
HAL Id: hal-04576721
https://hal.science/hal-04576721v1

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Four-body long-range interactions between ultracold
weakly-bound diatomic molecules

Maxence Lepers, Goulven Quéméner, Eliane Luc-Koenig, Olivier Dulieu

To cite this version:
Maxence Lepers, Goulven Quéméner, Eliane Luc-Koenig, Olivier Dulieu. Four-body long-range inter-
actions between ultracold weakly-bound diatomic molecules. Journal of Physics B: Atomic, Molecular
and Optical Physics, 2016, 49 (1), pp.014004. �10.1088/0953-4075/49/1/014004�. �hal-04576721�

https://hal.science/hal-04576721v1
https://hal.archives-ouvertes.fr


Four-body long-range interactions between ultracold

weakly-bound diatomic molecules
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Abstract. Using the multipolar expansion of electrostatic and magnetostatic

potential energies, we characterize the long-range interactions between two weakly-

bound diatomic molecules, taking as an example the paramagnetic Er2 Feshbach

molecules which were produced recently. Since inside each molecule, individual atoms

conserve their identity, the intermolecular potential energy can be expanded as the

sum of pairwise atomic potential energies. In the case of Er2 Feshbach molecules,

we show that the interaction between atomic magnetic dipoles gives rise to the usual

R−3 term of the multipolar expansion, with R the intermolecular distance, but also to

additional terms scaling as R−5, R−7, and so on. Those terms are due to the interaction

between effective molecular multipole moments, and are strongly anisotropic with

respect to the orientation of the molecules. Similarly the atomic pairwise van der

Waals interaction results in R−6, R−8, ... terms in the intermolecular potential

energy. By calculating the reduced electric-quadrupole moment of erbium ground level

〈J = 6||Q̂2||J = 6〉 = −1.305 a.u., we also demonstrate that the electric-quadrupole

interaction energy is negligible with respect to the magnetic-dipole and van der Waals

interaction energies. The general formalism presented in this article can be applied

to calculate the long-range potential energy between arbitrary charge distributions

composed of almost free subsystems.

1. Introduction

For a long time few-body effects have been attracting a lot of interest, especially in

nuclear physics [1], resulting in some striking theoretical predictions like the Efimov

effect [2]. More recently the tremendous progress for controlling interactions between

ultracold atoms, has allowed to experimentally confirm those predictions [3]. Indeed the

signature of triatomic Efimov states was identified in an ultracold Bose gas of cesium,

where the formation of two-body bound states was either forbidden [4] or permitted [5].

An essential feature of Efimov bound states is their universality in the following sense

[6, 7, 8]: they are characterized by two parameters, the two-body scattering length

and the three-body parameter [9, 10], which accounts for all the details of atomic

interactions. Using ultracold atomic and molecular gases, many extensions of Efimov’s

original prediction [2] were then explored or proposed, like four-body [11, 12, 13], or
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more-body bound states [14], the impact of Fermi statistics [15, 16] or distinguishable

particles [17], deviation from universality [15, 18, 19], or bound states of dipolar particles

[20]. Beside Efimov effect, the theoretical modeling of collisions involving weakly-

bound dimers revealed the enhanced stability against collisions of molecules composed of

identical fermions with respect to those composed of bosons [21, 22]. Besides, few-body

collisions in the presence of dipole-dipole interactions were also explored [23].

In this respect the production of ultracold gases of lanthanide atoms is extremely

promising [24, 25, 26, 27]. Firstly their strong magnetic dipole moment creates

anisotropic and long-range dipolar interactions that, unlike electric-dipolar interactions,

do not need to be induced by an external field. Secondly, erbium and dysprosium

possess stable bosonic and fermionic isotopes, that were driven to quantum denegeracy

[28, 29, 30, 31, 32]. Despite the absence of hyperfine structure, bosonic erbium and

dysprosium present dense spectra of Feshbach resonances [33], which were recently used

to form very weakly-bound Er2 molecules, i.e. so-called Feshbach molecules [34], through

magneto-association technique. Such Er2 molecules look like excellent candidates to

study few-body physics in dipolar systems.

In many investigations of few-body physics in ultracold gases, atomic interactions

are described with model potentials, e.g. contact potentials, which is justified for atoms

interacting through van der Waals forces. However if the atoms carry a magnetic

dipole moment, the resulting long-range and anisotropic dipolar interaction requires

a cautious modeling which takes into accounts the internal structure of the atoms.

In this article, using the multipolar expansion in inverse powers of the intermolecular

distance R [35, 36], we characterize the long-range interactions between two weakly-

bound diatomic molecules. We focus on the regime where the two molecules are

approaching each other, that is to say when the intermolecular distance is larger than

the mean interatomic distance inside each molecule. Assuming that individual atoms

keep their own identity within each molecule, we expand the intermolecular potential

energy as the sum of pairwise atomic interaction energies. Taking the example of two

Er2 Feshbach molecules, we show that, when expressed in the coordinate system of

the molecule-molecule complex, the total dipole-dipole and van der Waals interactions

between all atom pairs are both expressed as a sum of terms proportional to inverse

powers of R, and involving effective molecular multipole moments. These terms, which

are absent in the usual multipolar expansion, are strongly anisotropic with respect to

the orientation of the two molecules. In addition, by calculating the electric-quadrupole

moment of erbium ground level we show that the total quadrupolar interaction, which

would in principle give rise to another series of R−n terms, is actually much smaller

than the dipolar and van der Waals interactions. We calculate adiabatic potential-

energy curves that could be used in a future work to study Er2-Er2 collisions in the

ultracold regime.

The article is outlined as follows. In Section 2 we present the general formalism

giving the first-order and second-order energy corrections between arbitrary weakly-

bound charge distributions. This formalism appears as a generalization of the usual
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Figure 1. (Color online) (a) Vectors, (b) distances and angles describing the position

of the weakly-bound diatomic molecules A (composed of atoms 1 and 2) and B

(composed of atoms 3 and 4) in the space-fixed frame XY Z with quantization axis Z.

The relevant coordinates describing a pair of atoms from A and B is drawn, with the

example of atoms 1 and 3. For sake of clarity identical atoms are considered, and the

azimuthal angles are not represented.

multipolar expansion. Then in Section 3 we consider the example of Er2 Feshbach

molecules, focusing on their magnetic-dipole and van der Waals interactions, and

discussing also their electric-quadrupole interactions. With arguments based on the

characteristic lengths associated with the multipolar expansion, we show that the

anisotropic terms due to effective molecular multipole moments, are likely to play

an important role in the Er2-Er2 collisional dynamics at ultralow energies. Section

4 contains concluding remarks.

2. Potential energy between distant weakly-bound molecules

We consider two molecules denoted A and B. Molecule A is composed of atoms 1 and 2,

and molecule B of atoms 3 and 4. The orientation of the interatomic axes of A and B in

the space-fixed (SF) frame XY Z, Z being the quantization axis, are characterized by

the vectors RA ≡ R1−R2 and RB ≡ R3−R4, with spherical coordinates (RA,ΘA,ΦA)

and (RB,ΘB,ΦB) respectively. The orientation of the intermolecular axis, which joins

the centers of mass of A and B is given by the vector R ≡ (R,Θ,Φ) (see Fig. 1).

2.1. First-order correction

When the distance R goes to infinity, molecules A and B are independent from each

other. Their quantum states, called |A〉 and |B〉, are characterized by the zeroth-

order energies EA and EB respectively. As R decreases, A and B start to interact

through electrostatic and/or magnetostatic forces. We assume that within the weakly-

bound molecules, each individual atom keeps its identity – namely that the exchange

is neglected – so that atoms interact through electrostatic and/or magnetostatic forces
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Table 1. Coordinates of the vectors R1, R2, R3 and R4, as well as the geometric

factors η1, η2, η3 and η4 appearing in the intermolecular potential energy (11), given

as functions of the coordinates of RA and RB , and of the atomic masses M1, M2,

M3 and M4.

atom Ri, Rj Θi, Θj Φi, Φj ηi, ηj
1 R1 = M2

M1+M2
RA Θ1 = ΘA Φ1 = ΦA η1 = + M2

M1+M2

2 R2 = M1

M1+M2
RA Θ2 = π −ΘA Φ2 = ΦA + π η2 = − M1

M1+M2

3 R3 = M4

M3+M4
RB Θ3 = ΘB Φ3 = ΦB η3 = + M4

M3+M4

4 R4 = M3

M3+M4
RB Θ4 = π −ΘB Φ4 = ΦB + π η4 = − M3

M3+M4

as well. The total potential energy of the complex Vtot can therefore be expanded as

the sum of pairwise atomic energies, Vtot = V12 + V34 +
∑2
i=1

∑4
j=3 Vij. In this work,

assuming that the first two terms V12 and V34 are part of the unperturbed energies EA
and EB, we focus on the intermolecular potential energy

V (RA,RB,R) =
2∑
i=1

4∑
j=3

Vij(Rij), (1)

where Rij is the vector pointing from atoms i ∈ A to j ∈ B.

In Eq. (1) the interatomic energy Vij is given by the usual multipolar expansion in

the SF frame

Vij(Rij) =
+∞∑
`ij=0

+`ij∑
mij=−`ij

F`ijmij
G∗`ijmij

(Rij), (2)

where the factor F`ijmij
only depends on the atomic multipole moments,

F`ijmij
= F0

`ij∑
`i,`j=0

δ`i+`j ,`ij (−1)`j
(

2`ij
2`i

)1/2

×
+`i∑

mi=−`i

+`j∑
mj=−`j

C`ijmij

`imi`jmj
Q`imi

Q`jmj
(3)

with F0 = 1/4πε0 (µ0/4π) for electrostatic (magnetostatic) interactions, ε0 and µ0 the

permitivity and permeability of the vacuum, (:) a binomial coefficient, C`ijmij

`imi`jmj
=

〈`imi`jmj|`i`j`ijmij〉 a Clebsch-Gordan coefficient, and Q`imi
(Q`jmj

) the multipole

moment of atom i (j), expressed in a coordinate system (CS) of the SF frame and

centered on atom i (j). The multipolar expansion can be applied if all interatomic

distances are larger than the so-called LeRoy radius [37], so that their electronic clouds

do not overlap and that the exchange energy can be neglected.

In Eq. (2), G`ijmij
is a purely geometric factor involving the Racah spherical

harmonics C`ijmij
(Θij,Φij).

G`ijmij
(Rij) =

C`ijmij
(Θij,Φij)

R
1+`ij
ij

. (4)
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It depends on the relative coordinates of atoms i and j, which are not compatible to

the CS defined in Figure 1. In order to express G`ijmij
in this CS we use the following

relation

Rij = R− (Ri −Rj) ≡ R−Uji , (5)

where Ri (Rj) are the vectors joining the center of mass of molecule A (B) to the atom

i (j). Those vectors are colinear to RA (RB) and their coordinates are given in Table

1. The coordinates of Uji are called (Uji,Ξji,Ψji).

To transform Eq. (4), we expand the spherical harmonics for the vector r = r′−r′′ =

Rij as function of those for the vectors r′ = R and r′′ = Uji. Setting r ≡ (r, θ, φ) (and

similarly for r′ and r′′), we apply (see Ref. [38], Ch. 5, Eq. (36), p. 167 ‡)

Ckq(θ, φ)

r1+k
=

+∞∑
k′,k′′=0

δk′−k′′,k (−1)k
′
(

(2k′ + 1)!

(2k′′)!(2k + 1)!

)1/2
(r′′)k

′′

(r′)k′+1

×
+k′∑

q′=−k′

+k′′∑
q′′=−k′′

Ckqk′′q′′k′q′Ck′′q′′(θ′′, φ′′)Ck′q′(θ′, φ′) (6)

which is valid for r′′ < r′. We obtain for Eq. (4)

G`ijmij
(Rij) =

+∞∑
λ=`ij

(−1)λ
(

(2λ+ 1)!

(2λ− 2`ij)!(2`ij + 1)!

)1/2
U
λ−`ij
ji

R1+λ

×
+λ∑

µ=−λ
C`ijmij

λ−`ij ,µ−mij ,λµ
Cλ−`ij ,µ−mij

(Ξji,Ψji)Cλµ(Θ,Φ) . (7)

which is then valid for Uji < R. Since 0 ≤ Uji ≤ Ri +Rj, Eq. (7) is applicable provided

that

Ri +Rj < R . (8)

We will come back to this criterion later on.

Equation (7) represents the first main result of our approach: the pairwise atomic

potential energy has been transformed from a sum of terms in the relative CS of the

interacting atoms (see Eq. (4)), into a sum of terms proportional to inverse powers of

the intermolecular distance R (see Eq. (7)). The price to pay is the emergence, for

each couple of atomic multipole moments (`i, `j), of an infinite sum of terms scaling as

R−1−λ. Each term is anisotropic due to the Racah spherical harmonics Cλµ(Θ,Φ). To

express the energy as a function of Ri and Rj, we apply a second transformation (see

Ref. [38], Ch. 5, Eq. (35)) to r = Uji, r′ = Ri and r′′ = Rj

rkCkq(θ, φ) =
k∑

k′,k′′=0

δk′+k′′,k (−1)k
′′
(

(2k)!

(2k′)!(2k′′)!

)1/2

(r′)k
′
(r′′)k

′′

×
+k′∑

q′=−k′

+k′′∑
q′′=−k′′

Ckqk′q′k′′q′′Ck′q′(θ′, φ′)Ck′′q′′(θ′′, φ′′), (9)

‡ In [38] the relation is given in terms of normalized spherical harmonics Ykq; we transform it using

Ykq(θ, φ) =
√

(2k + 1)/4π × Ckq(θ, φ)
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which is valid for all r′ and r′′. This gives the final expression for G`ijmij

G`ijmij
(Rij) =

+∞∑
λ=`ij

λ−`ij∑
λi,λj=0

δ`ij+λi+λj ,λ (−1)λ+λj
[(

2λ+ 1

2`ij + 1

)(
2λi + 2λj

2λi

)]1/2

×
Rλi
i R

λj
j

R1+λ

+λ∑
µ=−λ

C`ijmij

λ−`ij ,µ−mij ,λµ
Cλµ(Θ,Φ)

×
+λi∑

µi=−λi

+λj∑
µj=−λj

Cλ−`ij ,µ−mij

λiµiλjµj
Cλiµi(Θi,Φi)Cλjµj(Θj,Φj) (10)

In addition to the sum over λ, we get two sums over λi and λj which, due to their

Rλi
i Cλiµi(Θi,Φi) dependence (and similarly for j), can be viewed as effective multipole

moments describing the position of atoms i and j in the CS associated with A and B

respectively. It is worthwile mentioning that for Ri, Rj � R, namely when the size of

the molecules is negligible with respect to their mutual distance, the sums reduce to

λi = λj = 0 and to λ = `ij, and so we recover the usual multipolar expansion.

Finally, when adding up all pairwise atomic contributions, we can replace λi by

λA and λj and λB, as the position of atoms 1 and 3 in the CS of A and B gives the

orientation of the interatomic axes of A and B respectively. For atoms 2 and 4, the

orientation is opposite to that of the corresponding interatomic axes, and so we use

Ckq(π− θ, φ+π) = (−1)kCkq(θ, φ). Moreover replacing `ij by ` for simplicity, and using

C∗kq(θ, φ) = (−1)qCk,−q(θ, φ) and the particular expression of Ckqk′q′k′′q′′ for k = k′ ± k′′
[38], we obtain for the intermolecular potential energy of Eq. (1)

V (RA,RB,R) = F0

+∞∑
`=0

+∞∑
λ=`

λ−∑̀
λA,λB=0

δλA+λB+`,λ (−1)λB
RλA
A RλB

B

R1+λ

×
+λ∑

µ=−λ

√
(λ+ µ)!(λ− µ)!× C∗λµ(Θ,Φ)

×
+λA∑

µA=−λA

+λB∑
µB=−λB

CλAµA(ΘA,ΦA)CλBµB(ΘB,ΦB)√
(λA + µA)!(λA − µA)!(λB + µB)!(λB − µB)!

×
2∑
i=1

4∑
j=3

ηλAi ηλBj
∑̀

`i,`j=0

δ`i+`j ,` (−1)`i

×
+`i∑

mi=−`i

+`j∑
mj=−`j

δµA+µB+mi+mj ,µQ`imi
Q`jmj√

(`i +mi)!(`i −mi)!(`j +mj)!(`j −mj)!
(11)

where the geometric factors ηi and ηj are given in Table 1. The Kronecker symbol in

the last line of Eq. (11) is obtained by combining the Clebsch-Gordan coefficients of

Eqs. (3) and (10). Since the condition µA + µB +mi +mj = µ must be satisfied for all

pairs (i, j), it imposes that m1 = m2 and m3 = m4.

As already mentioned, Eq. (11) can be viewed as the interaction between effective

multipole moments of ranks λA and λB, describing the orientation of the interatomic axes

of molecules A and B. Equation (11) comes out as the usual sum of terms proportional
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to inverse powers of the intermolecular distance R1+λ, and to angular factors Cλµ(Θ,Φ),

which account for the anisotropy of long-range interactions. Since −1 ≤ ηi, ηj ≤ 1,

Eq. (8) can be rewritten as a condition of validity for Eq. (11)

max(|η1|, |η2|)RA + max(|η3|, |η4|)RB < R. (12)

In the homonuclear case, e.g. M1 = M2, max(|η1|, |η2|) = 1/2. On the contrary if

M1 �M2 or M1 �M2, then max(|η1|, |η2|) = 1.

2.2. Second-order correction

Calculating the second-order correction to the intermolecular potential-energy (1) is

equivalent to calculating the matrix elements between unperturbed states of the second-

order operator

W (RA,RB,R) = −
∑

(A′′,B′′)6=(A,B)

V |A′′B′′〉〈A′′B′′|V
EA′′ − EA + EB′′ − EB

(13)

where |A′′〉 and |B′′〉 formally denote the states of molecules A and B which are

coupled to |A〉 and |B〉 by V . The sum is performed for all possible pairs of states

(|A′′〉, |B′′〉) excluding the case where both |A′′〉 = |A〉 and |B′′〉 = |B〉. Because the

unperturbed states |A〉 and |B〉 correspond to weakly-bound molecules, we can suppose

that the states |A′′B′′〉 such that 〈AB|V̂ |A′′B′′〉 6= 0 also correspond to weakly-bound

molecules, but near different atomic dissociation limits. Therefore in Eq. (13) the energy

differences EA′′ − EA and EB′′ − EB can be replaced by the energy differences between

the corresponding atomic dissociation limits. We can replace the sum over the molecular

states |A′′〉 and |B′′〉 by a sum over states of the separated atoms |1′′〉, |2′′〉, |3′′〉 and

|4′′〉. This assumption implies that the geometric factors G`ijmij
given by Eq. (10) will

be taken out of the sum over atomic states, which gives for Eq. (13)

W (RA,RB,R) = −
2∑

i,i′=1

4∑
j,j′=3

+∞∑
`ij ,`i′j′=0

+`ij∑
mij=−`ij

+`i′j′∑
mi′j′=−`i′j′

G∗`ijmij
(Rij)G

∗
`i′j′mi′j′

(Ri′j′)

×
∑

1′′,2′′,3′′,4′′

F`ijmij
|1′′, 2′′, 3′′, 4′′〉〈1′′, 2′′, 3′′, 4′′|F`i′j′mi′j′

∆1′′ + ∆2′′ + ∆3′′ + ∆4′′
, (14)

where ∆k′′ = Ek′′ − Ek is the excitation energy of atom k (k = 1 to 4). The sum over

atomic states excludes the case [k′′〉 = |k〉 for all the atoms at the same time.

Applying Eq. (14) with the particular form of F`ijmij
and G`ijmij

given by Eqs. (3)

and (10) would be inconvenient, as it would not yield terms with irreducible tensors,

and so would prevent from using the Wigner-Eckart theorem for the matrix elements of

W . Insted we introduce coupled multipole moments of rank kA associated with atoms

i and i′ (see e.g. [39, 40, 41])

Q′′(`i,`i′ )kAqA =
+`i∑

mi=−`i

+`i′∑
mi′=−`i′

CkAqA`imi`i′mi′
Q`imi

|1′′2′′〉〈1′′2′′|Q`i′mi′
(15)



Four-body long-range interactions between ultracold weakly-bound diatomic molecules 8

and the same for j, j′ and B. Doing similar transformations for Racah spherical

harmonics (see Appendix A for details), we obtain the final expression for W

W (RA,RB,R) = − F 2
0

∑
`λλAλB

∑
`′λ′λ′Aλ

′
B

δλ′A+λ′B+`′,λ′δλA+λB+`,λ
R
λA+λ′A
A R

λB+λ′B
B

R2+λ+λ′

×
[(

2λ+ 1

2`+ 1

)(
2λA + 2λB

2λA

)(
2λ′ + 1

2`′ + 1

)(
2λ′A + 2λ′B

2λ′A

)]1/2
×

∑
kκπκAκB

(−1)κ+κB × [(λA + λB)(λ′A + λ′B)κAκBκπ]1/2

×


λA λB λA + λB
λ′A λ′B λ′A + λ′B
κA κB π



λA + λB λ `

λ′A + λ′B λ′ `′

π κ k

 CκA0
λA0λ′A0C

κB0
λB0λ′B0C

κ0
λ0λ′0

×
∑

q%σ%A%B

CπσκA%AκB%BC
kq
πσκ%C

∗
κ%(Θ,Φ)C∗κA%A(ΘA,ΦA)C∗κB%B(ΘB,ΦB)

×
∑
ii′jj′

ηλAi η
λ′A
i′ η

λB
j η

λ′B
j′

∑
`i`i′`j`j′

δ`i+`j ,`δ`i′+`j′ ,`′(−1)`j+`j′

×
[(

2`

2`i

)(
2`′

2`i′

)]1/2
[``′]

∑
kAkB

[kAkB]1/2


`i `j `

`i′ `j′ `′

kA kB k


×

∑
qAqB

CkqkAqAkBqB
′∑

1′′,2′′,3′′,4′′

Q′′(`i,`i′ )kAqAQ
′′
(`j ,`j′ )kBqB

∆1′′ + ∆2′′ + ∆3′′ + ∆4′′
, (16)

This equation contains several sums: over all the quantum states |1′′〉, |2′′〉, |3′′〉 and

|4′′〉 of the four atoms, on the atoms themselves (i, i′ = 1, 2 and j, j′ = 3, 4), and over

tensor-operator ranks and components. In this respect the Latin letters correspond to

the atomic multipole moments, and the Greek ones to the effective molecular multipole

moments. The letters ` and λ characterize uncoupled tensor operators, whereas k, κ

and π characterize coupled ones (see below), and q, % and σ their components. The

unprimed (primed) uncoupled tensor ranks come from the first (second) call of the

multipolar operator V in the second-order correction (see Eq. (13)).

Equation (16) shows that the second-order multipolar interaction is based on

building blocks which are tensor operators, i.e. the atomic multipole moments `i, `j,

`i′ and `j′ , and the effective molecular ones λA, λB, λA′ and λB′ . The R-dependence

of the operator W is obtained by adding those building blocks, namely R−2−λ−λ
′
. The

angular dependence of W is associated with coupled tensors whose ranks are obtained

by adding up the building blocks in the sense of angular momentum theory (see Table

2).

3. Example: interactions between Er2 Feshbach molecules

In a recent experiment [34], an ultracold gas of bosonic 168Er atoms (with vanishing

nuclear spin I = 0) was produced in the lowest Zeeman sublevel |J = 6,MJ = −6〉 of
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Table 2. Mathematical and physical definitions of the ranks of the coupled tensors

appearing in Eq. (16). They are constructed by vector addition in the sense of angular-

momentum theory.

tensor rank physical quantity
~kA = ~̀

i + ~̀
i′ coupled multipole moment of atoms (i, i′)

~kB = ~̀
j + ~̀

j′ coupled multipole moment of atoms (j, j′)

~κA = ~λA + ~λA′ coupled effectivemultipole moment of molecule A

~κB = ~λB + ~λB′ coupled effectivemultipole moment of molecule B

~κ = ~λ+ ~λ′ coupled tensor for the orientation of the intermolecular axis

~π = (~λA + ~λA′) + (~λB + ~λB′) = ~κA + ~κB
~k = ~π + ~κ = ~̀+ ~̀′

the atomic ground level [Xe]4f 126s2 3H6. A magnetic-field ramp was applied in order

to transfer pairs of free atoms into a weakly-bound molecular level, thus creating a so-

called Feshbach molecule. For molecule A, such a level called |vA〉 can be expanded in

the general form

|vA〉 =
∑

MJ1
MJ2

∑
NAMNA

χvAMJ1
MJ2

NAMNA
(RA) |MJ1MJ2NAMNA

〉 (17)

where MJ1 and MJ2 are the projections of the total electronic angular momentum

of resp. atoms 1 and 2 on the magnetic-field axis Z, NA and MNA
are the angular

momentum and its projection associated with the rotation of the interatomic axis of

molecule A, RA is the distance between atoms 1 and 2, and χvAMJ1
MJ2

NAMNA
(RA) is the

multi-channel radial wave function describing the rovibrational motion of the molecule.

The couplings between the different channels |MJ1MJ2NAMNA
〉 are due to the magnetic-

dipole and van der Waals interactions between two erbium atoms. Since the entrance

open channel corresponds to the atoms in the lowest Zeeman sublevel colliding in s

wave, i.e. MJ1 = MJ2 = −J = −6, NA = MNA
= 0, the allowed channels in Eq. (17)

are such that [34]: (i) NA is even and (ii) MJ1 +MJ2 +MNA
= −2J = −12. The same

selection rules apply for molecule B.

3.1. Magnetic-dipole interaction

Each erbium atom carries a permanent magnetic dipole moment equal to −µBgJ ~J , ~J

being the electronic angular momentum (J = 6), with µB the Bohr magneton and

gJ = 1.16683 ≈ 7/6 the Landé g-factor of erbium ground level 3H6. Following Eq. (11)

the first-order interaction is such that `i = `j = 1, ` = 2 and F0 = µ0/4π. Due to

that interaction two Er2 Feshbach molecules in levels |vA〉 and |vB〉 colliding in the

partial wave L and Z-projection ML can undergo elastic or inelastic scattering towards

|v′Av′BL′M ′
L〉. The matrix element of the magnetic-dipole interaction V̂md is then

〈v′Av′BL′M ′
L|V̂md|vAvBLML〉
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= − µ0

4πR3
(µBgJ)2 J(J + 1)

+∞∑
λ=2

λ−2∑
λA,λB=0,2,...

δλA+λB+2,λ
(−1)λB

(2R)λA+λB

×
∑

MJ1
MJ2

∑
M ′J1

M ′J2

 δMJ2
M ′J2
C
JM ′J1
JMJ1

1,M ′J1
−MJ1√

(1 +M ′
J1
−MJ1)!(1−M ′

J1
+MJ1)!

+
δMJ1

M ′J1
C
JM ′J2
JMJ2

1,M ′J2
−MJ2√

(1 +M ′
J2
−MJ2)!(1−M ′

J2
+MJ2)!



×
∑

MJ3
MJ4

∑
M ′J3

M ′J4

 δMJ4
M ′J4
C
JM ′J3
JMJ3

1,M ′J3
−MJ3√

(1 +M ′
J3
−MJ3)!(1−M ′

J3
+MJ3)!

+
δMJ3

M ′J3
C
JM ′J4
JMJ4

1,M ′J4
−MJ4√

(1 +M ′
J4
−MJ4)!(1−M ′

J4
+MJ4)!


×

∑
NAMNA

∑
N ′AM

′
NA

∫ +∞

0
dRAR

λA
A χ

v′A
M ′J1

M ′J2
N ′AM

′
NA

(RA)χvAMJ1
MJ2

NAMNA
(RA)

×
∑

NBMNB

∑
N ′BM

′
NB

∫ +∞

0
dRB R

λB
B χ

v′B
M ′J3

M ′J4
N ′BM

′
NB

(RB)χvBMJ3
MJ4

NBMNB
(RB)

×
√

(λ+ML −M ′
L)!(λ−ML +M ′

L)!

√
2L′ + 1

2L+ 1
CL0L′0λ0C

LML

L′M ′Lλ,ML−M ′L

×
√

2NA + 1

2N ′A + 1

CN
′
A0

NA0λA0C
N ′AM

′
NA

NAMNA
λA,M

′
NA
−MNA√

(λA +M ′
NA
−MNA

)!(λA −M ′
NA

+MNA
)!

×
√

2NB + 1

2N ′B + 1

CN
′
B0

NB0λB0C
N ′BM

′
NB

NBMNB
λB ,M

′
NB
−MNB√

(λB +M ′
NB
−MNB

)!(λB −M ′
NB

+MNB
)!
. (18)

Contrary to Eq. (11) the terms arising from the purely atomic part of the interaction are

written in the first five lines of Eq. (18). The atomic dipole moment is expressed using

the Wigner-Eckart theorem 〈J ′M ′
J1
|Q̂1m1|JMJ1〉 = −µBgJC

J ′M ′J1
JMJ1

1m1
〈J ′||Ĵ ||J〉/

√
2J + 1

with 〈J ′||Ĵ ||J〉 =
√
J(J + 1)(2J + 1) the reduced electronic angular momentum. For

homonuclear molecules, only even values of λA and λB are possible, since η1 = −η2 =

η3 = −η4 = 1/2. All the tensor components of Eq. (11) are replaced by their only

possible value, i.e. m1 = M ′
J1
−MJ1 , and similarly for atoms 2, 3 and 4, µ = ML−M ′

L,

µA = M ′
NA
−MNA

, and similarly for B. The relationship between the tensor components

established in Eq. (11) imposes the following selections rules

M ′
L +M ′

NA
+M ′

NB
+M ′

J1
+M ′

J3
= ML +MNA

+MNB
+MJ1 +MJ3 (19)

M ′
L +M ′

NA
+M ′

NB
+M ′

J2
+M ′

J3
= ML +MNA

+MNB
+MJ2 +MJ3 (20)

M ′
L +M ′

NA
+M ′

NB
+M ′

J1
+M ′

J4
= ML +MNA

+MNB
+MJ1 +MJ4 (21)
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M ′
L +M ′

NA
+M ′

NB
+M ′

J2
+M ′

J4
= ML +MNA

+MNB
+MJ2 +MJ4 (22)

which implies

M ′
J1
−M ′

J2
= MJ1 −MJ2 (23)

M ′
J3
−M ′

J4
= MJ3 −MJ4 . (24)

Finally in level |vA〉 (see Eq. (17)), the rotation of the interatomic and intermolecular

axes is described by spherical harmonics YNAMNA
(ΘA,ΦA), YNBMNB

(ΘB,ΦB) and

YLM(Θ,Φ), and the integral of products of three spherical harmonics is used to obtain

the last three lines of Eq. (18).

Equation (18) consists in a series of inverse powers of the intermolecular distance

R. The leading term, which scales as R−3, appears for λA = λB = 0 and λ = 2. It

couples the channels characterized by the same NA, MNA
, NB and MNB

, but by possibly

different ML and MJi,j . Taking M ′
L = ML and M ′

Ji,j
= MJi,j yields the usual two-body

dipole-dipole interaction (see Eq. (2)) between magnetic moments dvA and dvB such that

dvA = −µBgJ
∑

MJ1
MJ2

wvAMJ1
MJ2

(MJ1 +MJ2) (25)

with

wvAMJ1
MJ2

=
∑

NAMNA

∫ +∞

0
dRA

(
χvAMJ1

MJ2
NAMNA

(RA)
)2

(26)

and similarly for B, 3 and 4. In Ref. [34] the Er2-Er2 magnetic-dipole interaction

energy was calculated using such a two-body expression with experimental values of

dvA and dvB . Indeed evaluating quantitatively each term of Eq. (18) requires to know

in details the nature of the Feshbach states, namely the functions χvAMJ1
MJ2

NAMNA
(RA)

and χvBMJ3
MJ4

NBMNB
(RB), which is not possible for the moment in Er2.

We consider instead a simple model, where the two molecules are in the same state

vA = vB = v, and we impose a single-channel condition. As each molecule is made of

two atoms in the lowest Zeeman sublevel and colliding in s wave, we assume that the

resulting molecules are in the d-wave bound level, MJi,j = −J = −6, NA = NB ≡ N = 2

and MNA
= MNB

= 0, so that the R−5, R−7... terms appear in Eq. (18). The

mean interatomic distance inside each molecule is 〈vA|RA|vA〉 = 〈vB|RB|vB〉 = R0;

according to Eq. (12), R0 defines the region of intermolecular distances below which

our calculations cannot be applied. We also assume that in Eq. (18) different molecular

vibrational levels are not coupled, i.e. v′A = vA and v′B = vB, but that it couples different

partial waves L and L′. The molecules are assumed to collide in the s wave, which is

the case in the temperature range of Ref. [34].

Combined with the selection rules (19)–(24) applied for v′A = vA and v′B = vB, the

s-wave condition imposes that M ′
L = ML = 0 for all states. Moreover the Clebsch-

Gordan coefficients of Eq. (18) impose λA = λB = 0, 2 and 2N = 4, and so λ = 2,

4, ..., 4N + 2 = 10. To evaluate the importance of each term, we compute adiabatic

potential-energy curves, obtained after diagonalization of the Hamitonian

Ĥ1(R) =
h̄2 ~̂L2

2MredR2
+ V̂md(R) (27)
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where Mred is a Er2-Er2 reduced mass, and ~̂L the dimensionless angular momentum

associated with the collision, and V̂md is the magnetic-dipole term given by Eq. (18), in

the basis spanned by L (note that ML = 0), for various intermolecular distances R.

The results of such calculations are presented on Fig. 2, when the lowest adiabatic

potential-energy curve is plotted in different situations. To highlight the influence of

the different R−n terms, we truncate the sum on λ in Eq. (18) up to λmax, which ranges

from 2, corresponding to the R−3 term, to its largest possible value 10, corresponding

to the R−11 term. Partial waves from L = 0 to Lmax = 30 are included in the basis

for a proper convergence. We assume that 〈RλA
A 〉 ≈ 〈RA〉λA = RλA

0 (and similarly for

B), which can be justified by the expected strong localization of the vibrational wave

function around the outer classical turning point of the corresponding potential-energy

curve. We take R0 = 80 bohr as a typical value for d-wave resonances observed in [34]

(1 bohr = 5.29177× 10−11 m). Strictly speaking our calculation is not valid for R < R0

and so the lower bound of the x axis in Fig. 2 should be R0. But we extend it to a

slightly shorter value since R0 corresponds to a loose boundary condition rather than a

strict limit of validity of our calculation.

Figure 2 shows that higher-order R−n effective-multipole terms (n > 3) get more

and more important as R decreases. At R = R0 all the terms bring similar contributions

to the potential energy. More surprisingly, even at R = 120 bohr = 1.5 × R0, the R−3

term (nmax = 3) only accounts for -0.71 mK, i.e. three quarters of the total energy (-0.95

mK). Because the range of energy on Fig. 2, of a few mK, that is tens of MHz, is larger

than the typical energy spacing between neighboring Feshbach levels, couplings with

those levels should be taken into account in order to give more accurate predictions.

After the magnetic-dipole interaction, the next term of the multipolar expansion

between two erbium atoms is the electric-quadrupole interaction. We have calculated

the reduced quadrupole moment of erbium ground level 〈J = 6||Q̂2||J = 6〉 using a

Dirac-Hartree-Fock method, and found -1.305 a.u. We have evaluated its impact on the

intermolecular interaction by diagonalizing the Hamiltonian

Ĥ ′1(R) =
h̄2 ~̂L2

2MredR2
+ V̂md(R),+V̂eq(R) (28)

where the electric-quadrupole energy V̂eq is obtained by setting `i = `j = 2, ` = 4

and F0 = 1/4πε0 in Eq. (11). The latter shows that the electric-quadrupole interaction

consists in repulsive contributions scaling from R−5 to R−13. Figure 2 shows that the

influence of the quadrupole interaction including all the R−n terms is visible for R < 90

bohr, a region where the van der Waals interaction will be actually dominant [42].

3.2. Van der Waals interaction

The next term of the pairwise atomic multipolar expansion comes from the van der

Waals (vdW) interaction, proportional to R−6ij . In Ref. [43] we have shown that

the Er-Er vdW interaction is mostly isotropic, and characterized by a coefficient
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Figure 2. (Color online) Lowest adiabatic potential-energy curves characterizing the

magnetic-dipole interaction between two 166Er2 Feshbach molecules in the same level

and colliding in the s wave [see Eqs. (18) and (27)]. in Eq. (18) the sum on inverse

powers n = λ+ 1 of the intermolecular distance R is either stopped at nmax = 3 (solid

line), nmax = 5 (dotted line), nmax = 7 (dashed line), nmax = 9 (dash-dotted line), or

the largest possible value nmax = 11 (dash-dot-dotted line). The curves with squares

also accounts for the electric-quadrupole interaction (see Eq. (28)). The main panel

is in log-log scale, and the inset is a linear-scale zoom on the small-distance region.

Other parameters are: R0 = 80 bohr and Lmax = 30.

CEr−Er
6,000 = 1760 a.u.. Therefore in this section we calculate the second-order electric-

dipole interaction between two weakly-bound diatomic molecules whose atoms interact

through an isotropic vdW term. Such a calculation is applicable for Er2-Er2 interactions,

but also for molecules made of alkali-metal or alkaline-earth-metal atoms, for which vdW

is indeed the strongest interaction.

The vdW energy is a second-order correction due to the electric-dipole interaction,

`i = `j = `i′ = `j′ = 1, ` = `′ = 2 and F0 = 1/4πε0 in Eq. (16), while the isotropy

results from kA = kB = k = 0. Pointing out that k = 0 implies π = κ we obtain for

states vA = vB = v

〈vvL′0|ŴvdW|vvL0〉

= −
CEr−Er

6,000

6(4πε0)2R6

+∞∑
λ,λ′=2

λ∑
λA,λB=0,2,...

λ′∑
λ′A,λ

′
B=0,2,...

δλA+λB+2,λδλ′A+λ′B+2,λ′
〈RλA+λ′A

A 〉〈RλB+λ′B
B 〉

(2R)λA+λB+λ′A+λ′B
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×

√√√√ (2λ+ 1)!(2λ′ + 1)!

(2λA)!(2λB)!(2λ′A)!(2λ′B)!

√
(2λ− 3)(2λ′ − 3)(2κA + 1)(2κB + 1)

×
∑

κA,κB ,κ


λA λB λA + λB
λ′A λ′B λ′A + λ′B
κA κB κ


{
λA + λB λ′A + λ′B κ

λ′ λ 2

}

× CκA0
λA0λ′A0C

κB0
λB0λ′B0C

κ0
λ0λ′0Cκ0κA0κB0

√
2L′ + 1

2L+ 1

(
CL0L′0κ0CN0

N0κA0CN0
N0κB0

)2
(29)

where we used

CEr−Er
6,000 ≡ Ci,j

6,000 =
1

2

′∑
i′′,j′′

Q′′(`i=1,`i=1)00Q′′(`j=1,`j=1)00

∆i′′ + ∆j′′
(30)

and 
a b c

d e f

g h 0

 =
(−1)b+c+d+gδcfδgh√

(2c+ 1)(2g + 1)

{
a b c

e d g

}
, (31)

with {:::} a Wigner 6-j symbol, and where 〈RλA,B+λ′A,B

A,B 〉 is the interatomic distance at the

corresponding power in molecules A and B, averaged over the vibrational wave function

of state |v〉. Equation (29) is a series of terms proportional to R−n. The leading term,

which scales as R−6, comes out when λA = λB = λ′A = λ′B = 0, and so κA = κB = κ = 0.

It is thus a fully isotropic term (L = L′) equal to −4CEr−Er
6,000 /R6. The next terms scale as

R−8, R−10, .... Unlike the first-order expression (18), n goes a priori to infinity, since it is

not limited by the angular selection rules. The bounds in the sums over κA, κB and κ are

not explicitly specified, as they come from several conditions. The 9-j symbol of Eq. (29)

imposes |λA − λ′A| ≤ κA ≤ λA + λ′A, whereas the Clebsch-Gordan coefficient of the last

line imposes 0 ≤ κA ≤ 2N and κA even. The most restrictive conditions will indeed

apply, namely max(|λA − λ′A|, 0) ≤ κA ≤ min(λA + λ′A, 2N), κA even. The conditions

are similar for κB, while for κ we have: |λA+λB−λ′A−λ′B| ≤ κ ≤ (λA+λB +λ′A+λ′B),

|κA − κB| ≤ κ ≤ (κA + κB), |L− L′| ≤ κ ≤ (L+ L′), and κ even.

The convergence of the R−n series in Eq. (29) is addressed on figure 3, where

we plot the lowest adiabatic PEC obtained after diagonalization of the hamiltonian

Ĥ2(R) = Ĥ ′1(R) + ŴvdW(R) [see Eqs. (28) and (29)] including the magnetic-dipole,

electric-quadrupole and van der Waals interactions, and where again we assume

〈RλA+λ′A
A 〉〈RλB+λ′B

B 〉 ≈ R
λA+λ′A+λB+λ′B
0 . At R = 100 bohr, that is to say R0/R = 4/5,

convergence is reached for nmax as high as 40. While In this region the multipolar

expansion is still valid, the system does not behave anymore as a pair of elongated

molecules, but as four alomost equidistant atoms. Using a set of collective coordinates

would be more appropriate than the present coordinate system. In addition, we see that

the van der Waals energy is significantly larger than the first-order energies on the left

part of Fig. 3; at R = 120 bohr it represents 80 % of the total potential energy.



Four-body long-range interactions between ultracold weakly-bound diatomic molecules15

−10
−4

−0.01

−1

−100
 100  1000

P
o

te
n

ti
a

l 
e

n
e

rg
y
 (

m
K

)

Intermolecular distance R (bohr)

1st order
nmax = 6

nmax = 10

nmax = 20

nmax = 40

nmax = 50

Figure 3. (Color online) Lowest adiabatic potential-energy curves characterizing

the magnetic-dipole, electric-quadrupole and van der Waals interactions between two
166Er2 Feshbach molecules in the same level and colliding in s wave. In Eq. (29)

the sum on λA, λB , λ′A and λ′B is stopped at different values of nmax, where

n = 6 + λA + λB + λ′A + λ′B , namely nmax = 6 (solid line), nmax = 10 (dotted

line), nmax = 20 (dashed line), λmax = 40 (dash-dotted line) and nmax = 50 (open

circles). For comparison the lowest adiabatic PEC only accounting for the first-order

magnetic-dipole and electric-quadrupole interactions is shown again (dash-dot-dotted

line). Other parameters: R0 = 80 bohr and Lmax = 30.

3.3. Ultracold collisions and characteristic lengths

In order to estimate the role played in collisions at ultralow energies by the

additional terms of the multipolar expansion, it is instructive to calculate the so-called

characteristic length associated with each of those terms [44, 45]. In our case, a given

term will cause significant reflection of the incoming scattering wave function, if its

characteristic length is larger than the typical size R0 of each molecule.

We start with discussing the influence of the magnetic-dipole interaction. We

assume that each R−n term of Eq. (18) is described by a Cn coefficient

Cn ≈
µ0

2π
(2µBgJJ)2Rn−3

0 = C3R
n−3
0 , (32)

where we take the largest possible magnetic moments dvA = dvB = −2µBgJJ for

molecules A and B. The characteristic length associated with the term Cn/R
n is [44, 45]

an =
1

2

(
2MredCn

h̄2

) 1
n−2

. (33)

By inserting (32) into (33), we can express all the characteristic lengths as functions of

a3 =MredC3/h̄
2

(
an
R0

)
=
(
a3
R0

) 1
n−2

, (34)
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Figure 4. (Color online) Characteristic length an as function of the size R0 of the

molecules. Both quantities are rescaled with respect to their “parent” characteristic

length, namely ap=3 for magnetic-dipole and ap=6 for van der Waals interaction (see

Eq. (35)).

which gives (a5/R0) = (a3/R0)
1/3, (a7/R0) = (a3/R0)

1/5, and so on.

Equation (34) shows that if a3 > R0, then a3 > a5 > a7 > ... > R0, for all n, and

vice versa. So if the R−3 term significantly influences the ultracold dynamics, the R−5,

R−7, ... terms associated with effective molecular multipole moments of higher ranks

are also likely to do so. This is indeed the case in our present Er2-Er2 study where

R0 = 80 bohr, a3 = 1580 bohr, a5 = 216 bohr, a7 = 145 bohr, etc. This reasoning

can be generalized to all pairwise atomic interactions. For a “parent” term scaling as

Cp/R
p and associated with the characteristic length ap (see Eq. (33)), the related term

Cn/R
n = Rn−p

0 Cp/R
n is associated with the characteristic length(

an
R0

)
=
(
ap
R0

) p−2
n−2

, (35)

for n ≥ p. Considering the van der Waals interaction p = 6 with C6 = 4 × CEr−Er
6,000 =

7040 a.u., we obtain a6 = 128 a.u., a8 = 109 a.u., a10 = 101 a.u., etc. The terms coming

from the van der Waals interactions are also likely to play a crucial role. However, as

the characteristic lengths an are smaller than 100 bohr for n ≥ 10, they fall in the region

where the complex behaves like four almost equidistant atoms, and where convergence

of the R−n series is very slow (see Fig. 3).

Finally we investigate the influence of the size of individual molecules, which, for

halo molecular states close to a Feshbach resonance, has the same magnitude as the

atom-atom scattering length [46]. To that end we put the R0 term in the right-hand
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side of Eq. (35) and rescale both sides with respect to ap(
an
ap

)
=

(
R0

ap

)n−p
n−2

. (36)

Figure 4 shows this quantity as function of the scaled molecular size, for the three terms

n = p+ 2, p+ 4 and p+ 6 associated with the magnetic-dipole p = 3 and van der Waals

interactions p = 6. When the size of the molecule is much smaller than the parent

characteristic length (R0 � ap), the scaled characteristic lengths an/ap vanish and the

important interactions are the dipole-dipole interaction p = 3 and the van der Waals

interaction p = 6. But when the molecular size increases up to the parent characteristic

length (R0 ≈ ap), an → ap and all the higher molecular effective multipole moments

become significant in the overall interaction and hence in the ultracold dynamics.

4. Concluding remarks

In this article, we present the general formalism to characterize the long-range

interactions between two arbitrary charge distributions, each composed of almost free

subsystems, which we apply to the case of weakly-bound diatomic molecules. To that

end, considering that the atoms composing each molecule conserve their identity, we

expand the intermolecular potential energy as the sum of pairwise atomic energies.

By expressing the intermolecular potential energy as a function of the intermolecular

distance, we obtain a generalization of the usual multipolar expansion, containing

additional terms scaling as inverse powers of the intermolecular distance. Those

additional terms, which involve effective molecular multipole moments, are strongly

anisotropic with respect to the molecular orientations.

In the case of two vibrationally highly-excited Er2 molecules, many additional

terms bring a substantial contribution to the intermolecular potential energy. By

estimating their characteristic lengths, we predict that those additional terms are

also likely to influence the Er2-Er2 collisions at ultralow energies. To confirm that

prediction, we can perform quantum-scattering calculations using the intermolecular

potential-energy curves presented in this article. This would require however to know

precisely the multi-channel wave function of the Feshbach states. Besides, since the

intermolecular potential energy is a few mK (see Fig.3), which is the typical spacing

between neighboring Feshbach levels, we can expect the intermolecular interaction to

couple different Feshbach levels, and so to induce inelastic collisions.
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Appendix A. Second-order correction and irreducible tensors

In order to write Eq. (14) as a sum of irreducible tensors, firstly we expand the product

of atomic multipole moments as

Q`imi
|1′′2′′〉〈1′′2′′|Q`i′mi′

=
`i+`i′∑

kA=|`i−`i′ |

+kA∑
qA=−kA

CkAqA`imi`i′mi′
Q′′(`i,`i′ )kAqA (A.1)

whereQ′′(`i,`i′ )kAqA are the coupled atomic multipole moments (see Eq. (15)), and similarly

for atoms j and j′ of molecule B. Then we apply the transformation (see Ref. [38], Ch. 8,

Eq. (20), p. 260)

∑
βγεϕ

CaαbβcγCdδeεfϕC
gη
eεbβC

jµ
fϕcγ = [adgj]1/2

∑
tτ

CtτgηjµCtτdδaα


c b a

f e d

j g t

 , (A.2)

where [x1x2...xn] = (2x1 + 1)(2x2 + 1) × ... × (2xn + 1) and the number between curly

brackets is a Wigner 9-j symbol, to a = `′, b = `i′ , c = `j′ , d = `, e = `i, f = `j, g = kA,

j = kB and t = k and to the corresponding components. We used that a 9-j symbol is

unchanged after a permutation of two rows followed by a permutation of two columns.

Secondly we work out the effective molecular multipole moments. We expand the

products of Racah spherical harmonics in Eq. (10) as (see Ref. [38], Ch. 5, Eq. (9),

p. 144)

Cλiµi(Θi,Φi)Cλi′µi′ (Θi′ ,Φi′) = (−1)δi2λi+δi′2λi′ Cλiµi(ΘA,ΦA)Cλi′µi′ (ΘA,ΦA)

= (−1)δi2λi+δi′2λi′
λi+λi′∑

κA=|λi−λi′ |

+κA∑
%A=−κA

CκA%Aλiµiλi′µi′

× CκA%A(ΘA,ΦA)CκA0
λi0λi′0

(A.3)

where, recalling that ΘA = Θ1 = π −Θ2 and ΦA = Φ1 = π + Φ2, we used the property

Cλ2µ2(Θ2,Φ2) = (−1)λ2 Cλ2µ2(ΘA,ΦA). After writing a similar equation for molecule B,

we apply again Eq. (A.2) to a = λ′−`i′j′ = λi′+λj′ , b = λi′ , c = λj′ , d = λ−`ij = λi+λj,

e = λi, f = λj, g = κA, j = κB, t = π, and the corresponding components including

τ = σ. Then we apply the formula (see Ref. [38], Ch. 8, Eq. (26), p. 261)

∑
βγεϕ

CaαbβcγCdδeεfϕCbβeεgηC
cγ
fϕjµ = [bcdt]1/2

∑
tτ

CtτgηjµCaαdδtτ


a b c

d e f

t g j

 , (A.4)

to a = k, b = `ij, c = `i′j′ , d = π, e = λi+λj, f = λi′+λj′ , g = λ, j = λ′, t = κ, and the

corresponding components including τ = %. Then the invariance of the 9-j symbol: (i)

by reflection about the anti-diagonal; (ii) by permutation of the resulting first two lines

and the first two columns. Afterwards we deal with the Racah spherical harmonics for

the intermolecular axis. Applying (see Ref. [38], Ch. 5, Eq. (10), p. 144)∑
αβ

CcγaαbβCaα(θ, φ)Cbβ(θ, φ) = Cc0a0b0Ccγ(θ, φ) (A.5)

to a = κA, b = κB, c = κ, α = %A, β = %B and γ = %, we get to Eq. (16).
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and J. von Stecher. Resonant five-body recombination in an ultracold gas of bosonic atoms.

New J. Phys., 15:043040, 2013.

[15] T. Lompe, T.B. Ottenstein, F. Serwane, A.N. Wenz, G. Zürn, and S. Jochim. Radio-frequency

association of Efimov trimers. Science, 330(6006):940–944, 2010.

[16] F. Serwane, G. Zürn, T. Lompe, T.B. Ottenstein, A.N. Wenz, and S. Jochim. Deterministic

preparation of a tunable few-fermion system. Science, 332(6027):336–338, 2011.

[17] S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, and M. Ueda. Measurement of an Efimov

trimer binding energy in a three-component mixture of 6Li. Phys. Rev. Lett., 106:143201, 2011.

[18] S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, and M. Ueda. Nonuniversal Efimov atom-

dimer resonances in a three-component mixture of 6Li. Phys. Rev. Lett., 105:023201, 2010.

[19] A. Zenesini, B. Huang, M. Berninger, H.-C. Nägerl, F. Ferlaino, and R. Grimm. Resonant atom-
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