of 1 GW m−2, as functions of the
trapping frequency ω (or wavelength λ).

depend on the orientation between the electronic and the light
polarization. This is illustrated in Fig. 5, where the reduced

photon-scattering rate �
lin
−J for the lowest Zeeman sublevel
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FIG. 5. (Color online) Imaginary part of the dynamic dipole
polarizability in atomic units and corresponding photon-scattering
rates obtained for a 1-GW m−2 linearly polarized 1064-nm trapping
light [see Eq. (2)]: (a) polarization axis parallel to the quantization
axis (θ = 0◦) as a function of the Zeeman sublevel MJ and (b) the
lowest sublevel MJ = −J as a function of θ .

is plotted as a function of the angle θ between the linearly
polarized electric field and the quantization axis (given by an
external magnetic field). Due to the negative sign of Im(αtens)
the rate is the smallest, and so the trap is the most stable, in
the collinear configuration (θ = 0◦ or 180◦). Similar behavior
is observed as a function of MJ for a fixed angle θ = 0◦.

V. CONCLUSION

In this article we gave a theoretical interpretation of the
spectrum of neutral erbium that enables us to characterize
the optical trapping of ultracold erbium atoms. We predicted
nine unobserved levels that are accessible from the ground
state through electric dipole transition. We obtained a list of
transition energies and transition dipole moments that we used
to calculate the real and imaginary parts of the scalar, vector,
and tensor contributions to the ground-state polarizability.
Although erbium is a non-spherically-symmetric atom, we
showed that the trapping potential exerted by an infrared laser
is essentially isotropic in the sense that it depends neither
on the light polarization nor on the atomic Zeeman sublevel.
In contrast, the photon-scattering rate exhibits a strong
anisotropic behavior since the vector and tensor contributions
to the imaginary part of the polarizability are of the same
order of magnitude as the scalar contribution. We stressed that
calculations made with different data sets of transition energies
and dipole moments, including experimental ones, yield the
same trends for trapping potential and photon-scattering rate.

The anisotropy of the photon-scattering rate opens the
possibility to control the heating or the losses in the trap
with an appropriate light polarization. The dependence of the
photon-scattering rate on the atomic sublevel also results in
different trap lifetimes for different Feshbach molecular states
of Er2, which are a current subject of interest [34].

Our calculations of polarizabilities are also relevant
to characterize the long-range interactions between two
erbium atoms. For nonpolarized atoms, i.e., not in a given
Zeeman sublevel, the isotropic van der Waals coefficient
C iso

6 can be calculated using the London formula C iso
6 =

−(3/π )
∫ +∞

0 dω Re[αscal(iω)]2, where αscal(iω) is the scalar
polarizability at imaginary frequency, which gives for ground-
state erbium C iso

6 = 1760 a.u. In the case of polarized atoms,
the C6 coefficients also have an anisotropic contribution, which
is very weak compared to the isotropic one since it is propor-
tional to

∫ +∞
0 dω Re[αscal(iω)]Re[αtens(iω)] = −16.6 a.u. and

to
∫ +∞

0 dω Re[αtens(iω)]2 = 0.265 a.u. The C6 coefficients be-
tween two polarized 3H6 erbium atoms thus range from 1741 to
1766 a.u. depending on the molecular symmetry |�|g,|�|u,0+

g

or 0−
u of the Er2 diatomic molecule, where � is the projection

of the total angular momentum of the molecule on the inter-
nuclear axis. We display in Table III the minimal and maximal
values of the C6 coefficients induced by the anisotropy for the
set of molecular states of a given symmetry. The variation
is similar to the one obtained for dysprosium atoms [57].
Since the C6 coefficients scale as the square of the dipole
polarizabilities, their uncertainty due to scaling factors can be
estimated as twice that of the polarizabilities, that is, 10%.

Knowledge of the polarizabilities of excited states and
in particular of so-called magic frequencies or wavelengths,

022505-7



M. LEPERS, J.-F. WYART, AND O. DULIEU PHYSICAL REVIEW A 89, 022505 (2014)

TABLE III. Minimal and maximal values of the C6 coefficients
and number of molecular states for given symmetries |�|g,|�|u,0+

g

or 0−
u of the Er2 diatomic molecule. Note that there is only one C6

coefficient in the 12g symmetry.

Symmetry Number of states Min. C6 Max. C6

0g
+,0u

− 13 1741 1767
1g,1u 24 1745 1766
2g,2u 22 1748 1766
3g,3u 20 1750 1765
4g,4u 18 1752 1764
5g,5u 16 1753 1762
6g,6u 14 1754 1760
7g,7u 12 1753 1758
8g,8u 10 1752 1755
9g,9u 8 1750 1752
10g,10u 6 1748 1749
11g,11u 4 1745 1745
12g 2 1741

i.e., the wavelengths for which polarizabilities of the ground
state and of a given excited state are equal, is of strong
importance for precision measurements [58–60]. In Ref. [28],
the authors calculate magic wavelengths for dysprosium atoms
in a nonpolarized light. In the case of a polarized light, our
preliminary calculations show that the anisotropy of trapping
potential for erbium excited states tends to be larger than for the
ground state. For example, at λ = 1064 nm the polarizabilities
of the level J = 7 at 15 847 cm−1 are Re(αscal) ≈ 130 a.u.
and Re(αscal) ≈ −60 a.u. Thus, for the MJ = −7 sublevel in a
linearly polarized electric field, Re(αMJ =−7) varies from 70 a.u.
for θ = 0◦ to 160 a.u. for θ = 90◦ [see Eq. (13)]. This opens
the possibility of better control of the trapping conditions by

tuning both the laser wavelength and the polarization angle, as
recently shown for diatomic molecules [61].

ACKNOWLEDGMENTS

Enlightening discussions with the members of the experi-
mental team of Francesca Ferlaino in Innsbruck, in particular
Kiyotaka Aikawa, Simon Baier, Albert Frisch, and Michael
Mark, are gratefully acknowledged. M.L. is grateful to Eliane
Luc for her guidance in theory of atomic structure. J.-F.W.
acknowledges Laboratoire Aimé Cotton for its hospitality.
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APPENDIX: DETAILS OF THE ATOMIC-STRUCTURE
CALCULATIONS

This Appendix gives details of the calculation of the erbium
atomic spectrum. Tables IV and V contain the optimal set of
atomic parameters used for the last call of the diagonalization
program RCG. For a given atomic parameter P , we multiply
the HFR value by a scaling factor Fs(P ) to obtain the input
for the first call of RCG. The scaling factors Fs(P ) given
in Table IV and V were taken from the recent work on
Er II [40]. In addition to Eav, Fk(n	n	′), Gk(n	n	′), ζn	, and
Rk(n	n′	′,n′′	′′n′′′	′′′), the presence of effective parameters
accounts for second-order configuration-interaction effects of
far configurations. As explained in [38,39], those parameters
are α, β, and γ for the configurations 4f 11 and 4f 12 and Slater-
forbidden parameters F 1(4f,5d), G2(4f,5d), and G4(4f,5d)
for the configurations with open 4f and 5d subshells. Due
to the lack of HFR evaluations, initial values for effective
parameters are derived from semiempirical comparisons with
similar spectra. Finally, Tables VI and VII contain the charac-
teristics of the calculated even- and odd-parity levels of Er I,
respectively.

TABLE IV. Fitted one-configuration parameters (in cm−1) for odd-parity configurations of Er I compared with HFR radial integrals.
The scaling factors are Fs(P ) = Pfit/PHFR, except for Eav, when they are Pfit − PHFR. The HFR values of Eav parameters are relative to the
ground-state configuration 4f 126s2 taken as zero. Some parameters are constrained to vary in a constant ratio rn, indicated in the second
column, except if “fix” appears in the second or in the “Uncertainty” columns. In this case, the parameter P is not adjusted. The columns for
the uncertainty present the standard error of each parameter after the fitting procedure.

Parameter P Constraint Pfit Uncertainty PHFR Fs Pfit Uncertainty PHFR Fs

4f 115d6s2 4f 115d26s

Eav 46389 68 6742 39647 65582 74 23334 42248

Fitted parameters Fitted parameters

F 2(4f 4f ) r1 97984 387 128939 0.760 97812 387 128712 0.760
F 4(4f 4f ) r2 69490 308 80847 0.860 69360 307 80696 0.860
F 6(4f 4f ) r3 49446 631 58150 0.850 49351 630 58039 0.850
α r4 21.0 2 21.0 2
β fix −650 −650
γ fix 2000 2000
F 2(5d5d) 21541 323 32674 0.659
F 4(5d5d) 16590 611 20683 0.802
ζ4f r5 2381 4 2428 0.981 2379 4 2426 0.981
ζ5d r6 803 9 948 0.847 665 7 785 0.847
F 1(4f 5d) r7 671 70 671 70
F 2(4f 5d) r8 15594 246 20265 0.770 13496 213 17539 0.769
F 4(4f 5d) r9 10737 353 9189 1.168 9123 300 7807 1.169
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TABLE IV. (Continued.)

Parameter P Constraint Pfit Uncertainty PHFR Fs Pfit Uncertainty PHFR Fs

G1(4f 5d) r10 4997 121 8711 0.574 4277 104 7456 0.574
G2(4f 5d) r11 1238 291 1238 291
G3(4f 5d) r12 6103 286 6893 0.885 5170 242 5840 0.885
G4(4f 5d) r13 1353 470 1353 470
G5(4f 5d) r14 4034 278 5204 0.775 3406 235 4394 0.775
G3(4f 6s) r15 1080 90 1486 0.727
G2(5d6s) r17 12159 246 19202 0.633

4f 126s6p 4f 125d6p

Eav 36314 24 15491 20823 61570 fix 38570 23000
F 2(4f 4f ) r1 92534 366 121767 0.760 92314 365 121473 0.760
F 4(4f 4f ) r2 65336 290 76015 0.860 65168 289 75822 0.860
F 6(4f 4f ) r3 46412 592 54582 0.850 46294 591 54441 0.850
α r4 21.0 2 21.0 2
β fix −650 −650
γ fix 2000 2000
ζ4f r5 2242 4 2286 0.981 2242 4 2284 0.981
ζ5d r6 463 5 547 0.846
ζ6p r18 1496 18 1035 1.445 1107 13 766 1.445
F 1(4f 5d) r7 671 70
F 2(4f 5d) r8 11010 174 14308 0.703
F 4(4f 5d) r9 7345 241 6286 1.168
F 1(4f 6p) fix 100 150
F 2(4f 6p) r19 3698 155 3267 1.13 2943 123 2610 1.13
F 2(6p5d) fix 11470 14438 0.80
G1(4f 5d) fix 3898 6652 0.724
G2(4f 5d) fix 1092
G3(4f 5d) fix 9357 0.898 4397 4913 0.895
G4(4f 5d) fix 1028
G5(4f 5d) fix 2761 3625 0.762
G3(4f 6s) r15 1210 101 1665 0.727
G2(4f 6p) r19 843 35 748 1.13 643 568 1.13
G4(4f 6p) r19 733 31 650 1.13 556 491 1.13
G1(6s6p) 12843 66 23373 0.549
G1(6p5d) fix 7880 13133 0.60
G3(6p5d) fix 5052 8420 0.60

TABLE V. Same as Table IV for configuration-interaction parameters.

Parameter P Constraint Pfit Uncertainty PHFR Fs

4f 115d6s2-4f 115d26s

R2(4f 6s,4f 5d) fix −710 −938 0.757
R3(4f 6s,4f 5d) fix 1002 770 0.757
R2(5d6s,5d5d) r17 −13919 282 −21982 0.633

4f 115d6s2-4f 126s6p

R1(5d6s,4f 6p) r20 −3163 96 −6878 0.46
R3(5d6s,6p4f ) r20 −678 21 −1474 0.46

4f 115d26s-4f 126s6p

R1(5d5d,4f 6p) fix 2813 3715 0.757
R3(5d5d,4f 6p) fix 753 994 0.757

4f 115d26s-4f 125d6p

R1(5d6s,4f 6p) fix −2966 −5932 0.5
R3(5d6s,4f 6p) fix −660 −1320 0.5
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TABLE VI. Comparison of energies E and Landé factors gL of Er I even-parity levels. The superscript “expt” stands for experimental
values that are taken from [50]. The superscript “theor” stands for the theoretical values from the present parametric calculations. Note that
�E = Eexpt − Etheor.

Configuration Term J Eexpt g
expt
L �E gtheor

L

4f 126s2 3H 6 0 1.16381 −9 1.166
4f 126s2 3F 4 5035.193 1.147 49 1.141
4f 126s2 3H 5 6958.329 1.031 −15 1.033
4f 126s2 3H 4 10750.982 0.936 −116 0.945
4f 126s2 3F 3 12377.534 1.065 −53 1.084
4f 126s2 3F 2 13097.906 0.750 25 0.739

TABLE VII. Same as Table VI for Er I odd-parity levels with electric dipole decay to the ground level. The theoretical values Etheor, the
factors gtheor

L , and the percentage of calculated configurations are derived by means of the RCG code with the parameter set reported in Table IV.
In the configuration notations, A stands for 4f 12, B for 4f 11, ds2 for 5d6s2, sp for 6s6p, d2s for 5d26s, and dp for 5d6p. The lowercase
letters or arabic numbers appearing in the seventh column correspond to different intermediate coupling schemes [38].

Leading % leading Configuration
electronic LS-coupling weight (%)

Eexpt [50] Etheor �E g
expt
L gtheor

L configuration component B-ds2 B-d2s A-sp A-dp

J = 5
11401.197 11419.6 −18 1.205 1.210 B-ds2 51 B–ds2(4I ) 5G 97.5 2.3 0.3 0
15185.352 15258.6 −7 1.160 1.170 B-ds2 55 B–ds2(4I ) 3G 96.7 2.3 1.0 0
17029.058 17023.5 6 1.150 1.136 B-ds2 37 B–ds2(4I ) 5H 97.3 2.3 0.3 0
17347.860 17314.6 33 1.175 1.177 A-sp 33 A–sp(3H )3Ga 0.3 1.2 98.1 0.4
19201.343 19250.1 −49 1.060 1.059 A-sp 25 A–sp(3H ) 1H 16.2 0.9 82.6 0.3
19563.116 19383.6 180 0.990 0.990 B-ds2 26 B–ds2(4I ) 5I 81.1 2.1 16.8 0.1
20917.276 20790.1 127 0.980 0.980 B-ds2 23 B–ds2(4I ) 5K 97.6 2.2 0.2 0
21392.817 21419.2 −26 1.005 1.019 B-ds2 18 B–ds2(4I ) 3I 95.6 2.6 1.7 0.1
22124.268 22136.3 −12 1.285 1.264 A-sp 28 A–sp(3F ) 5F 0.3 15.6 83.7 0.4
22450.111 22571.5 −121 1.360 1.370 B-d2s 35 B–d2s(4I ) 7F 1.4 82.7 15.8 0.1
22672.766 22651.3 21 1.040 1.040 B-ds2 22 B–ds2(4I ) 5K 92.0 3.7 4.0 0.2
23447.079 23475.0 −28 1.080 1.084 A-sp 23 A–sp(3H ) 5I 1.0 1.9 96.8 0.4
23855.654 23878.9 −23 1.140 1.178 A-sp 26 A–sp(3F ) 5F 1.7 1.9 96.0 0.4
23885.406 23903.7 −18 1.100 1.058 A-sp 22 A–sp(3H ) 5I 4.6 1.7 93.3 0.5
24083.166 24055.6 28 1.128 1.132 A-sp 46 A–sp(3H ) 3Gb 37.1 1.7 58.5 2.6
25162.553 25170.9 −8 1.010 1.016 B-ds2 24 B–ds2(4I ) 3I 74.9 3.5 20.5 1.1
25364.012 25382.3 −18 1.180 1.183 B-d2s 13 B–d2s(4I ) 7Ha 1.6 96.8 1.4 3.2
25681.933 25598.0 84 1.175 1.142 B-ds2 20 B–ds2(4F ) 5F 81.1 3.0 15.0 0.9
26198.837 26145.5 53 1.045 1.069 A-sp 48 A–sp(3H ) 5H 0.1 1.4 98.1 0.3

27651.7 1.315 B-d2s 41 B–d2s(4I ) 5Fb 2.2 97.0 0.8 0.1
27856.436 27825.9 31 1.095 1.145 B-d2s 15 B–d2s(4I ) 7G 8.0 87.7 4.1 0.2
28026.045 28090.7 −65 1.120 1.056 A-sp 18 A–sp(3H ) 5I 12.7 9.4 77.5 0.4
28129.803 28141.9 −12 1.040 1.125 B-ds2 10 B–ds2(4G) 5G 67.6 8.6 23.6 0.3
29272.207 29237.0 35 1.115 1.123 B-ds2 37 B–ds2(4F )v5H 95.1 2.7 2.1 0.1
29550.807 29770.5 −220 1.150 1.168 B-ds2 32 B–ds2(4F ) 5G 69.7 4.6 25.0 0.7
29794.862 29821.6 −27 1.100 1.131 A-sp 14 A–sp(3F ) 5F 17.1 4.5 78.1 0.3
29894.203 30064.0 −170 1.195 1.126 B-d2s 17 B–d2s(4I ) 7Ia 1.8 90.5 7.3 0.4
30380.282 30326.8 53 1.116 A-sp 20 A–sp(3F ) 3Gb 15.6 27.3 53.9 3.3
30600.160 30768.9 −169 1.195 1.093 B-d2s 8 B–d2s(4I ) 5Hc 4.9 78.4 15.2 1.4
31105.090 30988.2 117 1.200 1.250 B-d2s 37 B–d2s(4I ) 5Fa 0.6 96.4 2.1 0.9
31194.235 31185.2 9 1.135 1.128 B-ds2 16 B–ds2(4F ) 5H 86.5 9.5 3.8 0.2
31364.719 31360.7 4 1.235 1.232 A-sp 4 A–sp(3F ) 5G 2.5 5.1 92.1 0.4
31442.927 31475.4 −33 1.195 1.132 B-d2s 12 B–d2s(4I ) 5Fa 3.7 90.5 5.2 0.6

J = 6
7176.503 7185.5 −9 1.302 1.304 B-ds2 77 B–ds2(4I ) 5G 98.2 1.8 0 0

11799.778 11788.5 11 1.190 1.195 B-ds2 39 B–ds2(4I ) 5H 96.9 2.5 0.5 0
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TABLE VII. (Continued.)

Leading % leading Configuration
electronic LS-coupling weight (%)

Eexpt [50] Etheor �E g
expt
L gtheor

L configuration component B-ds2 B-d2s A-sp A-dp

16070.095 16125.4 −55 1.200 1.169 B-ds2 42 B–ds2(4I ) 3H 76.5 2.3 19.1 0.2
16321.110 16347.4 −26 1.220 1.254 A-sp 59 A–sp(3H ) 5G 14.6 1.4 83.7 0.3
17073.800 17063.7 10 1.070 1.069 A-sp 27 A–sp(3H ) 3Ia 2.9 1.1 95.6 0.4
17456.383 17461.9 −6 1.070 1.058 B-ds2 23 B–ds2(4I ) 5I 96.5 2.7 0.8 0
19326.598 19273.3 53 1.180 1.175 A-sp 31 A–sp(3H ) 5H 0.5 0.8 98.3 0.3
19508.432 19461.5 47 0.960 0.960 B-ds2 35 B–ds2(4I ) 5K 96.7 2.5 0.8 0
20166.130 20213.2 −47 1.485 1.475 B-d2s 78 B–d2s(4I ) 7F 0.1 99.9 0 0
20737.723 20659.6 78 0.855 0.853 B-ds2 49 B–ds2(4I ) 5L 97.6 2.3 0.2 0
21701.885 21786.2 −84 1.055 1.045 B-ds2 25 B–ds2(4I ) 3I 91.3 2.9 5.5 0.2
22583.504 22501.1 82 1.130 1.137 B-ds2 36 B–ds2(4F ) 5G 95.6 2.5 1.8 0.1
23311.577 23311.6 0 1.250 1.267 B-d2s 22 B–d2s(4I ) 7Ha 0.4 97.3 2.3 0.1
23831.359 23820.4 11 1.250 1.248 A-sp 56 A–sp(3F ) 5G 0.3 2.9 96.4 0.4
24246.146 24215.8 30 1.085 1.098 A-sp 43 A–sp(3H ) 5I 1.3 1.6 96.7 0.4
24457.139 24492.3 −35 1.050 1.054 B-ds2 24 B–ds2(4F ) 3H 84.4 2.7 12.3 0.6
25268.259 25308.9 −40 1.185 1.166 B-d2s 17 B–d2s(4I ) 7G 6.3 91.8 1.7 0.1
25392.779 25419.3 −27 1.075 1.072 B-ds2 21 B–ds2(4F ) 5G 82.9 9.3 7.4 0.4
25880.274 26070.5 −190 1.150 1.156 A-sp 41 A–sp(3H ) 3Hb 19.9 2.3 75.7 2.1
26237.004 26178.0 59 1.160 1.158 A-sp 36 A–sp(3H ) 3Ha 15.3 2.7 80.1 1.9
27582.017 27490.5 91 1.120 1.113 B-d2s 12 B–d2s(4I ) 5Ha 0.5 98.9 0.4 0.2
27879.416 27996.0 −117 1.175 1.147 B-ds2 23 B–ds2(4G) 5G 90.0 7.9 2.0 0.1
28854.941 28902.8 −48 1.190 1.208 B-d2s 22 B–d2s(4I ) 5Gb 3.1 96.0 0.8 0.1
29152.796 29118.8 34 1.175 1.192 B-d2s 15 B–d2s(4I ) 7Hb 0.6 99.0 0.1 0.2
29561.425 29584.5 −24 1.130 1.126 A-sp 25 A–sp(3F ) 5G 0.2 3.1 96.2 0.4

29718.1 1.114 B-d2s 9 B–d2s(4I ) 3Ic 16.1 81.3 2.3 0.3
30007.369 30051.0 −44 1.090 1.092 B-ds2 14 B–ds2(2H ) 1I2 67.8 31.2 0.9 0.1
30088.200 30169.1 −81 1.120 1.126 B-d2s 17 B–d2s(4I ) 7Ka 12.1 87.3 0.4 0.2

30702.6 1.268 B-d2s 26 B–d2s(4I ) 5Ga 1.6 97.6 0.3 0.4
30765.720 30771.7 −6 1.205 1.205 B-ds2 51 B–ds2(4F ) 5H 95.6 4.4 0.1 0
31205.223 31264.5 −59 1.100 1.090 B-d2s 14 B–d2s(4I ) 7Ia 0.6 99.1 0.1 0.2
31823.748 31706.0 118 1.045 1.078 A-sp 39 A–sp(3H ) 3Ib 6.7 27.7 61.9 3.7
31926.003 31939.5 −13 1.215 1.215 B-d2s 18 B–d2s(4I ) 5Gd 4.1 76.4 18.0 1.5

J = 7
7696.956 7713.9 −17 1.266 1.262 B-ds2 78 B–ds2(4I ) 5H 98.0 2.0 0 0
11887.503 11937.5 −50 1.153 1.150 B-ds2 47 B–ds2(4I ) 3I 96.6 2.9 0.5 0
15846.549 15844.1 2 1.070 1.066 B-ds2 43 B–ds2(4I ) 5K 96.6 2.4 0.9 0
17157.307 17129.3 28 1.195 1.192 A-sp 39 A–sp(3H ) 5I 1.9 1.1 96.6 0.4
17796.139 17809.4 −13 1.110 1.107 B-ds2 48 B–ds2(4I ) 5I 95.4 2.8 1.7 0.0
18774.123 18737.9 36 0.965 0.967 B-ds2 45 B–ds2(4I ) 5L 97.6 2.4 0 0
19125.253 19052.2 73 1.235 1.244 A-sp 68 A–sp(3H ) 5H 0 1.0 98.6 0.4
21168.430 21162.2 6 1.065 1.062 B-ds2 33 B–ds2(4I ) 3K 95.9 2.9 1.1 0.1
21787.932 21749.2 39 1.350 1.360 B-d2s 49 B–d2s(4I ) 7G 0.2 99.8 0 0
23080.952 23046.6 34 1.010 1.011 B-ds2 40 B–ds2(4I ) 3L 97.0 2.8 0.2 0
23364.853 23396.3 −31 1.225 1.226 B-d2s 24 B–d2s(4I ) 7G 0.3 99.6 0.2 0
24943.272 24946.1 −3 1.160 1.145 A-sp 57 A–sp(3H ) 3Ib 3.9 6.5 84.6 4.9
25159.143 25167.9 −9 1.170 1.170 B-d2s 12 B–d2s(4I ) 7Ha 0.9 93.8 4.9 0.4
25598.286 25570.2 28 1.155 1.166 A-sp 48 A–sp(3H ) 5I 0.4 2.0 97.1 0.5

25659.2 1.146 B-ds2 48 B–ds2(4F ) 5H 96.6 3.1 0.3 0
27230.646 27134.8 96 1.135 1.113 B-d2s 12 B–d2s(4I ) 1Ka 0.2 99.5 0.1 0.2
27306.747 27432.5 −126 1.225 1.243 B-d2s 25 B–d2s(4I ) 7Hb 0.1 99.8 0 0.1
28017.584 28087.3 −70 1.080 1.068 B-ds2 24 B–ds2(2H ) 3K2 93.5 6.5 0 0

28306.8 1.220 B-d2s 19 B–d2s(4I ) 7Hb 1.8 98.0 0.1 0.1
29088.0 1.171 B-d2s 18 B–d2s(4I ) 5Hb 2.1 97.9 0 0
29781.0 1.069 B-d2s 15 B–d2s(4I ) 1Kb 1.8 98.0 0 0.2
30127.6 1.215 B-d2s 21 B–d2s(4I ) 5Hf 12.0 87.9 0.1 0.1
30353.5 1.117 B-d2s 17 B–ds2(2H ) 3I2 45.1 54.6 0.2 0.1
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