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The efficiency of optical trapping is determined by the atomic dynamic dipole polarizability, whose real
and imaginary parts are associated with the potential energy and photon-scattering rate, respectively. In this
article we develop a formalism to calculate analytically the real and imaginary parts of the scalar, vector, and
tensor polarizabilities of lanthanide atoms. We assume that the sum-over-state formula comprises only transitions
involving electrons in the valence orbitals like 65, 5d, 6 p, and 7s, while transitions involving 4 f core electrons are
neglected. Applying this formalism to the ground level of configuration 4 f96s2, we restrict the sum to transitions
implying the 4 f76s56p configuration, which yields polarizabilities depending on two parameters: an effective
transition energy and an effective transition dipole moment. Then, by introducing configuration-interaction
mixing between 4 f?6s6p and other configurations, we demonstrate that the imaginary part of the scalar, vector,
and tensor polarizabilities is very sensitive to configuration-interaction coefficients, whereas the real part is not.
The magnitude and anisotropy of the photon-scattering rate are thus strongly related to the details of the atomic
electronic structure. Those analytical results agree with our detailed electronic-structure calculations of the energy
levels, Landé g factors, transition probabilities, polarizabilities, and van der Waals C¢ coefficients, previously
performed on erbium and dysprosium and presently performed on holmium. Our results show that, although
the density of states decreases with increasing g, the configuration interaction between 4 f76s6p, 4 f4'5d6s2,
and 4 f77'5426s is surprisingly stronger in erbium (g = 12) than in holmium (g = 11), itself stronger than in

dysprosium (g = 10).

DOI: 10.1103/PhysRevA.95.062508

I. INTRODUCTION

The physics of ultracold gases has evolved rapidly and
is poised to enter a new, promising regime, where complex
atomic and molecular species can be cooled and studied exten-
sively. Lanthanide atoms, with a strong magnetic moment and a
large orbital angular momentum, are extreme examples of such
complex species. In fact, the interest in ultracold lanthanide
atoms is motivated by several topics in current research,
including ultracold collisions and quantum chaos [1-3],
dipolar quantum gases with large magnetic moments and
strong dipole-dipole interactions [4—8], many-body quantum
systems [9,10], exotic quantum phases [11-13] like stable
quantum droplets [14—16], synthetic gauge fields [17,18],
and optical clocks [19-21]. Recent progress in laser cooling
and magneto-optical trapping of high-atomic-number (high-
Z) lanthanides [22,23], including dysprosium (Dy) [24-27],
erbium (Er) [28-30], holmium (Ho) [31], and thulium (Tm)
[32] is paving the way towards these investigations. In addi-
tion, both Bose-Einstein condensates and quantum-degenerate
Fermi gases have been produced in isotopes of Dy [4,33,34]
and Er [35,36].

The ground level of holmium is characterized by the
electronic configuration [Xe]4 f!16s? and electronic angular
momentum J = 15/2. Due to the nuclear spin I = 7/2 of
its only stable (bosonic) isotope 165Ho, holmium is the atom
possessing the largest number of hyperfine sublevels in the
electronic ground level, namely, (2J 4+ 1) x (21 + 1) = 128.
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This rich structure is likely to be exploited in quantum
information [37,38]. Like other lanthanides, the complex
electronic structure of holmium induces a large magnetic
dipole moment (9 1 g),which makes it an interesting candidate
for the investigation of anisotropic interactions between atoms
[39,40]. Recently the holmium single magnetic atom and
holmium molecular nanomagnet were also presented as com-
peting candidates for the realization of quantum bits [41,42].

Many of the applications listed above involve optically
trapped ultracold atoms. The trapping efficiency is determined
by the interaction between the atoms and the electromagnetic
field [43,44]. The microscopic property characterizing the
atomic response is the (complex) dynamic dipole polarizability
(DDP). On the one hand, the field induces a potential energy,
i.e., an ac-Stark shift, in the atoms, which is proportional
to the real part of the DDP. On the other hand, the field
also induces photon scattering, whose rate is proportional to
the imaginary part of the DDP. In ultracold experiments, it
is necessary to characterize the photon-scattering rate, as it
provokes heating of the sample and trap losses [44]. Beyond
trapping itself, the real part of the vector and tensor DDPs
is also necessary to determine the Raman coupling strengths
between different Zeeman sublevels, which was proposed for
the implementation of synthetic gauge fields [17,18]. In our
previous works on Er [45] and Dy [46], we have shown that,
far from resonant frequencies, the ac-Stark shift only weakly
depends on the field polarization and atomic Zeeman sublevel,
despite the absence of spherical symmetry in the 4 f-electron
wave functions. We have revealed the inverse situation for
photon scattering, as the imaginary part of the vector and
tensor DDPs represents significant fractions of the scalar one.
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This opens the possibility of controlling the trap heating and
losses with an appropriate field polarization. However, the
vector-to-scalar and tensor-to-scalar ratios vary strongly from
Dy to Er, which is still unexplained.

Understanding the origin of that difference is a major
motivation of the present work. Moreover, ultracold exper-
iments may require characterization of the optical trapping
of atomic excited levels with energies up to 25 000 cm™!
above ground level. Calculating the DDP of such levels with
the sum-over-state formula requires modeling highly excited
levels, roughly up to 60 000 cm™! above ground level, which is
a hard task for the most complex spectra of lanthanide atoms.
Therefore, in this article, we present a simplified model of the
DDP based on the sum-over-state formula, where we suppose
that the only contributions come from transitions involving
valence electrons like 6s, 6p, 5d, and 7s and where we ignore
transitions involving 4 f core electrons. Assuming that all
the levels of a given configuration have similar energies, we
obtain analytical expressions of the DDPs of an arbitrary level,
depending on a restricted number of effective parameters.
Focusing on the ground level of the configuration [Xe]4 f96s>
(g =10, 11, and 12 for Dy, Ho, and Er, respectively), we
take into account only the excitation from the 6s to the
6p orbital, and not the excitation from the 4 f to the 5d
orbital. We demonstrate that the real part of the DDP is
not influenced by the configuration interaction (CI) between
[Xel4 f96s6p and other configurations like [Xe]4 f9-!15d6s>
and [Xel4 f97'54%6s. Our model also shows that the real
part of the vector and tensor ground-level DDPs vanish. By
contrast, the imaginary part of the DDPs is very sensitive to CI,
in particular, to the weight of the [Xe]4 f9656p configuration
in excited levels. We demonstrate that strong CI mixing tends
to increase the vector and tensor DDPs with respect to the
scalar one. Surprisingly, CI mixing turns out to be larger for
Er than for Ho, and for Ho than for Dy, although the energy
spectrum of Dy is the densest one.

In order to check the validity of those conclusions, we per-
form a full numerical modeling of holmium spectrum, includ-
ing energy levels, transition probabilities, polarizabilities, and
van der Waals C¢ coefficients, complementing our previous
studies on erbium [45] and dysprosium [46]. The DDPs and
C coefficients are calculated using the sum formula involving
transition energies and transition dipole moments extracted
from our computed transition probabilities. Following our
previous work [45—48], those quantities are calculated using a
combination of ab initio and least-squares fitting procedures
provided by the Cowan suite of codes [49] and extended in our
group. Therefore we provide a theoretical interpretation of Ho
even-parity levels, which especially results in the prediction of
the widely unmeasured Land€ g factors. Because the spectrum
of high-Z lanthanide atoms in the ground level is composed of
a few strong transitions emerging from a forest of weak ones,
the sum-over-state formula is appropriate for calculation of
DDPs and Cg coefficients. It offers the possibility of precisely
calculating, with a single set of spectroscopic data, the real
and imaginary parts of the scalar, vector, and tensor DDPs in
a wide range of wavelengths, especially at 1064 nm, widely
used experimentally for trapping purposes.

This article is outlined as follows. We develop our simplified
model for the DDP in Sec. II: we first recall useful formulas

PHYSICAL REVIEW A 95, 062508 (2017)

and, especially, the relationships between scalar, vector, and
tensor DDPs and tensor operators (see Sec. IIA). Then
we calculate the contribution from the levels of a single
configuration (see Sec. IIB) to the real and imaginary parts
of the DDPs, while the two next subsections are devoted
to the influence of CI mixing in the DDPs of ground-level
lanthanide atoms. Section III deals with the full numerical
modeling of the holmium spectrum—energy levels, transition
probabilities, polarizabilities, and van der Waals Cg coeffi-
cients (see Secs. [II A-III D, respectively). Section IV contains
concluding remarks.

II. DYNAMIC DIPOLE POLARIZABILITY:
A SIMPLIFIED MODEL

A. Polarizability and tensor operators

For non—spherically symmetric atoms like lanthanides, the
ac-Stark shift is a linear combination of three terms, depending
on the scalar, vector, and tensor polarizabilities, taken at the
angular frequency w of the oscillating electric field (hereafter
denoted the “frequency”). The magnitude of each term is
a function of the atomic Zeeman sublevel M and of the
electric-field polarization [43]. The scalar oy, (w), vector
yect (), and tensor polarizabilities oqens(w) can be associated
with the coupled polarizabilities o (w), where k = 0, 1, and
2, respectively, are the ranks of the corresponding irreducible
tensor [43,50]. Namely,

ap(w)

Ugeal(w) = —m, (D

_ 2J )
Avect(w) = a1(w) m, )

B 2J(2J —1) 3
Ciens(®) = cx(w) 3(J+DQRJ +DQJ +3) ®

For an atomic level |8J), where J is the electronic-angular-
momentum quantum number and 8 stands for all the other
quantum numbers, we write the complex polarizability o (w)
by applying the sum-over-state formulation of the second-
order time-dependent perturbation theory [51] and assuming
complex energies for the intermediate levels |8”J"),

a(w) =2k + 1 Z(-l)’””

B
1 1 %
x{J ; J,,}|<ﬂ”f”||d||ﬂf>|2

(=Dt

X
E Egy — i _p
By — BJ l 5 w

1
+ — . W
Eﬂn‘/rr—Eﬂ‘[_i%_’_ha)

where Eg; (Egr ;) are the energies of the levels |8J) (187 ")),
(B”J"||d||BJ) is the reduced transition dipole moment be-
tween these two levels, ygr;» is the natural line width of the
intermediate level |8”J"), and the quantity in curly brackets
is a Wigner 6-j symbol [52].
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We consider frequencies far from any atomic resonances, i.e., Egrj» — Eg; £ hiw > hygry» /2, which is relevant for trapping
purposes and which greatly simplifies Eq. (4). We separate the real Re[c;(w)] and imaginary parts Im[oy ()],

Z(Eﬂ//J// — Eﬁj)(S(,l)kJ — ﬁa)(S(,l)k,,I

A1 1k
Re[a(@)] = 2v/2k + 1 —1’“{ } "J"\d|I B , 5
()] = 2V ,321( S W A (LG L L ey oy 5)
|1 1 k " yn
Im[a(@)] = v2k +1) (=D’ { 5 ,H}hy,w|<ﬁf ldig )
o
» [(Egryr — Egy)* + R2@?18 1y 1 — 2hw(Egryr — Egp)S—1y, -1 ©)

[(Epryr — Eps)? = FPa?P

where we have used A + (—=1*B = (4 + B)§_iy,1 + (A — B)§_1y,—1. Plugging Eqgs. (5) and (6) into Egs. (1)-(3) and
introducing the explicit expressions of 6-j symbols (see Ref. [52], p. 302), we get to the real and imaginary parts of the

scalar, vector, and tensor contributions:

2 (Egryr — Eg)|(B"J"1A||BT)|?
Re[tay (@)] = Z 2 pI(B"J"| 2||/3 ) 7
32/ + 1) £7 (B — Epg)? = RPo?
1 Tiygrjo[(Egryr — Egg)? + B2?[(B7J"||d||BJ)|?
T [ty (@)] = : Z yp o [(Epry 87) i Iz(ﬁ22 IdligJ)I 7 )
(2J + 1) B [(Elg//j’/ — Eﬁj) —hw ]
J"J"+D=JJ+1)-2 hol(8"J" ||| BJ)|?
Re[ay, = , 9
[veat(@)] /; TSRy Epr — By — 0 ©)
J'J"+ 1) = JJ +1) =2 Rwyg(Egyr — Eg (BT d] BT

Im[atyec = , 10
(real)] ;J: (J +D@J +1) [(Egryr — Egy)? — F2w?? (10

B3I+ 1) —JJ+ D=9+ 1) +JJ +1)+6 (Egy —E "I\ BI) 2
Refaan(@)] = — Y /U H D= IT A DE 9S4 D SIS D +6 By = Eg B TIIBIE

ot 3(J + DQ2J + 1)(2J +3) (Egrjr — Egp)* — B2w?
[ (@)] Z 3J'J"+ D)= JJ+DP=9J"J"+ D+ JJ +1)+6
o w)| = —
o = 6(J + D2J + 1)(2J +3)
Bivar in[(Egr v — E 2 h22 7 d J2

o e [(Egs ps)” + o ][(B7J"d]|BJ)] . (12)

[(Eﬁ//]// - Eﬁ_])z - h2w2]2

Note that in Egs. (7), (8), and (11) of Ref. [45], the sign of the vector polarizability is not correct; the error has been fixed in

Egs. (9) and (10) above.

B. Effect of a single intermediate configuration

In this subsection, we assume that the intermediate levels
|B”J") appearing in Eq. (4) all belong to the same configu-
ration and that their transition energies Egr;» — Eg; can be
replaced by a single effective one. Moreover, we assume that
the configurations of the |8J) and |8”J") levels differ by
the hopping of only one valence electron; in other words, we
ignore transitions involving the 4 f core electrons. This will
yield analytical expressions useful for estimating o (w) and
understanding the trapping in some relevant levels, like those
belonging to the lowest or the [Xe]4 f16s6p configurations.

Many levels of lanthanide atoms can be interpreted in
the frame of the jj coupling scheme. The electronic core,
containing the 4 f shell, is characterized by its orbital L., spin
S., and total electronic angular momentum J.. The valence
electrons belong, for instance, to the 5d, 6s, or 6p shell.
This group of electrons is characterized by their orbital L,,
spin §,, and total electronic angular momentum J,. Then
J. and J, are coupled to give the total electronic angular
momentum J of the atomic level. In the present study, we
focus on the configurations [Xel4 f9.n1£iny¢, (¢ = 10, 11,

(

and 12 for Dy, Ho, and Er, respectively) with two valence
electrons, including, e.g., 4 f¢ 6s2or4d f96s6p; but our results
can be extended to configurations with three valence electrons
like 4 f77'5d6s? and 4 f97'5d°6s. The full label of the level
is therefore [Xe]4 f9(5F Lo ) €1npla ST Ly 1) (Jey ) s
and its electronic parity is (—1)474%_ In what follows, we
omit the xenon core [Xe] in electronic configurations.

Itis noteworthy that the levels of the 4 f95d6s configuration
are better described in the j K coupling scheme 28t K giJe
is first coupled with L, to give K, which is itself coupled with
S, to give J. In order to calculate the polarizability of such
levels, it is necessary to apply the basis transformation from jj
to j K coupling schemes [49]. However, if those levels appear
in the sum over |8”J"), the jj coupling scheme is sufficient,
as all the levels of the 4 f95d6s configuration are assumed to
have the same energy (see Sec. II B 2).

1. Transition dipole moment in jj coupling

In the electric-dipole (E1) approximation, the transitions
with the strongest dipole moments are those for which one
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valence electron, say n,{», is promoted to an orbital n)¢,
such that £J = ¢, £ 1. The angular momenta of the atom must
also satisfy the selection rules, L) = L, or L, £ 1, S = S,
J) =JyorJ, £ 1,and J” = J or J £ 1, excluding transitions
between couples of angular momenta (0,0), whereas the
quantum numbers of the core are not modified (L] = L.,
S/ = S;,and J/ = J;). Inthe frame of the jj coupling scheme,
we can express the reduced transition dipole moment between
the levels |8J) and |8”J"”) as a function of the monoelectronic
transition dipole moment (MTDM) (n}¢5|#|n2€,) expressed
as the matrix element of the monoelectronic # operator. We
apply the following successive steps [49].

By writing atomic levels as the lists of quantum numbers
|n1€inyly Ly Sy JyJ.J) (and similarly for double-primed quan-
tum numbers), we start working with (J;, Jy, J),

[ n5 €5 LS, J) JeJ " [ dlni€inaba Ly Sy dy Je )|

J. J}z

(2J + 1)(2]” + 1){]// 1 ]//

X |(miny s Ly S, J) | dllni inaba Ly Sy )P, (13)
Then we go one step further, with (L, Sy, Jp),
[{mi&ins 5Ly S, I |dlini €inala Ly S, ) 1
2
=QJ,+DHR2J + l){ijﬂ “Si” ZZ,}
X [(meins s Lylldlny€inpta L) (14)

and with (ny, £1, no, €2, L),

l(niiny €5 L) l|dllng€inals Ly) |
= (1 + 8um8e,e)(L + 8y 8e,e)(2Ly + 1)

// El Lv 2 "ol 2
X (2L)+1) L,, L s dime)?, (15)
2

where the §’s are Kronecker symbols, which bring a factor of
2 for equivalent electrons (n1£1) = (n2£,) or (n1£;) = (n}£5).

J

PHYSICAL REVIEW A 95, 062508 (2017)

Finally,
|(n5 €5 ||d|nyls)|* = e? nzéz n”e”(2£2 +1

" 2
<eg+n(G o §) . 0o

where (:::) is a Wigner 3-j symbol, e is the absolute value of the
. — "ol 4
electronic charge, and e, wyey = Fujegnye, = (n5€517|nals).

2. Real part of the polarizability

We assume that the polarizability o (w) of level |8J) [see
Eq. (4)] involves transitions towards levels |8”J”) belonging
to configurations of the kind 4 f9.n,£,.n5 €. By separating the
contributions of those configurations, we can write

@) = o (),

”
nyt;

a7)

which relies on two main hypotheses: (i) Transitions to
levels of configurations in which one core electron is
excited, e.g., 4fq’1.5d.n151.n222, are excluded, as they
are often significantly weaker. (ii) Configuration interaction
is totally neglected, both between different configurations
of the kind 4f%.n;¢,.n5¢5 and with those of the kind
4f1-1 n"0" niy.n2l,. The effect of CI is addressed in the
next subsection.

The central assumption of this work is that the energy
differences implying the levels of a given configuration can
be replaced with a single effective energy fiwye;:

Eﬁf/]ﬂ — Eﬂj ~ hwn% (18)

The validity of this assumption depends on the frequency w at
which the DDPs are calculated, which should not “fall” into
the levels of the 4 f7.n£,.n}¢; configuration. If we denote
min(Eg~;») and max(E g ;) their lowest and highest energies,
Eq. (18) is not applicable for

min(Egryr) — Eg; S @ S max(Egryr) — Egy, (19)

where @ = tw for Egry» > Egy and Egry» < Egy, te-
spectively. For ground-level Ho, the excluded fre-
quencies, which correspond to the energies of the
4f“(411"5/2).6s6p(1P1”)(15/2,1) manifold, roughly range
from 23 000 to 24 000 cm™!

Consequently, the sum in Eq. (4) is restricted to the quantum numbers L/, ’J;’, and J” allowed by electric-dipole transitions.
(For configurations with at least one s electron, there is obviously only one possible L, value.) Inserting Eq. (17) into Eq. (5),

we can extract the real part:

”on 2(0) " 8 k1 — C()a — ) " 1 1 k
nyt . sty O(— 1)K, 1 (—Dk,—1 Ny
st Aoy oy 5 el ) 4|
ny e} LJry”
x [(ni&ny 5L S, J! T " |d|n1€ynaly Ly Sy Jy Je )| . (20)
Using Eq. (13), we obtain
n’ Wy 1 —wd — "
[ 3 ’(a))] ( 20 0= 1;" (— 1), 1 m Z (— 1)J+J { 1 k//}
hi(w? 1 - w?) LT J J
L. I\
x (2J+1)<2J”+1){JU ! J//} [ in5 €5 LS, ) dllny€inala Ly Sy )| 1)
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To calculate this expression, we note that the quantum number J” only appears in angular terms, so that we use the identity (see
Ref. [52], p. 305)

a b pljec d qlle f r| _Jp q rl|lp q r
XX:(_l)R+X(2X+1){C d X}{e f X}{b a X}_{e a d}{f b c}’ (22)

withR=a+b+c+d+e+ f+ p+q+r,as well as the invariance properties of Wigner 6-j symbols with respect to line
and column permutations. Applying Eq. 22) witha=d =1, b=c=J,e=1J], f =J.,p =k, and g =r = J,, we can get
rid of J” in Eq. (21):

2wprer S—1k 1 — W S_1yk — "
Re[a,’!zez(a))] _ (wnzzzhzwlg‘,l _6:)2)( DF, l)mz(_l)bﬂhﬂﬁuk
ny ey L1y

1 1 k) Jo T /i %
x (27 + 1){J p J}{ T }|<n1z1n;egL;’SvJv ldlimematal S )P (23)
v v v v

At this point, it is the following fact is noteworthy [53]. The definitions of the coupled polarizabilities ax(w) and a:gzg(w),
given, respectively, by Egs. (4) and (17), are such that they can be written as the reduced matrix elements of the operators
& (w) and &2252 (w), which are tensors of rank k. In particular, one can resort to the Wigner-Eckart theorem [52] to calculate
the coupled polarizability of a level |8J M), namely, (8J M |6y (w)|BI M) = (BJ |l6x(@)|BJI) x CJito/~/2J + 1, with C741,,

a Clebsh-Gordan coefficient [and similarly for &Z%(a))]. One can also apply the transformation of tensor operators regarding

angular-momentum basis sets; in this respect, Eq. (23) can be seen as such a transformation,

(n1 126 L, S, Ty T T IRe[@)2 2 (@) ]lln1 61n2la Ly Sy dy J o)

Jo J

J,
— (_ Je+Jy+k+J v
=D @7 ”{J ko J,

where

(nilinala Ly Sy Jy ||R‘°~[5lzzlZz (@)]lIn1€inyts Ly Sy Jy)

z(wn,/eﬂ Sy —a)S(,l)k,,l) Jtar ) 1
i e ) V2EF 1Y (1) L+L{JU

nyey a)2)

L
‘/17 LU

} (n1€1n202 Ly S, J, ”Re[&]r;zlz (@)]lln1€1n2€2 Ly S, 1) (24)

| ¢

J, Jlgl}|(nlzln/z/g/z/L;,SvJ;/”d”nlEanKZLvSvJv)|2- (25)

Returning to our main purpose, we apply Eq. (22) twice more: first, with Eq. (14) to express the sum over J; and, second,
with Eq. (15) to express the sum over L. Doing so, we get to the final expression,

e
Re[(xk (a))] = p PR
nye)

24/2k + 1 o Wpyey -1y, 1 — @ S(—1y,—1

(1 + 8n111282122)

X (14 8, ny80,0)(— D! SFTUTETR QT 4 1)Q2J, + DL, 4+ (26 + 1265 + 1)

« o Lo JJLy S Ty
J k LS k Ly||Ly

which depends on two effective parameters: the transition
frequency w,y¢; and the MTDM —ery, ¢, 705

The rest of Eq. (26) consists of very insightful angular
terms. In particular, the 6-j symbols indicate that, if one of the
quantum numbers J, J,, or L, is equal to 0, then the vector

and tensor polarizabilities, proportional to Re[oz,':?‘zl2 (w)] and

Re[oz,r:iez2 (w)]), respectively, vanish. This is, for instance, the
case for lanthanides at their ground level, which is character-
ized by L, = J, = 0. In our full numerical calculation of the
polarizability [45,46], we have shown that indeed the vector
and tensor contributions are much weaker than the scalar one.
Equation (26) tends to confirm that those weak contributions

come from transitions in which one 4 f electron is excited.

6 L1 1 k(% 1 6\ .o
k ez}{ez 6 eg}(o 0 0) ey (20

(

Such conclusions are also valid for any level belonging to the
lowest configuration 4 £96s2, as shown in our previous articles
(see Ref. [46] and Sec. ITII C here).

3. Imaginary part of the polarizability

For the imaginary part to be relevant, we consider a
metastable level |8J), i.e., whose natural line width yg; is
negligible compared to the photon-scattering rate induced
by the electromagnetic field [44,45]. In practice, this may
concern excited levels of the lowest configuration 4 f96s* or
the levels 4 f4(>5*t1 L., ).6s6p( Py) (J.,2) . 12, which have no
decay channel in the E1 approximation [except for level (6,2)g
of Er] [54].
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As Eq. (6) shows, the imaginary part of the polarizability
involves the natural line width of intermediate levels |8”J"),

Ve = Z Aﬂ,,j” B
ﬁj, EB]<E}5HJH
2 5i(Epryr — Ez )’ 18" ]I BI)I?

3reohtc3 (207 + 1) @D
where Ag. ;. 5j is the transition probability characterizing
the spontaneous emission from level |8”J") to level |BJ).
We focus on the influence of the 8”J” levels belonging
to the configuration 4 f9.n,£,.n5¢}. In addition, we assume
that the latter levels only decay towards levels |3.J) belonging
to the configuration 4 f9.n;€;.n,€,. Therefore the sum in
Eq. (27) runs over the quantum numbers J,J,, and L,. If
we express the squared reduced transition dipole moment as
in Eq. (13), Eq. (27) becomes
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Since J only appears in angular factors, the sum over J reduces
to the orthogonalization relations of 6-j symbols,

- “ 2
N VA A A |
;(ZJ + 1){J// | JU//} = m (29)

Using Egs. (14) and (15) for the transition dipole moment, we
can calculate the sums over J and L in a similar way, and
finally, we get to the expression [see also Eq. (16)]

3 2 2 2
w e "
nyey nvéz nyey E 1 ¢
YL 3meghc? @26+1D) ( 0 0

X (1 —+ 6,”,,26[152)(1 + 6,11,,//8[[5/2/) . (30)

Strikingly, the natural line width of the intermediate levels
does not depend on L/, J), or J”; it is identical for all
the levels of the 4 f7.n£,.n5¢€ configuration. In calculating

?(w)], we can factorize Yrryygr out of the sum over
L' J z and J”, and so steps similar [see Egs. (21)—(26)] to
those for the real part can be applied, which leads to the final

(1 + 8n|t125(i|22) (1 + 8n1n’ SZIZ”)

> » 7 72 Imia” e
”2 2 2 c m
wn g = 2J+1 p ”
VLG 371607ic3 ( ){J L Jj } vs Jos
x|<nlelngszgst,j/||d||n1z1n2ezivsviu>|2. (28)  expression
J
nye OV 2k+ 1 (@ + ©%) Sy — 2000 81y, 1
Im[o;k2 (w )] 5 X 3
3meohc? (2, — @?)
nsy sy

x (= 1)/ He=Stit b4k 1 4 1y2J, + 1)L, +

Jul) e
Ly,||Ly

« Jo Je J|)Ly Sy
J kL) Kk

Therefore, similarly to the real part, the imaginary part of the
polarizability depends on the effective frequency w,;¢; and the
monoelectronic transition dipole moment —er,, ¢, ,7¢; between
the two configurations and on some angular factors.

Again, those angular factors show that, if one of the
quantum numbers J, J,, or L, is equal to 0, then the vector
and tensor polarizabilities are equal to 0. For lanthanide atoms
in the ground level, our simplified model predicts that both the
real and the imaginary parts of the vector and tensor DDPs
vanish [see, respectively, Eqgs. (26) and (31)]. For the real
part, that prediction agrees with our full numerical calculation
[45,46] (see also Sec. IIIC), but for the imaginary part it
does not. To explain this contradiction, we note that the
vector-to-scalar and tensor-to-scalar ratios are significantly
higher for Er than for Dy and Ho. In addition, Er is the
only atom among the three for which we modeled the excited
levels including the configurations 4 f''5d6s2, 4 f154%6s,
and 4 f 2656 p, and so we expect to have a better description of
CI mixing for it. This tends to prove that CI plays an important
role in the imaginary part of the DDPs. That is why, in the next
subsection, we improve our model by taking into account CIs
among excited levels.

C. Effect of configuration interaction

We focus on the polarizability of the ground Ievel
of lanthanides, denoted |8J) = |0J) and characterized by

126, + 1)*205 + 1)

g Lyl 1 k(¢ 1 &\ i4

k 52}{62 %3 5’2’}<0 0 0) ¢ ey GD
[

L,=S8,=0and J = J.. According to Egs. (26) and (31),
there are three excited levels, denoted |1J”) for J" =J
and J £ 1, which contribute to the polarizability; they are
characterized by L = J] = 1. In this section, we consider
that these levels can be mixed by CI to other levels |mJ”)
belonging to other configurations. Therefore the eigenvector
of the excited levels |8”J") can be expanded as

87"y =Y chimI”) (32)

m>1

where |mJ") are henceforth called basis states. Furthermore,
we assume that state |1.J”) is the only one contributing to the
transition dipole moment (0J||d||8”J”). This is exactly valid
for basis states of the 4 f¢~!5d4%6s configuration and approxi-
mately valid for states of the 4 f9~!5d6s? configuration, as the
latter contribute significantly less than states of the 4 f16s6p
configuration.
In this case the squared transition dipole moment reads

12
1)

= 2wl QI+ Drdg,,  (33)

(BT 1d]|0])? [(1J"]1d]0]) |

where, in the second line, we have expressed [(1J”|d||0J )2
using Egs. (13)—(16) and the explicit forms of the 3-j and
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6-j symbols. In Eq. (33) we introduced the weights w;;],; =
m 2

|cf3J,,j| of the basis states |1J”) in levels |8”J”), which satisfy

the normalization conditions

, p
wi, =Y wh) =1 (34)

m>1 B

for each J” separately.
Turning to the polarizability, we find that the real part is

[ 6])(60)]
46 FosopY 2k + 1 wep 81yt — @81y
3h wép — 2
J+J" " 1 1 k )
XY DI D D w
Iz Iz
4€°rg.6,@6p 810 [20 + 1
= 2 ; (35)
h(a)6p — w?) 3

where the sums over 8” and J” are calculated using, respec-
tively, Eq. (34) and (see Ref. [52], p. 305)

XX:(—l)“+b+X(2X+1){Z ‘g ;}

= 8,00/ (2a + D(2b + 1), (36)

witha =1,b=J,c =k, and X = J”. Equation (35) shows
that the vector and tensor polarizabilities vanish for lanthanides
in the ground level (or in any level of the electronic configu-
ration 4 f96s%), whatever the CI mixing in the excited levels;
the only contribution is thus the scalar one, Re[ogcq(w)] =
432"6236,,606,: / SE(wép — w?). In this respect the inclusion of CI
in our model does not modify the conclusions in the single-
configuration case [see Eq. (26)]. This confirms that, as shown
in our full numerical calculations in Sec. III, the vector and
tensor contributions arise from the 4 f-5d transitions between
the configurations 4 f76s> and 4 f9~'5d6s%, depending on
rarsq. By contrast, in Eq. (35), even if levels |8”J”) may
contain some 4 f97'5d6s? character, the contribution of the
4f96s%-4 f16s6p transition is the only one considered in
[(B”J"||1d]|0J)|* [see Eq. (33)].

In order to calculate the imaginary part of the polarizability,
we recall that the excited level |1J”) can only decay toward

the ground level |0J). Therefore Im[af” (w)] reads

m[a:p(w)] _ (Cl)gp + 0)2) 8(_;)&1 — 2Q)Cl)6p 8(_1)k’_1

2
(wép - w2)
w6[’ v 2k + Z(_1)1+J” 1 1 k
3megh’c? JoJ

VL

1

> (8" J" 1[0 [*
"

27"+ 1

X

X

((,()gp + wz) 8(,1)k,1 — 26()6()6], (S(,])kﬁ,]

(wép - w2)2
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8 4a)gpré36p\/2k +1

27megh’c3

Z(-l)”’”(zﬂ +1)

Jr

11 &k ,
X{J J J”}Z(/(SJ{)’ @37

"

where we have taken the square of Eq. (33).

Equation (37) is a key result of this work. Contrary to
the real part given by Eq. (35), the sum over 8” cannot be
simplified in the imaginary part of the polarizability, as it
involves the squared weights of the |1J”) basis vectors in
the excited levels |8”J"”). In this respect, we can say that the
imaginary part of the polarizability is more sensitive to the
details of the atomic structure than the real part.

In particular, taking the square of Eq. (34), we find that

" (J”) ", (")
Z(wﬁ, ) = Wy -2 Z W W grm

2

ﬂ// /3/ ﬁ]’/ﬂg
By < By
_ UGN
=1-2 Z W W, < 1, (38)
BBy
Pl

to avoid double-
counting. The inequality comes from the fact that w(ﬁj,ni =
0,Vm, B”,J". The limit for which Eq. (38) is unity corre-
sponds to the case where one weight is unity and all the others
are 0, i.e., there is no CI. In this particular case, the sums over
B” and J” in Eq. (37) can be simplified,

where B < By means Eg/;» < Egyyr,

4o (07, + 0?)e*ree S0 [27 + 1
Im[a,fp(a))] =— 6p( bp ) 656}72 K0 + , (39)
Imeohic(wg, — w?) 3
and  so  Imell(w)]=4w}, (@0}, +oP)etrd /2Tn e’
(a)ép — w%)?, which can also be obtained from Eq. (31). By

comparing Eqgs. (37)—-(39), we find that CI has two effects:

(i) It tends to reduce the scalar contribution Im[agp (w)].
Indeed in the limit of strong CI mixing, when N basis states
|mJ") (m = 1to N) are equally spread over N excited levels

|B”J"), which means that w/(sj,nz = 1/N forall J”, then Eq. (38)
is 1/N, and Eq. (39) is divided by N.
(i) It tends to enhance the vector Im[a?” (w)] and tensor

Im[agp (w)] contributions, because for arbitrary weights (dif-
ferent from 0, 1, and 1/N), the three J” terms in Eq. (37) do

not exactly compensate each other.

The weights wfgw)l associated with the eigenvectors of

excited energy levels are therefore crucial for calculation of
the imaginary part of the polarizability. In our previous work
on erbium [45], we described the odd-parity levels with the

configurations 4 f12656p, 4 f115d6s2, and 4 f!15d4%6s, which

is likely to yield a reliable calculation of the weights wfgj,,:/l,

which play an important part in the polarizability. By contrast,
we did not consider the configurations 4 f9-154%6s for Dy
(g = 10) and Ho (g = 11), because of the large number
of levels belonging to these configurations. Since some of
the weights wf(, nz are not correct, our computed imaginary

polarizabilities must be taken with caution. The relatively low
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ratio of the vector and tensor contributions with respect to
the scalar one, observed in Ref. [46] and Sec. III C, may
be due to the lack of CI in our eigenvectors. In the next
section, we present a method to estimate the weights wl(sj/{
from experimental values of the transition probabilities.

D. Estimate of configuration-interaction mixing

We consider transition probabilities Agr;» jo, character-
izing the spontaneous emissions from level |8”J") towards
the ground level |0J), which are given by Eq. (27) with
|,3f) = |0J). Assuming that the transition is due to the
coupling between basis states |1J”) and |0J), we obtain that
the squared transition dipole moment is proportional to w /3{,/:;
[see Eq. (33)], and so the Einstein coefficient is proportional
to Agryn oy & wfgj/i x (Egrjr — Eo)). Supposing all transi-
tion energies approximately equal, i.e., Egrj» — Eo; & liwg),
yields that the sum of the transition probabilities for a given J
and J” is a J- and J”-independent constant,

Z Apryrog X

B

2.2
2a)6pe Tos.6p

40
3neohc3 (40)

Therefore, knowing the transition energies and transition

probabilities, we can express the weight w/(gj i as

Aﬂ”]”.OJ
an _ (Eﬂ//]//—EUJ)"

Wl = 5 Agrgs

Zﬂ (E,s*i”—EOJP
Eyy) and (Eg+j» — Epy) have been
explicitly written, in order to get a better estimate of w;{i,
even though they could be approximated by fiwe),.

In practice, Lawler and Den Artog’s group performed
extensive measurements of transition probabilities, especially
in dysprosium [55], holmium [56], erbium [57], and thulium
[58]. The spectrum of the ground level is composed of a forest
of weak transitions from which emerge a few strong transitions
with similar transition energies. The number of strong lines
(say with Agr o5 > 107 s™!)increases with increasing atomic
number. When calculating the sum of Einstein coefficients
for separated J” [see Eq. (40)], one usually finds 2.1 to
2.4 x 10% s7'. Among these transitions, some are certainly
due not to 6s-6p but, rather, to 4 f-5d excitation; however,
they are so weak that they will not affect the calculation of
wg{, ) with Eq. (41).

In the case of erbium, we modeled the erbium spectrum in-
cluding configurations 4 £ 12656 p, 4 f115d6s%, and 4 f'15d%6s
[45], while we did not include either 4 f?5d26s for dysprosium
[46] or 4 £195426s for holmium (see Sec. III). So for erbium,
the “experimental” weights, given by Eq. (41), can be
compared with the “theoretical” ones, which we can extract
from our modeling of the spectrum [45]. The results are
listed in Table I for the odd-parity levels giving the strongest
transitions (with probabilities higher than 107 s~!) towards
the ground level 4 f 2652 * Hg. In Table I we also compare the
energies and transition probabilities. As discussed in Ref. [45],
the agreementfor the energy is very good. As for the transition
probabilities, the overall agreement is satisfactory, even if the
theoretical transition probabilities and weights are globally

(41)

where the terms (Egrj» —
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TABLE I. Comparison of theoretical and experimental energies
of selected excited odd-parity levels |8”J”) of erbium, of transition
probabilities characterizing the spontaneous emission from levels
|8”J") to the ground level |0J) = |4 f'265% % H), and of the weight
of the component |1J") = |4f2C Hy).656p(' P?)(6,1)},) in the
eigenvector associated with level |8”J") [see Eq. (32)]. Theoretical
quantities, in the columns “Theor.,” come from our previous work
[45], whereas experimental ones, in the columns “Expt.,” come
from Ref. [57]. Experimental weights wfej/”i are given by Eq. (41).
The selected excited levels are such that the experimental transition
probability towards the ground level is higher than 107 s~!. Values in
parentheses (n) indicate x 10".

Egyr (em™) Agryror (571 w} (%)
Expt. Theor. J’ Expt. Theor. Expt. Theor.
24083 24056 5 1.02(8)  9.34(7) 48 46
24457 24492 6 3.26(7) 2.16(7) 16 11
24943 24946 7 1.85(8)  2.08(8) 76 79
25159 25168 7 4.03(7) 1.27(7) 16 5
25163 25171 5 3.76(7)  4.60(7) 15 16
25393 25419 6 3.19(7) 1.86(7) 14 7
25598 25570 7 1.51(7)  5.50(6) 6 2
25682 25598 5 6.3(7) 4.28(7) 24 13
25880 26071 6 1.22(8)  9.68(7) 49 31
26237 26178 6 290(7)  8.43(7) 11 26

lower than the experimental ones. For a given level |8”J"),
the discrepancies in Ag» » o; and for wl(gj,{ are actually similar.
This confirms our assumption that the strongest transitions are
due to the |[1J”) — |0J) components. This also means that,
taking the experimental transition probabilities as benchmarks,
we may improve our theoretical values by improving the
quality of our eigenvectors.

To illustrate the validity of our weight calculations, in
Table II, we list the real part of the scalar contribution,
as well as the imaginary part of the scalar, vector, and
tensor contributions of the dynamic dipole polarizability
at the frequency corresponding to a 1064-nm wavelength,
for erbium, holmium, and dysprosium. The calculations are
carried out using three methods. (i) The transition energies and
squares of the transition dipole moments are taken from our
full numerical modeling of the atomic spectra. In particular,
the squares of the transition dipole moments are extracted from
the Einstein coefficients, by reversing Eq. (27):

(B 1o = ORI+ Dy,
(Egrgr — Eoy)?

This corresponds to the columns entitled “Theor.” in Table II.
(ii) The transition energies and the squares of the transition
dipole moments come from experimental measurements of
the transition probabilities using Eq. (42); this corresponds to
the columns entitled “Expt.” in Table II. (iii) Polarizabilities
are calculated using Egs. (20) and (21); to that end, the weights
wl(gj/{ are calculated by applying Eq. (41) with experimental
data, and the quantities rs46, come from our fitting procedure
of Einstein coefficients, namely, 766, = 3.551 a.u. for Er [45],
3.648 a.u. for Dy [46], and 3.630 a.u. for Ho (see Sec. III; for

dipole moments, 1 a.u. = eay, with ay the Bohr radius). This

(42)
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TABLE II. Dynamic dipole polarizabilities of dysprosium, holmium, and erbium in their ground level, at the commonly used 1064-nm
trapping wavelength. Namely, we give the real part of the scalar contribution (in atomic units; 1a.u. = e%a /47 €), as well as the imaginary
part of the scalar, vector, and tensor contributions (in 1077 a.u.). The last two lines list the vector-to-scalar and tensor-to-scalar ratios of the
imaginary part. The columns “Theor.” and “Expt.” list the theoretical (see Refs. [45] and [46] and Sec. III C here) and experimental [55-57]
transition energies and transition probabilities respectively. The columns “Eq. (41)” correspond to the application of Egs. (20), (21), and (41).

Dy (Cly) Ho (*1{; ) Er (* Hy)
Part Contribution Theor. Expt. Eq. (41) Theor. Expt. Eq. (41) Theor. Expt. Eq. (41)
Real Scalar 193 177 188 187 160 186 164 155 170
Imaginary Scalar 49.1 40.3 48.8 39.6 34.7 46.6 234 22.0 27.1
Vector 11.3 12.9 15.2 19.1 17.0 17.1 17.4 11.2 12.4
Tensor 5.8 -9.0 —11.3 4.9 5.5 9.2 —-6.9 5.4 -5.0
Vector/
scalar ratio 0.230 0.320 0.311 0.482 0.490 0.367 0.744 0.509 0.458
Tensor/
scalar ratio 0.118 —-0.223 —0.244 0.124 0.159 0.197 —0.295 —0.245 —0.185

corresponds to the columns entitled “Eq. (41)” in Table II. The
real parts of the vector and tensor contributions are pointless
here, as they vanish with method (iii).

First, we see that the real part of the scalar polarizability is
smaller with the Expt. method. This is particularly striking in
the case of holmium. In comparison with the Theor. method,
this is due to the smaller number of experimental transitions
than of theoretical ones. In contrast, the number of transitions
in the Expt. and Eq. (41) methods is the same; however, we
saw in Table I that the experimental weights are overestimated.
Indeed there are certainly transitions with upper levels having
a small [1J”) character which have not been detected. This
results in the underestimation of the denominator of Eq. (41)

and, so, the overestimation of w;,J/I Similar discrepancies
are visible for the imaginary part of the scalar polarizability.
Therefore it is appropriate to analyze the vector-to-scalar and
tensor-to-scalar ratio contributions, in order to determine the
anisotropy of the photon-scattering rate. The overall agreement
of those ratios is good, and the two following trends are visible
with the three methods: (i) In absolute value, the vector-to-
scalar ratios are higher than the tensor-to-scalar ones; and
(ii) the ratios are higher for erbium than for holmium, and a
fortiori for dysprosium. Beyond these general features, it is
worthwhile to examine each atom separately.

Erbium is the atom for which the anisotropy is the most
pronounced, for both the vector and the tensor contributions,
even if the ratios vary significantly from one method to the
other. From the Eq. (41) method to the Theor. method, the
ratios Im(ayecr)/Im(otsear) and Im(ovens)/Im(egcq) range from
0.458 and —0.185 to 0.744 and —0.295, respectively.

In the case of dysprosium, the agreement between the
Expt. and the Eq. (41) methods is very good. The ratios
Im(ctyect) /Im(orgcq1) are equal to 0.320 and 0.311, and the ratios
Im(ctens)/Im(egear) to —0.223 and —0.244, respectively. With
the Theor. method, the ratios are lower, (Im(ctyect)/Im(ctgea) =
0.230 and Im(otens)/Im(ageq) = 0.118), especially because
this method does not allow for describing the CI mixing in
the levels at 23 832 and 23878 cm ™!, and so it underestimates
Eq. (38).

Finally, the case of holmium is hard to analyze, since no
particular trend comes out of the calculations. The real part of
the scalar polarizability is 27 a.u. smaller in the Expt. method

than in the two others. Moreover, regarding the experimental
transitions towards the ground level, none of them imply an
upper level with an energy above 25 571 cm ™. These two facts
suggest the possibility that some strong transitions have not
been detected, especially with upper levels J” = 13/2. For in-
stance, in our full numerical modeling of the Ho spectrum (see
Sec. III B) we predict two such transitions, with unobserved
upper levels: one with Eth'a13/2 =28014cm™!, wg,,%/lz) = 4%,
AL 13007 =261 x 107s™" and the other with E), 5, =

30942em™", wy P = 7%, A, 1550, = 1.89 x 10757,

III. MODELING OF THE HOLMIUM SPECTRUM

In order to calculate the different components of the
polarizabilities, and also the various Cg coefficients, using
the sum-over-state formulas, one needs an extensive set
of transition energies and transition dipole moments. This
section is devoted to the full numerical calculations of those
quantities, in the case of holmium in its ground 4 I P and first

excited level *I, /2 Indeed the transition between those two
levels, allowed in the electric-quadrupole and magnetic-dipole
approximations, was suggested as a candidate for optical
clocks [19,21], as these levels are expected to possess very
similar polarizabilities.

As the principle of our calculations [47-49] is identical
to that in our previous work on dysprosium [46], we only
highlight in this section the particularities of holmium. One
of them is the rarity of experimental Landé g factors, which
gives to our work a predictive character in this respect. The
experimental energies are published in the NIST database [54],
constructed from the critical compilation of Martin et al. [59]
and from Ref. [60], which is more recent than the compilation.
For odd-parity levels, we also use unpublished work from our
group [61]. Note that '*Ho, which is bosonic, possesses a
nuclear spin I = 7/2, but the resulting hyperfine structure is
not considered in the present article.

A. Energy levels

The ground level of holmium is of odd parity, with
the configuration 4 1652 and total electronic angular mo-
mentum J = 15/2. Table III presents a comparison of our
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TABLE III. Comparison of energies E through the quantity
AE = E®P' — E™ and Landé g factors g; of Ho I odd-parity levels
of the lowest electronic configuration [Xe]4 f''6s2. The superscript
“expt” indicates experimental values, which are taken from [54]
and [60]. The superscript “th” indicates theoretical values from the
parametric study in Ref. [61].

E& AE % leading
Term J (cm™) (cm™h) g™ gh term
4 15/2 0 30 1.195 1.197 97
4ro 13/2  5419.70 7 — 1.107 99
dre 11/2  8605.16 —6 1.012  0.985 85
4re 9/2 10695.75 -5 0.866 0.864 60
dpe 9/2 13094.42 46 - 1.174 65
4Ge 11/2  22593.53 —90 - 1.193 44

theoretical energies and Landé g factors versus their experi-
mental counterparts. The theoretical values are obtained in a
calculation including the configurations 4 f116s2, 4 f!15d6s,
and 4 f 96526 p [61]. The levels of the 4 f!!6s? configuration
can be labeled in the LS coupling scheme; for example, the
orbital L = 6 and spin S = 3/2 angular momenta of the
ground level are good quantum numbers up to 97%. By
contrast, the level at 22 593.53 cm™ is of *G and > H characters
up to 44% and 36%, respectively

In the even parity, the electronic configurations included in
our model are the two lowest ones, 4 f16s6p and 4 £ 1054652
[62], which are connected to the ground-state configuration
4 f116s2 by electric-dipole transitions. Therefore, in our
model, we neglect the configuration interaction with other
even-parity configurations, especially 4 f'°54%6s, which
contains a large number of levels. By contrast, the first
parametric study of even-parity levels was performed with
configurations with a limited number of LS terms of the
4119 and 4! cores, including a configuration interaction
with 4 £1954%6s; but such a truncation strongly damaged
the quality of the Hamiltonian eigenvectors [63]. In the
present study, 92 even-parity levels were fitted to their known
experimental counterparts [54,60], using 21 free energetic
parameters, giving a 45-cm~! standard deviation.

A comparison between theoretical and experimental levels
is reported in Table VIII, while the fitted parameters are
listed in Table IX (see the Appendix). Due to the lack
of experimental g-factor data for most levels, we just list
the theoretical results. All energies are given relative to the

experimental 4 f 1165241 1 P ground level. Despite the absence

of the 4 £1°54%6s configuration, whose lowest classified level
is at 20 167.17 cm ™', the agreement is very satisfactory.

B. Transition probabilities

Now that the energy parameters have been adjusted, the
eigenvalues and eigenvectors of the Hamiltonian operator are
fixed. The transition probabilities also depend on the MTDMs
—ery ¢, Whose adjustment using least-squares fitting be-
tween theoretical and experimental transition probabilities is
the goal of this subsection.

Due to the configurations that we consider, two MTDMs
come into play, reep, and rspsq, corresponding, respec-
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tively, to the couples of configurations 4 f''6s2-4 f116s56p
and 4 f116s%-4 f195465%. The least-squares fitting procedure
between theoretical and experimental Einstein coefficients
is performed on the scaling factors (SFs) fi = resep/ rglg‘;

and f> =r4r5q/ rffslfi, rather than the MTDMs themselves.
This allows for more direct comparisons with the results
for dysprosium and erbium. Note that r},"%,,, stands for the
ab initio values calculated with the Hartree-Fock method
including relativistic corrections (HFR).

As references, we take the measured transition probabilities
in Ref. [56]. We retain the transitions involving the ground and
first excited levels and upper levels with energies lower than
30 000 cm~!. Indeed the levels above 30 000 cm™! are hard
to classify unambiguously in configurations 4 f'9546s2 and
4 f11656p. In addition, in the list in Ref. [56], we can see some
strong transitions whose upper level does not belong to the
4 f6s6p or 4 £19546s? configuration (according to the NIST
database [54]), e.g., E;’f/'}t,, =24263.88cm™!, J” = 17/2, but
is very close in energy to a 4 f!''6s6p level with the same

J", e.g., E;Xl}t =24360.81 cm~!. In contrast there is only

one close theoretical level predicted, E;}h,, g =243541cm™ L.

Similarly to the case for dysprosium, we can assume that the
eigenvector of that theoretical level contains some components
of the |1J”) state which is shared by the two “real” levels. In
these particular cases, we compare our theoretical Einstein co-
efficient with the sum of the experimental ones. In Table IV, the
two transitions labeled “mixed” correspond to that situation.
Due to strong differences between experimental and theo-
retical Einstein coefficients, we excluded six transitions (one
with a high ratio, A%, ;,/A%", 4, and another four with

TABLE IV. Transitions excluded from the least-squares fitting
procedure. The labels |8”J”) and | 8.J ) correspond to upper and lower
levels, respectively. The superscript “expt” indicates experimental
values, which are taken from [56]. The transition wave number
opryrp; = (Egryr — Eg)/2mhic is in the vacuum. Values in paren-
theses (n) indicate x10". A blank in the column “removal reason”
indicates that the upper level belongs neither to the 4 £'°6s6 p nor to
the 4 f95d6s” configuration. r., ratio.

E ;;/(/p;” E;X]pl U;ffgt,/_ 87 A;)f,p},,’ p;  Removal
(ecm™) J”  (em™YH) J (cm™) (s reason
20258 6.5 0 7.5 20258 3.40(5)

24014 6.5 0 7.5 24014 1.06(8) La