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In this article we address the general approach for calculating dynamical dipole polarizabilities
of small quantum systems, based on a sum-over-states formula involving in principle the entire
energy spectrum of the system. We complement this method by a few-parameter model involving a
limited number of effective transitions, allowing for a compact and accurate representation of both
the isotropic and anisotropic components of the polarizability. We apply the method to the series
of ten heteronuclear molecules composed of two of (7Li,23Na,39K,87Rb,133Cs) alkali-metal atoms.
We rely on both up-to-date spectroscopically-determined potential energy curves for the lowest
electronic states, and on our systematic studies of these systems performed during the last decade
for higher excited states and for permanent and transition dipole moments. Such a compilation is
timely for the continuously growing researches on ultracold polar molecules. Indeed the knowledge
of the dynamic dipole polarizabilities is crucial to model the optical response of molecules when
trapped in optical lattices, and to determine optimal lattice frequencies ensuring optimal transfer
to the absolute ground state of initially weakly-bound molecules. When they exist, we determine
the so-called “magic frequencies” where the ac-Stark shift and thus the viewed trap depth, is the
same for both weakly-bound and ground-state molecules.

I. INTRODUCTION

The interaction of a neutral system composed of
charged particles with an electromagnetic field is gov-
erned by its so-called dynamic dipole polarizability
(DDP), which expresses the deformation of the charge
distribution under the influence of the oscillating elec-
tric field. Knowing this quantity is of crucial impor-
tance in the context of the ongoing development of ex-
periments aiming at trapping atoms and molecules with
laser fields [1]. For instance, spatially-periodic configu-
rations of light are created by using standing wave laser
fields. These optical lattices act as periodic potentials
allowing for trapping quantum gases of ultracold atoms
and molecules, and thus for controlling their internal and
external degrees of freedom [2–5]. Such lattice-based ul-
tracold systems are ideal to test fundamental theoretical
concepts [6–10], to achieve and control ultracold chemical
reactivity [11, 12] as well as for applications in quantum
optics and quantum computation [13].

The DDP can be obtained both through spectroscopic
measurements of light-induced shifts of energy levels, and
advanced theoretical calculations based on accurate mod-
eling of the electronic structure of the systems under
study. In the present article we address the general ap-
proach for calculating DDPs of small quantum systems,
based on a sum-over-states formula involving in princi-
ple the entire energy spectrum of the system. We com-
plement this method by a few-parameter model involv-
ing a limited number of effective transitions, allowing
for a compact and accurate representation of both the
isotropic and anisotropic components of the polarizabil-
ity.

We apply both approaches to the series of heteronu-

clear alkali-metal diatomic molecules composed of 7Li,
23Na, 39K, 87Rb and 133Cs atoms, using state-of-the-
art molecular potential energy curves (PECs) and elec-
tronic permanent and transition dipole moments (PDMs
and TDMs, respectively). A combination of up-to-date
spectroscopically-determined PECs for the lowest elec-
tronic states, and of results from our own systematic
studies of these systems performed during the last decade
for higher excited states, PDMs and TDMs is employed
for the DDP computation of both real and imaginary
parts of the DDP as a function of the field frequency.

Such a compilation is timely for the continuously
growing researches on ultracold polar molecules, namely,
the achievement of a quantum degenerate dipolar gas.
Heteronuclear alkali-metal dimers possess a permanent
dipole moment in their own frame, –which varies from
0.57 to 5.59 D–, making them ideal candidates for ma-
nipulation by external electric fields. The observation of
anisotropic effects in the long-range interaction between
ultracold molecules is foreseen, with exciting prospects
in terms of novel quantum phases, quantum simula-
tion, quantum information [14, 15]. Even if generally
those molecules do not exhibit an appropriate closed ra-
diative cycle, which prevents them from being directly
laser-cooled, the alkali atoms which compose them are
nowadays efficiently cooled down to ultralow tempera-
tures. Recently, a method relying on the presence of
Feshbach resonances (FR) in the collision of alkali-metal
atom pairs has been proved very efficient to create ul-
tracold molecules. FRs have been recorded for most of
the heteronuclear pairs, i.e. LiNa [16], KRb [17], RbCs
[18], LiCs [19], LiK [20], NaK [21], NaRb [22], LiRb
[23, 24]. Exposing these pairs to a suitable ramp of mag-
netic field allowed to stabilize these resonances as weakly-
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bound molecules, which can then be transformed into
molecules lying in the lowest energy level of their ground
state. Over the past few years, this has been achieved
through the Stimulated Raman Adiabatic Passage (STI-
RAP) optical technique [25] for several homonuclear and
heteronuclear species : Cs2[26], Rb2 [27], KRb [28, 29],
RbCs [30–32], NaK [33], NaRb [34].

It is worthwhile to note that in a couple of cases where
the transfer was successful, it was performed in the pres-
ence of an optical lattice in order to prevent inelastic and
reactive molecular collisions before the STIRAP process,
which can greatly limit the lifetime of the trapped par-
ticles as discussed in [26, 29], thus reducing the density
of ground state molecular samples. With one molecule
per site of the optical lattice, the molecules are shielded
from collisional losses during their preparation and ma-
nipulation. The wavelength of the standing wave which
constitutes the lattice has to be conveniently chosen so
that the initial Feshbach level and the final ground level
involved in the STIRAP sequence “feel” the same trap
depth in the lattice. At this wavelength called “magic
wavelength”[35], the ac Stark shifts and so the DDP of
the two molecular levels are equal. Only few studies of
the DDP have been done on specific molecules like KRb
[36], RbCs [36], Cs2 [37] and Rb2 [38]. However the large
range of species currently considered in experiments re-
quires an extensive study.

This article is organized as follows: In section II, we
present the general expressions of the DDP. In particu-
lar we illustrate the pending controversy on its imaginary
part with a simple two-level model (subsection II A), and
we apply the general definitions to the case of diatomic
molecules (subsection II B). In section III we detail the
up-to-date molecular structure data used in our calcula-
tions; we also recall the basics of our quantum chemistry
and vibrational level calculations. Sections IV and V
present our results in the low-frequency (microwave) and
optical frequency (visible and near-infrared) regimes. In
section VI we discuss the influence of excited levels life-
times on the calculated DDPs. In section VII we compare
our results to the corresponding theoretical and experi-
mental values when they exist in literature. In section
VIII we present our results for Feshbach molecules be-
fore discussing in section IX the existence of magic fre-
quencies for these systems. In section X we give a simple
expression of the DDP for all vibrational levels of the elec-
tronic ground state, as a function of a limited number of
parameters. A table with the corresponding parameters
can be found in the Supplementary Material, as well as
files containing the PECs, PDMs and TDMs necessary
for the calculation of DDPs.

Except otherwise stated, atomic units (a.u.) will be
used for distances (1 a.u. = 0.052917721092 nm), for
energies (1 a.u. = 219474.63137 cm−1), for dipole mo-
ments (1 a.u. = 2.54158059 D) and for polarizabilities
(1a.u. = 4.6883572 × 10−8 MHz/[W/cm2]) throughout
the paper.

II. FORMALISM

A. Expression of the DDP

The dynamic dipole polarizability is the microscopic
counterpart of the relative permitivity εr(ω) of a mate-
rial. For a dilute gas, the two quantities are related by
[39]

εr(ω) = 1 +
Nv
ε0
αn(ω) (1)

where Nv is the volume density of the gas, ε0 the vacuum
permitivity, and αn(ω) the DDP of one particle of the
gas in the quantum level |n〉. In the general case, εr(ω)
and αn(ω) are complex quantities, whose imaginary part
characterizes the absorption of the incoming electromag-
netic field by the gas. If the expression of the real part of
αn(ω) is well-established, the imaginary part is the sub-
ject of a long-standing controversy, that we illustrate in
this section.

Indeed, we calculate the DDP of a quantum particle
submitted to a classical electromagnetic field. First we
follow the approach of [40] for a two-level particle; but
we point out that the method of [40] contradicts the
principles of expectation-value calculations introduced by
N. Moiseyev for non-Hermitian Hamiltonians [41, 42].
When we follow these rules, we obtain the same real
part, but a different imaginary part from [40]. This dis-
crepancy is an illustration of the dispute between the
“constant-sign” rule and the “opposite-sign” rule (see for
instance Refs. [43, 44]).

We consider a quantum particle (atom or molecule),
with a spectrum containing two non-degenerate levels,
|1〉 and |2〉, of energies E1 and E2. The upper level |2〉 is
also characterized by its finite lifetime τ2 = 1/γ2, due to
spontaneous emission toward |1〉, or to non-radiative pro-
cesses. The system is submitted to an oscillating electric
field of angular frequency ω, amplitude E , and linearly
polarized in the Z-direction. In the basis {|1〉, |2〉}, the
particle-field system can be represented by the Hamilto-
nian

Ĥ(t) =

(
E1 −d12E cos(ωt)

−d12E cos(ωt) E2 − iγ2/2

)
, (2)

where we used the electric-dipole approximation and in-

troduced d12 = d21 = 〈1|d̂Z |2〉 the transition dipole mo-
ment which is assumed to be real. It is important to note
that the Hamiltonian (2) is not Hermitian, since the level
|2〉 is characterized by a complex energy.

Introducing the state vector

|Ψ(t)〉 =

(
c1(t)
c2(t)

)
, (3)

we can write the time-dependent Scrödinger equation as
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a system of ordinary differential equations

i~
dc1
dt

= E1c1 − d12E cos(ωt)c2

i~
dc2
dt

=
(
E2 − i

γ2

2

)
c2 − d12E cos(ωt)c1. (4)

In the weak-field |d12E| � (E2 − E1) and off-resonant
regime |E2−E1−~ω| � γ2/2, the system of equations (4)
can be solved using time-dependent perturbation theory

[45], i.e. setting cl(t) =
∑
k c

(k)
l (t) for l = 1, 2. Assuming

the initial conditions c
(k)
1 (t → −∞) = δk0 (δk0 being

Kronecker’s symbol), and c
(k)
2 (t→ −∞) = 0 ∀k, we write

for the zeroth order

c
(0)
1 (t) = exp

(
−iE1t

~

)
, c

(0)
2 (t) = 0. (5)

Note that considering initial conditions starting at t →
−∞ rather than t = 0 allows for considering that the
field is switched on sufficiently slowly to avoid the so-
called secular terms which diverge with time [45]. At the
first order of perturbation, Eq. (4) becomes

i~
dc

(1)
1

dt
= E1c

(1)
1

i~
dc

(1)
2

dt
=

(
E2 − i

~γ2

2

)
c
(1)
2

− d12E
2

(
e−i(

E1
~ −ω)t + e−i(

E1
~ +ω)t

)
. (6)

Because c
(1)
1 (t→ −∞) = 0, then c

(1)
1 (t) = 0∀t, and

c
(1)
2 (t) = Ce−

γ2t
2 e−i

E2t
~

+
d12E
2~

(
e−i(

E1
~ +ω)t

ω12 − iγ2

2 − ω
+

e−i(
E1
~ −ω)t

ω12 − iγ2

2 + ω

)
(7)

with ~ω12 = E2 − E1, and C = 0 to satisfy the initial

conditions c
(1)
2 (t→ −∞) = 0.

Now we want to calculate the leading contribution to

the induced dipole moment 〈d(1)
1 (t)〉; however the way

to calculate the mean value is controversial. Using the
standard definition of an operator mean value, Novotny
and Hecht obtained in Eq. (A.22) of [40],〈

d
(1)
1,−(t)

〉
=
(
c
(0)∗
1 (t)c

(1)
2 (t) + c

(1)∗
2 (t)c

(0)
1 (t)

)
d12

=
d2

12E
2~

(
e−iωt

ω12 − iγ2

2 − ω
+

eiωt

ω12 − iγ2

2 + ω

+
e−iωt

ω12 + iγ2

2 + ω
+

eiωt

ω12 + iγ2

2 − ω

)
(8)

The subscript “-” comes from the change of sign in front
of iγ2/2 inside each pair of terms e±iωt. Note that in [40],
the cl are defined up to a phase factor exp(−iElt/~).

Using the relation 〈d(1)
1,−(t)〉 = α−1 (ω)Ee−iωt/2 + c.c.,

Novotny and Hecht extracts the DDP as

α−1 (ω) =
d2

12

~

(
1

ω12 − iγ2

2 − ω
+

1

ω12 + iγ2

2 + ω

)
(9)

the real and imaginary parts,

Re(α−1 (ω)) =
d2

12

~

(
ω12 − ω

(ω12 − ω)2 +
γ2

2

4

+
ω12 + ω

(ω12 + ω)2 +
γ2

2

4

)
(10)

Im(α−1 (ω)) =
d2

12 γ2

2~

(
1

(ω12 − ω)2 +
γ2

2

4

− 1

(ω12 + ω)2 +
γ2

2

4

)
(11)

Regarding the real part, we obtain the well-established
expression (see for instance [46]). As for the imaginary
part, as it agrees with the opposite-sign rule (hence the
label “-” in Eqs. (8)–(11)), it is odd with respect to ω
[43, 44]. Moreover, Im(α−1 (ω)) scales as ω and not ω3 for
vanishing frequencies [47], especially because the width
γ2 is ω-independent.

Nevertheless the way of calculating the mean value in
Eq. (8) does not seem appropriate for non-Hermitian
Hamiltonians as Eq. (2). According to N. Moiseyev
[41, 42], one needs to define a left state vector |ΨL(t)〉
which must be constructed in such a way that one takes
the complex conjugate of the right vector |Ψ(t)〉 for
the terms resulting from the Hermitian dynamics, and
the right eigenvector itself for the terms resulting from
the non-Hermitian dynamics (for a complex-symmetric
Hamiltonian as Eq. (2)). Namely, setting |ΨL(t)〉 =(
c1,L(t)
c2,L(t)

)
, one has, up to the first order,

c
(0)
1,L(t) = ei

E1t
~

c
(1)
2,L(t) =

d12E
2~

(
ei(

E1
~ +ω)t

ω12 − iγ2

2 − ω
+

ei(
E1
~ −ω)t

ω12 − iγ2

2 + ω

)
,

(12)

and c
(1)
1,L(t) = c

(0)
2,L(t) = 0. Calculating the mean dipole

moment as 〈d(1)
1,+〉 = (c1,Lc2 + c2,Lc1) × d12, which is

now complex, we can extract the DDP using the rela-

tion 〈d(1)
1,+(t)〉 = (α+

1 (ω)e−iωt + α+
1 (−ω)eiωt)× E/2,

α+
1 (ω) =

d2
12

~

(
1

ω12 − iγ2

2 − ω
+

1

ω12 − iγ2

2 + ω

)
. (13)

Its real part is identical to Eq. (10), while the imaginary
part becomes

Im(α+
1 (ω)) =

d2
12 γ2

2~

(
1

(ω12 − ω)2 +
γ2

2

4

+
1

(ω12 + ω)2 +
γ2

2

4

)
(14)
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Equation (14) is in agreement with the constant-sign rule
[43, 44] (hence the “+” label in Eqs. (13) and (14)), ob-
tained by considering complex energies in the usual ex-
pression of the DDP (see our previous works on other di-
atomics [37, 38] and lanthanide atoms [48–50]). Equation
(14) is even with respect to ω, and non-zero for ω = 0.

By consequence, the above calculations tend to sup-
port the constant-sign rule against the opposite-sign one.
However, Eq. (14) is not similar to imaginary parts ob-
tained in second quantization [44, 47, 51, 52] (which do
not solve the controversy either). The main reason is the
following. In Eqs. (11) and (14), the width γ2 is taken
as an intrinsic property of the upper level, and so it is
ω-independent. By contrast, in the second-quantization
formalism, the analog of γ2 turns out to depend on ω.
One possible way to sort out this paradox is to consider
that Eq. (14) does not exactly account for the absorption
of the incoming field, but rather the loss of coherence of
the quantum particle, which is crucial limitation in ul-
tracold experiments, coming from spontaneous emission
or from non-radiative processes like molecular predisso-
ciation.

We can straightforwardly extend Eqs. (10), (11) and
(14) to a multilevel particle in a non-degenerate level |n〉,

Re(αn(ω)) =
∑
n′ 6=n

d2
nn′

~

 ωnn′ − ω

(ωnn′ − ω)2 +
γ2
n′
4

+
ωnn′ + ω

(ωnn′ + ω)2 +
γ2
n′
4

 (15)

Im(α−n (ω)) =
∑
n′ 6=n

d2
nn′ γn′

2~

 1

(ωnn′ − ω)2 +
γ2
n′
4

− 1

(ωnn′ + ω)2 +
γ2
n′
4

 (16)

Im(α+
n (ω)) =

∑
n′ 6=n

d2
nn′ γn′

2~

 1

(ωnn′ − ω)2 +
γ2
n′
4

+
1

(ωnn′ + ω)2 +
γ2
n′
4

 , (17)

where Re(αn(ω)) = Re(α±n (ω)), see Eq. (9) and (13). In
those expressions we set γn � γn′ ∀n′, which means that
the level |n〉 has a sufficiently long lifetime to be trapped
efficiently. Because the expression of the imaginary part
is questionable, in Sec. V, we will give results for the
two equations (16) and (17). We will see that significant
differences only arise at very low frequencies, at which
optical trapping is not achieved.

B. DDP of a diatomic molecule

In the case of a diatomic molecule, the level |n〉 is a
rovibrational level supported by an electronic state. Even
if the sums in Eqs. (15)–(17) run a priori over all bound
and free molecular levels |n′〉, they can be reduced by
taking into account selection rules. The matrix element
dnn′ of the dipole moment operator can be expressed in a
more explicit way, assuming that the |n〉 level is labeled
using the electronic state e = X, A, a, ..., the vibrational
quantum number v, as well as J , M and Λ associated
with the total angular momentum and its projections on
the Z axis of the laboratory frame and on the molecular
axis z, respectively. The level |n′〉 is labeled with the
corresponding primed quantum numbers. One finds for
a linearly polarized field along Z

dnn′ =
∑

q=0,±1

〈v′ |dq(e′, e;R)| v〉

×
(

J ′ 1 J
−M ′ 0 M

)(
J ′ 1 J
−Λ′ q Λ

)
(18)

where dq(e
′, e;R) is the matrix element evaluated in the

molecular frame (xyz) of the electronic PDM (if e = e′)
or TDM (if e 6= e′) at the internuclear distance R, and the
quantities (:::) are Wigner 3-j symbols. The index q char-
acterizes the component of the dipole moment, namely
d0 = dz and d±1 = ∓ 1√

2
(dx ± idy). The 3-j symbol of

Eq. (18) imposes q = Λ′ − Λ. The angled brackets refer
to the integration over the internuclear distance R. The
wave function of the vibrational levels ψv(R) = 〈R|v〉
and ψv′(R) = 〈R|v′〉 are assumed independent from the
rotational quantum numbers J and J ′. This assumption
is valid as we will limit our study to the lowest values of
J .

For alkali-metal diatomic molecules in their electronic
ground state X1Σ+ (Λ = 0) and in an arbitrary rovibra-
tional level (v, J,M), the accessible levels according to
electric dipole selection rules are of 1Σ+ and 1Π symme-
tries. The Σ− Σ electronic transitions involve the q = 0
component of the dipole moment dz, i.e. the electronic
TDM along the molecular axis; hence these transitions
are referred to as parallel transitions. Similarly, Σ − Π
electronic transitions, which involve dx and dy, are re-
ferred to as perpendicular transitions. After evaluating
the 3-j symbols and gathering all the parallel and per-
pendicular contributions in α±ev‖ and α±ev⊥, respectively,

we have for α±n (ω) = α±evJM (ω):

α±evJM (ω) =
2J2 + 2J − 1− 2M2

(2J + 3)(2J − 1)
α±ev‖(ω)

+
2J2 + 2J − 2 + 2M2

(2J + 3)(2J − 1)
α±ev⊥(ω) (19)
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α±ev‖(ω) =
∑
e′v′∈Σ

(
1

ωev,e′v′ − iγe′v′/2− ω

+
1

ωev,e′v′ ∓ iγe′v′/2 + ω

)
× |〈v′ |dz(e′e;R)| v〉|2 (20)

α±ev⊥(ω) =
∑
e′v′∈Π

(
1

ωev,e′v′ − iγe′v′/2− ω

+
1

ωev,e′v′ ∓ iγe′v′/2 + ω

)
× |〈v′ |dx(e′e;R)| v〉|2 . (21)

Note that as e is the electronic ground state X1Σ+, the
different indexes e′ in Eq. (20) and in Eq. (21) refer to
electronic excited states of 1Σ+ and 1Π symmetry, re-
spectively. The parallel and perpendicular polarizabili-
ties depend on the electronic e and vibrational v quantum
numbers, but not on the rotational ones, which only ap-
pear as prefactors in Eq. (19). We can rewrite the DDP
in terms of the isotropic DDP α̃(ω) and the anisotropy
of the DDP γ(ω) :

α̃ev(ω) =
1

3
αev‖(ω) +

2

3
αev⊥(ω) (22)

γev(ω) = αev‖(ω)− αev⊥(ω) (23)

αevJM (ω) = α̃ev(ω) +
2J(J + 1)− 6M2

3(2J + 3)(2J − 1)
γev(ω) (24)

where we drop the ± superscripts to highlight the gen-
erality of those relations. In the present study, we focus
on the polarizability αev00(ω) ≡ α(ω) of the lowest ro-
tational level J = M = 0 of a vibrational level v of the
ground state X1Σ+, which is in fact the isotropic polar-
izability α̃(ω), independent from J , M and thus from the
direction of the oscillating field in the laboratory frame.
The relation α(ω) = α̃(ω) still holds for an excited rota-
tional J level when all the sublevels M are statistically
populated. We will however discuss the variations of the
anisotropy γ with the frequency in Section X. A point we
need to emphasize on is the clear distinction between the
anisotropy of the molecules evaluated in the molecular
frame and the isotropy of the polarizability relevant in
the laboratory frame. The two notions being defined in
different frames, we can have an isotropic behavior de-
spite the anisotropy of the molecule due to its cylindrical
geometry.

III. MOLECULAR STRUCTURE DATA

The calculation of α(ω) requires a detailed knowledge
of the structure of all the molecular states – PECs and
TDMs – involved in the sums of Eqs. (19)–(21) accord-
ing to the selection rules. First of all, it is crucial to
have an accurate description of the X1Σ+ ground-state
PEC. To that end we rely on the extensive work done

by several groups (in particular in Hannover and Riga),
who extracted accurate potential energy curves (PECs)
of the ground state from spectroscopic measurements, for
all bialkaline heteronuclear molecules.

In addition, we need the PECs of excited states of 1Σ+

and 1Π symmetries. We used PECs deduced from spec-
troscopic measurements when available and PECs com-
puted in our group by quantum chemistry otherwise. For
each molecule we typically include in our DDP calcu-
lations four excited 1Σ+ and three 1Π states, insuring
the convergence of the sums in Eqs. (19)–(21). Elec-
tronic TDMs towards higher excited states are usually
weaker; combined with the energy dependence of the
DDP, this leads to smaller contributions as the excited
states get higher. We will illustrate this pattern on the
RbCs molecule in the next section. Indeed we find that
the main contribution to the sum, up to 90 %, is due to
the A1Σ+ and the B1Π low excited states.

Even if we calculate the polarizability on a broad range
(0-20000 cm−1) of frequencies, we focus our analysis on
optical frequencies in the near-infrared and visible do-
mains used in experiments. Such frequencies can induce
transitions from the X1Σ+ ground state towards levels
of the A1Σ+, accentuating the need to have an accurate
knowledge of this state. The A1Σ+ is coupled by the
spin-orbit (SO) interaction to the b3Π state. Therefore,
we also need the b3Π state PECs as well as its SO cou-
pling to the A1Σ+ state, especially for heavy molecules.
Note that in what follows, the ground and these excited
electronic states will be often labeled with the first letter
of the above notations, namely X,A,B, b...

In table I we give for each molecule the source of all the
PECs used in our calculations. To get a good descrip-
tion of weakly bound levels as well as the continuum of
electronic states, one needs an accurate determination of
the long-range part of the electronic potential curves. To
that end, we smoothly connect the short-range part of
the PEC to an analytical long-range expansion described
by the Cn coefficients given in Ref. [53], unless the long-
range part is already provided in a complete experimental
PEC.

Table I also presents the SO-coupling matrix elements
between b3Π and A1Σ+ states, as well as the PEC of the
b3Π state. For six molecules (KCs, RbCs, NaK, NaRb,
NaCs and LiCs), we used R-dependent SO coupling func-
tions determined by an extensive deperturbation work of
the A/b system. In contrast, for the other molecules,
we used SO coupling functions from another molecule,
rescaled to give the correct asymptotic limits, i.e. the
atomic spin-orbit splittings at infinite internuclear dis-
tances. For example for KRb we used rescaled NaRb SO
couplings (see [54] for more details).

We emphasize that table I is by no mean an exhaus-
tive listing of spectroscopic studies on bialkali molecules.
For example recent studies have been made on LiNa
[73, 92, 97–100], LiK [101], LiCs [102], NaK [103], NaRb
[104], NaCs [105], KCs [106–112], RbCs [113–115]. How-
ever we show in following sections that a more precise de-
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TABLE I. References for all the electronic PECs used in the calculations (SOCME ≡ Spin-Orbit Coupling Matrix Elements).
For heavy molecules (RbCs, KRb, KCs) we added the short-range core-core repulsion term [55] to the quantum chemistry
PECs. This term is less important for lighter molecules. For the quantum chemistry PECs of LiRb and NaRb we extrapolate
the short-range potentials by comparing our ground state quantum chemistry PEC to the RKR potential [54]. For the other
molecules this term is not included.

Molecule X1Σ+

experimental
state

Experimental excited
states

Long
Range

ab initio PECs (tw) SOCME PDMs
TDMs

Notes

KCs [56] A1Σ+, b3Π [57], B1Π

[58], E1Σ+ [59]

[53, 57, 59] (3, 5, 6)1Σ+, (2, 3)1Π (b/A) [57] [60]
(tw)

B1Π : RKR + ab initio + long
range.
E1Σ+ : modified empirical PEC
to converge toward the
unperturbed atomic limit (4s+5d)

KRb [61] A1Σ+ [62], b3Π [63],

C1Σ+ [64], B1Π [65],
D1Π [66], (3)1Π [64]

[53] (4, 5)1Σ+ (b/A) [67] [60]
(tw)

A1Σ+, b3Π : spectroscopic data
on a very limited range ⇒ shift of
ab initio PECs to fit with data.
SOCME from NaRb is used.
(1, 2)1Π, C1Σ+ : RKR + ab initio
+ long range
(3)1Π : ab initio + experimental
Te

RbCs [68] A1Σ+, b3Π [69] [53, 68] (3− 7)1Σ+, (1− 5)1Π (b/A) [69] [60]
(tw)

LiNa [70] A1Σ+ [71], C1Σ+ [72],

E1Σ+ [73]

[53, 70] (5)1Σ+, (1, 2, 3)1Π – [60]
(tw)

Weak SO interaction ⇒ not
included in the calculations.

LiK [74] A1Σ+ [75], C1Σ+ [76],
B1Π [76]

[53, 74] (4, 5)1Σ+, (2, 3)1Π (b/A) [67] [60]
(tw)

Rescaled SOCME from NaRb is
used.
A1Σ+, C1Σ+, B1Π : RKR + ab
initio + long range

LiRb [77] B1Π [78], C1Σ+ [78],
D1Π [78]

[53, 77, 78] (2, 4, 5)1Σ+, (3)1Π (b/A) [67] [60]
(tw)

SOCME from NaRb is used

LiCs [79] A1Σ+, b3Π [80], B1Π
[81]

[53, 79, 81] (2− 5)1Σ+, (2, 3)1Π (b/A) [80] [60]
(tw)

NaK [82] A1Σ+, b3Π [83], B1Π

[84], C1Σ+ [85], D1Π,
d3Π [86]

[53, 82, 86] (4, 5)1Σ+, (2− 4)1Π (d/D) [86],
(b/A) [83]

[87]

NaRb [88] A1Σ+, b3Π [67], B1Π

[89], C1Σ+ [90], D1Π
[91],(4)1Π[92]

[53, 67, 88–
91]

(4− 5)1Σ+, (3, 5)1Π (b/A) [67] [87]

NaCs [93] A1Σ+, b3Π [94], B1Π
[95], (3)1Π [96]

[53, 93, 95,
96]

(3, 4, 5)1Σ+, (2, 4, 5)1Π (b/A) [94] [87]
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scription of high excited electronic states does not modify
significantly our results.

Table I indicates that all the electronic PDMs and
TDMs, as well as the experimentally unavailable PECs,
are computed in our group using a quantum chemistry
approach. These calculations, performed with the so-
called CIPSI package, are explained in a previous pa-
per [60, 116]. Briefly we model the alkali-atom diatomic
molecule as two valence electrons moving in the field ex-
erted by two polarizable ionic cores. The valence-core
and core-core interactions are then described by a model
potential. From there we first determine a basis of molec-
ular orbitals with a Hartree-Fock calculation. Correla-
tion between valence electrons is then taken into account
by performing a full configuration-interaction (FCI) cal-
culation. Electronic R-dependent PDMs and TDMs are
determined by computing the expectation value of the
dipole-moment operator (see Fig. 17). For each molecule,
all the data (PECs, SO and dΛ′−Λ(e, e′;R)) used in our
calculations are given in the supplementary material.

Our quantum-chemistry calculations are able to de-
scribe electronic states corresponding to the excitation
of valence electrons, but not the states for which core
electrons are excited. However the latter can account for
up to a few percents of the DDP [117]. Because the two
alkali ionic cores A+ and B+ weakly perturb each other,
we consider that the contribution αc coming from core-
electron excited states is the sum of the ionic A+ and
B+ DDPs: αc(ω) ≈ αA+(ω) + αB+(ω). A description
of our method to obtain the ionic DDPs is given in [38].
Briefly we compare our atomic species (Cs, Rb, K) cal-
culated DDPs to the very accurate atomic determination
made by Derevianko et al. [117]. From the differences, we
extract effective parameters that allow us to reproduce
their results (Table II), assuming the expression (see also
Section X)

αA+(ω) =
2ω1d

2
1

ω2
1 − ω2

+
2ω2d

2
2

ω2
2 − ω2

, (25)

(and a similar one for the B+ core). The empirical
ionic polarizabilities obtained in this way are described
by one or two effective transitions. The polarizabilities
of Na+ and Li+ are too small to be obtained by this
procedure and are thus neglected in our polarizability
calculations for molecules containing one of these two
atoms.

Once we have the necessary information regarding elec-
tronic states, we compute the energy and the wave func-
tion of all their rovibrational levels and continuum-in-a-
box levels, by means of a mapped Fourier grid method
using a discrete variable representation [118]. Because
resonant couplings with the continuum are not in the
scope of this article, the discretization of the contin-
uum is a good approximation. Note that these bound-
and continuum-level calculations are not performed with
core-electron excited states. For the lifetimes γ−1

e′v′ of the
excited levels, we take an arbitrary value of 10 ns, order

TABLE II. Parameters for the dynamic dipole polarizabili-
ties of the heaviest alkali-metal ions, written as a sum of two
effective transitions, see Eq. ((25)). The values for the static
polarizability (ω = 0) are displayed for illustration.

Ionic core effective parameters static polarizability
ω1 d2

1 ω2 d2
2 (a.u.)

(cm−1) (a.u.) (cm−1) (a.u.)

K+ 157105 0.304 199440 1.383 3.89

Rb+ 165912 2.728 362918 1.401 8.91

Cs+ 142044 4.488 553515 1.860 15.34

of magnitude of the lifetime of a deeply bound vibrational
level of the A1Σ+ state (see for example [119]). Accurate
lifetimes are needed to obtain precise values of the imag-
inary part of the polarizability, especially in the case of a
near-resonant light. However in the present study, we fo-
cus on non-resonant light for trapping purposes, and thus
approximate lifetimes are sufficient, as further discussed
in section VI.

Obviously there exists other approaches to compute
DDPs of molecules, through a wealth of available quan-
tum chemistry codes. Concerning the specific cases of
alkali dimers, one can quote for instance the work by
Byrd et al. [120], Buchachenko et al. [121], Żuchowski et
al. [122]. In contrast with these works, the present ap-
proach based on the sum-over-states formula of Eq.(15)
benefits from the ability of our quantum chemistry ap-
proach to compute highly-excited electronic states of the
diatomic molecules up to a step which allows us to reach
the convergence of our numerical results with respect to
the number of included electronic states. Moreover, our
approach is readily adapted to the calculations of long-
range atom-atom R−6 interactions based on DDPs ex-
pressed with imaginary frequencies [123].

IV. POLARIZABILITY IN THE
LOW-FREQUENCY DOMAIN

The sums in Eqs. (19)–(21) can be separated into two
parts related to two different kinds of contributions: the
ones from the rovibrational transitions within the ground
electronic state, gathered in the term αgr(ω), and the
ones from transitions towards excited electronic states,
gathered in the term αexc(ω). The term αgr(ω), due to
the non-zero PDM, appears therefore exclusively in het-
eronuclear molecules.

From the (v, J = 0) levels of the electronic ground
state, we consider separately the transition towards the
excited rotational level J = 1 of the same level v, the
so-called pure rotational transition, and transitions to-
wards other ground-state vibrational levels v′, the so-
called rovibrational ones. In most cases, the latter bring
a small contribution, since the vibrational wave functions
of a same electronic state are orthogonal, exhibiting then
an overlap

∫
ψvψ

∗
v′dR which is strictly equal to zero. Be-

cause the PDM is a slowly varying function of R in com-
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parison with the vibrational wave functions ψv and ψv′ ,
the integral

∫
ψvd0(XX;R)ψ∗v′dR, where d0(XX;R) is the

R-dependent PDM of the X state, is close to zero. This is
especially the case for deeply bound levels, for which the
R-extension of the wave function is small. For more vi-
brationally excited levels, the above integral is non-zero.
However our calculations show that rovibrational transi-
tions always lead to contributions smaller than the purely
rotational transition.

The TDM associated with the pure rotational transi-
tion (X1Σ+, v, J = 0→ X1Σ+, v, J ′ = 1) is quite strong.
It is for example comparable to the TDM of the most
favorable transitions towards the A1Σ+ state. However
the energy of a rotational transition is of the order of
0.01 cm−1, while the energy of an electronic transition is
of the order of several thousands of cm−1. Since the po-
larizability varies as the inverse of the difference between
the squares of the transition energy and of the trapping
laser energy (see Eqs. (20) and (21)), the contribution
of the pure rotational transition is by far dominant in
the microwave regime (ω < 1 cm−1), while the contribu-
tion from electronic transitions is dominant in the optical
regime (ω ≈ 10000 cm−1) relevant for trapping.

FIG. 1. Real part of the DDPs (black curve) and αexc

contribution (open circles) of a (X1Σ+, v = 0, J = 0) RbCs
molecule as a function of the energy of the laser. Resonant
peaks are labeled by the relevant v → v′ transition assuming
that the rotational transition is J = 0→ J ′ = 1.

Figure 1 shows the real part of the DDP of a
(X1Σ+, v = 0, J = 0) RbCs molecule for low frequen-
cies, calculated by including all electronic states reported
in Table I. It shows that both αgr(ω) and αexc(ω) are
identical and smoothly vary with the laser frequency,
apart from a few resonant peaks in αgr(ω) due to rovi-
brational transitions within the X1Σ+ state. Namely, a
peak due to the pure rotational transition (X1Σ+, v =
0, J = 0 → X1Σ+, v′ = 0, J ′ = 1) is visible near zero
energy, as well as two smaller peaks due to transitions
towards vibrational levels X1Σ+, v′ = 1, J ′ = 1 and
X1Σ+, v′ = 2, J ′ = 1. At the scale of the graph the tran-
sition towards the X1Σ+, v′ = 3, J ′ = 1 level is not vis-

ible. For trapping frequencies larger than 150 cm−1 the
contribution from all the rovibrational transitions and
from the pure rotational transition is negligible.

The controversy regarding the definition of the imag-
inary part of the DDP is illustrated in Fig. 2 for RbCs,
where we show Im(α−n (ω)) and Im(α+

n (ω)), given by
Eqs. (16) and (17) respectively. A significant difference
is visible at low frequencies, as the opposite-sign formula
tends to zero, while the constant-sign formula tends to a
constant ( 10−5 a.u.). However, it is important to note
that the frequencies for which that difference is visible
are not used for optical trapping. In the rest of the ar-
ticle, we will use the constant-sign formula, Eq. (17), to
compute the imaginary part of the DDP.
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FIG. 2. Imaginary part of the DDP of RbCs computed with
the constant-sign formula of Eq. (16) (solid black curve), or
with the opposite-sign formula of Eq. (17) (dashed red curve)
as a function of the energy of the laser.

V. POLARIZABILITY IN THE
OPTICAL-FREQUENCY DOMAIN

In this section we discuss the DDP of heteronuclear
molecules in a (X1Σ+, v = 0, J = 0) level focusing more
on optical, i.e. near-infrared and visible, trapping fre-
quencies. The case of RbCs is first investigated in de-
tail for illustration, and the resulting conclusions can be
readily extended for all the heteronuclear dimers, unless
otherwise stated in the rest of the paper.

We start with analyzing the convergence of our cal-
culations with respect to the transitions involving dif-
ferent electrically-excited states and core electrons in
RbCs. On Fig. 3, we show, as functions of the trap-
ping frequency, their relative contributions with respect
to the total real part of the DDP, calculated with all
the excited states given in Table I, and shown in Fig. 4.
Apart from the peaks, where the total DDP vanishes,
and which are therefore irrelevant, the first two excited
states, A1Σ+ and B1Π, represent at least 91 % of the to-
tal DDP. Their contribution increases as the trapping fre-
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quency gets closer to the resonances toward vibrational
levels of the A state, because then the denominator of
Eqs. (20) and (21) decreases. The second largest contri-
bution, which is at most 4 % (see the difference between
the red and black curves), is due to transitions involving
core electrons. Then, higher excited states bring smaller
contributions, because their energy difference with the
ground state increases, and their transition dipole mo-
ment with this state decreases.

0 2000 4000 6000 8000 10000
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FIG. 3. Relative contributions to the real part of the DDP
(see Eqs. (20)) and (21)), of transitions involving different
electronically-excited states and core electrons, as functions
of the trapping frequency. The total DDP, correspoding to
100 %, is calculated with all the excited states given in Ta-
ble I. Each curve displays the cumulative contribution of a
restricted number of states, namely: 2 states (A and B) for
the black curve; 2 states + core transitions for the red curve;
4, 6, 7, 9 and 10 states + core transitions for the green, blue,
yellow, brown and purple curve respectively.

Our results are displayed on similar figures for all the
molecules, namely on the panel (a) of Fig. 4 for RbCs,
Fig. 8 for LiNa, Fig. 9 for LiK, Fig. 10 for LiRb, Fig. 11
for LiCs, Fig. 12 for NaK, Fig. 13 for NaRb, Fig. 14 for
NaCs, Fig. 15 for KRb and Fig. 16 for KCs.

The case of RbCs are shown in Fig. 4, for the real and
imaginary parts of the DDP computed every 0.02 cm−1

(or 600 MHz) for a range of frequencies between 0 and
20000 cm−1. Note that as the real part can be positive
or negative, the middle graph displayed on a logarithmic
scale actually shows sgn(<(α(ω))) × log(|<(α(ω))|), so
that values of the real part with an absolute value lower
than 1 a.u. are disregarded.

We can observe three kinds of behavior labeled I, II or
III on figure 4, and depending on the frequency of the
trapping laser:

• region I: the laser frequency is smaller than the low-
est electronic transition frequencies, below the vi-
brational levels located in the bottom of the b3Π
state potential well. The real and imaginary parts
evolve smoothly with the laser frequency. The

small magnitude of the imaginary part indicates a
low photon scattering rate.

• region II: the laser frequency leads to strong ab-
sorption, in particular at the peaks observed both
in the real and imaginary parts. The amplitude
and width of these peaks depend on the TDM and
on the lifetime of the reached excited level. As we
took an arbitrary lifetime of 10 ns for all the excited
levels, the value of the imaginary part is not rele-
vant in itself; but the relative height of the peaks
gives an indication of the relative strength of the
different transitions.

• region III: in principle, such laser frequencies could
induce electronic transitions. But it is actually not
the case, because of unfavorable Franck-Condon
factors (FCFs). This results in a smooth variation
of the DDP, and in a relatively low imaginary part.

An important criterion for the choice of a lattice fre-
quency to trap molecules is the sign of the corresponding
real part of the DDP. The relation between the DDP and
the potential seen by the molecules at a position ~r of the
optical lattice being U(~r) ∝ −<(α(ω)) × I(~r), with I(~r)
the ~r-dependent intensity of the standing wave creating
the lattice. For positive values of <(α), the molecules are
trapped in the regions of maximum laser intensity, while
for negative values of <(α), they are trapped in the re-
gions of minimum laser intensity. For a two-level system,
we have the well-known result that the DDP is positive
for a red-detuned laser with respect to the transition, and
negative for a blue-detuned one. For a multilevel system
the problem is more complex because different transitions
can compensate each other in the sum of Eqs. (20) and
(21), making no obvious the choice of the appropriate
trapping frequency.

Nevertheless, we can extract general conclusions from
Fig. 4. The real part of the DDP is positive if the laser
is red-detuned with respect to the major transitions and
negative if it is blue-detuned. Our calculations show that
these major transitions are towards levels of the A1Σ+

and B1Π states, showing the best Franck-Condon fac-
tors with the ground state level v. In particular, the
real part of the DDP is negative for frequencies slightly
larger than the transition frequencies towards the levels
of A1Σ+, but is positive for frequencies slightly smaller
than the transition frequencies towards the levels of B1Π.
In between, because the DDP varies continuously, there
exists one frequency, the so-called tune-out frequency, for
which the real part of the DDP is exactly zero.

It is worthwhile to notice that for RbCs the deepest
levels of the b3Π state have enough singlet character, due
to spin-orbit coupling with A1Σ+, and sufficiently strong
FCFs with the ground level, to induce a resonant be-
havior. However there is an optical window around 9000
cm−1, corresponding to frequencies reaching the levels of
the b3Π state, but below the bottom of the A1Σ+ state,
where the contributions of individual resonances cancel
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FIG. 4. RbCs : Upper panel: Potential energy curves of RbCs as a function of the internuclear distance (left graph). Real part
(middle graph) and imaginary part (right graph) of the isotropic dynamic dipole polarizability (DDP) of a X1Σ+, v = 0, J = 0
RbCs molecule as a function of the energy of the laser. Specific regions discussed in the text are highlighted in boxes. Lower
panel: Zoom on the real part of the isotropic DDP (black solid curve) and comparison with the sum of the atomic DDP of Rb
and Cs (red dashed curve). The circle points out the magic frequencies where the two quantities are equal.
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out. Within that window, which includes the laser fre-
quency corresponding to the widely used 1064-nm wave-
length, the trapping of the molecules can be achieved, as
shown in our previous paper on Cs2 [37]. We predict that
it will also be the case for KRb and KCs.

VI. INFLUENCE OF THE EXCITED LEVELS
LIFETIME
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FIG. 5. Real part (top panel) and imaginary part (bottom
panel) of the DDP of a X1Σ+, v = 0, J = 0 RbCs molecule
as a function of the absolute difference between the energy
of the laser and an electronic transition. Calculations were
made with a fixed excited level lifetime of 0.1 ns (blue curve),
1 ns (green curve), 10 ns (red curve), 100 ns (black curve).

Up to now, we performed our calculation using an arbi-
trary radiative lifetime of 10 ns for all excited levels. To
understand the influence of this choice, we run several
calculations using lifetimes equal to 0.1, 1, 10 and 100
ns. Figure 5 shows the result of these calculations cen-
tered around the energy of one allowed electronic transi-
tion chosen arbitrarily. As we can see on the real part of
the DDP, the height of the resonant peak is proportional
to the lifetime, while the difference between the curves
quickly vanishes away from the resonance. For more than
0.1 cm−1 away from the resonance, the real part of the
DDP is, to a good approximation, independent from the
lifetime, which justifies our choice of an arbitrary value.

The imaginary part of the DDP is however inversely
proportional to the lifetime outside of resonances, which
supports our statement that our results should not be
understood as giving quantitative information about the
photon scattering rate. Instead, it indicates the frequen-
cies inducing excitation, the frequency ranges of low ab-
sorption and the frequency ranges of high absorption.

VII. COMPARISON WITH OTHER
THEORETICAL AND EXPERIMENTAL

RESULTS

TABLE III. Comparison of permanent dipole moment and
static dipole polarizabilities αexc(0) (i.e. without taking into
account the pure rotational transition) and α(0), of heteronu-
clear bialkali molecules in the (X1Σ+, v = 0, J = 0) level.
Note that the core contribution αc to the static polarizability
is missing in the work of ref. [124]. In order to compare sim-
ilar quantities, we added this contribution, computed using
the values of Table II, to their polarizabilities.

Molecule Reference PDM (Debye) αexc(0) (a.u.) α(0) (a.u.)

LiCs This work 5.59 377.1 1.890 × 106

ref. [124] 5.523 384.1
ref. [125] 5.355 389.7
ref. [126] 367.8

NaCs This work 4.69 423.2 4.298 × 106

ref. [124] 4.607 437.2
ref. [126] 411.2

LiRb This work 4.18 346.1 9.198 × 105

ref. [124] 4.165 349.3
ref. [125] 4.046 346.2
ref. [126] 319.2

LiK This work 3.58 318.8 5.675 × 105

ref. [124] 3.565 322.6
ref. [125] 3.513 324.9
ref. [126] 326.3

NaRb This work 3.31 378.6 1.784 × 106

ref. [124] 3.306 384.5
ref. [126] 358.4

NaK This work 2.78 350.4 9.237 × 105

ref. [124] 2.759 356.2
ref. [126] 344.6

KCs This work 1.84 572.5 1.259 × 106

ref. [124] 1.906 585.2
ref. [126] 591.3

RbCs This work 1.25 621.5 1.076 × 106

ref. [124] 1.237 621.9
ref. [126] 635.0

KRb This work 0.62 513.1 1.141 × 105

ref. [124] 0.615 514.8
ref. [126] 523.8

LiNa This work 0.57 233.5 9.950 × 103

ref. [124] 0.566 236.5
ref. [125] 0.531 237.8
ref. [126] 223.7

To test the validity and the precision of our calcula-
tions we compare the real part of our DDP values with
the few data published in the literature. Firstly, Table III
shows such a comparison in the static limit ω = 0. The
agreement with other (theoretical) values of the ground-
state PDM and static polarizability is good. One can also
quote the work on KRb of Ref.[121] which report results
at equilibrium distance using several levels of approxima-
tion, ranging between 524 and 539 a.u. . Note that the
polarizability values from our previous work [124] was
obtained with the finite field method applied on a theo-
retical ground state PEC, while the sum-over-states for-
mula employed here involves an experimentally-derived
ground state PEC. Similarly, the ground-state PDM is
obtained after averaging the R-dependent PDM function
of Ref.[60] onto the v = 0 level of the experimentally-
derived ground state PEC. These statements explain the
small differences observed among all values for a given
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species.

TABLE IV. Comparison with available experimental values
of various components of the computed DDP (either isotropic,
parallel, or perpendicular) of bialkali molecules in the (v =
0; J = 0) level of the electronic ground state of KRb and Cs2,
and of the lowest triplet electronic state for Rb2. The results
are given in 10−5 MHz/(W/cm2), or in units of separated
atoms polarizability for Cs2 αCs (see text). Note that the two
displayed values of Ref.[127] correspond to an experimental
and a theoretical determination.

Molecule Wavelength DDP component polarizability

(nm) (10−5 MHz/(W/cm2))
KRb 1090 isotropic 4.2 [128]

5.1 (this work)
4.8 [129]

1064 parallel 10.0(3) [127]
12 [127]

10.0 (this work)
perpendicular 3.3(1) [127]

2.0 [127]
2.8 (this work)

Cs2 1064.5 isotropic 2.42 αCs (priv. comm.)
2.49 αCs (this work)

Rb2 830.4 isotropic 2.809 [38]
4.106 (this work)

1064.5 isotropic 16.08± 0.67 [38]
14.75 (this work)

parallel 41.7± 4.2 [130]
35.2± 5.6 [130]

34.97 (this work)
perpendicular 4.2± 1.9 [130]

4.7± 0.5 [130]
4.75 (this work)

In table IV we present all the experimental and theo-
retical DDPs that we have found in the literature and we
compare them to our calculated values. For experimen-
talist convenience, the results are given in MHz/(W/cm2

(1a.u. = 4.6883572×10−8 MHz/(W/cm2)), or sometimes
in units of separated atoms polarizability. Again the
overall agreement is good, except for Rb2 at 830.4 nm
(which was discussed in Ref.[130].

Among all species, KRb is the most studied one in the
context of ultracold molecules. Extensive experiments
and calculations have been made [36, 129], to extract the
DDP of the molecule in its absolute ground state for an
optical lattice of wavelength 1090 nm. Later, the same
experimental group made another measurement using a
1064-nm laser [127]. In this case the lattice was not an
isotropic 3D-lattice but a 1D-lattice, which allowed to
tilt the axis of the laser from the quantization axis de-
fined by the magnetic field. To explore the anisotropic
behavior of the DDP, measurements were made for var-
ious tilting angles, and so the parallel and perpendic-
ular polarizabilities were extracted. Note that the ex-
perimental values were given in units of DDP of Fesh-
bach molecules αFesh (see Sec. VIII). For example, the
measured isotropic DDP of KRb, is 0.85 αFesh, which
gives 4.8 × 10−5 MHz/(W/cm2), by taking the sum of
the atomic DDP for αFesh. It is in good agreement with
our value of 5.1× 10−5 MHz/(W/cm2).

On the theoretical side, Kotochigova and coworkers
[36, 131] have computed DDPs for a broad range of fre-

quencies for both KRb and RbCs molecules. Neverthe-
less, the values reported in Table IV are the only nu-
merical ones with which we can compare our results.
Their calculations were done using the same formalism,
but relying completely on PECs calculated with quantum
chemistry. This probably explains the slight differences
between their results and ours.

Even if the present study focuses on heteronuclear
molecules, we report in Table IV on two other relevant
experiments, on Cs2 and Rb2 molecules. In Ref. [132]
we report a difference of 18 % between the experimental
and the theoretical values for Cs2. However it has been
shown later by the same group [133] that the difference
was not due to a lack of accuracy in the experiment or
in our calculation. Indeed our calculation was made in
the lowest rotational level J = 0, while the measurement
was made in the excited rotational level J = 2. At the
time, it was believed that due to the geometry of the
3D lattice, only the isotropic part of the DDP (equal to
the J = 0 value) was accessible experimentally, justify-
ing a direct comparison of the J = 2 experimental value
and the J = 0 theoretical one. A new measurement for
molecules in J = 0 invalidated this assumption. Indeed,
the new measured value of 2.42 αCs, αCs being the DDP
of the Cesium atom, is very close to our theoretical value
of 2.49 αCs.

In Ref. [38] measurements of the DDP for Rb2

molecules in the (a3Σ+
u , v = 0) level are compared to our

theoretical predictions using the same formalism. For a
trapping wavelength of 1064.5 nm, our calculations are in
very good agreement with two of the three measured val-
ues, i.e. the isotropic and the perpendicular DDPs. The
discrepancy on the parallel part can be easily explained:
as the trapping frequency is close to resonances due to
parallel transitions (Σ − Σ) towards the (1)3Σ+

g excited
state, the parallel part of the DDP is very sensitive to
the description of the levels of that state. However in
our calculation we used a PEC calculated with quantum
chemistry for the (1)3Σ+

g state, which altered the accu-
racy of our calculations. In Ref. [38] we also report the
measured value at a wavelength of 830.4 nm issued from
an earlier, less accurate experiment, which only shows a
rough agreement with our calculated value.

VIII. POLARIZABILITY OF FESHBACH
MOLECULES

The efficiency of the transfer of Feshbach molecules
(FMs) to the absolute ground state is enhanced by re-
ducing the difference between the lattice depth seen by
the FM and the one seen by the molecule in the abso-
lute ground state (X1Σ+, v = 0, J = 0). Because the
trap depth is proportional to the DDP in each state, an
optimal transfer is achieved if the two DDPs are equal,
or at least, close to each other. Before searching for the
trapping frequencies at which this equality occurs (see
Sec. IX), we calculate, in the present section, the DDP
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of Feshbach molecules.
Because FMs are characterized by vibrational levels

just below the ground state dissociation limit nAs+nBs,
thus with large elongation, it is natural to express their
DDP as the sum of the atomic DDPs, αFesh(ω) =
αA(ω) + αB(ω). To check this “atom-pair” approxima-
tion, we compare its results with a “molecular” calcu-
lation, in which the FM is assumed to be in the last
vibrational level of the ground electronic state X1Σ+.

We first need to calculate the DDP of each ground-
state (ns) alkaline atom, which is obtained using the
sum-over-state formula (see Eq. (15)), taken over excited
atomic levels. As input data, we take the TDMs and
transition energies from the NIST database [134]. At in-
frared frequencies the main contributions come from the
np1/2 and np3/2 levels. Transitions towards (n+1)p1/2,3/2

levels are also taken into account for Li, Na, Rb and
Cs. Regarding the molecular calculation, the PECs and
TDMs included in the sum are the same as those used
for the (X1Σ+, v = 0, J = 0) level (see Sec. III).

The result of our analysis is illustrated in the case of
NaK (nA = 3, nB = 4). We show on Fig. 6 the real part
of the molecular DDP (black curve) and compare it to
the sum of the Na and K atomic DDPs (red curve). The
overall variation of the two curves are very similar, while
narrow peaks in the molecular DDP denote transitions
towards vibrational levels of excited electronic states.
Away from these resonances, the difference between the
two DDPs is roughly of 3 %, which probably originates
from the limited precision of the molecular input data.
Indeed we used for the nearby B1Π state dissociating to
Na(3s)-K(4p) a Hund’s case (a) PEC without SO cou-
pling. However we know that for weakly-bound levels
of this state, which have large TDMs with the Feschbach
molecular level, the SO coupling cannot be neglected and
a Hund’s case (c) representation would be more appro-
priate.

The resonances of the molecular DDP illustrate the
limitation of the atom-pair approximation. For an opti-
mal trapping experiment, one has to make sure that the
frequency of the lattice laser will not induce resonant ab-
sorption for the FMs. The position of those resonances
strongly depends on the details of the vibrational wave
function of the FM, and in particular on its singlet or
triplet character. Outside the resonances, the DDPs of a
singlet and of a triplet FM coincide and are well described
in the atom-pair approximation.

It is worthwile mentioning that the dependence of the
parallel and perpendicular components of the static (ω =
0) dipole polarizability at large interatomic distances has
been discussed in several papers [135–137]

α‖ = α1 + α2 +
4α1α2

R3
+

4α1α2(α1 + α2)

R6

α⊥ = α1 + α2 −
2α1α2

R3
+
α1α2(α1 + α2)

R6
(26)

where α1 and α2 are the atomic static dipole polar-

izabilities of the individual atoms. We applied this for-
mula to the uppermost vibrational levels of the NaRb
ground state by averaging Eq. (26) on the related vi-
brational wavefunctions, and we compared the results to
the ones of the sum-over-states approach (Fig. 7). We
see that for the uppermost level, this formula seems to
agree with the numerical result from the present study.
Note however that the correction to the isotropic polar-
izability α = (α‖ + 2 ∗ α⊥)/3 induced by the R−6 term
in Eq. (26) accounts for about 0.1 % compared to the
sum of atomic polarizabilities. Given that our numeri-
cal calculation relies on a drastically different approach
based on theoretical transition dipole moments, it is te-
dious to argue about a good agreement between the two
approaches. In contrast these two models yield different
results already from the last-but-one level, and increase
for even deeper levels. This is due to the short range of
the interactomic potential (varying as R−6 for different
atoms), so that already for the last-but-one vibrational
levels, one needs to consider its radial wavefunction over
the entire range of distances, i.e. where the interaction
potential is governed by exchange interaction. This speci-
ficity of R−6 asymptotic potentials was already pointed
out for instance for the calculation of photoassociation
rates for heteronuclear alkali-atom pairs [138].

IX. MAGIC FREQUENCIES

Now we compare the DDP of the (X1Σ+, v = 0, J = 0)
molecules and the one of the FMs, expressed in the atom-
pair approximation. These two quantities are displayed
over a broad range of frequencies on panels b of Fig. 4 for
RbCs, Fig. 8 for LiNa, Fig. 9 for LiK, Fig. 10 for LiRb,
Fig. 11 for LiCs, Fig. 12 for NaK, Fig. 13 for NaRb,
Fig. 14 for NaCs, Fig. 15 for KRb, and Fig. 16 for KCs.
Focusing mainly on frequencies below the one reaching
the bottom of the B1Π state, we see that, outside the re-
gions of resonances towards the A1Σ+ and b1Π states, the
DDPs are both positive and have the same order of mag-
nitude. For several molecules (RbCs, KCs, KRb, NaK),
we note the existence of particular frequencies at which
the DDPs are equal: these are the so-called “magic fre-
quencies”. When they exist, the magic frequencies (i.e.
intersections located away from resonances) are given for
each molecule in table V.

Around magic frequencies the DDP of the molecule
varies smoothly. As an indication we compute in table V
the difference between the DDPs of the absolute ground
state molecule and the FM one, when the laser is de-
tuned by 5 cm−1 from the magic frequency. When that
difference is smaller than 0.5 % in absolute value, the
differences in the trapping efficiency due to this 5-cm−1

detuning should be negligible compared to other limi-
tations of the experimental setup, allowing experimen-
talists to choose an available laser wavelength near the
magic frequency without a significant loss in the transfer
efficiency.
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FIG. 6. Real part of the polarizability of the last bound vibrational level v = 75 of the X1Σ+ state in NaK (black curve) and
sum of the real part of the atomic polarizability of Na and K (red curve) as a function of the energy of the laser.

TABLE V. Magic frequencies (when present), DDP at the magic frequency ω0, and DDP at two standard frequencies ωL1 and
ωL2 corresponding to the wavelengths 1064 and 1550 nm respectively. All the DDPs are given in units of 10−5 MHz/(W/cm2).
Only frequencies outside the resonant regions are given. The column “sensitivity” contains the relative difference between the
DDPs of ground-state and Feshbach molecules at an arbitrary value of 5 cm−1 above the magic frequencies. The last column
gives the ratio at ωL2 between the DDP of ground-state molecules and the DDP of FMs. the star symbol for LiCs indicates
that the frequency ωL1 is close to strong transitions towards levels of the b3Π state.

Molecule magic frequencies α(ω0) sensitivity α(ωL1) α(ωL2) α/αFesh(ωL2)

ω0 (cm−1) (%)
RbCs 9390 and 12214 8.645 and 1.923 0.11 and −14.4 8.667 4.082 0.874
KCs 9639 and 12394 9.047 and 1.421 0.14 and −10.7 7.783 3.760 0.842
KRb 10287 7.760 0.12 5.385 3.188 0.846
NaCs - - - 4.379 2.586 0.725
NaRb - - - 3.158 2.207 0.768
NaK 15718 2.414 −0.46 2.790 2.017 0.757
LiCs - - - 3.695* 2.299 0.635
LiRb - - - 3.044 2.045 0.700
LiK - - - 2.584 1.844 0.680
LiNa - - - 1.582 1.275 0.702

During the experiments it is easier to use the same
laser to trap the separated atoms, the FMs and the
ground-state molecules. This implementation is prob-
lematic for NaK and LiCs molecules, because at the de-
termined magic frequency, the DDP of the K atom in the
case of NaK (resp. the Cs atom in the case of LiCs) is
negative, while all the other DDPs are positive. In an
optical lattice, the K and Cs atoms would be trapped in

the region of minimum intensity, whereas all the other
species would be trapped in the region of maximum in-
tensity, which would prevent Na-K and Li-Cs magneto-
association. Therefore, NaK and LiCs can be considered
as having a workable magic frequency, provided that two
different lattices can be implemented subsequently: one
lattice for the magneto-association step, running at a fre-
quency such that the atomic DDPs are positive, and an-
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FIG. 7. Comparison of the DDP of the uppermost vibra-
tional levels of the NaRb ground state, as obtained from the
present numerical calculations, and as resulting from the ap-
plication of the asymptotic expansion of Eq. (26).

other lattice for the STIRAP step, running at the magic
frequency.

For the molecules without magic frequency located
in smoothly-varying regions of the DDP (NaCs, NaRb,
LiRb, LiK, LiCs, LiNa), we propose two alternatives in
order to successfully trap the molecules during the STI-
RAP process, implying two different kinds of trapping
wavelengths:

• Infrared wavelengths corresponding to frequencies
far away from any resonance which ensure a very
low absorption rate and a high lifetime for the
molecules. The FM and the ground-state molecules
DDPs are not equal, leading to a limitation in the
efficiency of the transfer process. However as shown
in our recent paper [38], a ground-state molecule
DDP 2.5 greater than the FM one still allows for
an acceptable transfer efficiency.

• Visible or near infrared wavelengths satisfying the
“magic conditions”, but firstly not retained and not
included in Table V. Indeed their vicinity to reso-
nances induces non-negligible absorption rate, and
limits the trap lifetime of the molecules down to a
few milliseconds. This alternative was tested with
Cs2 [37] where the FMs were first transferred to-
wards the X, v = 73 level with a high efficiency,
even if the lifetime of the sample was only of 19 ms
[37]. The determination of a magic frequency so
close to resonances requires an accurate knowledge
of their position and width, which must thus be
determined with spectroscopic precision.

An alternative solution to circumvent the lack of magic
frequency would be to add an additional control mech-
anism during the STIRAP process, which would consist
in keeping the lattice depth identical for molecules in the
(initial) Feshbach state, in the (final) ground state, or in

any (intermediate) superposition of the two states occur-
ring during the transfer. This requires to adjust the laser
intensity in order to compensate the variation of DDP of
a molecule during the transfer, imposing that the prod-
uct (DDP × intensity) is constant. To illustrate this
proposal we consider LiK molecules trapped by a tele-
com laser at 1550 nm. Since the DDP of ground-state
molecules represents 68 % of the DDP of FMs (see Table
V), the intensity should be increased by 47 % within the
transfer duration of a few microseconds [30]. It would be
particularly interesting to study the experimental feasi-
bility of this proposal.

X. EFFECTIVE POLARIZABILITY FOR ALL
VIBRATIONAL LEVELS OF THE ELECTRONIC

GROUND STATE

The above results consist in thousands of computed
DDP values for the ten heteronuclear molecules in their
absolute ground state, and for frequencies from 0 to
25000 cm−1 with a step of 0.02 cm−1. Even though we
have all the necessary data to obtain the DDPs for any vi-
brational v level of the ground state, the number of com-
puted DDP values) (and subsequently, of anistropy val-
ues) would be too big to build an exhaustive table, even
as supplementary material. In this section, we rather give
an analytical expression of the isotropic DDPdepending
on a few parameters, which is a reliable estimate of the
DDP outside the regions of resonances, as already sug-
gested in Ref.[38] for Rb2. Such an expression also gives
further insight into the limited number of transitions that
mainly contribute to Eqs. (19)–(21).

The effective isotropic DDP is then given by:

αeff(ω) =
2ωΣd

2
Σ

ω2
Σ − ω2

+
2ωΠd

2
Π

ω2
Π − ω2

+ αc(ω) (27)

where ωΣ and dΣ (resp. ωΠ and dΠ) represent an effec-
tive transition energy and an effective TDM towards the
first excited Σ (resp. Π) states, which bring the main
contribution to the DDP. The parameters ωΣ, ωΠ, dΣ

and dΠ represent TDM averages on the transitions to-
wards levels sharing a good FCF with the ground state
level (X1Σ+, v). As the vibrational wave function of the
ground state level greatly varies with v, we can thus ex-
pect the parameters of Eq. (27) to be v-dependent. The
only exception is αc(ω), which reflects the contribution
of transitions involving the core electrons (see Sec. III),
and which are also described in terms of effective tran-
sition parameters . This core contribution is isolated in
Eq. (27) as its energy dependence is significantly different
from the other contributions.

In order to determine the parameters of Eq. (27),
we first achieved the full numerical calculation of the
isotropic DDP for each vibrational level v, and then we
fitted the results with Eq. (27), for frequencies from 1000
to 20000 cm−1, while excluding the regions of resonances.
The corresponding parameters are given in Table VI for
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TABLE VI. Effective transition energy and dipole moment for heteronuclear bialkali molecules in their absolute ground
state (X1Σ+, v = 0, J = 0), obtained by fitting the computed polarizabilities with Eq. (27). For each molecule the range of
frequencies excluded from the fit are given. In the case of RbCs, α(ω) vanishes at ω = 11 956 cm−1 giving an abnormally high
rms. Excluding the near zero values from the fit gives similar effective parameter with an rms of 0.67 %.

Molecule Σ state Π state Frequencies excluded (cm−1) rms (%)

ωΣ dΣ ωΠ dΠ b3Π A1Σ B1Π

(cm−1) (a.u) (cm−1) (a.u) resonances resonances resonances
RbCs 10694.77 2.68 13854.92 3.08 8574.19-9123.21 9886.05-12030.45 > 13215.42 0.466
KCs 10758.38 2.62 14225.92 2.99 8675.89-9314.17 9940.45-12326.32 > 13635.89 0.404
KRb 11583.60 2.58 15069.77 2.90 9584.94-10115.96 10767.00-13325.37 > 14318.42 0.428
NaCs 11450.68 2.32 15681.56 2.63 10069.66-13419.82 > 15013.11 1.755
NaRb 12725.97 2.33 16891.66 2.61 11156.77-14890.54 > 16276.57 1.083
NaK 13164.20 2.30 17399.39 2.59 11396.48-15463.52 > 16798.45 1.127
LiCs 11683.62 2.31 16088.54 2.50 9018.60-14510.36 > 15637.97 1.338
LiRb 12326.08 2.26 17237.94 2.42 9938.34-15210.24 > 16837.77 1.316
LiK 12918.45 2.22 17783.19 2.41 10281.32-11397.07 11880.73-16416.37 > 17305.20 1.019
LiNa 14862.75 2.00 20475.26 2.25 (see text) 14033.41-18589.43 > 19929.10 1.979

the lowest vibrational level v = 0 and in the supplemen-
tary material for all vibrational levels, along with the
energy domains for which Equation (27) cannot be ap-
plied. For five molecules (NaCs, NaRb, NaK, LiRb, and
LiCs), the excluded frequencies due to the b3Π and A1Σ+

are not separated, because the vibrational levels of b and
of A presenting favorable FCFs towards the ground state
do not belong to distinct energy ranges. For LiNa, as the
spin-orbit interaction is very weak, and the b3Π state was
not included in the calculation.

The choice of the lower bound 1000 cm−1 of the fre-
quency range arises from the specificity of heteronuclear
bialkali molecules, which present low-frequency transi-
tions within the electronic ground state X1Σ+ due to
their permanent dipole moment. As mentioned in sec-
tion IV, these transitions have negligible contributions
at infrared frequencies, but are dominant at microwave
frequencies. The choice of 1 000 cm−1 allows to safely
exclude the pure rotational and rovibrational transitions
from the fitting procedure.

The C1Σ+ and D1Π states, correlated to a n′s + np
asymptote, have strong TDMs with the ground state.
One could then think about taking these states into ac-
count in the effective DDP, i.e. including four effective
transitions in Eq. (27). However the C1Σ+ and D1Π
states are slightly higher in energy than the A1Σ+ and
B1Π states, resulting in a smaller contribution at opti-
cal lattice frequencies. We have checked that, for infrared
frequencies below the first excited asymptote, adding fur-
ther effective transitions in Eq. (27) does not improve the
quality of the fit. For larger frequencies, it did improve
the fit results; but the obtained effective transition en-
ergy, above 60 000 cm−1, had no physical meaning, and
were disregarded. In these cases, the effective polarizabil-
ities can still be useful, as its accuracy compared to the
pure numerical results is around 2 % in the worst case,
whereas it is around 1 % otherwise.

Since the wave function of the (X1Σ+, v = 0) level is
strongly localized around the equilibrium distance Re of
the electronic ground state X1Σ+, in Table VII we com-
pare the electronic TDM from X to A (resp. from X to
B) at Re, with the effective TDM dΣ (resp. dΠ) given in

Table VII. The close values taken by these quantities fur-
ther illustrate the predominance of the levels belonging
to the A and B states in the sums of Eqs. (19)–(21).

Finally, the present effective model designed for repro-
ducing the isotropic DDP, also provides a good estimate
of the DDP anisotropy over the same range of frequen-
cies. Indeed one can assume from above that the effective
Σ (resp. Π) transition is mostly related to the parallel
(resp. perpendicular) component of the DDP. With this
assumption we can write d2

Σ = 1
3d

2
z (resp. d2

Π = 2
3d

2
x) and

thus infer the effective anisotropy of the DDP :

γeff(ω) =
6ωΣd

2
Σ

ω2
Σ − ω2

− 3ωΠd
2
Π

ω2
Π − ω2

(28)

This is illustrated in Figure 18: the anisotropy deduced
from the numerically computed α‖ and α⊥ is compared
to the effective one, through their ratio for the RbCs and
LiNa molecules. We immediately see that despite that
the model is optimized on the isotropic DDP, it delivers
an effective anisotropy in agreement with the numerical
one within 2% to 15%. The present model is thus un-
doubtedly useful for upcoming experiment aiming at ex-
ploring anisotropic trapping of heteronuclear alkali-metal
diatomics.

XI. CONCLUSION

In this paper we have reviewed the experimental and
theoretical results for the dynamic dipole polarizabil-
ities (DDPs) of the ten alkali-metal heteronuclear di-
atomics composed of two of (7Li,23Na,39K,87Rb,133Cs)
alkali atoms in their electronic ground state. We recalled
the general approach for such calculations, involving a
detailed knowledge of large number of excited electronic
states of these molecules. The set of relevant poten-
tial energy curves is built on a combination of up-to-
date experimental data with theoretical data deduced
from high-level quantum chemistry computations per-
formed in our group. The corresponding set of transi-
tion dipole moments are exclusively obtained from the
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TABLE VII. Comparison between the effective TDMs dΣ (respectively dΠ) of Table VI, and the electronic TDMs between
the electronic ground state X1Σ+ and the excited state A1Σ+ (respectively B1Π) at the X equilibrium distance Re. The

electronic TDM are multiplied by a rotational factor d̃z = dz

√
1
3

(resp. d̃x = dx

√
2
3
) to assure compatibility between Eq. (22)

and Eq. (27).

Molecule Σ state Π state

dΣ d̃z(A,X;Re) dΣ/d̃z dΠ d̃x(B,X;Re) dΠ/d̃x
(a.u.) (a.u.) (%) (a.u.) (a.u.) (%)

RbCs 2.68 2.64 1.5 3.08 2.97 3.7
KCs 2.62 2.58 1.6 2.99 2.88 3.8
KRb 2.58 2.56 0.8 2.90 2.92 -0.7
NaCs 2.32 2.22 4.5 2.63 2.39 10.0
NaRb 2.33 2.24 4.0 2.61 2.45 6.5
NaK 2.30 2.20 4.5 2.59 2.41 7.5
LiCs 2.31 2.16 6.9 2.50 2.37 5.8
LiRb 2.26 2.20 2.7 2.42 2.44 -0.8
LiK 2.22 2.15 3.3 2.41 2.43 -0.8
LiNa 2.00 1.96 2.0 2.25 2.27 -0.9

same calculations. We also proposed an effective model
which allows for a compact modeling of the DDPs in-
volving a limited number of parameters (five) describ-
ing a small number (two in the present case) of effective
electronic transitions, which reproduces with a good ac-
curacy the DDP for all vibrational levels of the ground
state (X1Σ+, v, J = 0) of the ten studied molecules. The
comparison of our calculated DDPs with the existing ex-
perimental values for some molecules like Cs2, Rb2 and
KRb highlights the quality and the precision of our work
and allows to be confident in our predicted values for the
ground state DDPs not yet determined experimentally.

The precise knowledge of the DDP enables to deter-
mine the response of the molecules when interacting with
an oscillating electric field. In particular, we invoked
the current developments in optical trapping of ultra-
cold molecules using for instance optical lattices. This
study leads to the determination of the optimal frequen-
cies to be chosen for an optical lattice in order to optimize
the transfer efficiency of trapped molecules from an ini-
tial weakly-bound state down to the lowest rovibrational
level of the ground state.

For some molecules (RbCs, KCs, KRb and NaK) there
exists so-called “magic frequencies” where the related
DDPs are close enough together that the molecules are
not excited into high motional modes of the lattice dur-
ing the transfer. For NaK this magic frequency is in the
vicinity of a resonance with the possibility that the trap-
ping laser excites the molecule which may thus escape
from the trap. The success of the trapping relies on the
precision of the knowledge of the resonance energies and
in the ability of the experiments to keep the magic fre-
quency of the laser used for the transfer far enough from
this resonance. For some molecules (NaCs, NaRb, LiRb,
LiK, LiCs and LiNa) such well-defined magic frequencies
do not exist and we propose several alternatives to cir-
cumvent this drawback. Therefore this work also gives
confident guidelines to the choice of the frequencies of
the optical lattices used to control the ultracold bialkali-
molecules during their transfer to the absolute ground
state.
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FIG. 8. LiNa : (left Fig. ) Potential energy curves of LiNa as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 LiNa molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
LiNa molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Li and Na (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 9. LiK : (left Fig. ) Potential energy curves of LiK as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 LiK molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
LiK molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Li and K (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 10. LiRb : (left Fig. ) Potential energy curves of LiRb as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 LiRb molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
LiRb molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Li and Rb (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 11. LiCs : (left Fig. ) Potential energy curves of LiCs as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 LiCs molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
LiCs molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Li and Cs (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 12. NaK : (left Fig. ) Potential energy curves of NaK as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 NaK molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
NaK molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Na and K (red dashed curve). Purple circle point out the magic
frequencies.



23

10 20 30
Interatomic distance (a

0
)

0

5000

10000

15000

20000

25000

E
ne

rg
y 

(c
m

-1
)

X
1Σ+

b
3Π

A
1Σ+

B
1Π

C
1Σ+

D
1Π

-10
6
-10

3 0 10
3

10
6

Re(α) (a.u.)
10

-3 1 10
3

10
6

Im(α) (a.u.)

0 500 1000 1500 2000 2500
Re(α) (a.u.)

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

E
ne

rg
y 

(c
m

-1
)

NaRb

FIG. 13. NaRb : (left Fig. ) Potential energy curves of NaRb as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 NaRb molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
NaRb molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Na and Rb (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 14. NaCs : (left Fig. ) Potential energy curves of NaCs as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 NaCs molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
NaCs molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability Na and Cs (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 15. KRb : (left Fig. ) Potential energy curves of KRb as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 KRb molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
KRb molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability K and Rb (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 16. KCs : (left Fig. ) Potential energy curves of KCs as a function of the internuclear distance (left panel). Real part
of the polarizability of a X1Σ+, v = 0 KCs molecule (middle panel) and imaginary part of the polarizability of a X1Σ+, v = 0
KCs molecule (right panel) as a function of the energy of the laser. (Right Fig. ) zoom on the real part of the polarizability
and comparaison with the sum of the atomic polarizability K and Cs (red dashed curve). Purple circle point out the magic
frequencies.
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FIG. 17. Electronic permanent and transition dipole moments from the ground state X1Σ+ of the ten heteronuclear molecules
included in the calculation. For each molecule the permanent dipole moment (blue solid line), and the transition dipole moments
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H. Knöckel, E. Tiemann, and A. Pashov, Phys. Rev. A
80, 062501 (2009).

[57] A. Kruzins, I. Klincare, O. Nikolayeva, M. Tamanis,
R. Ferber, E. A. Pazyuk, and A. V. Stolyarov, Phys.
Rev. A 81, 042509 (2010).

[58] I. Birzniece, O. Nikolayeva, M. Tamanis, and R. Ferber,
J. Chem. Phys. 136, 064304 (2012).

[59] L. Busevica, I. Klincare, O. Nikolayeva, M. Tamanis,
R. Ferber, V. V. Meshkov, E. A. Pazyuk, and A. V.
Stolyarov, J. Chem. Phys. 134, 104307 (2011).

[60] M. Aymar and O. Dulieu, J. Chem. Phys. 122, 204302
(2005).

[61] A. Pashov, O. Docenko, M. Tamanis, R. Ferber,
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