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Abstract

Current approaches to biosignal handling in a medical environment increas-
ingly rely on machine learning, which requires precise annotations. In multi-
centric annotation scenarios, the diversity in annotation protocols leads to im-
precise semantics of the annotations. This context shows the need for interop-
erable annotations, that can be reused with little cost across different protocols.
The presented free and open-source software is an application for handling
biosignals. It implements a novel method to add asynchronous and interopera-
ble annotations with precise semantics. The annotations are stored in Allotrope
Data Format (ADF), a structure based on the Hierarchical Data Format (HDF5).
It allows for high performance I/O and aggregating of related patient data (e.g.
different acquisition modalities). This research tool can be used solely in a web
browser to facilitate integration in more complete environments.
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Required Metadata

Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version 0.7.2
C2 Permanent link to code/repository used

for this code version
https://github.com/neonatool/slam

C3 Permanent link to Reproducible Capsule https://neonatool.github.io/slam
C4 Legal Code License CeCILL-B
C5 Code versioning system used git
C6 Software code languages, tools, and ser-

vices used
C/C++, javascript, python, R

C7 Compilation requirements, operating en-
vironments & dependencies • python ≥ 3.0.0,

• rdflib (python) ≥ 5.0.0,

• esbuild ≥ 0.15.12,

• plotly.js ≥ 2.11.1,

• rdflib (JavaScript) ≥ 2.2.32,

• adftool (github: neonatool/adftool,
v0.8.0),

• emscripten

C8 If available Link to developer documenta-
tion/manual

https://neonatool.github.io/adftool

C9 Support email for questions vivien.kraus@univ-reims.fr∗,
guillaume.dolle@univ-reims.fr

Table 1: Code metadata (mandatory)

2

https://github.com/neonatool/slam
https://neonatool.github.io/slam
https://spdx.org/licenses/CECILL-B.html
https://github.com/neonatool/adftool/releases/tag/v0.8.0
https://github.com/neonatool/adftool/releases/tag/v0.8.0
https://neonatool.github.io/adftool
mailto:vivien.kraus@univ-reims.fr
mailto:guillaume.dolle@univ-reims.fr


1. Motivation and significance

The analysis of biosignals is a crucial issue, especially in a medical con-
text. The nature of the data relating to these biosignals is, by definition, com-
plex. ElectroEncephaloGraphy (EEG) recordings are representative examples
of such data. In particular, the complexity of the EEG data is inherent in several
characteristics, including but not limited to their multidimensional and hetero-
geneous nature (multiple sensors with spatial and temporal components); their
volume (readings can be taken over several hours or even days); their quality
(presence of acquisition noise, artifacts).

The analysis of such data by clinical users, who often have limited time and
expertise in digital data analysis tools, is therefore a real challenge. To facilitate
their work, machine learning algorithms have been proposed to deal with the
large amount of data. For instance, [1] proposes a toolbox dedicated to EEG
data processing, with an emphasis on deep learning. Other approaches, such
as [2], focus on feature extraction, again for machine learning purposes, while
some partially rely on symbolic processing of the EEG data, with the help of an
ontology-based formalization, for sleep stage classification [3], brain computer
interface [4], or epilepsy [5].

Nonetheless, these tools do not replace the need for clinical users to read
and analyze the signal. This task becomes even more complex when several
users want to manipulate data by combining their work, but without having
a clearly defined protocol or formalism for doing so. This type of problem
often arises when several clinicians are involved in the care of the same patient,
or when several clinical teams collaborate in the analysis of multicenter data
obtained within the framework of cohorts.

General-purpose time series annotation tools are available [6, 7, 8, 9]. Such
applications are reviewed in [10]. A common use of time series annotation
tools is to label anomalies to train automated anomaly detection models [11],
or annotate audio tracks [12]. However, some annotation tasks require more
specific tools such as large satellite telemetry data [10], ElectroCardioGraphy
(ECG) [13, 14], or time-synchronized multi-modal data [15]. As for EEG, pre-
cise control over the montage and filtering parameters is required, and general-
purpose annotation software is not sufficient.

In clinical routine, EEG handling, visualization and annotations are often
carried out via commercial software. Inspired by seminal contributions ten
years ago, especially the popular EEG analysis toolbox MNE [16], some ef-
forts were geared towards developing alternative software tools dedicated to
this task. One can cite, non-exhaustively, Robin Viewer [17], an open-source,
platform-independent, interactive web application, designed for allowing deep-
learning paradigms; a clinical EEG research platform [18] designed to allow
progressive model construction, including in particular EEG visualization and
annotation; copla-editor [19], a web-based visualization, assessment and col-
laboration tool for multidimensional biosignals; and the time series plug-in of
CrowdCurio [20], a generic annotation library with support for EEG data.

Each of these software tools implements some specific functionalities. To
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our best knowledge, [18] is not available in open-access. While CrowdCu-
rio [20] claims to support EEG annotation, it is unclear how to run the pro-
gram [10]. Regarding the other two freely available software platforms, namely
Robin’s Viewer [17] and copla-editor [19], our contribution shares common
properties and purposes, but also differs in various points.

Both projects implement an EEG viewer, with the possibility to add anno-
tations in a web-based user interface. [17] makes extensive use of the MNE
library, which enables signal processing tools such as band-pass filters. It can
also be used for active learning of a segmentation task, such as artifact de-
tection. [19] is also a web-based EEG visualizer with annotation capabilities.
However, these projects do not work solely on a web browser, and do not pro-
vide a solution for interoperable annotations. We also note that [17] and [19]
must deal with EDF+-compatible annotations, which are single-channel, am-
biguous, and do not allow global descriptive meta-data. Other approaches
require to keep data and meta-data in the same file, such as BIDS-EEG or
SEDS [21]. Linked Data can organize collections of heterogeneous signals [22].
However in order to use the linked data paradigm while keeping the data and
meta-data in the same file, the file format must be adapted.

In this context, our contribution is a software tool named Semi-automatic
Allotrope Labelling in Medicine (SLAM) that proposes a novel implementation
of the following features:

⋆ Interoperability: agglomerating and structuring annotations produced
across multiple users and centers to enable their capitalization and reuse,
based on a semantic web philosophy;

⋆ Enrichment: allowing simple semantic annotation of the data based on a
dedicated data format (namely ADF), for efficient and versatile manage-
ment of annotation heterogeneity in cases involving multiple users.

Considering the above requirements, this tool has been developed in accor-
dance with the following guidelines:

• Interactivity: facilitating navigation (time, frequency) in large biosignal
data;

• Usability: such a tool needs to be usable by an expert clinician who is not
necessarily familiar with digital technologies. It is therefore essential that
it can be deployed in a light technical environment (e.g. via a web browser)
in a standalone fashion (i.e. with minimal dependencies), and that it can be
used via a simple, intuitive interface;

• Modularity: this tool was initially designed to allow the manipulation
of EEG data, but it is potentially adaptable to suit the characteristics of
other types of multi-channel temporal signals;

• Isolation: the tool must fulfill its objectives with the least amount of priv-
ilege (e.g. it can run within a sandbox);
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• Privacy: the software can work with as little private patient data as nec-
essary.

• Traceability: the modifications are incremental (using delta-updates),
and no record of operation can be lost.

Our approach runs entirely in a web browser without requiring a running
back-end server in the background. It can be easily integrated with third-party
tools, without sacrificing the convenience of band-pass filtering for reading.
It focuses on inter-operable annotations, where the types of annotations carry
precise semantics. Using RDF data enables storage of general metadata with-
out needing a precise data hierarchy in the file. This facilitates interoperability
between centers or studies that do not use the exact same vocabulary.

2. Software description

SLAM is a thin open source licensed software (see Table 1) developed to
provide solutions to the needs enumerated in Section 1. It enables visualization
of biosignals along with their metadata, and labelling of the biosignals in a
semi-automatic way. Beside, SLAM aims to facilitate the development of new
innovative detection algorithms by allowing visualization through modular
components.

SLAM takes into account domain specific applications through profiling
for the view model (the User Interface (UI)) and the global setup (the config-
uration). As an example, a first profile dedicated to neonatal EEG studies is
proposed. Specific electrical signal processing algorithms have also been im-
plemented. Considering this setting, the UI was designed to be close to sim-
ilar EEG software (e.g. Deltamed Coherence [23], Micromed BrainQuick [24],
EEGLab [25], MNELab [26]) dedicated to EEG in order to target clinical spe-
cialists preserving their daily handling habits in clinical contexts. This profile
allows to select the EEG head mount setup (e.g. raw channels, bipolar refer-
ences), but also a class of semantic annotations that are hierarchically struc-
tured to allow defining sub-classes.

The software is developed partially in C language focusing on portability
with minimal dependencies. SLAM contains several C modules provided as C
libraries exported to javascript through emscripten to allow future integration
to data management platforms. The current implementation has been devel-
oped to achieve full functionality within the security sandbox provided by the
web browser. The annotion tool has been designed to handle data modifica-
tions as incremental delta updates, thanks to the ADF file format. The work-
flow was designed for two typical usages: (1) allowing hot visualization of EEG
data aside their metadata; and (2) feeding metadata with new labels (dedicated
to subsequent supervised algorithms).

The software architecture was designed to be decentralized. It may al-
low asynchronous annotations or live collaborative annotations in future ver-
sions. The current implementation already enables the storage of delta updates
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Figure 1: Main view of SLAM.

such as label modifications thanks to the Allotrope Data Format (ADF) format
and our dedicated ADF utility tool (adftool) [27]. Considering a blockchain
paradigm in further development may enhance the global security and trace-
ability of our software. In particular, for the multi-centric co-annotation case,
tracking and authenticating user actions may prevent data integrity loss, for
instance caused by a malicious attack due to a security breach in the system
of information of one of the centers. This first version of SLAM has not been
optimized yet with the purpose to achieve high performance.

2.1. Functionalities
The software allows to plot the different EEG channels data and navigate

through them. The main functionalities are the following:

• Reading EEG (viewing the EEGs, modifying reading parameters, and
navigating through them):

◦ Window size tuning (10-second, 20-second or 30-second). A grid of
vertical lines across the horizontal axis is displayed, regardless of
the actual time window length.

◦ Window navigation. The current view can move left or right by a
half window length, for the sake of readability.

◦ Amplitude selection. Clinicians who can comfortably read EEGs
on a computer monitor with an equivalent resolution of 10µV/mm
according to DeltaMed, have the same experience reading a signal
with SLAM if a range of 220µV is in use. Other values are possible,
for activities that are abnormally low or high. This parameter can be
tuned independently for each channel, for the sake of readability.
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◦ Filter selection. In EEG, activities are sought at specific frequen-
cies not exceeding 70 Hz. Signal at other frequencies are gener-
ally removed. SLAM uses a finite impulse response convolution fil-
ter (with the same default parameters as the Python MNE library).
SLAM can also be configured to use a low-pass filter with a cutoff
frequency of 35 Hz for a (set of) channel(s). Existing EEG recording
devices often use a high-pass filter.

◦ Overriding parameters for all channels. SLAM can override the am-
plitude and/or filter parameters for all channels at once.

• Adding annotations. SLAM can:

◦ set the bounds of the annotations;

◦ choose an annotation class from the reading profile;

◦ choose the channels where the annotation occurs.

The annotations are saved directly in the file. Once the annotation job is
done, the updated file can be downloaded from the application.

2.2. User interface
SLAM provides a web-based UI, illustrated in Figure 1. The current layout

is designed as follows:

• A top bar menu for opening a file, selecting a profile, exporting, display-
ing help and setting the global parameters (amplitude, filter parameter
values, length of the time window).

• A central block component for plotting the different biosignal channels.
The left and right arrow keys control the movement of the view. When
moving the pointer over the plot window, a red vertical line is displayed
to show the current position of the cursor. Clicking on the plot sets the
start or end of a new annotation.

• On the left side, per channel settings that can be set (amplitude and filter
parameters of each channel) with precedence over the global parameters.

• A bottom part where annotations can be added, by providing start and
stop times, annotation type, and the location, shown in Figure 2. The
list of possible annotation types and channels match what is displayed in
the plot window. (Three meta-channels can be selected: all channels, left
side, or right side.)

2.3. Software architecture
SLAM is composed of several components. While it entirely runs offline in

a web browser, it features different execution contexts that run in a front-end
or back-end (see Figure 3).
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Figure 2: Visualization of an EEG in bipolar montage, annotation editing and artifact detection
report.
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Figure 3: The different components of SLAM.

Adftool core. The core library provides an Application Programming Interface
to read and write ADF files (see Section 2.4) with raw channel data. It comes
with a command-line interface for low-level direct manipulations of the file,
and R, Python and JavaScript bindings, since it can be compiled with em-
scripten.

Web workers. Web workers are used for parallelizing access to the data in the
file, and filtering the data. One worker can access the file, while many indepen-
dent workers are responsible for filtering the data. The threads communicate
during the filtering phase; see Figure 4. The main thread (the UI) requests fil-
tered data to a worker. The filter thread communicates with the worker hold-
ing the file in order to load the data, with a margin. The margin is used by the
convolutional filter, and its length depends on the filter parameters. Then, the
filter is applied, and the filtered data is returned to the main thread.

Plotly backend. To facilitate integration of SLAM with other platforms, and
given the efficiency requirements for plotting millions of data points, Plotly
was chosen for the rendering back-end. The data to display is loaded on de-
mand, based on the actual range requested by Plotly.

Rdflib. To link the data in the file (e.g. channel and annotation types) and data
in the profile (e.g. the anode and cathode of bipolar references in the montage)
and ontology (e.g. sub-classes of annotations), SLAM uses rdflib, the JavaScript
library to process RDF data.

Web components. The user interface widgets have been designed as ECMAScript
standard web components, to avoid adding new dependencies to the project.
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Figure 4: Communication between three different contexts: the main thread, the file reader thread,
and one filtering thread, in order to filter the signal and query data. The interaction between the
filter thread and file handler (in orange) only happens for a (partial) cache miss.

2.4. Data storage model
SLAM uses a linked data model to store EEGs and annotations. The data

may be stored in the EEG file itself, and in publicly accessible online ontologies,
describing the operation done with the data. For interoperability purposes,
reading profiles are expected to be published. A default ontology is provided
with SLAM for the purpose of annotating (newborn) EEGs, but other sources
may be added.

In order to store both raw biosignal data, and relevant metadata (includ-
ing annotations), while keeping an extension possibility for multimodal data,
SLAM is based on the processing of HDF5 files. The biosignals may have a very
large dimension, and the access to their data is skewed towards many reading
operations, mostly in sequential access, and very few if any write operations.
The processing of RDF data is very light in comparison, so the file format to
exchange biosignal data had been primarily chosen to enable fast and parallel
readings of row-wise slices of long matrix data. However, since one of the pri-
mary roles of SLAM is to add metadata, the file format should also be able to
easily add more RDF triples or remove them. This constraint dismisses most
existing RDF serialization formats. Since we also want to be able to store gen-
eral metadata that are not timestamped, and that the density of timestamped
annotations may not be uniform, it is impractical to use EDF+ as a basis1.

1In the EDF standard, the biosignal is split into time-contiguous epochs, and only a limited file
space is dedicated to metadata. This specification was later extended with EDF+, enabling the
addition of a fixed amount of time-constrained metadata per epoch. Each EDF+ annotation may
have at most one channel where the annotation is located, which is not practical for the annotation
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The ADF file format is a collection of specifications that enables processing
of RDF data on top of HDF5 files. It has been used for pharmaceutical prob-
lems [28]. A distinctive feature of ADF is to incrementally mark deleted triples,
instead of removing them from the file, improving traceability of the opera-
tions. While a partial reference implementation exists under the name H5LD,
it is not complete enough, and is not able to query simple quad patterns, add
new data, or remove data. Other popular linked data exchange formats, such
as JSON-LD, do not take advantage of the HDF5 file format, which makes it all
the more difficult to add data, or build indices for fast triple pattern queries.
The upper layers of the ADF specification concern integration with tools such
as Apache Jena, that we do not use.

We thus propose a new file format, as a hybrid between plain HDF5 and
ADF Quad store. The raw signal values are written as an HDF5 dataset, under
a well-known dataset name, and the file is also used as an ADF Quad Store,
that can be queried for any quad pattern. This part of the implementation is
written in C and links to the HDF5 library. It is compiled to webassembly using
emscripten, by a GitHub action in a separate repository [27].

3. Illustrative example

In this section, we propose a toy-example, which is simpler but also eas-
ier to understand than actual use cases encountered in clinical contexts. Let
us assume that a first clinical unit studies EEGs of patients in a cohort study
(e.g. neonates, which is the current case presented in the impact section). In
this study, denoted as “study A”, we assume that two kinds of patterns are of
interest, namely synchronous and asynchronous frontal sharp transients (FSP).
A few asycnhronous annotations have been added in study A, such as the one
in Figure 6a, displayed as “asynchronous FSP (study A)”.

Now, let us assume that a few months later, a second clinical unit aims
to study the same data, but with slightly distinct purposes. In this second
study, denoted as “study B”, we assume that many kinds of patterns are of
interest, namely frontal sharp transients but also other kinds of spikes. The
distinction between synchronous and asynchronous frontal sharp transients is
not relevant. In this second study B, it may be relevant to take advantage of the
annotations performed in study A.

The computer systems in both clinical centers are supposed to be inflexible,
and no data scheme is supposed to be updated between studies. The situation
is summarized by Figure 5.

In order to set preferences for reading EEGs, SLAM defines a reading pro-
file, which consists of the montage used to display the signal, but also the
classes of annotation of interest. Whenever an annotation has a type that is

of many types of biomarkers that can be annotated on signals, especially using a bipolar referenced
montage.
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Keep everything in the same file
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Figure 5: A new study, reusing both kinds of frontal sharp transients from a previous study, in an
inflexible computer system. (Illustrative example in Section 3.)

marked as a subclass of an annotation class of interest in the profile, SLAM dis-
plays it as the class used in the profile. Thus, a new profile can be created in
order to merge both kinds of frontal sharp transients, by defining a generic
frontal sharp transient class as a superclass of synchronous and asynchronous
frontal sharp transient classes.

By opening a file that has already been annotated by study A, with the sec-
ond profile, SLAM displays all instances of frontal sharp transients the same
way, thanks to the subclass relationship. The previously annotated FSP is now
displayed as “FSP (study B)” automatically in Figure 6b. It also lets users
annotate the signal with extra generic frontal sharp transients instances, and
also with new spikes. By using the new profile, due to the subclass rela-
tionship, SLAM purposefully hides the differences between specific kinds of
frontal sharp transients.

t

SIGNALS(t)

chan 3

chan 2

chan 1

Asynchronous FSP (Study A)

(a) Study A annotated an asynchronous FSP

t

SIGNALS(t)

chan 3

chan 2

chan 1

Asynchronous FSP (Study A)

(b) Study B understood the previous annota-
tion and can re-use it.

Figure 6: An asynchronous FSP is re-used from study A to study B.

If the file is updated by study B and subsequently revisited through study
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A, the existing annotations are still recognized correctly for study A (they ap-
pear again as “asynchronous FSP (study A)”), and the new annotations are
ignored, until the profile for study A is amended.

4. Impact

The impact of the proposed software tool is, at least, twofold. First, in a
clinical setup, SLAM facilitates collaborative analysis of electrophysiological
data. This is especially true in the context of multicentric research. Indeed, it
is already involved in the analysis of electroencephalographic data of the Ly-
TONEPAL study [29]. This observational study has collected extensive, clini-
cal data of 794 newborns with anoxic-ischemic encephalopathy in France from
September 2015 to March 2017 [29]. These patients underwent EEG monitor-
ing, leading to massive, multicentric amount of biosignal data presenting chal-
lenging properties, e.g. in terms of heterogeneousness and quality of the sig-
nal. An in-depth analysis of these data aims at identifying specific features
stronger classification, in order to understand which of these features may be
used as biomarkers, helping in care and prognosis of these newborns. In this
context, our tool is of precious use to the clinicians, on the one hand to carry
out annotations and on the other hand to share and homogenize the analyses
performed in each center. User feedback from partnered clinicians has been in-
tegrated in an iterative development process in order to adapt its interface and
functionality, with discussions about ergonomics, features, and the demand for
interoperability.

Second, the annotation functionalities offered by SLAM may be of precious
use for building ex-nihilo and/or collecting and unifying some annotations
that may be further involved in machine learning / deep learning methods
and tools dedicated to biosignal analysis. Indeed, over the recent years, many
efforts were geared towards the development of efficient approaches for pat-
tern / artifacts detection and/or classification. By contrast, fewer efforts were
dedicated to develop tools allowing to feed these tools with accurate annotated
data. SLAM provides a contribution to tackle this important issue, that may be
hopefully useful in conjunction with data analysis tools.

5. Conclusion and perspectives

In this article, we proposed SLAM , a software tool that allows user-friendly,
interactive visualization and annotation of EEG data in the context of a clini-
cal study with the LyTONEPAL cohort [29], while minimizing manual inter-
actions. It is designed as a thin-client that can be run on a web interface. In
particular, it relies on an extensible data exchange format for storing (biosig-
nal) data, associated metadata and annotations. A semantic web paradigm
is considered for metadata modeling, which allows to aggregate independent
features from different sources, users, and to reuse information from different
experimental protocols.
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SLAM provides solutions for tackling the issue of biosignal data annotation,
which is a mandatory prerequisite to the development of supervised machine
learning / deep learning approaches for high-level analysis, e.g. pattern de-
tection, segmentation and/or classification. In particular, it may be enriched
and/or interfaced with analysis modules / libraries in order to design end-to-
end solutions for biosignal analysis in actual clinical contexts.

Security and privacy measures must be taken into account when using
SLAM over a network or with sensitive private data. It is expected to be used
as part of a secure system in an isolated network environment.

Further works will consist of developing specific machine learning mod-
ules dedicated to EEG analysis, a task that has already proven useful for EEG
data processing [1, 2], scalability and performance of SLAM and integration
with existing systems dedicated to the processing of medical data such as Res-
onant/Girder [30, 31] and 3DSlicer [32]. Future works will also investigate the
feasibility to annotate a patient record across modalities (such as MRI) with the
help of linked data, potentially in a real-time collaboration environment.

SLAM is not fundamentally tied to the EEG modality, and can work with
other 1-D biosignals with a dedicated reading profile. More generally, thanks
to the use of HDF5, it should be possible to include different data modalities
within the same annotation framework.
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