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We develop a collisional formalism adapted for the dynamics of ultracold dipolar particles in a confined
geometry and in fields tilted relative to the confinement axis. Using tesseral harmonics instead of the usual
spherical harmonics to expand the scattering wave function, we recover a good quantum number ξ = ±1 which
is conserved during the collision. We derive the general expression of the dipole-dipole interaction in this
convenient basis set as a function of the polar and azimuthal angles of the fields. We apply the formalism to
the collision of fermionic and bosonic polar KRb molecules in a tilted electric field and in a one-dimensional
optical lattice. The presence of a tilted field drastically changes the magnitude of the reactive and inelastic rates
as well as the inelastic threshold properties at vanishing collision energies. Setting an appropriate strength of the
confinement for the fermionic system, we show that the ultracold particles can even further reduce their kinetic
energy by inelastic excitation to higher states of the confinement trap.

DOI: 10.1103/PhysRevA.92.042706 PACS number(s): 34.50.Cx, 34.50.Lf

I. INTRODUCTION

The field of ultracold gases composed of dipolar particles
has generated tremendous interest during the past years [1–6].
One major goal is to shape at will the quantum properties
of ultracold gases using the high degree of controllability
available in experiments. Different kinds of dipolar particles
are concerned by the quest for manifestation of dipole-induced
effects. The first category of interest contains particles with
electric dipoles such as ground state molecules of KRb [7,8],
RbCs [9,10], NaK [11], and many others experimentally under
way. The second category includes particles with magnetic
dipoles such as Cr [12–14], Dy [15,16], Er [17,18] atoms, and
Er2 molecules [19]. The third category consists of particles
with both electric and magnetic dipoles such as molecules
of OH [20], SrF [21], YO [22,23], RbSr [24], etc. All these
particles can be manipulated by different configurations of
electric and/or magnetic fields. They can also be loaded in op-
tical lattices of different dimensions such as one-dimensional
(1D) lattices [25–29], two-dimensional (2D) lattices [30,31],
and three-dimensional (3D) lattices [32]. Due to the wide and
numerous domains of application of dipolar particles [33],
it is therefore important to understand how to control the
interactions and the collisional properties of these particles
under such configurations of fields and lattices. For example,
it has been shown that chemical reactivity of molecules can be
suppressed by an electric field in a confined 1D optical lattice
[29] or by selecting a particular electric field and appropriate
quantum states of the molecules in a nonconfined space [34].

In this study we investigate two-body collisions in a
confining 1D optical lattice in electric and/or magnetic fields
tilted with respect to the z and x axis, as illustrated in
Fig. 1. Collisions and interactions of dipolar particles in tilted
fields and lattices are important for many-body physics of
dipolar quantum degenerate systems [35–41]. We consider
here “classical” dipoles oriented along the field, for which the
angular internal structure of the particles (rotational angular
momentum for the electric dipoles and electronic angular
momentum for the magnetic dipoles) is not taken into account.
We choose an effective value d or μ of the electric or magnetic
dipole moment, corresponding to their expectation value along

the direction of the electric or magnetic field. For particles
without angular internal structure, the total angular momentum
Ĵ of the two-body colliding system reduces to the orbital
angular momentum L̂ associated with the quantum number
l, which is conserved in free space. When a field is applied
parallel to the quantization axis z, it is not conserved anymore
but its projection L̂z associated with the quantum number ml

still is. When the field is tilted and no more parallel with
respect to the quantization axis, its projection is not conserved
anymore. The scattering problem becomes challenging as l,ml

are all mixed. We show in this study that it is still possible to
define a good quantum number, provided that the collision
is described using the so-called “tesseral harmonics” [42]
instead of the standard spherical harmonics for the partial wave
expansion of the scattering wave function. The problem is thus
split into two subproblems of smaller size. As an example of
a dipolar system, we study fermionic and bosonic KRb +
KRb collisions in a tilted electric field. The present theoretical
formalism was also successfully used recently to understand
the experimental observation of dipolar collisions of bosonic
Feshbach Er2 molecules in a 1D optical lattice in a tilted
magnetic field [19].

The paper is structured as follows. In Sec. II we develop
the theoretical formalism for collision of particles in a tilted
field and confined geometry where the appropriate basis set for
partial wave expansion is introduced. In Sec. III we show how
the collisional rate coefficients and their threshold behaviors
are strongly affected by tilted fields revealing the complexity
of the mechanism. The role of the confinement trap is also
explored and could be used to reduce the kinetic energy of the
particles. Finally, we conclude in Sec. IV.

II. THEORETICAL FORMALISM

Ultracold dipolar collisions in a tilted field have been
already studied in the past including microwave fields [43–45],
but without confinement, in crossed electric and magnetic
fields [46,47], or considering strong 1D confinement such
that the particles are bound to collide in pure 2D [48]. By
pure 2D we mean that the characteristic strength of the
particles confinement is much stronger than the characteristic
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FIG. 1. (Color online) Electric and magnetic dipolar collisions in
a 1D confinement (pancakes-shaped lattices) and arbitrary tilted fields
relative to the z and x axis. We consider “classical” dipoles aligned
with the fields (see text).

strength of their interaction (the dipole-dipole interaction
here). However, this regime of pure 2D collisions is not yet
reached in ongoing experiments as the required confinement
strength is too strong. Instead, quasi-2D collisions occur. The
particles start to collide at large distances in pure 2D but there
is a point as they approach each other where the increasing
magnitude of their interaction gets much bigger than the
confinement strength. The particles do not feel anymore the
presence of a 2D confinement and collide as if they were in a
nonconfined space. Therefore, to reproduce the conditions of
ongoing experiments, we describe the quasi-2D collisions of
two ultracold particles of mass m1,m2 carrying tilted dipole
moments and trapped in a 1D optical lattice of arbitrary
confinement strength. We assume that the particles cannot hop
from one potential well to another so that we approximate
a well by a harmonic oscillator for particles 1 and 2, Vho =
1/2 m1 ω2 z2

1 + 1/2 m2 ω2 z2
2. The angular frequency ω = 2πν

governs the strength of the confinement. The particles are
initially in a given state of the harmonic oscillator n1,n2 of
energy εn1 = hν(n1 + 1/2),εn2 = hν(n2 + 1/2).

The electric or magnetic fields make an angle θE,B and ϕE,B

with the z and x axis, respectively, as depicted in Fig. 2(a).
The classical dipole approximation has been shown to be
convenient for modeling electric dipoles [34] and magnetic
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FIG. 2. (Color online) (a) Spherical angle coordinates θE,B rela-
tive to the z axis and ϕE,B relative to the x axis of the tilted fields �E
and �B. In the study, the numerical results correspond to a field in the
xOz plane with ϕE,B = 0. (b) Spherical coordinates (r,θ,ϕ) of the
relative coordinate vector �r describing the dipole-dipole collisional
motion.

dipoles [19] interactions in ultracold dipolar gases. It is
an appropriate way to avoid the inclusion of the particles
internal structure in the collisional formalism, thus sparing
computational effort. No Stark nor Zeeman term appears in
our formalism then.

We distinguish three types of collisional processes: (i)
Elastic processes for which the molecules remain in the
same external state of the harmonic oscillator after the
collision (n′

1,n
′
2) = (n1,n2). (ii) Inelastic processes for which

the molecules change their external state of the harmonic
oscillator (n′

1,n
′
2) �= (n1,n2) (note that a change of the internal

states is not possible as the internal structure of the particles is
not treated). (iii) Loss processes due for instance to chemical
reactions occurring at ultralow energy, leading to products with
high kinetic energy which are expelled from the trap.

A. Quasi-2D collisions in parallel field

We shall briefly recall the formalism for fields parallel to the
quantization axis when θE,B = 0. It is presented in more details
in Ref. [28]. First, it is convenient to transform the motion of
the individual particles 1 and 2 with position coordinates �r1,�r2

of masses m1,m2 in external states n1,n2, into the motion of
two effective particles described by the center-of-mass and
relative coordinates �R,�r of masses mtot,mred in external states
N,n. For confinements modeled by harmonic oscillators, it
can be shown then that the center-of-mass coordinate �R is
decoupled from the relative coordinate �r .

The potential energy term for the relative coordinate �r is
given by a van der Waals interaction

VvdW = −C6/r6, (1)

the confinement interaction given by a harmonic oscillator for
the relative motion along z

Vho = 1
2 mred ω2 z2, (2)

and a dipole-dipole interaction composed of an electric and
magnetic term

Vdd = V e
dd + V m

dd, (3)

where

V
e,m
dd = −X2

e,m(1 − 3 cos2 θ )/r3, (4)

with for electric dipoles

Xe ≡ d/
√

4πε0, (5)

and for magnetic dipoles

Xm ≡ μ/
√

(4π/μ0). (6)

The coordinate �r is expressed in spherical coordinates �r =
(r,θ,ϕ) when VvdW and V

e,m
dd are dominant [Fig. 2(b)], or in

cylindrical coordinates �r = (ρ,z,ϕ) when Vho is dominant at
very large distances.

We decompose the total wave function ψ(�r) of the relative
motion into a basis set of spherical harmonics Y

ml

l (θ,ϕ) ≡
〈r̂|l,ml〉,

ψ(r,θ,ϕ) = 1

r

∑
l,ml

fl,ml
(r) Y

ml

l (θ,ϕ), (7)

042706-2



DYNAMICS OF ULTRACOLD DIPOLAR PARTICLES IN A . . . PHYSICAL REVIEW A 92, 042706 (2015)

with −l � ml � +l. In this basis set, the expression of the potential energy terms become in bra-ket notation

〈lml|VvdW|l′m′
l〉 = −C6

r6
δml,m

′
l
δl,l′ , (8)

〈lml|Vho|l′m′
l〉 = δml,m

′
l

1
2mredω

2r2

3

{
(−1)ml 2

√
2l + 1

√
2l′ + 1

(
l 2 l′
0 0 0

)(
l 2 l′

−ml 0 m′
l

)
+ δl,l′

}
, (9)

and

〈lml|V e,m
dd |l′m′

l〉 = −
√

30X2
e,m

r3
δml,m

′
l
(−1)ml

√
2l + 1

√
2l′ + 1

(
1 1 2
0 0 0

)(
l 2 l′
0 0 0

)(
l 2 l′

−ml 0 m′
l

)
, (10)

where (:::) are Wigner 3-j symbols. The first expression is diagonal in ml and l while the two last expressions are diagonal in ml

but couple different values of l. The expression for Vho arises from the fact that z2 = r2 cos2 θ = r2[4
√

π/5 Y 0
2 + 1]/3.

The time-independent Schrödinger equation is solved for a fixed total energy Etot = εn1 + εn2 + Ecoll. Equations (8) to (10)
lead to a set of coupled differential equations. To solve this system of equations, we use a diabatic-by-sector method [28] which
generates a set of adiabatic energy curves as a function of the interparticle distance r , and we propagate the log derivative of the
wave function [49,50]. The boundary condition at short distance, where the propagation of the wave function is started, is set up by
a tunable, diagonal log-derivative matrix given in Ref. [34] for which we can control the amount of loss in this short-range region.
For the boundary condition at large distance in the asymptotic region where the propagation of the wave function is ended, we use
the asymptotic form of the cylindrical wave function which is a linear combination of regular and irregular Bessel functions of the
cylindrical problem. Using a transformation matrix from cylindrical to spherical coordinates [28], we obtain the asymptotic form
of the wave function from which we deduce the K , S, and T matrices using the expression of the log-derivative matrix in spherical
coordinates. The S matrix in the center-of-mass and relative coordinates is then expressed back into the individual coordinates
[28] yielding the elastic, inelastic, and loss cross sections and rate coefficients for two particles starting in a given initial state
(n1,n2).

B. Quasi-2D collisions in an arbitrary field

1. In the spherical harmonics basis set

As depicted in Fig. 2, when the fields are tilted, the expression of the dipole-dipole interactions become

V
e,m
dd = −X2

e,m(1 − 3 cos2[θ − θE,B])/r3. (11)

This implies a more complicated expression in the spherical harmonic basis set

〈l ml|V e,m
dd |l′ m′

l〉 = −
√

30 X2
e,m

r3
(−1)ml

√
2l + 1

√
2l′ + 1

1∑
p1=−1

1∑
p2=−1

2∑
p=−2

(
1 1 2
p1 p2 −p

)

×
√

4π/3 Y
−p1
1 (θE,B,ϕE,B)

√
4π/3 Y

−p2
1 (θE,B,ϕE,B)

(
l 2 l′
0 0 0

) (
l 2 l′

−ml −p m′
l

)
. (12)

For the special case θE,B = 0, p1 = p2 = p = 0, and we recover the case m′
l − ml = 0. For the special case θE,B = π/2,

p1 = ±1, p2 = ±1, p = 0, ± 2, then we have m′
l − ml = 0, ± 2. For any other θE,B we have m′

l − ml = 0, ± 1, ± 2, increasing
the number of coupled equations and leaving no good quantum numbers in Eq. (12).

2. In the tesseral harmonics basis set

By properly symmetrizing the basis set of spherical harmonics, we can still recover a good quantum number. We use the
following symmetrized spherical harmonics in ket notation:

|l,m̄l,ξ 〉 = δ1ξ + iδ−1ξ√
2�

{|l, − |ml|〉 + ξ (−1)|ml ||l,|ml|〉}, (13)

where m̄l ≡ |ml| and � ≡ 1 + δm̄l ,0. The new quantum number ξ takes the values ξ = ±1, while m̄l = 0,1,2,3, . . . , when
ξ = +1 and m̄l = 1,2,3, . . . , when ξ = −1. This new basis sets are often called the tesseral harmonics [42]. We note them Yl,m̄l ,ξ

with

Yl,m̄l �=0,ξ=+1 = 1√
2

{
Y

−m̄l

l + (−1)m̄l Y
m̄l

l

} ∝ P
m̄l

l (cos θ ) cos m̄lϕ,

Yl,m̄l=0,ξ=+1 = Y
m̄l=0
l ∝ Pl(cos θ ), (14)

Yl,m̄l �=0,ξ=−1 = i√
2

{
Y

−m̄l

l − (−1)m̄l Y
m̄l

l

} ∝ P
m̄l

l (cos θ ) sin m̄lϕ.
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In this new basis set, the potential energy matrix elements are given by

〈l,m̄l,ξ |VvdW|l′,m̄′
l ,ξ

′〉 = −C6

r6
δξ,ξ ′δm̄l ,m̄

′
l
δl,l′ , (15)

〈l,m̄l,ξ |Vho|l′,m̄′
l ,ξ

′〉 = 1√
��′ δξ,ξ ′δm̄l ,m̄

′
l

1
2mredω

2r2

3

{
(−1)ml 2

√
2l + 1

√
2l′ + 1

(
l 2 l′
0 0 0

)[(
l 2 l′

m̄l 0 −m̄′
l

)

+ (−1)m̄
′
l ξ ′

(
l 2 l′

m̄l 0 m̄′
l

)
δm̄l ,0δξ ′,1

]
+ δl,l′ + δl,l′ξ

′(−1)m̄
′
l δm̄l ,0δξ ′,1

}
, (16)

and after reducing Eq. (12)

〈l,m̄l,ξ |V e,m
dd |l′,m̄′

l ,ξ
′〉 = −

√
30X2

e,m

r3

1√
��′ (−1)m̄l

√
2l + 1

√
2l′ + 1

(
l 2 l′
0 0 0

){
(c1)2

(
1 1 2
1 1 −2

)
(δξ,ξ ′ + iξδξ,−ξ ′ )

×
(

e−i2ϕE,B + ξξ ′ei2ϕE,B

2

)[(
l 2 l′

m̄l −2 −m̄′
l

)
+ ξξ ′

(
l 2 l′

−m̄l −2 m̄′
l

)

+ ξ ′(−1)m̄
′
l

(
l 2 l′

m̄l −2 m̄′
l

)]
+ 2c0c1

(
1 1 2
0 1 −1

)
(δξ,ξ ′ + iξδξ,−ξ ′ )

(
e−iϕE,B + ξξ ′eiϕE,B

2

)

×
[(

l 2 l′
m̄l −1 −m̄′

l

)
− ξξ ′

(
l 2 l′

−m̄l −1 m̄′
l

)
+ ξ ′(−1)m̄

′
l

(
l 2 l′

m̄l −1 m̄′
l

)]
+ δξ,ξ ′δm̄l ,m̄

′
l

×
[

(c0)2

(
1 1 2
0 0 0

)
− 2(c1)2

(
1 1 2

−1 1 0

)][(
l 2 l′

m̄l 0 −m̄′
l

)
+

(
l 2 l′

m̄l 0 m̄′
l

)
δm̄′

l ,0δξ ′,1

]}
,

(17)

with

cpi=0,1 =
√

4π

3
Y

−pi

1 (θE,B,ϕE,B = 0), (18)

namely c0 = cos θE,B and c1 = sin θE,B/
√

2. Equation (15) is diagonal in ξ,m̄l,l and Eq. (16) is diagonal in ξ,m̄l . Equation (17)
is diagonal in ξ if ϕE = 0 and/or ϕB = 0, and it reduces in this case to

〈l,m̄l,ξ |V e,m
dd |l′,m̄′

l ,ξ
′〉 =−

√
30X2

e,m

r3

1√
��′ (−1)m̄l

√
2l+1

√
2l′+1

(
l 2 l′
0 0 0

)
δξ,ξ ′

{
(c1)2

(
1 1 2
1 1 −2

)[(
l 2 l′

m̄l −2 −m̄′
l

)

+ ξξ ′
(

l 2 l′
−m̄l −2 m̄′

l

)
+ ξ ′(−1)m̄

′
l

(
l 2 l′

m̄l −2 m̄′
l

)]
+ 2c0c1

(
1 1 2
0 1 −1

)

×
[(

l 2 l′
m̄l −1 −m̄′

l

)
− ξξ ′

(
l 2 l′

−m̄l −1 m̄′
l

)
+ ξ ′(−1)m̄

′
l

(
l 2 l′

m̄l −1 m̄′
l

)]

+ δm̄l ,m̄
′
l

[
(c0)2

(
1 1 2
0 0 0

)
− 2(c1)2

(
1 1 2

−1 1 0

)][(
l 2 l′

m̄l 0 −m̄′
l

)
+

(
l 2 l′

m̄l 0 m̄′
l

)
δm̄′

l ,0δξ ′,1

]}
.

(19)

We can see that we recover a good quantum number ξ in
this formalism which was not the case in the nonsymmetrized
spherical harmonics basis set. When ϕE = ϕB �= 0, or when
a unique electric or magnetic field is used where ϕE �= 0 or
ϕB �= 0, one can always recover the situation in Eq. (19) with
good quantum numbers by a proper rotation of the x and y

axis due to the cylindrical symmetry of the pancakes. Only
in the more general case including both electric and magnetic
fields where ϕE �= ϕB , one of the dipole-dipole expression is
no more diagonal in ξ and Eq. (17) has to be used instead. To
simplify the study in the following, we will consider the case
where ϕE,B = 0 when the dipoles are only tilted in the xOz

plane. Furthermore, we will consider the case where we only
apply a unique field (electric in this study).

In general, the quantum number m̄l = 0 is always auto-
matically associated with the ξ = +1 one as it is not defined

for the ξ = −1 one. For the m̄l > 0 values one has to use
both ξ = ±1 values. For the special case of parallel field
θE,B = 0, m̄l is a good quantum number, c1 = 0, and Eq. (17)
reduces to Eq. (10). Still for the parallel case for m̄l �= 0, the
ξ = −1 contribution is identical to the ξ = +1 one so that
the total contribution is twice the ξ = +1 one. For m̄l = 0,
only the ξ = +1 contribution is needed. Therefore, only the
value of ξ = +1 is needed in the parallel field case for all m̄l .
The contribution of the different quantum numbers needed for
different tilted configurations are summarized in Table I.

The suitability of the tesseral harmonics can be qualitatively
understood from their spatial shape. If ϕ = 0 or π which
corresponds to the xOz plane (see Fig. 2), Yl,m̄l ,ξ=−1 vanishes
there for any values of m̄l since it is proportional to sin m̄lϕ

[see Eq. (14)]. We can therefore associate the ξ = −1 quantum
number with an out-of-plane motion, excluding the collision
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TABLE I. Quantum numbers ξ,m̄l needed (y) or not (n) for different angle θE,B,ϕE,B of the fields. Note that for identical and indistinguishable
(same internal state) bosons, l is even: l = 0,2,4, . . . For identical and indistinguishable fermions, l is odd: l = 1,3,5, . . . . For distinguishable
or nonidentical particles, both parities of l should be included: l = 0,2,4, . . . and l = 1,3,5, . . . . For the special cases θE,B = 0 and π/2, if we
start with molecules in the ground state of the harmonic oscillator, ml should be odd for fermions and even for bosons [28].

θE,B = 0, ϕE,B = 0 θE,B = π/2, ϕE,B = 0 θE,B �= 0,π/2, ϕE,B = 0 ϕE,B �= 0

ξ = +1 m̄l = 0 y ξ = +1 m̄l = 0,2, . . . y ξ = +1 m̄l = 0,1,2,3, . . . y ξ = ±1 m̄l = 0,1,2,3, . . . y
m̄l = 1 y
m̄l = 2 y m̄l = 1,3, . . . y

m̄l = · · · y
ξ = −1 m̄l = 1 n ξ = −1 m̄l = 2,4, . . . y ξ = −1 m̄l = 1,2,3,4, . . . y

m̄l = 2 n
m̄l = 3 n m̄l = 1,3, . . . y

m̄l = · · · n

in the xOz plane. If ϕE,B = 0, the electric or magnetic field is
applied in the xOz plane only. As the dipoles are exclusively
pointing in the xOz plane, the collisions of dipoles in the y

direction start always side-by-side at long range since there is
no component of the dipole moment in the y direction. We thus
expect that the manifold of the ξ = −1 curves is always more
repulsive than its ξ = +1 counterpart due to the side-by-side,
repulsive dipolar approach.

The tesseral harmonics representation of the partial waves
is therefore a more appropriate basis set in the general case
of collisions in arbitrary tilted electric and/or magnetic fields.
Note that the present formalism is also adapted for collisions
of particles in free space in crossed electric and magnetic
fields, where one field (for example the magnetic field) is
chosen as the quantization axis and the other (for example the
electric field) is the tilted one. For example, the study done in
Ref. [47] using spherical harmonics could be adapted using
tesseral harmonics.

III. RESULTS

In the following we study the collision of two indistin-
guishable, electric dipolar molecules of KRb in their absolute
internal ground state in an electric field for which the “classical
dipoles” assumption is a good description. We use 40K 87Rb for
a fermionic system example and 41K 87Rb for a bosonic one.
We impose here ϕE = 0. They possess a permanent electric
dipole moment of dp = 0.57 D [7]. The electric field can
therefore induce a dipole moment d up to dp [51]. We use a C6

coefficient of 16133 a.u. [52]. The results presented here will
also be similar for collisions of magnetic dipolar particles with
strong magnetic dipole moment, tuned by a tilted magnetic
field �B, as performed in Ref. [19]. The confinement in the z

direction is described by a harmonic oscillator of frequency
ν = 20 kHz which is a typical value employed in experiments.
We assume that all the particles are in the ground state of the
harmonic oscillator n1 = n2 = 0 before the collision, which
is equivalent to the relative n = 0 quantum number [28]. We
study those collisions by varying different parameters such
as the collision energy, the tilted angle, and the confinement
frequency. The loss processes are described by a full loss
condition at short range given in Ref. [34]. The full loss
condition corresponds to either a chemical reaction with full
probability at short range if the system is reactive, or if not to
a possible “sticky” rate condition [53] where the two particles

stick together for a sufficient amount of time and a third one has
the time to destroy the two-body complex equivalent to loss of
particles. Although this mechanism has yet to be confirmed and
observed in experiments, we include this possibility as well.
We then consider the elastic, inelastic, and loss rate coefficients
for the four lowest values of m̄l = 0,1,2,3 which are all
mixed in a general tilted field 0 < θE < π/2. In a parallel
field θE = 0, none of the m̄l are mixed and the corresponding
rates for each m̄l are summed altogether. In a perpendicular
field θE = π/2, the rates are calculated for the even value
components m̄l = 0,2 and the odd value ones m̄l = 1,3. For
the bosonic case, the values of the mixed l are taken from
l = 0 to l = 80 by steps of two, and for the fermionic case,
from l = 1 to l = 79 by steps of two. The fact that we start
with molecules in the ground state of the harmonic oscillator
implies that for the special cases θE = 0 and π/2, ml should
be odd for fermions and even for bosons [28].

A. Interactions and adiabatic energy curves

The adiabatic energy curves are shown in Fig. 3 for the
fermionic and the bosonic KRb molecules, for an induced
dipole moment of d = 0.2 D. If there is a presence of a
barrier relative to a given collision energy as r decreases
and if this barrier increases when d increases (indicated
by an arrow pointing upward in Fig. 3), we say that the
corresponding curve is protective against possible short-range
loss. In the absence of a barrier or if the barrier decreases
(indicated by an arrow pointing downward), we say that the
corresponding curve is nonprotective. The adiabatic energy
curves are presented only for the quantum number ξ = +1.
For the ξ = −1 quantum number, the curves are equal to their
ξ = +1 counterpart in the vanishing dipole moment limit,
recovering the isotropic character of the long-range van der
Waals interaction. For larger d, they are more repulsive due to
the fact that the ξ = −1 manifold corresponds to side-by-side
dipolar repulsive collisions as mentioned earlier. The ξ = −1
curves are shown in the Appendix.

The fermionic case for θE = 0 is shown in the top left
panel of Fig. 3. The thick black solid lines (respectively, thin
blue solid lines, thick red dashed lines, thin green dashed
lines) represent the (unmixed) values of m̄l = 1 (respectively,
m̄l = 3, m̄l = 0, m̄l = 2). The lowest curve of the n = 0
harmonic oscillator ground state correlates to the protective,
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FIG. 3. (Color online) Adiabatic energy curves as a function of the intermolecular distance r between two fermionic 40K 87Rb molecules
(left panels) and two bosonic 41K 87Rb molecules (right panels) for a given induced dipole d = 0.2 D and tilt angle θE . The curves of same
color are coupled among each other. Only the curves corresponding to ξ = +1 are shown. For the ξ = −1 curves, see the Appendix. Up and
down arrows indicate the variation trend of the curves when d increases. Each adiabatic energy curve correlates to a state n of the harmonic
oscillator indicated at the right of each panel.

repulsive side-by-side m̄l = 1 curve. For indistinguishable
fermionic particles, we recall that the scattering takes place
for odd l partial waves. The lowest curve l = 1 features a
p-wave barrier. There is an actual crossing between the lowest
curves with m̄l = 1 and m̄l = 0 since the m̄l components do
not couple to each other. The middle panel shows the case
for θE = π/4. The black solid lines represent the curves with
mixed values m̄l = 0,1,2,3. Since all m̄l are coupled, the actual
crossing at θE = 0 becomes an avoided crossing. And the
lowest n = 0 curve correlates to a nonprotective curve. Finally,
the bottom panel shows the case for θE = π/2. The black solid
lines represent the curves with mixed values m̄l = 1,3 and

the red dashed lines the curves with mixed values m̄l = 0,2.
Both series of curves do not couple to each other. The lowest
n = 0 curve still correlates to the nonprotective curve. So for
particles in the lowest state, we can see how the adiabatic
energy curve changes from a protective character coming from
of a repulsive side-by-side interaction approach when θE = 0
to a nonprotective one coming from of an attractive head-to-tail
interaction approach when the dipoles are tilted by θE = π/2.

We get similar results in Fig. 3 for the bosonic symmetry.
For indistinguishable bosonic particles, the scattering takes
place in even l partial waves. The lowest l = 0 curve is
barrierless, in contrast with the fermionic particles. Now the
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lowest n = 0 curve correlates to the barrierless, nonprotective
curve at short range for all θE even θE = 0. As θE increases
from 0 to π/2, the m̄l = 2 curve pushes slightly downward
the m̄l = 0 curve so that the lowest n = 0 curve get slightly
more attractive.

The behavior of these adiabatic energy curves have direct
consequences on the behavior of the collisional rate coeffi-
cients. This is presented below.

B. Collisions and rate coefficients

1. Rate coefficients versus the collision energy: Threshold laws

We show in Fig. 4 the rate coefficients for the fermionic and
the bosonic case as a function of the collision energy for d =
0.2 D, starting with two particles in n = 0 relative motional
state. The top, middle, and bottom panels corresponds to θE =
0,π/4,π/2, respectively. The total rates are reported as a thick

10
-8

10
-7

10
-6

Ec (K)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

θE=0

Fermions

r

e

e
i

i

d=0.2D

10
-8

10
-7

10
-6

Ec (K)

10
-7

10
-6

10
-5

10
-4

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

θE=0Bosons

e

e
i

i

r

d=0.2D

10
-8

10
-7

10
-6

Ec (K)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

θE=π/4

Fermions

r

r

i

i

e

e

d=0.2D

10
-8

10
-7

10
-6

Ec (K)

10
-7

10
-6

10
-5

10
-4

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

θE=π/4Bosons

i

i

r

e

d=0.2D

10
-8

10
-7

10
-6

Ec (K)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
) elastic

reactive

inelastic

θE=π/2

Fermions

r

i

i

e

e

r

d=0.2D

10
-8

10
-7

10
-6

Ec (K)

10
-7

10
-6

10
-5

10
-4

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

θE=π/2Bosons
d=0.2D

i

i
e

e

r

FIG. 4. (Color online) Elastic (e), inelastic (i), and reactive (r) rate coefficients (thick lines) for fermionic (left panels) and bosonic (right
panels) KRb + KRb collisions as a function of the collision energy at d = 0.2 D and ν = 20 kHz. Top panels: θE = 0, the thin solid lines are
for m̄l = 1 and ξ = ±1 (m̄l = 0 and ξ = +1), the thin dashed lines are for m̄l = 3 and ξ = ±1 (m̄l = 2 and ξ = ±1) for fermions (bosons).
Middle panels: θE = π/4, the thin solid lines are for ξ = +1, m̄l = 0,1,2,3, the thin dashed lines are for ξ = −1, m̄l = 1,2,3. Bottom panels:
θE = π/2, the thin solid lines are for ξ = +1, m̄l = 1,3 (m̄l = 0,2), the thin dashed lines are for ξ = −1, m̄l = 1,3 (m̄l = 2) for fermions
(bosons).
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solid line for each process. One can see in Fig. 3 that when
the collision energy is increased from the n = 0 threshold,
different harmonic oscillator states become energetically open,
resulting in sudden peaks in the inelastic rate coefficients (blue
curves). In addition to the usual elastic rate coefficient (red
curves), we also have reactive rate coefficients (black curves)
corresponding to the full loss condition at short range.

For the fermionic particles for the θE = 0 case, we see
that reactive rates are suppressed compared to the elastic
one at ultralow energies. This has already been explained
theoretically and experimentally [26,28,29]. As the lowest
n = 0 state curve correlates to a repulsive protective barrier
curve when r decreases, the probability of the two particles to
be close to each other is low, preventing short-range loss to
take place. The inelastic rate coefficient emerges at a collision
energy of Ec ∼ 2 μK corresponding to the n = 2 threshold
opening. The n = 1 threshold is not open here at Ec ∼ 1 μK
since the m̄l = 0 and 2 (red and green curves) do not mix with
the m̄l = 1 and 3 (black and blue curves). When open above
Ec ∼ 2 μK, the inelastic rates are bigger than the reactive ones
and can easily amount or overcome the value of the elastic
rates. For θE = π/4, the reactive rates are bigger than the
elastic ones at ultralow energies. This is explained again with
the corresponding adiabatic energy curve where the n = 0
state correlates to the attractive nonprotective barrier due to
the coupling of the m̄l = 0 curve with the m̄l = 1 one and the
presence of the avoided crossing. The inelastic rate shows up
now at Ec ∼ 1 μK since the n = 1 threshold is now allowed
and coupled with the n = 0 one. For θE = π/2, we recover
the head-to-tail collision with a large reactive rate coefficient.
Due to the mixing of m̄l = 1,3 only, the n = 1 threshold is not
open here too and only the n = 2 opens up at Ec ∼ 2 μK.

For the bosonic particles, as the collision takes place on
a barrierless l = 0 curve, we see that the magnitude of the
rates is bigger than the corresponding one for the fermions.
For θE = 0, elastic rates are comparable with the reactive ones
(either smaller or bigger depending on the collision energy) but
there is no protection against collisions here. As θE increases
for θE = π/4 and π/2, the reactive rate increases as the lowest
adiabatic energy curve decreases and becomes the dominant
rate coefficient. For the same reasons as those presented above
for the fermions, the inelastic rates show up as the n = 2
threshold opens up at Ec ∼ 2 μK for θE = 0 and θE = π/2.
For θE = π/4, the n = 1 threshold also opens up at Ec ∼
1 μK.

For all θE �= 0 plots, the contribution of the ξ = −1 curves
(thin dashed lines) is marginal for an induced dipole moment
of d = 0.2 D. This is due to the large repulsive character of
the corresponding adiabatic energy curves which correspond
to side-by-side repulsive dipolar collision in the y direction,
shown in the Appendix.

For the inelastic collisions, there are striking differences
at the threshold opening of the inelastic state depending
on the field angle. This can be explained by the different
behavior of the quantum threshold laws studied in Ref. [54].
In this reference the threshold laws were derived for inelastic
relaxation for (ki → 0) � kf , where ki and kf represent
the initial and final wave vector. Here we consider that the
threshold laws for excitation processes are the same as the
relaxation ones by replacing ki by kf and the initial mli by

the final mlf [55]. Then the inelastic relaxation laws given by
Eq. (11) of Ref. [54] where ki � kf , for one or both of mli

and mlf , equal to zero,

β
mli

→mlf

in. relax. ∝ k
2mli

i

ln2 ki

∝ E
mli
c

ln2 √
2mredEc

(20)

should translate explicitly for the excitation processes to

β
mli

→mlf

in. exc. ∝ k
2mlf

f

ln2 kf

∝ (Ec − Eth)mlf

ln2
√

2mred(Ec − Eth)/�2
, (21)

where kf � ki , according to the behavior of the different
elements of Eq. (10) of Ref. [54]. Eth corresponds to the
excitation threshold energy. For both mli and mlf different
than zero, the inelastic rate from Ref. [54]

β
mli

→mlf

in. relax. ∝ k
2mli

i ∝ E
mli
c (22)

should translate to

β
mli

→mlf

in. exc. ∝ k
2mlf

f ∝ (Ec − Eth)mlf . (23)

In our study, for the inelastic excitation rate n = 0 → n = 2
at the Ec ∼ 2 μK threshold for the specific cases θE = 0 and
θE = π /2, we found a threshold law of β1→1

in. exc. ∝ (Ec − Eth)
for the fermions and β0→0

in. exc. ∝ ln−2
√

2mred(Ec − Eth)/�2 for
the bosons, in agreement with Eqs. (23) and (21), where
Eth = εn=2. At Ec ∼ 1 μK, the inelastic excitation rate n =
0 → n = 1 for θE = π/4 for the fermionic (bosonic) case,
gets the behavior of the one for the bosonic (fermionic)
case at θE = 0 or π/2, with a sharper (rounder) shape.
This is due to a change of parity in m̄l in the inelastic
transition. For the fermionic (bosonic) case, the inelastic transi-
tion n = 0 → n = 1 corresponds to m̄l = 1 → m̄l = 0 (m̄l =
0 → m̄l = 1). For the bosonic case for the n = 0 → n = 1
inelastic transition, we found a threshold law of β0→1

in. exc. ∝
(Ec − Eth) ln−2

√
2mred(Ec − Eth)/�2 (round shape) where

Eth = εn=1 now. For the fermionic case, we found a threshold
law of β1→0

in. exc. ∝ ln−2
√

2mred(Ec − Eth)/�2 (sharp shape).
Again this is in agreement with Eq. (21). Finally, for the
elastic and reactive collisions, the quantum threshold laws
are found to be βel ∝ E2

c and βre ∝ Ec for the fermions in
agreement with Eqs. (12) and (14) determined in Ref. [54]
for dipolar collisions in quasi-2D. For the bosons we find
βel ∝ βre ∝ ln−2

√
2mredEc/�2 in agreement with Eqs. (9) and

(13) of the same reference.

2. Sensitivity of the rate coefficients versus the tilted field angle

The effect of the tilted field on the collision is directly seen
in Fig. 5 for fermions (top panel) and bosons (bottom panel).
This is plotted at a fixed collision energy of Ec = 1 μK and
induced dipole of d = 0.2 D.

There is no fermionic and bosonic inelastic rate at θE =
0 and θE = π/2 at Ec = 1 μK. Couplings between m̄l = 1,
m̄l = 3 and m̄l = 0, m̄l = 2 curves are not allowed at these two
angles so that the transition n = 0 → n = 1 is forbidden there.
Then the inelastic rates rise from θE = 0 to θE = π/4 due to
the turning on of the couplings. At θE = π/4 there is a maximal
coupling between the m̄l components: (i) a maximal coupling
for �m̄l = 2 due to the presence of the sin2 θE = 1/2 term in
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FIG. 5. (Color online) Elastic (e), inelastic (i), and reactive (r)
rate coefficients (thick lines) for fermionic (top panel) and bosonic
(bottom panel) KRb + KRb collisions as a function of the tilt angle
θE , at Ec = 1 μK, d = 0.2 D, and ν = 20 kHz. The partial rates are
given by thin solid lines (ξ = +1, m̄l = 0,1,2,3) and thin dashed
lines (ξ = −1, m̄l = 1,2,3).

Eq. (19); and (ii) a maximal coupling for �m̄l = 1 due to the
presence of the cos θE sin θE = 1/2 term. Thus the inelastic
rates reach their maximal value at θE = π/4. Conversely, the
couplings turn off as θE passes from π/4 to π/2, and then the
inelastic rates shut off.

The fermionic reactive rate increases as we pass from a
side-by-side approach θE = 0 to a head-to-tail one θE = π/2.
The continuous transition seen in the rate as θE increases
can be understood qualitatively by the continuous increase
of the �m̄l = 1 coupling. At θE = 0 the lowest curve of
symmetry m̄l = 1 connects to the protective barrier and leads
to a rate β0, while at θE = π/2 this curve connects to the
nonprotective barrier that leads to a rate βπ/2  β0. Now,
at θE = 0 the lowest curve of symmetry m̄l = 0 connects to
the nonprotective barrier, the same one that leads to the rate
βπ/2. Therefore, as the coupling between the two symmetries
increases from θE = 0 to π/4, the reactive rate is a combination
of β0 and βπ/2 with coefficients that decrease the contribution
of β0 and increase the one of βπ/2, hence increasing the total
reactive rate. From θE = π/2 to π/4 the reverse argument
holds since now at θE = π/2 the lowest curve of symmetry
m̄l = 1 (m̄l = 0) connects to the nonprotective (protective)
barrier. The reactive rate is again a combination of βπ/2 and

β0. But as the coupling increases from θE = π/2 to π/4, the
coefficient of βπ/2 decreases while the one of β0 increases,
hence decreasing the total reactive rates and connecting to the
trend between θE = 0 and π/4.

The sensitivity of the fermionic reactive rate with the field
angle for the KRb system is quite strong, since a small change
of θE = π/10(= 18◦) gives rise to an order of magnitude
increase in the rate. Therefore, in experiments of fermionic
KRb molecules, it is important for the electric field to be quite
parallel to the 1D optical lattice confinement axis to avoid
additional losses due to slightly tilted angles. Note however
that the range of this strong sensitivity of the rates may vary
from one system to another.

In contrast for bosons, there is a very slight dependence of
the reactive rate with θE . This is due to the slight downward
pushing of the m̄l = 2 curve to the m̄l = 0 ones when θE

increases as can be barely seen in Fig. 3. The reactive rate
value is anyway larger than the elastic and inelastic ones.

Additionally, it is interesting to analyze the effect of the ξ

component. For fermions, the ξ = −1 rate coefficient turns out
to be the same as the ξ = +1 one at θE = 0 because Eq. (19)
reduces to Eq. (10) which is an expression independent of the
ξ number. When departing from the angle θE = 0, the ξ = +1
rate coefficients are dominant compared to the ξ = −1 ones.
As a good approximation, one can neglect the contribution of
the latter for large values of θE (note that as d increases, this
is less true though, see comment in the Appendix). For bosons
at θE = 0, the ξ = +1 term contains the m̄l = 0 component
responsible for a barrierless collision while intrinsically the
ξ = −1 one does not. Therefore, the latter case does not
yield a higher rate than the ξ = +1 case, then it is a good
approximation to neglect the ξ = −1 component for bosons
for all angles θE .

3. Rate coefficients versus the confinement

The effect of the confinement strength is shown in Fig. 6
for a fixed collision energy of Ec = 500 nK, induced dipole of
d = 0.2 D, and field angle θE = π/10 (18◦). At ν = 20 kHz,
the first threshold n1 = 0,n2 = 1 is located at an energy of
∼1 μK above the energy of the initial state (n1 = 0,n2 = 0).
Therefore, a collision energy of 500 nK is not sufficient to open
up inelastic collisions and there is no inelastic rate. When the
confinement decreases, there is a given ν for which the first
inelastic transition becomes open, when the first threshold
(n1 = 0,n2 = 1) energy amounts the value of the collision
energy. This is the case here at ν = 10.4 kHz. These different
values of ν are indicated with an arrow along with the different
threshold openings (n1,n2). At ν = 10.4 kHz, the first inelastic
threshold opening (first arrow from the right) for the fermions
is quite strong, recalling the sharp one seen in Fig. 4 for θE =
π/4. The first one for the bosons is rather weak and smooth as
also seen in Fig. 4. The second opening (second arrow from the
right) is now smooth for the fermions and sharp for the bosons.
And so forth, the successive openings alternate between sharp
and smooth patterns. As explained earlier, the smooth openings
correspond to a m̄l = 0 → m̄l = odd transition while the sharp
openings correspond to a m̄l = 1 → m̄l = even transition.

An interesting feature is seen for the fermionic system.
At ν = 9 kHz for example, the inelastic rate (n1 = 0,n2 =
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QUÉMÉNER, LEPERS, AND DULIEU PHYSICAL REVIEW A 92, 042706 (2015)

2 4 6 8 10 12 14 16 18 20
ν (kHz)

0

1×10
-6

2×10
-6

3×10
-6

4×10
-6

5×10
-6

6×10
-6

7×10
-6

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive
inelastic

(0,3)
(0,4)

(0,1)(1,1)
(0,2)

(2,2)
(1,3)

(1,2) Fermions
θE=π/10

d=0.2D
Ec=500nK

(0,1)

(0,0)

Ek
i
=Ec

Ek
f Etot

Δε=hν=500nK

2 4 6 8 10 12 14 16 18 20
ν (kHz)

0

1×10
-5

2×10
-5

R
at

e 
co

ef
fic

ie
nt

 (
cm

2 s-1
)

elastic

reactive

inelastic

(0,3)
(0,4)

(0,1)(1,1)
(0,2)

(2,2)
(1,3)

(1,2) Bosons

d=0.2 D

θE=π/10

Ec=500nK

FIG. 6. (Color online) Elastic, inelastic, and reactive rate coeffi-
cients for fermionic (top panel) and bosonic (bottom panel) KRb +
KRb collisions as a function of the tilt angle θE , at Ec = 500 nK,
d = 0.2 D, and ν = 20 kHz. The numbers in the brackets represent
the harmonic states (n1,n2) of particles 1 and 2 and the arrows the
corresponding energy thresholds. The inset in the top panel sketches
the excitation inelastic process (0,0) → (0,1) (see text for details).

0) → (n1 = 0,n2 = 1) reaches the value of the elastic rate
(∼2 × 10−6 cm2s−1), while the reactive rate is about 3.3 times
smaller. The inelastic process here is an excitation inelastic
process (see the inset of Fig. 6). The total energy is set
before the collision by Etot = ε0 + ε0 + Ec = 0.932 μK. We
also have ε0 = 0.216 μK and ε1 = 0.648 μK. After the
collision, the total energy is given by Etot = ε0 + ε1 + E

f

k ,
where E

f

k is the final kinetic energy. The conservation of
the total energy implies E

f

k = Ec − (ε1 − ε0) = Ec − hν =
500 − 432 nK = 68 nK. This means that for an excitation
inelastic process, the particles after the collision have a smaller
kinetic energy than before the collision and therefore slowed
down by this mechanism. Loss of molecules can happen but
according to the rates, for each loss of one pair, three pairs
get slowed down from 500 to 68 nK. Note that the final
kinetic energy depends on the choice of the frequency trap (see
inset): its value is even smaller when the frequency is closer
to the frequency that shuts off the inelastic transition, here
ν = 10.4 kHz. Therefore, particles can be slowed down to
arbitrary small kinetic values, as far as the reactive rates

remain smaller than the inelastic ones. Of course the reverse
relaxation inelastic process (n1 = 0,n2 = 1) → (n1 = 0,n2 =
0) can also happen after the particles have been excited,
restoring back the 500 nK kinetic energy to the particles. But
this can be prevented by tilting the electric field back to the
parallel case θE = 0. In such cases, the inelastic transition is
forbidden as discussed previously, leaving the particles in the
harmonic states 0 and 1 with small kinetic energy. Another
possibility is to find a way to remove directly the particles in
the harmonic state 1 leaving only the one in the ground state 0
with small kinetic energy.

IV. CONCLUSION

By implementing tesseral harmonics in place of spherical
harmonics in the collisional formalism of two ultracold tilted
dipolar particles in confined space, we showed that we can
recover a good quantum number ξ . This separates the overall
problem into two subproblems of smaller size even when a field
is tilted. Inelastic and reactive rates show dramatic changes
in a tilted field. This is due to additional couplings between
m̄l components when a tilt is applied. We also showed that
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FIG. 7. (Color online) Adiabatic energy curves as a function of
the intermolecular distance r for d = 0.2 D, θE = π/4 for the ξ = +1
manifold (black solid lines) and the ξ = −1 manifold (red dashed
lines). Fermions: top panel, bosons: bottom panel. Each adiabatic
energy curve correlates to a state n of the harmonic oscillator.
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fermionic dipolar particles can lose kinetic energy and slow
down due to favorable trap excitation inelastic collision under
an appropriate confinement strength of the 1D lattice in a tilted
field. Future works will investigate whether this mechanism
can be efficient to even further cool down the particles in
such configuration by taking into account the initial kinetic
energy distribution of the particles for a given temperature and
their rethermalization due to the elastic collisions during this
process.
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APPENDIX: ξ = ±1 ADIABATIC ENERGY CURVES

Figure 7 presents the adiabatic energy curves for d = 0.2 D
and θE = π/4 for both the fermionic and bosonic system and
both quantum numbers ξ = ±1. One can see that the ξ = −1
curves always corresponds to more repulsive curves than ξ =
+1 ones. This is due to the fact that m̄l � 1 for ξ = −1 and
it correlates to a l � 1 curve with a large centrifugal barrier.
At weak d the ξ = −1 manifold does not play an important
role in the collision. Note that at large d, the l � 1 curve can
turn attractive again and then the ξ = −1 manifold can start
to play a role in the collision [28].
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[9] T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson,
C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H.-C.
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