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Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

3Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
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In a combined experimental and theoretical effort, we demonstrate a novel type of dipolar system
made of ultracold bosonic polar molecules with large magnetic dipole moments. Our polar molecules
are formed in weakly bound Feshbach molecular states from a sample of strongly magnetic bosonic
erbium atoms. We show that the ultracold magnetic molecules can carry very large dipole moments
and we demonstrate how to create and characterize them, and how to change their orientation.
Finally, we confirm that the relaxation rates of molecules in a quasi-two dimensional geometry can
be reduced by using the anisotropy of the dipole-dipole interaction and that this reduction follows
a universal dipolar behavior.

PACS numbers: 34.50.-s, 31.10.+z, 34.50.Cx

Ultracold dipolar particles are at the heart of very in-
tense research activities, which aim to study the effect
of interactions that are anisotropic and long range [1, 2].
Dipolar quantum phenomena require ultracold gases and
a strong dipole-dipole interaction (DDI). So far, strongly
dipolar gases have been obtained using either atoms with
a large magnetic dipole moment or ground-state polar
molecules with an electric dipole moment [2]. With both
systems, many fascinating many-body quantum effects
have been observed and studied, such as the d-wave col-
lapse of a dipolar Bose-Einstein condensate [3], the de-
formation of the Fermi sphere [4], and the spin-exchange
phenomena [5, 6].

Here, we introduce a novel kind of strongly dipolar par-
ticles. These are weakly bound polar molecules produced
from atoms with large magnetic dipole moments, such
as erbium (Er) and other lanthanides. The key point
is that these molecules can have a very large magnetic
moment µ up to twice that of atoms (e. g. 14 Bohr mag-
neton, µB, for Er2) and have twice the mass of the atoms.
As a consequence, the degree of “dipolarity” of the mag-
netic molecules is much larger than the one of atoms.
This can be quantified in terms of the dipolar length
ad = mµ0µ

2/(4π~2) [1], which characterizes the length
of the DDI and solely depends on the molecular mass m
and on µ; ~ is the Planck constant divided by 2π. For
instance, Er2 with µ = 14µB has ad ≈ 1600 a0, with a0
being Bohr’s radius. Moreover, in contrast to ground-
state heteronuclear molecules, the dipole moment of the
magnetic molecules is permanent, opening the possibility
of investigating the physics of unpolarized dipoles at zero
external (magnetic) field.

In a combined experimental and theoretical effort, we
produce and study ultracold Er2 polar molecules. Er-

bium is a sub-merged shell lanthanide with a large mag-
netic moment and a large orbital angular momentum
quantum number, L = 5. This species, like other mag-
netic lanthanides [7–9], exhibits anisotropic interactions
at both long and short ranges. These interactions are
the long-range magnetic DDI and the short-range aniso-
tropic van der Waals (vdW) interaction coming from the
non-zero value of L [10, 11]. As a consequence, mag-
netic lanthanides possess extraordinary dense spectra of
Feshbach resonances as demonstrated in recent scattering
experiments [12–14]. Each resonance position marks an
avoided crossing between the atomic scattering threshold
and a molecular bound state. The avoided crossing can
be used to associate molecules from atom pairs [15].

We create and probe Er2 polar molecules by using stan-
dard magneto-association and imaging techniques [15].
Details of the production schemes are described in the
Supplemental Material [16]. In brief, we begin with an
ultracold sample of 168Er atoms in an optical dipole trap
(ODT) in a crossed-beam configuration. The atoms are
spin-polarized into the lowest Zeeman sublevel (j = 6,
mj = −6). Here, j is the atomic electronic angular mo-
mentum quantum number and mj is its projection on the
quantization axis along the magnetic field. To associate
Er2 molecules, we ramp the magnetic field across one of
the low-field Feshbach resonances observed in Er [12, 13].
We experimentally optimize the ramping parameters,
such as the ramp speed and the magnetic-field sweep in-
terval, by maximizing the conversion efficiency. In our
experiment we typically achieve a conversion efficiency
of 15 %, which is a common value for boson-composed
Feshbach molecules [15]. To obtain a pure molecular sam-
ple, we remove all the remaining atoms from the ODT
by applying a resonant laser pulse. Our final molecular
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Figure 1. Er2 weakly bound molecules. (a) Atom-loss spec-
trum [12] from 0 to 3 G and (b) near-threshold binding energy
of the corresponding molecular states. The solid lines are fit
to the experimental data and extrapolated to larger Eb up to
h× 500 kHz. The error bars are smaller than the symbols.

sample contains about 2 × 104 Er2 Feshbach molecules
at a temperature of 300 nK and at a density of about
8× 1011 cm−3 [16].

A first central question regards the magnitude of the
dipole moment owned by the magnetic molecules. We
experimentally determine µ by using magnetic-field mod-
ulation spectroscopy, a technique which was successfully
applied to alkali atoms [17–19]. With this method, we
measure the molecular binding energy Eb as a function
of B near the atomic threshold, and we extract µ by
using the relation µ ≡ 2µa − |dEb(B)/dB|. Our spectro-
scopic measurement begins with an ultracold atomic sam-
ple near a Feshbach resonance. We then add a small sinu-
soidal modulation to the bias magnetic field for 400 ms.
The modulation frequency is varied at each experimental
run. When it matches Eb/h, prominent atom losses ap-
pear because of molecule formation. We trace the near-
threshold molecular spectrum by repeating the measure-
ment for various magnetic-field values.

As shown in Fig. 1, we focus on four molecular en-
ergy levels, which near threshold exhibit a linear de-
pendence on B. Each state has a different µ, ranging
from 8 to 12µB, as listed in Table I. We point out that
the present investigation is restricted to magnetic field
values up to 3 G. However, the extraordinarily dense
spectrum of Feshbach resonances observed in Er [13] re-
flects an equally dense and rich molecular energy spec-
trum, opening the exciting prospect of cruising through
molecular states of different magnetic moments or cre-
ating molecular-state mixtures [19–21]. For future ex-
periments, it will be very interesting to access molec-
ular levels parallel to the atomic threshold for which
µ = 2µa [19].

Prior to this work, the Er2 molecular energy structure
near the threshold was unknown. Given the complex
scattering physics involving highly anisotropic interac-
tions and many partial waves [13], conventional theoret-
ical approaches based on coupled-channel calculations,
which have been so successful in reproducing the scatter-

Table I. Experimental and theoretical magnetic moments of
four molecular states near the atomic threshold, Feshbach-
resonance positions BFR, dipolar lengths, outer turning points
R∗, and dominant quantum numbers `, J , and M . For conve-
nience, the molecular states are labeled as µi with i = 1, . . . 4.
The error is one standard deviation of the statistical error.

BFR µ (µB) ad R∗ |`,J ,M〉
(G) Exp. Theo. (a0) (a0)

µ1 0.91 11.30(7) 11.20 1041(13) 72.0 |4,12, −12/−10/−9〉
µ2 2.16 11.51(4) 11.46 1080(8) 71.0 |4,10, −10〉
µ3 2.44 11.84(2) 11.75 1143(4) 86.0 |2,12, −10〉
µ4 2.47 7.96(3) 7.92 517(4) 57.0 |6,10, −7/−6〉
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Figure 2. Adiabatic interaction potentials of two Er atoms
at medium- (a) and long- (b) interatomic separation R. The
calculation is performed at B = 2.44 G with m` +M = −12
and includes only states with even ` ≤ 6. The zero of en-
ergy is at the dissociation limit of two |j,m〉 = |6,−6〉 atoms.
Black, green, red, and blue curves indicate the dominant `-
wave character. The horizontal black line indicates a d-wave
Feshbach molecule with an outer turning point R = R∗ reso-
nant with the s-wave entrance channel. Panel (b) also shows
the M projection for each of the Zeeman dissociation limit.

ing resonances and the molecular spectra for alkali-metal
atoms [15], are yet out of reach for magnetic lanthanides.
To gain insight into the molecular spectrum and scatter-
ing physics of such an anisotropic species, we develop a
new theoretical model based on approximate adiabatic
potentials. Our model, which is inspired by work on
alkali-metal collisions [22–25], uses the measured values
of µ and of the resonance positions as input parame-
ters. With this combined experimental and theoretical
approach, we are able to reach an assignment of the dom-
inant molecular quantum numbers `, J , and M for the
above investigated states.

In our model, the Feshbach resonances are related to
weakly bound vibrational states of the adiabatic poten-
tials Un(R;B), n = 1, 2, . . . . The potentials Un(R;B)
are the eigenvalues of the atom-atom interaction poten-
tial operator at given B and interatomic separation R.
At large R, the interaction is given by the DDI and
the isotropic and anisotropic van-der-Waals dispersion
interactions. Details of our theoretical approach are de-
scribed in the Supplemental Material [16]. Figure 2 shows
Un(R;B) calculated at B = 2.44 G. We distinguish four
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groups of potentials, each associated with a dominant
partial wave `. Within a group, the potentials are split
by the Zeeman energy and the magnetic DDI n and disso-
ciate at a different atomic thresholds. For each potential
Un(R;B) we can further assign the dominant J and M ,

where ~J = ~1 + ~2 is the sum of electronic angular mo-
menta of two atoms and M is the projection of J on
the internuclear axis. The figure also shows an exam-
ple of predominantly d-wave Feshbach molecules with an
outer classical turning point R∗. Its “adiabatic” molec-
ular magnetic moment is to good approximation given
by µcalc ≈ −dUn(R∗;B)/dB, where we further use that
most of the vibrational wavefunction is localized around
R∗. Interestingly, we observe that the µcalc value quickly
converges with the number of included ` (even ` ≤ 6 is
sufficient) and that it strongly depends on the DDI but
only weakly on the vdW dispersion potential. In fact, at
R∗ the DDI dominates over the anisotropic part of the
dispersion potential.

Finally, we assume for each Feshbach resonance a vi-
brational state that is on resonance and then find the adi-
abatic potential which has a magnetic moment closest to
the measured one within 1 %. Once the best matching is
identified, the corresponding Un(R;B) sets the dominant
molecular quantum numbers `, J , and M . As summa-
rized in Table I, in our range of investigation we observe
d-, g-, and i-wave molecular states. These states show
several dominant M contributions. This fact is unusual
and reflects the dominant role of the DDI, which couples
several adiabatic potentials and M components. This
mixing effect is particularly dominant below 10 G, where
the DDI at R∗ is larger than the Zeeman interaction.
Above 10 G, we predict µ to be equal to integer multi-
ples of gµB [16], where g is the Er atomic Landé-factor.

As a consequence of the extremely large magnetic
dipole moments of Er2, the molecule behavior is ex-
pected to be dominated by the DDI; see Table I. For
instance, Er2 with the largest measured µ value possesses
ad ≈ 1150 a0. Remarkably, this value is comparable to
the one realized with ground-state KRb molecules [26],
which are an extensively investigated case and can thus
serve as a benchmark dipolar system. From a compara-
tive analysis between Er2 and KRb, one can unveil uni-
versal marks imprinted by the DDI, especially given that
the two systems are very different in nature, yet sharing
a similar degree of dipolarity. Their profound differences
are clear: Er2 is a weakly bound homonuclear magnetic
molecule in a highly excited vibrational levels, whereas
KRb are deeply bound hetereonuclear molecules in the
absolute ground-state.

Following Refs. [27–29], we focus on the study of the
collisional stability of Er2 both in a three- (3D) and
in a quasi two-dimensional (q2D) trap for two different
dipole orientations. The dipole orientation is controlled
by changing the direction of the magnetic field and is rep-
resented by the angle θ between the magnetic field axis
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Figure 3. Typical time evolution of the number of molecules
for θ = 90◦ (squares) and θ = 0◦ (circles) in a 3D (a) and in
a q2D trap (b). The data refer to molecules in the state µ1

for the 3D case (a) and molecules in the state µ2 in q2D (b).
The insets in (b) show an illustration of molecules in pancake-
shaped traps with side-by-side (right) and head-to-tail (left)
orientations. The solid lines are two-body decay fits to the
data. The error bars for (a) and (b) are smaller than the data
points and are not shown. We calculate the statistical error
from averaging over 5 independent measurements in (a) and
about 50 in (b).

and the gravity axis. Our experiment begins with the
atomic sample trapped either in a 3D or in a q2D ODT.
The q2D trap is created by superimposing a vertically
oriented, one-dimensional optical lattice [16]. After the
magneto-association and the removal of the remaining
atoms, we probe the time evolution of the molecule num-
ber for head-to-tail (θ = 90◦) and side-by-side (θ = 0◦)
dipole orientation. We extract the corresponding relax-
ation rate coefficients, β⊥ and β‖, using a standard two-
body rate equation [30].

Figure 3 shows typical molecular decay curves in (a)
3D and in (b) q2D. In 3D, we confirm that the inelas-
tic decay does not depend on θ. We obtain β3D =
1.3(2) × 10−10 cm3/s. This is a typical value for boson-
composed Feshbach molecules, which undergo a rapid vi-
brational quenching into lower-lying molecular states, as
demonstrated with alkali atoms [30]. Contrary, in q2D
the decay rates clearly depend on the dipole orientation.
We perform the decay measurements with molecules in
state µ1, µ2, and µ4 [31]. For each molecular state, β⊥ is
larger than β‖ with a reduction of losses up to 30 % for
side-by-side orientation, for which the DDI is predomi-
nantly repulsive, as compared to head-to-tail orientation.

The ratio β⊥(T )
β‖(T ) increases with increasing µ; see Table II.

The reduction of losses in q2D draws a natural anal-
ogy with the observations obtained with KRb molecules
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Table II. Experimental and theoretical loss rate coefficients
β for T = 400 nK and for various µ and θ at B = 200 mG.
Uncertainties of β are statistical from fitting and systematic
due to number density uncertainty. For the slightly different
values of µ compared to Table I and the error discussion see
Supplemental Material [16].

µ β⊥ (10−6 cm2/s) β‖ (10−6 cm2/s)
(µB) Exp. Theo. Exp. Theo.

µ4 8.7(6) 12.5±0.3±3.3 6.00 10.6±0.3±2.8 4.79
µ1 10.9(5) 9.5± 0.2± 2.5 6.81 7.3± 0.1± 2.1 5.07
µ2 11.7(3) 11.3±0.2±2.9 7.12 8.6± 0.2± 2.3 5.13

[29]. To get a quantitative comparison, we theoretically
study the scattering behavior of Er2 using the same for-
malism successfully employed for KRb. We compute the
Er2 + Er2 loss rate coefficients β(T ) in 3D and in q2D
for given values of µ, θ, and T . By averaging over a
3D and a 2D Maxwell-Boltzmann distribution, we obtain
the thermalized loss rate coefficients β(T ) in 3D and in
q2D, respectively. The formalism accounts for the dom-
inant long-range interactions at ultralow temperatures:
the DDI and the isotropic vdW interaction [16].

In 3D, we find a rate coefficient of 1.01×10−10 cm3/s at
T = 300 nK, which is close to the experimental value [32].
In q2D, our calculations show that the collision dynamics
at long range, and thus the value of β, depends on the
dipole orientation and monotonically increases with µ. In
Table II, we compare theory and experiment and observe
a good qualitative agreement. As in the experiments, our
calculations show that head-to-tail collisions (β⊥) lead to
larger molecular losses than side-by-side collisions (β‖).
From a quantitative side, the absolute values of β differ
by up to a factor of 2. This difference comes from the fact
that our theoretical calculations do not include details of
the short range physics since the Er4 potential energy
surfaces are currently unknown [16]. Then it is theoreti-
cally impossible to predict the absolute magnitude.

Remarkably, when comparing the theoretical and ex-

perimental values of the ratio β⊥(T )
β‖(T ) of bosonic 168Er2

versus ad/aho in Fig. 4, we observe good agreement as
the ratio is determined by the DDI and not by the short-
range physics [16]. Here, aho is the harmonic oscillator
length along the tightly confining axis direction in q2D,
given by

√
~/(2πνzm), with trap frequency νz. This sug-

gests that despite the unknown short-range physics, we

can correctly describe β⊥(T )
β‖(T ) of Feshbach molecules using

a point-like-dipole formalism. More generally, a simple
analysis based on the universal behavior of dipolar colli-
sions in confined systems [33] in the Wigner regime actu-
ally leads to the following universal scaling laws for the

ratio [16]: β⊥(T )
β‖(T ) ∼

(
adB

aho

)4 ad
aho

exp
[
2
(
ad
aho

)2/5]
for bosons

when ad, aho > avdW, and β⊥(T )
β‖(T ) ∼

(
ad
avdW

)3
for fermions

when ad, avdW < aho, with adB = h/
√

2πmkBT the de

0 1 2 3

1

2

bosons
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µ1
µ2µ4

β ⊥
/β
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KRb theory
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Figure 4. Universal loss rate ratio β⊥/β‖ as a function of
ad/ã for Er2 (circles) and KRb (squares) for a fixed value
adB/aho = 4.85 corresponding to T = 400(40) nK and νz =
31.2(1) kHz (see text). The gray shaded area is due to the
uncertainty of T . Here, ã = aho for bosonic molecules (filled
symbols) and ã = avdW for fermionic molecules (open sym-
bols). The calculated loss rate ratios of Er2 are compared with
the experimental data for states µ1, µ2, and µ4 (triangles).

Broglie wavelength and avdW = (2mC6/~2)1/4 the vdW
length, and C6 the vdW coefficient. We confirm these
universal behaviors by comparing the numerical results
for bosonic 41K87Rb and 168Er2, and fermionic 40K87Rb
and 167Er168Er; see Fig. 4. No matter the magnetic or
electric dipolar system used, we find a unique universal
curve for bosons as a function of ad/aho and a unique
one for fermions as a function ad/avdW, as suggested by

the analytical model. The faster increase of β⊥(T )
β‖(T ) for

fermions with respect to bosons is due to the statisti-
cal fermionic suppression of β‖(T ) in q2D that does not
occur for bosons as explained in Ref. [34].

To conclude, our work demonstrates a simple way to
create ultracold polar molecules where each individual
atom carries a large magnetic dipole moment. We pro-
vide a clear signature of the dipolar character of the Er2
molecules by performing scattering experiments in a q2D
confinement, which is in good agreement with theoreti-
cal predictions. We anticipate that this system has the
potential to open regimes of investigations, which have
been unaccessible so far. In contrast to electric polar
molecules, where the electric dipole moment is zero in
the absence of a polarizing electric field, magnetic polar
molecules have a permanent dipole moment allowing to
study the physics of unpolarized dipoles. In addition,
magnetic polar Feshbach molecules are diffuse in space
with a typical size on the order of the vdW length. This
novel situation can also have interesting consequences
and trigger the development of extended scattering mod-
els, which account for multi-polar effects and truly four-
body contributions when the molecule size becomes com-
parable to ad. Finally, a very promising development
will be to create fermionic Er2 polar molecules where vi-
brational quenching processes are intrinsically suppressed
because of the Pauli exclusion principle [35, 36].
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SUPPLEMENTAL MATERIAL

Creation of Er2 in 3D and q2D

We create Feshbach molecules using standard tech-
niques of magneto-association across a Feshbach reso-
nance. As demonstrated in Refs. [12, 13], Er features
an enormous number of Feshbach resonances. Here, we
focus on the resonances observed below 3 G. In par-
ticular, we first create an ultracold atomic sample of
about 3× 105 168Er atoms at a temperature of T ≈
150 nK, which is just above the onset of Bose condensa-
tion, see Ref. [12]. The atoms are confined into a three-
dimensional (3D) crossed optical dipole trap with fre-
quencies νx = 51.5(2) Hz, νy = 13.2(3) Hz, and νz =
207(1) Hz. We choose magnetic fields of 1.4 G, 2.3 G,
and 2.8 G for the molecular states µ1, µ2, and µ4, respec-
tively. We then magneto-associate molecules by ramping
the magnetic field 150 mG below the Feshbach resonance.
The typical ramp speed is 90 mG/ms. After the molecule
association, we remove all the residual atoms from the
optical dipole trap by applying a short laser pulse. The
pulse is on resonance with the strong atomic transition at
401 nm [37] and has a duration of 1µs with an intensity
of ∼ 40 mW/cm2.

To realize a q2D geometry, we superimpose a one di-
mensional optical lattice beam to the system after fin-
ishing evaporation in the 3D trap. The lattice is real-
ized from a retro-reflected laser beam at 1064 nm, prop-
agating along the vertical direction. The beam has a
waist of 250µm and a typical power of 8 W. As a result,
the particles are confined into an array of q2D pancakes
with frequencies νr = 33.0(3) Hz in the radial direction
and νz = 31.2(1) kHz in the tightly confining axial di-
rection. We first load the lattice from the atomic sam-
ple and we then magneto-associate Er2 in the lattice.
The molecule conversion efficiency in the q2D geometry
is . 5 %, which is below the one observed in the 3D trap.
With this scheme, we produce about 1.1× 104 molecules
at a temperature of 400 nK, corresponding to a density of
3.8×107 cm−2. The molecules fill about 35 lattice layers.

We control the molecular dipole orientation by chang-
ing the orientation of the magnetic field. The orienta-
tion is quantified in term of the angle θ, which defines
the angle between the quantization axis, set by the mag-
netic field orientation, and the z-axis of the lattice trap.
We prepare the molecular samples at either θ = 0◦ or
90◦, correspondingly side-by-side (repulsive) or head-to-
tail (attractive) dipolar collisions. The magnetic field is
rotated by using three pairs of independently-controlled
magnetic-field coils. We pay particular attention that
when changing the orientation of the magnetic field we
keep its magnitude constant. We check this by perform-
ing radio-frequency spectroscopy between Zeeman sub-
levels for different angles of rotation. We typically rotate

the field within ∼ 6 ms.
For all our loss-rate measurements, we jump to a mag-

netic field of about 200 mG after molecule association. At
this field, Eb is of the order of few h×1 MHz. We choose
to perform our measurement at this magnetic-field value
because around 200 mG there are no Feshbach resonances
and the molecular spectrum might be less dense. Using
a Stern-Gerlach technique [19], we measure µ at 200 mG
for all the three target molecular states. We find a slight
shift of µ in comparison with the values from Table I of
a few percent to 10.9(5)µB for µ1, 11.7(3)µB for µ2, and
8.7(6)µB for µ4.

The given uncertainties for the measured loss rates in
Table II are composed of a statistical error with one stan-
dard deviation derived from fitting a two-body rate equa-
tion to the measured data, and a systematic uncertainty
coming from number density calibration. Due to the dis-
tribution of molecules across many lattice layers this is by
far the greatest uncertainty in the q2D geometry. The av-
erage 2D density and its uncertainty was calculated using
a number-weighted average over occupied lattice layers
similar to Ref. [29]. When calculating the loss rate ratio
β⊥/β‖, the systematic uncertainty in the density can be
neglected as it is highly correlated for the measurement
of β⊥ and β‖.

Collision Formalism

We briefly describe the theoretical formalism used in
this article to determine the collisional properties of Er2
molecules in free space (3D collisions) and in an one-
dimensional optical lattice (q2D collisions), in an arbi-

trary magnetic field ~B. More details can be found in
Ref. [34, 38].

We use a time-independent quantum formalism based
on spherical coordinates ~r = (r, θr, φr) describing the rel-
ative motion of two Er2 molecules. The quantization axis
ẑ is chosen to be the confinement axis of the optical lat-
tice. A spherical harmonic basis set, summed over dif-
ferent partial waves ` with projections m` on the quan-
tization axis, is used to expand the total colliding wave
function. The one dimensional optical lattice is supposed
to be deep enough to consider the collision taking place
in an individual pancake. One pancake is represented as
an harmonic trap for the relative motion of reduced mass
mred

Vho =
1

2
mred ω

2z2 (1)

with ω = 2πν and ν = 31.2 kHz. The 3D collisions are
recovered by setting ν = 0. We consider molecules in the
ground state of the harmonic oscillator. A given state of
an Er2 Feshbach molecule is described by a rather com-
plicated linear combination of atomic states which cannot
be precisely calculated as mentioned in the next section
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of this Supplemental Material. Therefore we consider
that the molecule has a magnetic moment of magnitude
µ aligned along the magnetic field which makes an angle
θ with the confinement axis. The interaction between
two molecules is provided by the magnetic dipole-dipole
interaction

Vdd =
µ2 (1− 3 cos2(θr − θ))

(4π/µ0) r3
. (2)

We also used an isotropic Er2 + Er2 van der Waals in-
teraction given by

VvdW = −C6

r6
(3)

with C6 = 4 × 1760 = 7040 a.u. which amounts to four
times the value of an isotropic atom-atom coefficient of
1760 a.u. from the theoretical work of Ref. [11]. Note that
an alternative value of 1723 a.u. based on observed transi-
tions was obtained in Ref. [13]. The Schrödinger equation
is solved for each radial intermolecular separations r us-
ing a log-derivative propagation method. Matching the
colliding wavefunction and its derivative with appropri-
ate two-dimensional asymptotic boundary conditions at
long-range [34] provides the cross section and the rate co-
efficient as a function of the collision energy for any arbi-
trary configurations of magnetic fields and confinements.
Averaging the cross sections over a 3D and 2D dimen-
sional Maxwell-Boltzmann distribution provides the cor-
responding thermalized rate coefficients β(T ) for a given
temperature.

At short range, we assume that the molecules undergo
a full loss mechanism process with a unit probability (it
can be either an inelastic or a possible reactive process).
This assumption, which corresponds to the so-called uni-
versal regime in ultracold collisions, considers that the
physics is independent of the initial short-range scatter-
ing phase-shift [39] of the full potential energy surfaces
of Er4. This is what it is usually assumed for theory as
nothing is known about this potential energy surface at
short range. Then, if the magnitude of the rates differs
between experiment and theory, one can learn that an
experimental system deviates from this universal regime
and short-range effects play a role.

To circumvent this, it is more convenient to compute
the ratio of the theoretical rates of two different mag-
netic field orientations since we will start with the same
short-range physics condition for both orientations, and
compare it with the corresponding experimental ratio.
An analysis based on the universal behavior of dipolar
collisions in confinement of Ref. [33] using a Quantum
Threshold model leads to the following formula for the
ratio β⊥(T )/β‖(T ). For bosons, using Eq. 30 of Ref. [33]
to describe β⊥ (dipole dominated) and Eq. 32 of the same
reference for β‖ (confinement dominated) we find

β⊥(T )

β‖(T )

∣∣∣∣
bos

∼
(
adB
aho

)4
ad
aho

e2(ad/aho)
2/5

(4)

when ad, aho > avdW for a fixed value of adB/aho where
adB is the de Broglie wavelength. For fermions, using
Eq. 16 of Ref. [33] to describe β⊥ (dipole dominated) and
Eq. 14 of the same reference for β‖ (van der Waals dom-
inated), along with Eq. 27, we find

β⊥(T )

β‖(T )

∣∣∣∣
fer

∼
(

ad
avdW

)3

(5)

when ad, avdW < aho. These formulas suggest to plot the
ratio as a function of ad/aho for bosons for a fixed ratio
adB/aho = 2π

√
ν/kBT and as a function of ad/avdW for

fermions, as it has been done in Fig. 4 for the magnetic
polar molecules of Er2 and the electric polar molecules
of KRb.

Adiabatic Model

In Ref. [13] we presented the theoretical bosonic-
erbium Feshbach spectra derived from coupled-channels
calculations. We concluded there that such first-principle
evaluations can not quantitatively capture the complex
scattering behavior of Er. In fact with the current com-
puting capabilities, the calculations can not be converged
with respect to the number of basis states required to ex-
plain the experimental Feshbach-resonance density. For
this reason, we developed a novel approach based on adi-
abatic potentials (adiabats) Un(R;B).

Our adiabatic model starts from the Hamiltonian H =
−(~2/2mr)d

2/dR2 + V (~R). The first term is the radial

kinetic-energy operator with ~R describing the orienta-
tion and the separation between the two atomic dipoles,
and mr the reduced mass. The second term of the
Hamiltonian is the potential operator V (~R), which de-
scribes the Zeeman and interatomic interactions. It reads
V (~R) = ~2~̀2/(2mrR

2)+HZ+W elec(~R) and incorporates
the rotational energy operator with molecular orbital an-
gular momentum ~̀, the Zeeman interaction of two atoms
HZ , and the electronic potential operator W elec(~R) be-
tween the particles. Our model assumes that the relative
vibrational motion of two Er atoms is slow compared to
the timescales of the rotational, Zeeman, and “electronic”
atom-atom interactions.

The Zeeman interaction is HZ = gµB(j1z + j2z)B.
Here, g = 1.16 is the Er g-factor, a magnetic field B
is aligned along the ẑ direction, and jiz is the z com-
ponent of the angular momentum operator ~i of atom
i = 1, 2. The electronic potential operator W elec(~R), de-
scribed in Refs. [10, 13, 40], is anisotropic, as it depends

on the orientation of ~R. At large separation R, W elec(~R)
is given by the magnetic dipole-dipole interaction plus
both the isotropic and anisotropic contribution of the
van der Waals interaction. For R → ∞ the interaction
W elec(~R)→ 0.

The Hamiltonian is evaluated in the basis |a〉 =

|(j1j2)JM〉Y`m`
(R̂), where ~J = ~1 + ~2 and Y`m`

(R̂) is
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Figure S1. Adiabatic magnetic moment as a function of mag-
netic field strength evaluated at the entrance channel energy.
Each curve corresponds to the adiabatic magnetic moment of
one adiabatic potential Un(R;B). The magnetic moments for
B > 10 G are given. The dashed vertical lines correspond to
the field strength where we have observed a Feshbach reso-
nance. The red-filled circles are the experimentally measured
magnetic moments at these resonance locations.

a spherical harmonic. It conserves m` + M and parity
p = (−1)`. In addition, for bosonic isotopes (−1)`+J = 1.
We focus on ultracold collisions between atomic states
|j1m1〉 = |j2m2〉 = |6,−6〉 and, therefore, only include
basis functions satisfying m` + M = −12. We limit the
included partial waves to even ` ≤ 6 and thus states with
even J , as the “adiabatic” magnetic moments of the res-
onances quickly converge with the included number of
partial waves. (There is one s-wave channel in our calcu-
lation, four d-wave channels, eight g-wave channels, and
....)

The adiabats Un(R;B) with n = 1, 2, . . . are eigen-

values of the operator V (~R) at a given field strength
B. Their eigenfunctions are |n;R〉 =

∑
a cn,a(R)|a〉 with

R-dependent coefficients cn,a(R). Note that we neglect
the coupling between Un(R;B) due to the radial part of
kinetic-energy operator.

Figure 2 shows the adiabats at B = 2.44 G. The scat-
tering starts from the s-wave entrance channel correlating
to the energetically lowest adiabat. All other potentials
either have a centrifugal barrier and dissociate to two
atoms with M = −12, or dissociate to closed-channel
Zeeman sublevels with M > −12. Furthermore, the fig-

ure shows that the potentials form energetically distinct
groups, where each of the groups can be labeled by a
partial wave quantum number. Within a group the po-
tentials are split by the Zeeman energy and the magnetic
dipole-dipole interaction.

The adiabatic magnetic moment of a resonance is
given by µadiab

nv ≡ −dEnv(B)/dB ≈ −dUn(R∗;B)/dB,
where we realize that to good approximation most
of the adiabatic vibrational wavefunction is localized
around the outer classical turning point. We further
note that dUn(R∗;B)/dB = 〈n;R∗|dHZ/dB|n;R∗〉 from
the Hellmann-Feyman theorem and, hence, µadiab

nv =
−gµB

∑
aMa|ca(R∗)|2, where Ma is the total atomic pro-

jection quantum number of state |a〉. We assign a res-
onance by the quantum numbers of the basis state |a〉
for which |ca(R∗)|2 is largest and note that the absolute
value of the magnetic moment of a resonance is always
smaller that 12gµB ≈ 14µB.

We further assume that the non-adiabatic coupling
between the adiabatic potentials is significantly smaller
than their spacings for R < 100a0. Then a weakly bound
level of adiabatic potential n can lead to a Feshbach res-
onance when its energy Env(B) coincides with the en-
trance channel energy. The outer turning point R∗ of
this level satisfies Un(R;B) = 0. The resonance acquires
a width due to non-adiabatic coupling to the entrance
channel.

Finally, we determine the approximate quantum num-
bers of experimentally-observed resonances with Bres < 3
G, listed in Table I, based on a comparison of the exper-
imental magnetic moment with those predicted by the
adiabatic model at the same resonant field. We find that
for these resonances there exist adiabats with a mag-
netic moment that agrees within 1% uncertainty with
the experimental values. A study of the largest coeffi-
cients cn,a(R) at R = R∗ then enables us to assign the
dominant quantum states shown in Table I.

Figure S1 shows the magnetic-field dependence of the
adiabatic magnetic moment at the entrance channel en-
ergy for each of the adiabatic potentials Un(R;B). We
see that for B > 8 G the magnetic moment values equal
integer multiples of gµB corresponding to those of the
atomic limits. For smaller field strengths the adiabatic
magnetic moments show mixing of the Zeeman sublevels.
Here, the magnetic moment value depends on the mag-
netic dipole-dipole interaction but only weakly on the
strength and anisotropy of the dispersion potential. The
figure also shows our experimentally studied Feshbach
resonance locations as well as their magnetic moments
µexp; see Table I.
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