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Abstract. The efficiency of optical trapping of ultracold atoms depend on the atomic
dynamic dipole polarizability governing the atom-field interaction. In this article, we
have calculated the real and imaginary parts of the dynamic dipole polarizability of
dysprosium in the ground and first excited level. Due to the high electronic angular
momentum of those two states, the polarizabilities possess scalar, vector and tensor
contributions that we have computed, on a wide range of trapping wavelengths, using
the sum-over-state formula. Using the same formalism, we have also calculated the
Cg coefficients characterizing the van der Waals interaction between two dysprosium
atoms in the two lowest levels. We have computed the energies of excited states and
the transition probabilities appearing in the sums, using a combination of ab initio
and least-square-fitting techniques provided by the Cowan codes and extended in our
group. Regarding the real part of the polarizability, for field frequencies far from
atomic resonances, the vector and tensor contributions are two-order-of-magnitude
smaller than the scalar contribution, whereas for the imaginary part, the vector and
tensor contributions represent a noticeable fraction of the scalar contribution. Finally,
our anisotropic Cg coefficients are much smaller than those published in the literature.

1. Introduction

In the field of ultracold gases, i.e. with temperatures below 1 milli-kelvin, those
containing particles carrying a dipole moment, so-called dipolar gases, have attracted
tremendous interest during the last years, due to their possibility of exploring strongly
correlated matter, with the presence of the long-range, anisotropic dipole-dipole
interaction [1, 2]. In contrast with the short-range and isotropic van der Waals
interaction, often approximated by contact potentials [3], the dipole-dipole interaction
drastically modifies the properties of ultracold gases [4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15].
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Dipolar gases are also promising candidate systems for quantum information and
quantum simulation [16, 17, 18, 19].

Dipolar gases can contain different kinds of particles, whose properties can
be tailored using electromagnetic fields. Firstly, electric dipole moments can be
induced with external electric fields, either in highly-excited, so-called Rydberg atoms
20, 21, 22, 23, 24, 25, 26, 27, 28, 29|, or in heteronuclear alkali-metal diatomic molecules
[30, 31, 32, 33, 34]. Some of them have been recently produced in their lowest
rovibrational and even hyperfine level, i.e. LiCs [35], KRb [36, 37, 38], RbCs [39, 40],
NaK [41] and NaRb [42]. Open-shell polar molecules such as OH [43], SrF [44], YO
[45], RbSr [46], which also possess a (weak) magnetic dipole moment, offer even better
possibilities of control. Alternatively, ultracold gases of strong magnetic dipoles have
also been produced with chromium [47, 48], high-atomic-number (high-Z) lanthanides
[49, 50], including dysprosium (Dy) [51, 52, 53|, erbium [54, 55, 56], holmium [57]
and thulium [58]. The formation of erbium molecules Ery have also been reported
[59]. Beyond the scope of dipolar gases, the specific structure of optical transitions
in lanthanide atoms could be used to efficiently emulate synthetic gauge fields [60], as
recently observed in Ref. [61].

Among neutral atoms, dysprosium presents the strongest magnetic dipole moment,
equal to 10 Bohr magnetons (up). This is due to the four unpaired f electrons in the
ground-level configuration [Xe]4f1°6s%. Moreover, the excited electronic configurations
which are close in energy to the lowest one [62], result in a rich energy spectrum,
which is not yet completely understood [63, 64, 65]. Dysprosium also presents the
particularity of having a pair of quasi-degenerate opposite-parity energy levels with the
same electronic angular momentum J = 10, which were used for precision measurements
(66, 67, 68, 69]. Because the ground and first-excited levels of dysprosium belong to
the same configuration and the same LS manifold, 4.e. °I, they possess very similar
electronic properties, which make them suitable candidates for optical-clock transitions
[70, 71]. Finally, along with erbium [72, 73], dysprosium presents several bosonic and
fermionic stable isotopes which allowed for the production of Bose-Einstein condensates
and degenerate Fermi gases [74, 75, 76].

In this context, it is crucial to deeply understand and control how the atoms
are trapped by electromagnetic fields [77]. The efficiency of the trapping process is
determined by the atom-field interaction, and the corresponding ac-Stark shift, which
depends on the (complex) dynamic dipole polarizability of the atoms. The real part
of the polarizability yields the potential energy exerted on the atomic center of mass,
while the imaginary part yields the photon-scattering rate due to spontaneous emission.
Because the wave functions associated with the unpaired 4f electrons are anisotropic,
the ac-Stark shift comprises scalar, vector and tensor contributions, and so it depends
on the atomic Zeeman sublevel M; and the polarization of the electromagnetic field
(78, 79]. In this respect, the vector and tensor contributions also determine the
strength of the Raman coupling between atomic Zeeman sublevels [60]. In literature,
there exist a few theoretical values of the real part of the scalar and tensor static
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polarizabilities [80, 81, 82, 83], which are in good agreement with experimental values
(84, 85]. By contrast the dynamic polarizability measured in a 1064-nm optical trap [74]
is significantly smaller than the theoretical one [86].

In this article, we calculate the real and imaginary parts of the dynamic dipole
polarizability for the ground and first excited level of dysprosium, on a wide range of
frequencies of the trapping field. We give the scalar, vector and tensor contributions
to the polarizability, and the useful formulas to deduce the potential energy and
photon-scattering rates in the most frequently used field polarizations o and 7. We
also calculate the various Cj coefficients characterizing the van der Waals dispersion
interaction between two dysprosium atoms. To get all this information, we take
advantage of the flexibility of the sum-over-state formula for polarizability, inherent to
second-order perturbation theory. This formula is particularly well adapted to high-Z
lanthanide atoms, whose spectrum consists of a few strong transitions in a forest of weak
transitions [87]. In addition to the polarizability, we also give precious information on the
spectroscopy of dysprosium, whose transition energies and transition dipole moments are
computed using a combination of ab initio and least-square fitting techniques provided
by the Cowan codes [87, 88]. Moreover, in order to adjust experimental and theoretical
transition probabilities, we employ the systematic technique that we set up in our
previous works on Ert [89].

The article is outlined as follows. Section 2 presents in details the results of
our electronic-structure calculations, including energy levels (subsections 2.1 and 2.2)
and transition probabilities (subsection 2.3). Then the results for the dynamic dipole
polarizabilities and Cg coefficients for the two lowest levels are reported in Section 3.
Section 4 contains concluding remarks.

2. Emnergy levels and transition probabilities

Our electronic-structure calculations were carried out with the Racah-Slater method
implemented in the Cowan codes [87], and which were described in our previous papers
[79, 88, 89, 90]. Briefly they consist of three steps:

(i) Energies and transition probabilities are computed using a Hartree-Fock method
including relativistic corrections and combined with configuration interaction
(HFR+CI). For each parity and each value of the total electronic angular
momentum .J, the the Hamiltonian operator is a combination of angular terms,
calculated using Racah algebra, and radial integrals, for example Coulombic or
spin-orbit integrals. In addition, transition probabilities depend on monoelectronic
transition dipole moments (MTDMs) for each pair of configurations.

(ii)) The radial integrals are treated as adjustable parameters, in order to fit the
theoretical energies to the experimental ones by a least-square procedure.

(iii) Similarly, the MTDMs are treated as adjustable parameters, in order to fit the
theoretical transition probabilities to the experimental ones [91, 92].
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For neutral dysprosium (Dy I), the experimental energies are published in the NIST
database [63], constructed from the critical compilation of Martin et. al. [93], and from
Ref. [64] which is posterior to the compilation. For even-parity levels, we also use the
yet unpublished work [65]. Note that for bosonic isotopes, the nuclear spin is I = 0,
and there is no hyperfine structure. By contrast, the fermionic isotopes 1%*Dy and 63Dy
possess a nuclear spin I = 5/2; but the resulting hyperfine structure is not considered
in the article.

2.1. Energy levels of even parity

The ground level of dysprosium is of even parity with the configuration [Xe]4f1°6s%,
and total electronic angular momentum J = 8. (In what follows, we will omit the
confiration of the xenon core [Xe].) The orbital L = 6 and spin S = 2 angular momenta
are also good quantum numbers up to 94 %. Table 1 presents a comparison between
our theoretical energies and Landé g-factors with their experimental counterparts. All
levels can be labeled in the LS coupling scheme. The levels at F*? = 13170.38 and
15636.87 cm™!, not present in the NIST database [63], come from the unpublished
list of Ref. [65]. In that work, a careful modeling of the even-parity levels including
[Xe]4 19652, [Xe]41°5d6s and [Xe]4f26s%6p configurations establishes that the two °F
of Table 1 necessarily belong the [Xe|4f'%6s* configuration. The agreement between
theory and experiment is very good, except for the Landé factors of the two highest
levels, which indicates that the latter are perturbed by excited configurations. The set
of least-square fitted parameters used in this calculation is given in the appendix (see
Table Al).

2.2. Energy levels of odd parity

In the odd parity, the electronic configurations included in our model are the two
lowest ones 4f'°6s6p and 4f°5d6s* [62], which are connected to the ground-state
configuration 4f°6s* by electric dipole (E1) transitions. Therefore, in our model, we
neglect the configuration interaction with other odd-parity configurations, especially
4f95d%6s, as it results in numerous levels, making the least-square calculation hard to
converge. By contrast, the first parametric study of odd-parity levels was performed with
configurations with a limited number of LS terms of the 4 f" core, including configuration
interaction with 4f°5d%6s; but such a truncation strongly damaged the quality of the
Hamiltonian eigenvectors [95]. In the present study, 126 odd-parity levels were fitted
to their known experimental counterparts [63, 64], using 20 free energetic parameters,
giving a 44-cm~! standard deviation.

A comparison between theoretical and experimental levels is displayed in Table 2,
while the fitted parameters are given in Table A2 of the appendix. All energies are
given relative to the 4f196s% 53 ground level. Despite the absence of the 4f%5d%6s
configuration, whose lowest classified levels is at 18472.71 cm™?, the agreement is very
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Table 1. Comparison of energies E through the quantity AE = EP — E*" and
Landé g-factors gy of Dy I even-parity levels of the lowest electronic configuration
[Xe]4f1%6s2. The superscript “exp” stands for experimental values which are taken
from [63, 64]. The superscript “th” stands for the theoretical values from the present
parametric calculations (see fitted parameters in Table A1). The “2” in the term 3K?2
is used to distinguish the 3K terms coming from different parent terms of the 4f°
core (and similarly for 3 H4) [94]. Therefore those two notations do not have the same
meaning as the usual spectroscopic labels *Hy and 3K,. For those two levels, the
numbers between parentheses in the last column, give the total percentage of 3K and
3H characters respectively.

Term J E®P (em™) AFE (em™)  ¢7% g % leading term
°T 8 0 -13 1.242 1243 94
°T 7 4143.23 13 1.173 1.175 98
°T 6 7050.61 7 1.072 1.073 96
°T 5 9211.58 0.4 0911 0911 92
°T 4 10925.25 -9 0.618 0.618 91
F 5 13170.38 7 1.358 1.366 &4
°F 4 15636.87 -6 1.34 1.339 93
K2 8 19019.15 3 114 1.107 58 (75)
SH4 6 24062.88 -2 1.217 1.176 41 (85)

satisfactory. On the contrary, a poor agreement, especially on Landé factors, reflects
local perturbations by the 4 f?5d%65s configuration.

Table 2: Same as Table 1 for Dy I odd-parity levels. The
theoretical values E'™® the Landé g-factors gt and the
percentage of configurations and LS terms are derived
by means of the Cowan code called “RCG” with the
parameter set reported in Table A2. In the configuration
notations, A stands for 4f1°, B for 4f°, ds? for 5d6s?,
sp for 6s6p. The lower-case letters or Arabic numbers
appearing in the seventh column correspond to different
possible parent terms [87]. The terms in parentheses are
associated with the core configurations A or B.

Eexp Et AE . o Leading % leading

(em™!)  (em™!) (em™!) L 9L configuration LS term
J =2

28407.01 28407.9 -1 0.06 0.029 A—sp 91 A—sp(°I)'H
J=3

15254.94  15285.5 -31 0.77 0.777 B — ds* 73 B—ds*(°H)"H

23824.68 23753.0 72 0.68 0.665 B — ds? 61 B—ds*(°H)°H

24668.59 24642.8 26 1.29 1.227 B — ds? 22 B—ds* (°H)’F
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Table 2: Odd parity levels of Dy I (continued)

Eexp Eth AE . o Leading % leading
(em™)  (em™!)  (em™!) 9L 9L configuration LS term
26607.16  26647.2 -40  0.58 0464 A—sp 55 A —sp(PI)'I
26886.01 26952.9 -67 1.02 1.075 B —ds? 33 B—ds* (°F)°G
27321.26 27350.0 -29  0.58 0.551 A—sp 31A—sp(°I)"H
27643.57 27617.4 26 1.17 0.726 B — ds* 61 B—ds*(°F)°H
28694.51 28720.7 -26 0.5 0.551 A—sp 27 A—sp(°I)’Ha
J=4
13952.00 13984.0 -32 1.082 1.072 B — ds? 67 B—ds*("H)"H
16069.98 15986.5 83 1.62 1.627 B — ds? 46 B —ds* (SF)"P
16412.80 16348.1 65 1.51 1.500 B — ds? 32 B—ds*(°H)'F
20430.11 20423.4 7 1.28 1.262 B —ds? 36 B—ds* (°H)°G
20474.99 20457.6 17 1.30 1.373 B —ds? 30 B—ds*(°H)'F
22099.06 22058.3 41 1.059 1.074 B — ds? 36 B—ds*("H)H
22938.03 22925.4 13 107 1.063 B — ds? 25 B — ds? ("H)°F
23686.81 23663.8 23 0.767 0.743 B —ds® 50 B —ds* (°H)5I
24841.04 248974 -56 0.90  0.881 A —sp 39 A—sp (I H
25203.92 252721 68 1242 1.245 B — ds? 32 B — ds? CF)G
25687.20 25726.2 -39 0.94 0.829 A—sp 24 A—sp (P11
26440.41 26446.4 6 1.046 1040 B —ds’ 55 B — ds? (F)° H
26662.41 26716.0 -54  0.59 0491 A—sp 66 A—sp(°I)'K
26998.27 27018.3 -20  0.86 0.865 A —sp 41 A—sp(°I)'H
27659.02  27609.3 50 1.17 1.171 B — ds? 34 B—ds*(SF)’G
2775146 27746.0 5 081 0742 A—sp 45 A— sp(PI)*H
28923.05 28966.4 -43  0.78 0.778 A—sp 25 A—sp(°1)*H
33324.06 33281.2 43 0.89 0.890 A—sp 39 A—sp(°I)°Hb
33952.33  34025.8 -73 130 1.318 B —ds? 9 B —ds* (*G)°D4
34038.46  34007.8 31 1.30 1.305 A —sp 22 A—sp(°F)3G
34486.89  34487.9 -1 1213 1344 A—sp 21 A—sp(°F)°Fa
34720.68 34704.0 17 0.761 0.659 A —sp 43 A —sp(°I)°Ib
J=5

12298.55 12334.8 -36 1.24 1.233 B —ds? 58 B—ds* (°H)"H
14153.49 14131.0 22 142 1.419 B —ds? 51 B—ds*(°H)"'F
16684.73 16664.2 21 1.082 1.067 B — ds? 66 B —ds*(SH)"I
17502.89 17506.3 -3 145 1.426 B — ds? 33 B—ds?(°F)"D
17804.24 17834.6 -30 1.322 1.320 B — ds? 44 B—ds*(SH)SF
19480.87 19563.7 -83 1.35 1.334 B —ds? 29 B —ds*(F)'G
19813.98 19794.5 19 1.27 1.281 B —ds? 22 B—ds*(°H)’H
20921.55 20901.2 20 1.30 1.121 B —ds? 32 B—ds*(°H)°H
22204.88 22296.6 2 102 0990 B—ds’ 35 B — ds ("H)°1
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Table 2: Odd parity levels of Dy I (continued)

Eexp Eth AE . o Leading % leading
(em™)  (em™!)  (em™!) 9L 9L configuration LS term
20921.55 20901.2 20 1.30 1.121 B —ds? 32 B—ds*("H)’H
22294.88 22296.6 -2 1.02 0.990 B — ds? 35 B—ds? (°H)°I
22524.21 22498.8 25 1.04 1.052 A —sp 19 A—sp(°I)"H
23552.65 23553.9 -1 1.07 1.0561 A —sp 27 A—sp(PI)7I
24634.07 24637.6 -3 1.21 1.214 B —ds? 37 B—ds*(°F)°H
24881.87 24938.6 -7 0.72 0.753 B — ds? 70 B —ds* (°H)’K
25082.02  24997.7 84 1.064 0992 A-—sp 41 A—sp(PI)"H
25127.52 25152.4 -25  1.04 0.843 A—sp 42 A—sp(PI)'K
25912.63 25892.0 20 0.98 0979 A-—sp 30 A—sp(°I)*H
26135.21 26106.5 29 122 1214 B—ds’ 30 B — ds? (°F)°G
27109.93 27140.3 -30 1.01 0993 A—sp 23 A—sp(PI)"I
27685.87 27695.2 -9 0.77 0.765 A —sp 31 A—sp(°I)°Ka
29054.36  29112.4 -58  0.84 0871 A—sp 32 A—sp(31)3I
30904.89 30885.3 19 1.286 1.159 A —sp 29 A—sp(°I)°Hb
31763.85 31762.6 1 1.32 1.342 A —sp 28 A—sp(°F)3G
33025.64  32950.1 75 1.01 0923 A—sp 38 A—sp(°I)°Ib
33652.23  33639.7 13 1.16 1.254 B —ds? 12 B — ds* (*G)°G4
34470.70 34513.4 -43 0915 0.715 A—sp 48 A —sp(P1)°Kb
J =

10088.80 10146.1 -7  1.36 1.357 B — ds? 36 B—ds*(°H)"H
11673.49 11649.2 24 1.392 1.395 B — ds? 49 B —ds*(°H)'F
14970.70  15006.3 -36 1.24 1.238 B —ds? 42 B —ds*(SH)"I
15862.64 15862.7 0 1.257 1.260 B — ds? 51 B—ds* (°H)’G
16591.38 16522.4 69 1.348 1.356 B — ds? 59 B —ds* (°H)'G
18172.87 18254.0 -81 1.34 1.305 B — ds? 22 B—ds*(°H)°H
18561.20 18629.5 -68 1.27 1.301 B — ds? 20 B—ds* (°H)H
18711.93 18724.8 -13 1.172 1.171 A —sp 42 A—sp(°I)*H
19182.66 19157.5 25 1.036 1.032 B —ds? 63 B—ds*(°H)"K
19856.88 19862.5 -6 1.35 1.314 B —ds? 38 B—ds*(°F)"H
20554.73  20531.2 23 1.11 1.107 B —ds? 29 B —ds* (°H)°I
20817.61 20798.4 19 1.13 1135 A—sp 17TA—sp(PI)7I
22286.87 22281.7 5 1.15 1.151 A —sp 38 A—sp(°I)"H
22633.23  22669.9 -36 1.29 1.297 B — ds? 54 B —ds* (F)’G
22956.84 22985.1 -28 1.06 1.083 A —sp 22 A—sp(°I)'K
23464.02 234921 28 0.96 0946 B — ds? 67 B — ds> CHY K
23687.87 23640.9 47 1.076 1.064 A—sp 16 A—sp(PI)'K
24040.59  24026.1 14 1.26 1.263 B — ds? 31 B—ds*(°F)°H
24931.63 24936.8 -5 1.128 1115 A—sp 31A—sp(3I)7I
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Table 2: Odd parity levels of Dy I (continued)

Eexp Eth AE . o Leading % leading
(em™)  (em™!)  (em™!) 9L 9L configuration LS term
25825.83  25836.0 -10  1.00 0995 A—sp 29 A—sp(PI)'K
27199.20 27226.9 -27 1.16 1.032 A —sp 16 A—sp(CIPK
28119.93 28065.6 54 1.198 1.193 A —sp 46 A —sp (°I)°Hb
29447.11  29428.2 19 0.90 0.898 A—sp 56 A —sp (513K
30778.96 30732.5 46 1.17 1.073 A —sp 42 A —sp(°I)°Ib
32126.16  32096.3 30 1.23 1.209 B — ds? 16 B —ds? (*F)°G3
J=7
8519.21  8595.5 =76 1.336 1.338 B —ds? 59 B —ds?* (°H)"H
12655.13 126954  -40 1.36  1.356 B —ds’ 61 B — ds ("H)'G
14367.81 142917 76 127 1269 B —ds’ 46 B — ds® (CH)TI
15194.83 152433  -48 126  1.263 B — ds’ 60 B — ds® CHY H
16693.87 16659.2 34 1.22 1.227 A —sp 23 A—sp(°I)°H
17687.90 17681.1 6 1.16 1.152 B —ds? 44 B — ds? (GH)7K
18339.80 18349.3 -10 1.21 1.197 B — ds? 15 B—ds? (°H)'K
18433.76  18429.4 4 1.20 1.195 A —sp 23 A—sp(°1)3I
18857.04 18807.7 49 1.335 1.323 B —ds? 35 B—ds*(°F)'H
19907.51 19904.9 3 1.23 1.237 A—sp 26 A—sp(°I)I
20485.40 20501.7 -16 1.375 1.381 B —ds? 64 B —ds*(°F)'G
20766.29 20720.7 46 1.16 1.140 A—sp 19 A—sp(°I)Ka
21675.28 21698.5 -23  1.22 1.265 B — ds? 41 B—ds?* (°F)°H
21783.41 21766.6 17 1.15 1.110 B — ds? 58 B —ds* (°H)’K
22061.29 22052.6 9 1.18 1.184 A —sp 28 A—sp(°I)"I
23479.77  23482.0 -2 1.13 1.135 A —sp 33A—-sp(°I)'K
24708.97 247723 63 126 1265 A—sp 38 A — sp(°I)°Hb
24906.86  24912.5 -6 1.14 1.147 A—sp 26 A—sp(°I)I
27427.08 27410.6 17 1.06 1.067 A —sp 28 A—sp(P1)3K
27834.93 27850.4 -16 1.22 1.169 A —sp 47 A —sp (°I)510b
30711.72  30760.7 -49 1.09 1.068 A — sp 46 A —sp(°1)°Kb
31698.32  31700.2 2 1131 1125 B—ds’ 17 B — ds? ()3
J =38
7565.61  7586.7 -21 1.352 1.356 B — ds? 77 B—ds*(°H)"H
12007.12  11949.8 57 128 1278 B —ds’ 149 B — ds® (CH)TI
14625.64 14683.1 -7 1.25 1.252 B —ds? 61 B—ds*("H)I
15567.38  15556.1 11 1.31 1.322 A—sp 58 A —sp(°1

)'H
16288.73  16220.7 68 1.19 1.187 B — ds? 47 B —ds?* (°H)'K
16733.20 16677.7 25 1.20 1.198 A —sp 33 A—sp(°I)3
18021.89 18025.3 -3 1.23 1.230 A—sp 23 A—sp(°1)3
19092.30 19026.8 65 1.33 1.342 B — ds? 77 B —ds* (°F)7

ENN
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Table 2: Odd parity levels of Dy I (continued)

Eexp Eth AE . o Leading % leading
(em™)  (em™!)  (em™!) 9L 9L configuration LS term
19688.60 19655.1 33 1.22 1.200 B — ds? 47 B —ds* (SH)K
20341.32  20331.9 10 1.23 1.230 A—sp 30 A—sp(°I)'K
21899.20 21874.7 25 1.20 1.210 A —sp 33 A—sp(°I)I
23877.74 23844.6 33 1.29 1.239 A—sp 48 A — sp (°I)°Ib
24999.58 24976.9 23 1.19 1172 A —sp 36 A—sp(°I)'K
27818.00 27871.1 -53 1.21 1.154 A —sp 45 A —sp(P1)°Kb
J=9
9990.97  9991.2 0 1.32 1.320 B —ds? 86 B —ds*(SH)"I
1349593 13463.1 32 1.23 1.233 B — ds? 60 B —ds* (°H)’K
15972.35 15972.8 0 1.29 1.294 A—sp 61 A—sp(°I)I
16717.79  16749.8 -32 1.24 1.242 B —ds? 62 B—ds*(°H)"K
17727.15  17699.8 27 125 1258 A—sp 31 A—sp(PI)71
21838.55 21798.5 40 1.25 1.244 A —sp 64 A—sp(°I)'K
23736.61 23788.7 -02  1.22 1.217 A—sp 48 A—sp(°I)°Ka
J =10
12892.76  12992.5 -99 1.29 1.294 B —ds? 94 B—ds?* (°H)'K
17513.33  17465.2 48 1.30 1.295 A—sp 94 A—sp(°I)'K

2.3. Transition probabilities

Since they depend on transition dipole moments, the transition probabilities turn out
to be an efficient test for the quality of our computed eigenvectors. After the last CI
calculation by the Cowan code called “RCG”, the eigenvector of the level ¢ can be written
i) = >, Cip|p), Where |p) represents an electronic configuration. Then the theoretical
Einstein coefficients Ag‘ characterizing the probability of spontaneous emission from
level i to level 5 can be expanded

2
A = <Z ijpq (n&plfln’e',@) : (1)
pq

in which the MTDMs (nf, p| 7 |n'l’, ¢) are common parameters to all transitions, and the
coefficients a;; », depend on the energies and eigenvectors characterizing the levels i and
j. The configurations included in our model give rise to two possible 7-matrix elements:
one for (nl-n’'t') = (6s-6p) transitions, namely (p,q) = (4f'96s* 4f'°6s6p), and the
other one for (nf-n't") = (4f-5d) transitions, namely (p, q) = (4/1°6s%,4f?5d6s?).
Similarly to section 2.2, our theoretical A coefficients depend on a restricted number
of scaling factors (SFs) f,,, which are also adjusted by fitting to available experimental
data [96]. The f,, can be defined from MTDMs and their computed HFR values,
Jm = (nl,p| 7|0, q) [ (nl,p| 7 |0l q)ypg- We specify fi and f, for (6s-6p) and (4f-5d)
transitions respectively. From Ref. [96], we can get 80 transitions towards the ground
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level °Ig and first excited one °I;. As energy increases, especially above 30000 cm ™, it
is hard to describe accurately the energy levels only with the 4f'°6s6p and 4f°5d6s>
configurations (see Table 2). Therefore we exclude from the fitting procedure these

transitions with upper levels above 30000 cm™*.

Table 3: Transitions excluded from the least-square
fitting procedure. The letters 2 and j correspond to upper
and lower levels, respectively. The superscript “exp”
stands for experimental values which are taken from [96].
The superscript “th” stands for the theoretical values
from the present parametric calculations. The transition
wave number o;; is in the vacuum. The notation (n)
stands for x10". A blank in the column “removal
reason” means that the upper level belongs neither to
the 4f1%656p nor to the 4 ?5d6s? configuration.

E7P (em™) J; EJP (em™) J; oy (em™')  A7P (s7')  removal reason

20119 9 0 8 20119 2.32(6)

27851 8 0 8 27851 3.26(5)

27556 7 0 8 27556 1.75(5)

27014 9 0 8 27014 1.19(8) spurious?
25012 8 0 8 25012 0.37(6)

24906 7 0 8 24906 2.93(6) large ratio
24299 9 0 8 24229 0.92(6)

24204 8 0 8 24204 1.76(6)

23832 8 0 8 23832 8.80(7) mixed?®
20766 7 0 8 20766 0.28(5) small ratio
20341 8 0 8 20341 1.06(5) small ratio
28823 7 4134 7 24688 2.54(6)

28030 8 4134 7 23895 8.80(7)

27984 T 4134 7 23850 7.10(7) mixed®
27851 8 4134 7 23717 8.10(7) mixed®
27556 7 4134 7 23422 1.14(6)

25012 8 4134 7 20878 1.08(5)

18022 8 4134 7 13888 0.65(4) small ratio
15195 7 4134 7 11061 0.43(5) small ratio

b

2 mixed with level at 23878 cm™!; P with level at 27834 cm™'; ¢ with level at 27818 cm ™.

In the list of Ref. [96], we can see some strong transitions whose upper level does
not belong to 4f1%6s6p or 4f°5d6s* configurations, e.g. E**? = 23832.060 cm !, J = 8,
but is very close in energy to a 4f1%s6p level with the same J, e.g. E“P = 23877.739
cm~!. This suggests that the former level possess a significant 4f1°6s6p character in

addition to the 4f°5d*6s one. However in our model, we can only describe one level,
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denoted |4f1°6s6p) = |1), which can explain the poor agreement on its Landé factor
(see Table 2). Assuming that the two “real”, mixed levels, denoted |+) and |—), are
isolated from the others, we can write

[4+) = c1|4f656p) + co|dfP5d*6s)
|—) = — cp]4f1%656p) + c1]|4f75d%6s) (2)

with |e|> + |ca]> = 1. We recall that the transition probability depends on the
transition frequency w;; and the reduced transition dipole moment (i||d||j), as A;;
wiil(@lld[|7)[*. In our case (i = 1, + or —), the transition frequencies are equal,
2 =

wij ~ wy; ~ w_;, whereas the transition dipole moments are such that |(1]|d]|;)
|(+|d|[7)|* + [(—=||d||7)|>. Therefore we compare our theoretical value A with the
sum of experimental ones Ai:? + Ae_’i‘;-. In Table 3, the 3 transitions labeled “mixed”
correspond to that situation.

Special attention should be paid to the transition between the ground level and the
excited J = 9 level at 27014.02 cm™!. By comparison with neighboring elements like
holmium, the existence of this very strong transition, in addition to the “usual” one with
upper level 4f19(5I3)6s6p(* P?) (8,1)9 at 23736.610 cm™?, is all the more questionable,
that the level at 27014.02 cm~! does not appear in any other transition. It is probable
that this transition exists, 7.e. its transition energy and transition probability are correct;
but its lower level is probably not the ground one, and the upper level J = 9 level at
e
while other four

27014.02 cm ™! does not exist. Finally, due to strong differences between Agjh and A
we excluded 5 of the last 48 transitions (one with large ratio A} /AZY,
with very small ratios).

We fitted the SFs using the remaining 43 transitions, and found optimal scaling
factors f; = 0.794, fo = 0.923, corresponding to a standard deviation on Einstein
coefficients (see Ref. [79], Eq. (15)) 04 = 2.66 x 10° s™'. In particular the 6 strongest
transitions are calculated with a precision better than 7 %. Then, because the
experimental Einstein coefficients in Ref. [96] are given with uncertainties reaching to
10 %, we made 1000 fits in which all the A7}" coefficients have a random value within
their uncertainty range. We obtain optimal scaling factors with statistical uncertainties:
f1 = 0.794 & 0.006 and fo = 0.923 & 0.21. The standard deviation is therefore much
more sensitive to (6s|7|6p) than to (4f|7|5d), since it involves the strongest transitions
(79, 89]. In what follows, we take the optimal scaling factors f; = 0.794 and f, = 0.923,
for which a comparison between experimental and theoretical transition probabilities
involving the two lowest levels of Dy I are presented in Table 4. Using those optimal
SF's, we can also calculate transition probabilities which have not been measured, and
which are available upon request to the authors.
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Table 4: Comparison of Einstein-A coefficients. The
superscript "exp” stands for experimental values which
are taken from [96]. The superscript "th” stands for
the theoretical values from the present calculations. The
notation (n) stands for x10™. Values with an asterisk (*)
correspond to sums of experimental Einstein coefficients
(see Table 3).

EP (em™) J; EPP (em™') J; wi® (em™h) ATP (s7) AR (57
25000 8 0 8 25000 1.63(5)  2.15(5)
24709 7 0 8 24709 1.92(8)  1.91(8)
23878 8 0 8 23878 2.14(8)*  2.13(8)
23737 9 0 8 23737 2.08(8)  2.09(8)
21899 8 0 8 21899 6.60(5)  1.67(5)
21839 9 0 8 21839 1.96(6)  6.52(5)
21783 7 0 8 21783 1.37(7)  6.64(6)
21675 7 0 8 21675 8.20(6)  1.13(7)
20485 7 0 8 20485 5.20(5)  2.02(5)
19689 8 0 8 19689 4.10(5)  2.97(5)
18857 7 0 8 18857 8.50(5)  4.65(5)
18022 8 0 8 18022 3.00(5)  9.98(4)
17727 9 0 8 17727 4.90(5)  2.78(5)
17688 7 0 8 17688 4.46(5)  1.29(5)
16733 8 0 8 16733 4.20(5)  9.58(5)
16694 7 0 8 16694 5.61(5)  1.32(6)
15972 9 0 8 15972 8.90(5)  1.11(6)
15195 7 0 8 15195 7.70(5)  2.96(5)
28120 6 4134 7 23986 1.92(8)  1.83(8)
27835 7 4134 7 23701 1.91(8)*  2.03(8)
27818 8 4134 7 23684 2.09(8)*  2.06(8)
27427 7 4134 7 23293 2.28(6)  1.77(6)
25000 8 4134 7 20865 1.16(6)  4.53(5)
24907 7 4134 7 20773 2.58(6)  3.89(4)
24709 7 4134 7 20575 2.59(5)  7.50(4)
24041 6 4134 7 19906 1.27(6)  8.12(5)
21899 8 4134 7 17765 1.66(5)  1.12(5)
21783 7 4134 7 17649 3.30(4)  2.57(4)
21675 7 4134 7 17541 1.67(5)  6.21(4)
20766 7 4134 7 16632 5.90(5)  1.10(6)
20555 6 4134 7 16421 1.46(6)  1.14(6)
20485 7 4134 7 16351 5.70(4)  3.66(4)
20341 8 4134 7 16207 8.10(5)  1.14(6)



Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and

Table 4: Einstein-A coefficients (continued)

EZP (em™h) E;Xp (em™) J; Uf;p (cm™1) Af;-‘p (s71) Af? (s7)
19689 8 4134 7 15554 4.50(4)  1.97(4)
18857 7 4134 7 14723 2.90(4)  1.15(4)
17688 7 4134 7 13554 1.10(5)  1.96(4)
16733 8 4134 7 12599 1.36(4)  5.95(3)

3. Polarizabilities and van der Waals Cg coefficients

The optimal set of spectroscopic data obtained in the previous section will now be used
to compute polarizabilities and van der Waals Cg coefficients, obtained using the sum-
over-state formula inherent to second-order perturbation theory, for the ground level
4119652515 and the first-excited level 4f196s%°1; of dysprosium. Indeed the electric-
quadrupole transitions between 4f"6s? levels were suggested as candidates for optical
clocks [70, 71], as those levels are expected to possess very similar polarizabilities.

3.1. Polarizabilities

Polarizability is an important characteristic governing the optical trapping of neutral
atoms, through their interaction with laser fields. The real part of the (complex)
polarizability determines the depth of dipole traps or optical-lattice wells, while the
imaginary part determines the photon-scattering rate, which limits the coherence and
the trap lifetime for the atoms. The sum-over-state formula enables us to give the real
and imaginary parts of the dynamic dipole polarizability at any trapping frequency.
Because dysprosium is an open 4 f-shell atom, the trap depths and photon-scattering
rate are functions of scalar, vector and tensor polarizabilities, which we give in this
article.

3.1.1. Theory of optical trapping. For the sake of consistency, let us recall the useful
relationships of optical trapping (see e.g. Refs. [77, 78, 79]). We assume that the atoms
are in the level |3JMj), where J is the total electronic angular momentum, M the
azimuthal quantum number associated with its projection on the quantization axis z
and [ designates all the remaining quantum numbers. We also assume that the atoms
are submitted to a laser beam of angular frequency w and whose intensity I(r) depends
on the position r of the atomic center of mass. If the electric field of the laser beam
is linearly polarized along the quantization axis z (7 polarization), due to second-order
Stark effect, it induces a potential energy U}\i/}lj(r) acting on the atomic center of mass,

o E <§R[asca1(w)] . 3M§(;JJ(_J1J; 1)%[%@3@)]) (3)

2€pC
and a photon-scattering rate

Thy, (r) = LI(r) (S[Ozscal(w)] + 3M§(;JJ(_J1;L 1>%[aten8(wﬂ> ’ W

hEoC
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which both depend on the atomic Zeeman sublevel M;. For a right (left) circularly
polarized electric field propating along 2 (oF polarization), the potential and photon-
scattering rate read

USfe(e) = = 5o T0) (Rl )] & 5 7Rl ()
3M3 — J(J+1)
R e ) 5)

I5(0) = 5o (6) (Slaman ()] £ 5 Sfavea(w)]

3M2— J(J+1)
S (). ©)

In equations (3)-(6), R[] and ] stand for the real and imaginary parts of the scalar

Qlgeal, VECLOT et and tensor Oétens dynamic dipole polarizabilities given by

eal®) = 37T 5~ZJ~' (" 5]
1
(Eﬁ,/J,, - EBJ - Z%;J“ T Egign — Egy — i 222" 4 hw) 7
o) =T SV ) e it
1 1
(EB”J” — Bpy =i — By — Bgy — 752 + hw) ¥
O (@ zJ Y jj;)gj P 55 heasr

1
" * )
(Eﬂ”J” _Eﬁj_l% — hw EIBHJ” _Eﬁj—lw—f—hw)

where (5”J"||d||8J) is the reduced matrix element of the transition-dipole-moment

operator between the level |f.J) under consideration and the intermediate level |3”J"),
and 7y the radiative relaxation rate (or inverse lifetime) of the intermediate level.

3.1.2. Results and discussion. To compare our results with literature, the scalar, vector
and tensor static dipole polarizabilities are presented in Table 5, as well as the dynamic
ones for the widespread laser-trapping wavelength A = 1064 nm (corresponding to a wave
number o = 9398 cm™!). As one can notice for the ground-level scalar polarizabilities,
agreement is good between the different theoretical results and which all agree well with
the new measured value. The tensor static polarizability is much smaller than the scalar
one in all sources; we note that our value has the same sign as the experimental one
of Ref. [84]. As already pointed out in [86], we observe a strong discrepancy between
our 1064-nm dynamic polarizability and the experimental value of Ref. [74]. For the
5[, level there are no literature values to our knowledge. They are actually very similar
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Table 5. Real and imaginary parts of the scalar, vector and tensor dynamic dipole
polarizabilities, at 0 = 0 and 9398 cm™! (A = 1064 nm), for the ground °Ig and first
excited level of dysprosium. Our results are compared with available literature values.

lovel o Real part (a.u.) Imaginary part (1077 a.u.)
(em™) scalar vector  tensor | scalar vector tensor
Sy 0 164 0 0.8 30.8 0 3.4
165 [81], 175 [80] -4.50 [80]
163 [82], 168 [83] 1.40 [84]
9398 193 -1.5 1.3 494  -11.3 5.8
116 [74], 170 [86]
I, 0 163 0 0.7 30.3 0 1.7
9398 193 -1.3 1.2 49.1 -7.9 2.9

to those of the ground level. For both levels, the main result obtained in our previous
work on erbium [79] is mostly confirmed. Regarding the real part, the vector and
tensor polarizability are roughly two orders of magnitudes smaller than the scalar one,
which means that the trapping potential is mostly isotropic, i.e. they almost do not
depend on the electric-field polarization or the atomic azimuthal quantum number. By
contrast, the tensor, and especially vector contributions of the imaginary part represent a
significant fraction of the scalar contribution, although less significant than for erbium.
This makes photon-scattering anisotropic in the sense that it depends on the angle
between the electric field of the trapping light and the preferential orientation of the
electrons represented by the atomic azimuthal quantum number..

Figures 1 and 2 present the real, resp. imaginary, parts of the scalar, vector
and tensor polarizabilities as functions of the field wavelength A and wave number
o =1/\=w/2mc (c being the speed of light). In order to facilitate experimental usage,
we present our results in atomic units and also the corresponding relevant quantities
in physical units. The real part of the polarizability is associated with the potential
energy U, in equivalent temperatures of microkelvins (1K), obtained for a laser intensity
of 1 GW/m?. The imaginary part is associated with the photon-scattering rate T, in
inverse seconds (s!), for the same intensity.

Far from atomic resonances, they confirm the two phenomena described above: (i)
the strong similarity between polarizabilities of the ground and first excited levels; (ii)
the isotropy of the trapping potential and anistropy of photon scattering. Moreover,
for wave numbers below 10000 cm™!, the polarizabilities are essentially flat, except
some very narrow peaks associated with very weak transitions. On the contrary,
those background values increase (in absolute value) as the wave numbers approach
the strongest transitions (see Table 2).



Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and

800
600 _
L [aY)
3 S
> 400 L
s | =
s (O]
é 200 x&
I >
0
-200
A (pm)
05 10 1
12 r T T
i o s g
E — Lo 5I7
i) N
iii ! ‘TE ; 4r 0 | i
L) -.._m.._L-“L-—. F -
0o 3 = OF ™ 1
4 = g 4l
e}
-2 -8 '
A% GO .
0 5 10 15 20 0 5 10
o (10%m™) o (10%m™)

Figure 1. (Color online) Real part of the (a) scalar, (b) vector and (c) tensor dynamic
dipole polarizabilities of the ®Ig and ®I7 levels in atomic units and corresponding trap
depths obtained for an intensity of 1 GW.m™2, as functions of the trapping wave
number o (or wavelength \).

3.2. Van der Waals Cy coefficients

Characterizing long-range interactions is crucial to understand the dynamics of ultracold
gases. In the case of ground-level high-Z lanthanide atoms, the van der Waals
interaction, scaling as R7% (R being the interatomic distance), plays a significant role,
as it competes with the magnetic-dipole interaction, scaling as R2, for distance shorter
than 100 bohr. The quadrupole-quadrupole interaction is on the contrary negligible
for all distances [59, 79, 97, 98]. The weak anisotropy of van der Waals interactions
between lanthanide atoms is expected to be responsible for the strong density of narrow
Feshbach resonances [14, 15, 97].

We consider two dysprosium atoms, A and B, in the fine-structure levels J4 and Jp
of the lowest multiplet 34 = Bg = °I of the ground configuration 4 f'°6s2. The Zeeman
sublevels are characterized by the azimuthal quantum numbers M;, and M, taken
with respect to the quantization axis z of the spaced-fixed frame. In this frame, the two
atoms can perform an end-over-end rotation, characterized by the partial-wave quantum
numbers L and M. It can be shown [99, 100] that the van der Waals interaction is
represented by an effective operator W(R), depending the vector R joining the two
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Figure 2. (Color online) Imaginary part of the (a) scalar, (b) vector and (c)
tensor dynamic dipole polarizabilities of the °Ig and ®I; levels in atomic units and
corresponding trap depths obtained for an intensity of 1 GW.m™2, as functions of the
trapping wave number o (or wavelength \).

atoms (from A to B). Expressed in the basis {|faJaM;, B M, LMp)}, the matrix
elements of W(R) can be expressed as functions of a few parameters Cs,r, and of

angular factors,
(BadaMy, BT My, L' My |W(R)|BaJ aMy, B 5 My, LMr)

C 2
= — _ggoéMJAij 6MJBM} 5LL'6MLM£ - 15 Z (2]€A + 1) (2k‘B + 1)
4 B kakp=0
1 1 2
Comakn [2La+1 "7 L0 kO 1 1 2
R6 2L/ _|_1 Z L0Ok0™~2020
AT T k=lka—ks| ka kg k

ka kp k I / ’
JaM JpM
_1\4 ka L'My AMT4 B¥g
X Z Z Z ( 1) CkAtIAkBQBCLML%*(]CJAMJA’CAQACJBMJBkqulo)
ga=—ka qp=—kp q=—k

where C7),5 is a Clebsch-Gordan coefficient and the number between curly brackets is

a Wigner 9j-symbol [101]. The coefficients Cg 1, read

2 3 (_1)JA+J;(+JB+Jg{ L1 kA}
V@I + 125 +1) g1 /5500 Ja Ja Jj4

Cokaky =
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ka, kg | oIy — °Is 5Iy —°I; °I, —°I;
0,0 2273 2272 2271
1,1 0 0 0
2,0 1 1 1
0, 2 1 1 1
2,2 0 0 0

Table 6. Cy coeflicients in atomic units, characterizing the van der Waals interactions
between dysprosium atoms in the ground °Ig or first excited level I, as functions
of the pairs of indexes k4, kp (see text). The case k4 = kg = 0 corresponds to the
so-called isotropic Cg coefficient [99].

(11)

where {:::} is a Wigner 6j-symbol [101]. In equation (10), the indexes k4 and kp are

X{ (S }|< ATAll da l1Bada) (B3T3l s ||5s Js)|”
Js Jp Jp Egnyn — Egyua + Egnyn — Egpy

such that k4 + kp is non-zero and even. Giving diagonal matrix elements, the coefficient
Cs,00 s referred to as isotropic, while the other Cg 1, are called anisotropic.

Table 6 displays our calculated Cs i 1, coefficients. Similarly to the case of erbium
[79], the isotropic one strongly dominates the anisotropic ones. Furthermore, after
diagonalization of equation (10) in the body-fixed frame, one obtains Cj coefficients
ranging from -2277 to -2271 a.u., hence 11 % larger (in absolute value) than those of
Ref. [15], but with a spread roughly 30 times smaller.

4. Concluding remarks

In this article, we have characterized the optical trapping of ultracold dysprosium atoms,
by calculating the real and imaginary parts of the scalar, vector and tensor contributions
to the dynamic dipole polarizabilities of the ground level and the first excited level. The
results indicate that the trapping potential, associated with the real part, is essentially
isotropic, while the photon-scattering rate, associated with the imaginary part, exhibits
a noticeable anisotropic behavior. These conclusions for the ground level are similar to
our previous work on erbium, even though the anistropy of photon scattering is clearly
less pronounced. The reasons for this difference are still under examination, and we
expect our future work on neighboring elements (holmium and thulium) to clarify those
reasons. For the 1064-nm real part of the polarizability, our results support the previous
theoretical value rather than the experimental one. We also find that the polarizabilities
of the ground and the first excited levels are very close, which makes them interesting
candidates for optical clocks.

In order to calculate polarizabilities, we have modeled the spectrum — energy levels
and transition probabilities — of neutral dysprosium. We have performed a systematic
adjustment of theoretical and experimental Einstein-A coefficients. In comparison with
our previous work on neutral erbium, we have incorporated in the fit transitions toward
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the first excited level of dysprosium, which gives us more reliable values of the mono-
electronic transition dipole moments. In addition, our detailed spectroscopic study
allows us for putting into question the existence of the tabulated level J = 9 at 27014.02
cm ™!, which is however expected to have a strong transition probability towards the
ground level.
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Appendix A. Energy parameters

This appendix presents the optimal parameters after the least-square fitting procedure
of experimental and theoretical energies. Table Al deals with even-parity levels, and
Table A2 with odd-parity levels. The effective parameters «, 5, v with fixed values are
taken for our previous work [33].

Table A1: Fitted one-configuration parameters (in cm™1!)
for even-parity configuration of Dy I compared with
HFR radial integrals. The scaling factors are SF(P) =
Pri/ Purr, except for E,, when they are Py — Pypg.
Some parameters are constrained to vary in a constant
ratio r,, indicated in the second column except if ‘fix’
appears in the second or in the ‘Unc.” columns. In
this case, the parameter P is not adjusted. The ‘Unc.’
columns named after ‘uncertainty’ present the standard
error on each parameter after the fitting procedure.

4f19652
Param. P Cons. Ps: Unc. Parr SF
E,. 41851 68 0 41851

F2(4f4F) ri 83325 648 115093 0.724
FY4F4F) ry 56562 1128 71831 0.787

FS(4f4f) r3 46457 689 51572 0.901
Q fix 20.0
I6] fix  -650
v fix 2000

Cas rqy 1770 2 1845 0.959




Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and

Table A2: Same as Table A1 but for odd-parity levels.

4195d6s> 4f1°6:56p
Param. P Cons. Pﬁt Unc. PHFR SF Pﬁt Unc. PHFR SF
E. 68280 97 5400 62880 61716 66 14794 46922
F2(4f4f) ry 91462 471 122573 0.746 85931 443 115161 0.746
FA4faf) ry 61462 739 76869 0.800 57486 691 71875 0.800
FS(4f4f) rg 48518 462 55292 0.877 45282 431 51604 0.877
« fix 20.0 20.0
15} fix  -650 -650
~ fix 2000 2000
Car ry 1901 3 1975 0.963 1777 3 1846  0.963
(54 T10 727 12 890 0.817
Cop re 1372 12 947 1.449
F'(4f5d) rn 658 99
F2(4f5d) rio 15708 132 20992 0.748
Fi(4f5d) ri; 11704 223 9652 1.213
F'(4f6p) - 112 38
F?(4f6p) Ts 3093 268 3386 0.913
G (4f5d) ru 9785 110 9181 0.630
G2(4£5d) ris 2071 255
G3(4f5d) rig 6731 288 7278  0.925
G* (4f5d) ri; 4003 393
G5(4f5d) rig 5480 236 5501  0.996
G3(4f65) T9 1132 51 1688  0.670
G2(4£6p) rs 1032 17 774 1.333
G4(46p) rs 900 15 675 1.333
G(656p) fix 10292 23189  0.444
configuration-interaction 4f95d6s* — 4f06s6p
R(5d6s, 4 f6p) rs  -3545 o8 -4648  0.763
R3(5d6s, 6pAf) rs  -TAS 12 -980  0.763
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