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1 Introduction

Cosmological correlators. Key predictions of inflationary cosmology are encoded as
statistical information in the cosmological correlators, namely, the n-point correlation functions
of ubiquitous massless fields: the curvature perturbation and the gravitons. The final values
of these correlation functions at the end of inflation depend on the dynamics and interactions
of quantum fluctuations in the bulk of the inflationary spacetime. Because these correlators
provide the initial conditions for the subsequent evolution of the universe, observing the
correlation functions in the Cosmic Microwave Background (CMB) and Large Scale Structures
(LSS) offers the intriguing possibility of gaining insights into high-energy processes inaccessible
through terrestrial collider experiments. The correlators involving the exchange of massive
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and possibly spinning particles are of particular interest. The inherently high-energy scale of
inflation creates an environment favorable for producing massive fields during this remarkable
epoch. Through their interactions with the curvature perturbation, these fields generate
distinct patterns in the correlation functions, encoding crucial information about their masses,
spins, mixing angles, and interactions. This concept was initially introduced in pioneering
works [1–3], and was subsequently elaborated and termed as the Cosmological Collider (CC) [4].
Numerous recent studies have utilized the CC signal to investigate models of high-energy
physics [5–99] along with developing both analytical and numerical techniques aiming to
deepen the understanding of underlying fundamental properties of these correlators [100–155],
see also the recent first searches for CC signals in real cosmological data [156, 157].

Analytical and numerical methods. Conventional methods for calculating inflationary
correlation functions, based on the so-called in-in (or Schwinger-Keldysh (SK)) formalism,
typically involve multiple layers of nested integrals in the time domain (see [158–160] for com-
prehensive reviews). Remarkably, in the recent years we have seen significant developments
in various analytical and numerical methods. For instance, newly developed wavefunction
approaches have made the analytical properties behind correlators more transparent [110–
114, 124, 133, 150, 161–169]. Indeed, evaluating directly the nested time integrals — involving
massive propagators expressed as complicated special functions — can be extremely chal-
lenging. Given that the inflationary background is quasi-de Sitter (dS), by restricting the
calculation of correlators to their values at the end of inflation only, we can bring a drastic
simplification. This so-called “boundary perspective” was introduced in a program known
as the cosmological bootstrap [106–108], see [128] for a review. Initially relying on the ex-
act dS symmetries, this method has led to the full analytical form of tree-level correlators
built off single-exchange channels only. Later, it has been extended to symmetry-breaking
cases, such as those with non-unit sound speed [130–132], chemical potential [135], with IR
effects [137], and time-dependent mass [147]. Additionally, fundamental properties including
unitarity, locality, causality, and analyticity were invoked to comprehend the underlying
structure of these cosmological correlators [110–116]. The Mellin transformation also proved
to be powerful for understanding inflationary correlators [121–123]. The so-called partially
Mellin-Barnes (MB) method was introduced over the last two years [82, 135, 138–141] and
makes it easier to calculate bulk time integrals, and subsequently many exact results for
inflationary correlators were obtained. In a different direction, a systematic program called
the “Cosmological Flow” was proposed last year [170, 171]. It enables us to trace the time
evolution of the correlators in the bulk of the inflationary evolution and is valid even in the
strong quadratic mixing regime that remains so far inaccessible with traditional methods.
The numerical implementation of this method is called CosmoFlow and a user-friendly guide
with non-trivial examples is provided in [172].

Beyond single-exchange diagrams. After these efforts, the analytical structure of correla-
tors associated with a single massive (spinning) field exchange is now well understood. Even in
theories involving several different species of massive fluctuations with non-trivial interactions,
the single-exchange channel was computed, and a new phenomenon, dubbed inflationary
flavor oscillations, was discovered [77]. Nevertheless, More is different. Moving beyond the
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single-exchange tree-level diagrams is highly challenging due to the significant increase in
complexity. For example, our understanding of loop diagrams is still far from satisfactory.
Recently, some progress has been made towards understanding the structure of loop diagrams
involving massive fields. For example, using the techniques of spectral decomposition in
dS to obtain the one-loop results with the pair of massive scalars [136], and using the MB
representation to extract the non-analytical signals within loop diagrams [139, 140]. Another
important but complicated case arises from including several massive propagators and more
interactions in the tree-level diagrams. Those diagrams are crucial because of their rich
phenomenology, whereas their analytical understanding is still limited. From the perspective
of the bulk time integral, incorporating more massive fields and more interaction vertices
results in exceedingly complicated integrals. The integrand comprises products of several
special functions, and the number of layers of nested time integrals has increased. Thus, it
seems hopeless to perform the time integration directly. To address the problem, several
possible methods have been proposed, each with their own unique advantages. First, an
approximate method, called the bulk-version cutting rule, has proven to be useful. This
method treats one massive propagator at a time while mimicking others using some local
operators in an effective way, which enables us to extract the leading-order CC signals [125].
However, sub-leading contributions, as well as the background signal that is non-negligible in
kinematic configurations relevant for comparison with cosmological observations, are missed.
Regarding exact calculations, the Cosmological Flow and its numerical implementation Cos-
moFlow are useful tools as they can give the exact result for any massive spinless exchange
channel, including CC and background signals, and also including the regime of strong
quadratic mixing [170–172]. As far as exact analytical methods are concerned, only one
very recent work has successfully generalized the MB method to include more than just
single-exchange correlators [141], although the exact results are formulated with several layers
of series summation. As for the bootstrap equations, to the best of our knowledge, no result
has been published so far that is associated to diagrams beyond the single exchange.

Content of this work. In this work, we present the first success in applying the cosmological
bootstrap equations for deriving the exact solutions of correlators that involve double massive
fields exchanges. Moreover, we perform for the first time a detailed comparison of the
bootstrap result with the Cosmological Flow method — completely independent since not
relying on a perturbative scheme in terms of the quadratic mixing — by utilizing CosmoFlow.
To be more specific, we consider the double-exchange four- and three-point functions depicted
in figure 1. In full generality, we allow those two exchanged fields to have different masses,
and the obtained results are applicable to theories with various types of interactions, as
long as they do not lead to secular divergences. Although the concrete calculation concerns
correlators of massless scalar fluctuations, introduced as external fields, the extension to
graviton correlators is straightforward.

Bootstrap equations. The first part of our work focuses on deriving the bootstrap equations
satisfied by the seed integral associated with these diagrams, and obtaining analytical solutions
for the resulting differential equations. More precisely, we can apply a differential operator
to each massive propagator individually, resulting in two second-order differential equations
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with a source term being the single-exchange channel in the absence of the corresponding
propagator. This whole procedure is summarized in the schematic diagram in figure 2,
and is fully explained in section 2. Here, we stand on the shoulders of giants, benefiting
from the well-established result of the single-exchange diagram, particularly the exact and
closed-form expression of the corresponding seed integral [138] which does not require any
series summation.

Solutions to the bootstrap equations. We show in section 3 that we can solve these complicated
bootstrap equations. The homogeneous equations can be solved using a specific type of
two-variable hypergeometric function known as the Appell function F4. We have observed
that a particular choice of variables is quite useful, namely ri ≡ 2ki/(k1 +k2 +k3 +k4), where
ki = |ki|. By employing these variables and choosing appropriate ansatz, we find particular
solutions and also the integration constants, ultimately deriving the exact general solutions
for these bootstrap equations. Notably, these solutions involve only one series summation
which makes the analysis of their analytical structure more transparent. As is now well known,
the single-exchange channel exhibits two distinct contributions characterized by different
behaviors: one contribution involves imaginary powers of momentum ratios and is known
as the celebrated CC signal, while the other contributions display analytic dependence on
the momentum ratios and are typically regarded as the featureless background. As could be
expected, the double-massive fields exchanges channels consist of three distinct terms: one
arises from signals generated by both massive fields, another one from the mixing between
the background and the signal originating from only one massive field and the remaining
one represents purely the background. Each term has different mass dependence as will be
emphasized in the main text. This iterative procedure, employing simpler diagrams as the
source to bootstrap equations for seed integrals involving more massive fields exchanges, can
be generalized to more complicated diagrams. In particular, we demonstrate that the results
of the double-exchange diagram can be used to calculate triple-exchange correlators.

Explicit cancellations of spurious divergences. Unfortunately, the primary results of the
four-point correlation function are not applicable to all kinematic regions, as also observed
in [141]. The situation is exacerbated when considering the three-point function, typically
derived by taking the soft limit of one of the external lines (e.g., k4 → 0 in figure 1). The
primary result obtained from taking this limit does not converge for kinematic regions that
satisfy the triangle inequality. In section 4, we will perform some transformations of the
special functions in it, and carefully examine the divergent behaviour under various limits
(e.g. folded limit). We observed that, by regrouping the divergences of homogeneous and
particular solutions together, the whole expression achieves convergent. In brief, by using
the continuation of certain special functions and appropriately organizing and treating all
contributions as a whole, we are able to obtain a final result that is explicitly convergent and
valid for all physical kinematic regions, rendering it perfectly usable for concrete purposes.

Large primordial bispectrum and cosmological collider signal, inflationary flavor oscillations
and the primordial trispectrum. The second part of our work, in section 5, precisely digs
into the rich phenomenology associated with double massive exchange (DE) diagrams. We
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recall how to relate correlators of the massless scalar fluctuation φ to cosmological correlation
functions of the primordial curvature fluctuation ζ. We also propose two natural embeddings
for the theory under study, with the massive scalar fluctuations σα identified as the massive
eigenstates of the isocurvature fluctuations during inflation. We explain that, in the large class
of general non-linear sigma models of inflation, one should generically expect cubic interactions
involving one massless field and two massive ones, leading to DE diagrams. Moreover, from
generic effective field theory perspectives, we also expect such massive fluctuations to be
coupled via an interaction of this form. Importantly, the size of this cubic interaction —
set by the curvature of the target space in non-linear sigma models — is not dictated by
the quadratic mixing alone, contrary to the ubiquitous Lorentz-covariant one leading to
single-exchange (denoted as SE in the following) diagrams. Therefore, we show that the
resulting primordial bispectrum can be large, first on equilateral configurations for which we
display a simple fitting formula, and also in squeezed configurations for which we derive the
CC signal in a closed and explicit form for the first time. Importantly, the DE CC signal is not
suppressed by additional factors of the Boltzmann factor (e−πµ where µ =

√
m2/H2 − 9/4 is

the mass parameter of the double exchanged massive field) compared to the SE CC signal,
and we show that its relative polynomial suppression (µ−2) can easily be compensated by
a larger cubic coupling constant for masses m ≳ H relevant for cosmological observations.
We explain that the bootstrap result is exact and valid for any kinematic configuration,
showcasing its usefulness to predict the full shape of the bispectrum and making contact with
observations. For each of these steps, we precisely compare our analytical predictions with
exact numerical calculations using CosmoFlow and not relying on a perturbative scheme for the
quadratic mixing. Impressively, the two independent methods yield almost identical results
for any kinematic configuration, and any values of the mass of the double exchanged field.
Moreover, supported by the exact numerical result, we propose a first naive extrapolation of
the bootstrap result to the strong quadratic mixing regime, highlighting the weaknesses of this
procedure. We also propose ways to disentangle DE channels from SE ones from cosmological
observations, beyond the simple observation that the DE signal may be observable while
respecting perturbativity bounds, contrary to the SE one. First, we showcase the utility of
the CC phase information to tell those channels apart, since the relation between frequency
and phase are well different for masses close to the Hubble scale. Second, we explain that in
the more generic situation where there exist different species of massive fields, each with their
own masses, one can use the inflationary flavor oscillations to tell apart the two channels.
Third, by moving to the primordial trispectrum we show a unique feature of DE diagrams
that cannot be mimicked by a SE one, with CC signal oscillations transitioning from a
frequency µ to 2µ in the double soft limit.

Organization of this work. This paper is organized as follows. In section 2, we define
the seed integral related to the double-exchange inflation correlators and then derive the
bootstrap equations satisfied by these seed integrals. In section 3, we derive the exact solution
of the bootstrap equations step by step, and the final exact expression is summarized in
section 3.3. The results are extended to all physical regions in section 4, where we also
discuss their behaviors under various limits. In section 5, we delve into the intriguing
phenomenology underlying the double-exchange correlators. Finally, we conclude and outline
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Figure 1. Four-point and three-point diagrams with double massive exchange. For generality, here
we allow internal massive scalar fields σα and σβ to have different masses.

future directions in section 6.

Conventions and notations. Throughout this paper, we adopt the (−,+,+,+) metric
sign convention. The background spacetime is fixed as: ds2 = a2(τ)(−dτ2 + dx2) , with the
scale factor a(τ) = −1/Hτ and τ ∈ (−∞, 0). Here H represents the Hubble parameter that
is fixed as the constant. A prime on quantum average values ⟨· · · ⟩′ indicates the momentum
δ-function and the factor (2π)3 is omitted. We frequently use the shorthand notations, for
example k1234 ≡

∑4
i=1 ki and p123 ≡ p1 + p2 + p3, with similar shorthand subscripts following

the same convention. Some frequently used variables are defined as

u ≡ k1
k24

, v ≡ k3
k24

, ri ≡
2ki

k1234
, r̃i ≡

2ki

k123
.

The majority of the special functions utilized in this work are referenced in the mathematical
functions handbook [173]. Additionally, in appendix A, we provide the definitions and useful
formulae related to these special functions. Other variables and functions will be defined
in the main text as they are introduced.

2 Seed integral and bootstrap equations

This part serves as an introduction to the basic ingredients needed for later discussion.
Experts who are familiar with these descriptions can directly skip to section 2.1.

As mentioned in the introduction, in this work, we will mainly focus on the four-point
and three-point inflation correlators shown in figure 1.

The external lines here always represent the massless inflaton fluctuation φ (or, equiv-
alently, the curvature perturbation ζ), and the internal lines are associated with massive
scalar fields σα (α = 1, 2, · · · ). Distinguished by different colors for clarity, we allow the
exchange of massive scalar fields with distinct masses mα, where α (or β) serves as the label
for different species. By taking the free Hamiltonian to be quadratic and diagonal, each
of the fields can be quantized separately as

ΦA(τ, x) =
∫ d3k

(2π)3

(
ΦA

k (τ)aA
k +ΦA∗

k (τ)aA†
−k

)
eik·x (no sum on A) , (2.1)

where ΦA can denote either the inflaton perturbation φ or the massive fields σα and aA†
k (aA

k )
are the creation (annihilation) operators satisfying the usual commutation relations [aA

k , a†B
k′ ] =

– 6 –
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(2π)3δABδ(3)(k − k′). Mode functions ΦA
k (τ) = {φk, σα

k } are specified below,

φk = H√
2k3

(1 + ikτ)e−ikτ , (2.2)

σα
k = −i e−

π
2 µα+i π

4

√
π

2 H(−τ)3/2H
(1)
iµα

(−kτ) , (2.3)

where µα =
√

m2
α/H2 − 9/4 and H

(1)
ν (·) is the Hankel function of the first kind of order ν. In

all the following sections, we show our results for the case with massive fields in the principal
series (mα > 3H/2) which is particularly relevant to cosmological collider physics. The results
related to imaginary µα (mα < 3/2H) can then be simply obtained by the substitution
µα → −iνα with να =

√
9/4− m2

α/H2, and we will use that for a specific example later on in
section 5. To formulate the seed integral, we adopt the Schwinger-Keldysh (SK) diagrammatic
conventions outlined in [160], where readers can find more details. The bulk-to-boundary
propagators K associated with the inflaton fluctuation φ are

Ka(k, τ) = H2

2k3 (1− iakτ)eiakτ , (2.4)

where a = ±1 is the SK vertex index, and the bulk-to-bulk propagators Dα
ab associated with

massive fields σα are explicitly given by

Dα
−+ (k; τ1, τ2) = σα

k (τ1)σα∗
k (τ2) =

H2πe−πµα

4 (τ1τ2)3/2 H
(1)
iµα

(−kτ1)H
(2)
−iµα

(−kτ2) , (2.5)

Dα
+− (k; τ1, τ2) =

(
Dα

−+ (k; τ1, τ2)
)∗

, (2.6)

Dα
±± (k; τ1, τ2) = Dα

∓± (k; τ1, τ2) θ (τ1 − τ2) + Dα
±∓ (k; τ1, τ2) θ (τ2 − τ1) . (2.7)

Here τ1 and τ2 denote the conformal time at the vertex where bulk-to-bulk propagators connect.
Note that propagators Dα

∓± are factorised in time and satisfy the homogeneous differential
equation, whereas the time ordering in the D±± introduced an additional δ-function source
to this equation, explicitly[

τ2
i ∂2

τi
− 2τi∂τi + k2τ2

i + µ2
α + 9

4

]
Dα

±∓ (k; τ1, τ2) = 0 , (2.8)[
τ2

i ∂2
τi
− 2τi∂τi + k2τ2

i + µ2
α + 9

4

]
Dα

±± (k; τ1, τ2) = ∓iH2τ2
1 τ2

2 δ (τ1 − τ2) , (2.9)

where i = 1, 2. These differential equations will play an important role in deriving the
bootstrap equations later and one can easily check that they are indeed satisfied by (2.3).

2.1 Definition of the seed integral and typical examples

Based on the quantities defined in the previous sections, we now introduce a seed integral
I for four-point inflaton correlators involving double massive field exchange:

Ip1p2p3
abc,αβ = H−4k9+p123

24 (−iabc)
∫ 0

−∞
dτ1dτ2dτ3(−τ1)p1(−τ2)p2(−τ3)p3

× eiak1τ1+ibk24τ2+ick3τ3Dα
ab (k1; τ1, τ2)Dβ

bc (k3; τ2, τ3) , (2.10)

– 7 –
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where pi (i = 1, 2, 3) are constant numbers specifying types of φ-σ vertices and kj (j = 1, 2, 3, 4)
are the four external momenta of inflatons φkj

and the prefactor H−4 is introduced to render
the seed integral dimensionless. We use the abbreviation p123 ≡ p1 + p2 + p3, k24 ≡ k2 + k4,
and assume pi > −5/2 for the time-integrals to converge at late times τi → 0.1 We also
remind a, b, c = ± correspond to the SK indices and α, β = 1, 2, · · · label the massive fields.
The propagators for massive fields Dα

ab are defined in (2.5)–(2.7). The seed integral (2.10)
can be diagrammatically shown on the left of figure 1, and other channels can be obtained
by simply taking the permutation of the momentum variables.

To get an analytical expression of the seed integral (2.10) is one of the main purposes of
this paper. We derive the differential equations (bootstrap equations) for eq. (2.10) in the next
part section 2.2 and solve them in section 3. Furthermore, by taking the limit k4 → 0 in (2.10),
one can relate it to the expression for the three-point function (as depicted in the schematic
diagram of the right of figure 1). Taking this limit is a non-trivial task due to cancellations
of apparent divergences, and therefore this will be discussed separately in section 4.

Example. Once the analytical expressions for the seed integral (2.10) and its various limits
are obtained, we then have all the necessary information to compute two-, three-, and
four-point correlators with double exchanges for various φ-σ interactions. Among them, the
three-point correlators with interactions corresponding to (p1, p2, p3) = (−2,−2,−2) are of
particular phenomenological interest since they generically arise from UV motivated multi-field
inflation models with curved field space metric [174, 175]. As we will show in greater details
in section 5, this interaction can also lead to a bispectrum sufficiently large to be constrained
by current and upcoming cosmological observations while remaining under theoretical control,
thus making it an interesting channel for discovery of new physics at high energies.

Let us look more at this example (three-point correlators with (p1, p2, p3) = (−2,−2,−2))
and how it is expressed by the seed integral (2.10). In this case, the interactions between
inflaton’s fluctuations φ and massive scalars σα are given by [77, 175]

Sint,2 =
∑

α

∫
dτd3x ρα a3σαφ′, (2.11)

Sint,3 =
∑
α,β

∫
dτd3x λαβ a3σασβφ′, (2.12)

where ρα and λαβ are coupling constants with mass dimensions 1 and 0 respectively, and
the prime denotes the derivative with respect to conformal time τ . Note that a = (−Hτ)−1

in de Sitter spacetime. Then, by the SK diagrammatic rule [160], one can write down the
three-point correlator of double-exchange with interactions (2.11) and (2.12) as

⟨φk1φk2φk3⟩′ =−2i
∑
α,β

ραρβλαβ

H9

∫ 0

−∞
dτ1dτ2dτ3(−τ1)−3(−τ2)−3(−τ3)−3

×
∑

a,b,c=±
(abc)K ′

a(k1;τ1)K ′
b(k2;τ2)K ′

c(k3;τ3)Dα
ab (k1;τ1, τ2)Dβ

bc (k3;τ2, τ3)+2 perms,

(2.13)

1As long as Re[pi] > −5/2, it can be analytically continued to imaginary pi in principle [138].

– 8 –



J
H
E
P
0
9
(
2
0
2
4
)
1
7
6

where the prime on the left-hand side means that a momentum conservation factor (2π)3δ(3)(k1+
k2 + k3) is extracted, and “2 perms” represents the permutations (k2 ↔ k1) and (k2 ↔ k3).
The propagators Ka and Dα

ab are given in (2.4) and (2.5)–(2.7), respectively. With K ′
a(k, τ ) =

H2τ/2k eiakτ , this can be further simplified as

⟨φk1φk2φk3⟩
′ = 2 i

∑
α,β

ραρβλαβ

H3 · 1
8k1k2k3

∫ 0

−∞
dτ1dτ2dτ3(−τ1)−2(−τ2)−2(−τ3)−2

×
∑

a,b,c=±
(abc)eiak1τ1+ibk2τ2+ick3τ3Dα

ab (k1; τ1, τ2)Dβ
bc (k3; τ2, τ3) + 2 perms.

(2.14)

Now, it is clear that this three-point correlator can be directly related to the seed inte-
gral (2.10) with

⟨φk1φk2φk3⟩
′ = −

∑
α,β

ραρβλαβ · H

4k1k4
2k3

∑
a,b,c=±

lim
k4→0

I−2−2−2
abc,αβ + 2 perms. (2.15)

Another example that will be discussed in this work is the trispectrum with four-point
interaction like

Sint,4 =
∑
α,β

∫
dτd3x λ̃αβ a2σασβ(φ′)2 , (2.16)

where λ̃αβ is a coupling constant with mass dimension −2. Following the same procedure as
before, the trispectrum involving two massive propagators can be expressed as

⟨φk1φk2φk3φk4⟩
′=−4i

∑
α,β

ραρβλ̃αβ ·
1

16k1k2k3k4

∫ 0

−∞
dτ1dτ2dτ3(−τ1)−2(−τ2)0(−τ3)−2

×
∑

a,b,c=±
(abc)eiak1τ1+ibk24τ2+ick3τ3Dα

ab (k1;τ1, τ2)Dβ
bc (k3;τ2, τ3)+5 perms ,

(2.17)

where the total of 6=4!/4 permutations correspond to the different ways to form unordered
pairs out of the four ki. Then, the trispectrum can be connected to the seed integral (2.10)
through a simple relation, such as

⟨φk1φk2φk3φk4⟩
′ =

∑
α,β

ραρβλ̃αβ · H4

4k1k2k3k4k5
24

∑
a,b,c=±

I−2 0 −2
abc,αβ + 5 perms. (2.18)

2.2 Derivation of bootstrap equations with double-exchange

Now, our task is to compute the seed integral (2.10). However, the nested time integral of
the special function makes it difficult to perform a direct integration. Instead of doing so,
here we derive differential equations that the seed integral satisfies and subsequently solve
them with appropriate boundary conditions. To facilitate the later derivation, let us first
change the integration variables from τi to zi by

−k1τ1 = z1, −k24τ2 = z2, −k3τ3 = z3, (2.19)
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and hence zi ∈ (0,+∞). Then, the propagator Dα
ab inside the seed integral (2.10) can

be rewritten as

Dα
ab (k1; τ1, τ2) = Dα

ab

(
k1;−

z1
k1

,− z2
k24

)
≡ k−3

1 D̂α
ab (z1, uz2) , (2.20)

where we have defined momentum ratios as

u ≡ k1
k24

, v ≡ k3
k24

, (2.21)

and “hat” propagators D̂ab by

D̂α
−+ (z1, uz2) =

H2πe−πµα

4 z
3/2
1 (uz2)3/2 H

(1)
iµα

(z1)H
(2)
−iµα

(uz2) , (2.22)

D̂α
+− (z1, uz2) =

(
D̂α

−+ (z1, uz2)
)∗

, (2.23)

D̂α
±± (z1, uz2) = θ (uz2 − z1) D̂α

∓± (z1, uz2) + θ (z1 − uz2) D̂α
±∓ (z1, uz2) . (2.24)

In the same way, for Dβ
bc (2.10), we have

Dβ
bc (k3; τ2, τ3) = Dβ

bc

(
k3;−

z2
k24

,−z3
k3

)
= k−3

3 D̂β
bc (vz2, z3) . (2.25)

With the redefinition above, the seed integral (2.10) is written as

Ip1p2p3
abc,αβ = H−4(−iabc)

u4+p1v4+p3

∫ ∞

0
dz1dz2dz3 zp1

1 zp2
2 zp3

3 e−iaz1−ibz2−icz3D̂α
ab (z1, uz2) D̂β

bc (vz2, z3) ,

≡ 1
u4+p1v4+p3

Îp1p2p3
abc,αβ (u, v) , (2.26)

where we have introduced the hatted seed integral Î in the second line. Note that the seed
integral depends on the two combinations of momentum, u = k1/k24 and v = k3/k24. The
important observation here is that D̂α

ab (D̂
β
bc) depends on a specific combination uz2 (vz2),

which allows us to derive differential equations for the hat propagators with respect to u (v)
instead of τ2 or z2. For example, from eqs. (2.8) and (2.9) with change of variables (2.19),
we find that D̂α

ab (z1, uz2) satisfy[
z2

2∂2
z2−2z2∂z2+(uz2)2+µ2

α+
9
4

]
D̂α

±∓ (z1,uz2)= 0, (2.27)[
z2

2∂2
z2−2z2∂z2+(uz2)2+µ2

α+
9
4

]
D̂α

±± (z1,uz2)=∓iH2z2
1(uz2)2δ (z1−uz2) . (2.28)

Then, noting z2∂z2f(uz2) = u∂uf(uz2), one can rewrite the equations above to those with
respect to u that is[

u2∂2
u − 2u∂u + (uz2)2 + µ2

α + 9
4

]
D̂α

±∓ (z1, uz2) = 0, (2.29)[
u2∂2

u − 2u∂u + (uz2)2 + µ2
α + 9

4

]
D̂α

±± (z1, uz2) = ∓iH2z2
1 (uz2)2 δ (z1 − uz2) . (2.30)
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In the same way, for D̂β
bc (vz2, z3), we obtain[

v2∂2
v − 2v∂v + (vz2)2 + µ2

β + 9
4

]
D̂β

±∓ (vz2, z3) = 0, (2.31)[
v2∂2

v − 2v∂v + (vz2)2 + µ2
β + 9

4

]
D̂β

±± (vz2, z3) = ∓iH2 (vz2)2 z2
3δ (vz2 − z3) . (2.32)

The seed integrals consist of massive propagators. By utilizing the differential equations
mentioned above and employing integration by parts, we can derive the differential equations
that the seed integral satisfies. Let us begin with the simplest case, Î±∓± which involves
only the non-time-ordered propagators D̂±∓, where the bulk time integral at each vertex is
completely factorised. By applying some derivative operators, it can be easily shown[

u2∂2
u−2u∂u+µ2

α+
9
4

]
Îp1p2p3
±∓±,αβ

=±iH−4
∫ ∞

0
dz1dz2dz3 zp1

1 zp2
2 zp3

3 e∓iz1±iz2∓iz3

[
u2∂2

u−2u∂u+µ2
α+

9
4

]
D̂α

±∓ (z1,uz2)D̂β
∓± (vz2,z3)

=∓iu2H−4
∫ ∞

0
dz1dz2dz3 zp1

1 zp2+2
2 zp3

3 e∓iz1±iz2∓iz3D̂α
±∓ (z1,uz2)D̂β

∓± (vz2,z3) , (2.33)

where we used homogeneous equation (2.29) from the second to the third line. The equa-
tion (2.33) is proportional to the original Îp1,p2+2,p3 where the power index p2 is increased
by a factor of two, and one can relate it to Îp1p2p3 by the following formula∫ ∞

0
dz zp+2e−iazf(uz)g(vz)=−(u∂u+v∂v+p+2)(u∂u+v∂v+p+1)

∫ ∞

0
dz zpe−iazf(uz)g(vz) ,

(2.34)

for well-behaved functions f(uz) and g(vz), and with a = ±1.2 It turns out that (2.33)
can be written as[

u2∂2
u − 2u∂u + µ2

α + 9
4

]
Îp1p2p3
±∓±,αβ = u2 (u∂u + v∂v + p2 + 2) (u∂u + v∂v + p2 + 1) Îp1p2p3

±∓±,αβ .

(2.35)
2The proof is as follows. First, we note

0 =
∫ ∞

0
dz ∂z

[
zp+1e−iazf(uz)g(vz)

]
=
∫ ∞

0
dz zpe−iaz [p + 1 − iaz + u∂u + v∂v] f(uz)g(vz),

by z∂zf(uz) = u∂uf(uz) and so on. Therefore, we have∫ ∞

0
dz zp+1e−iazf(uz)g(vz) = −ia (u∂u + v∂v + p + 1)

∫ ∞

0
dz zpe−iazf(uz)g(vz).

Placing p → p + 1 in the above equation, we arrive at∫ ∞

0
dz zp+2e−iazf(uz)g(vz)

= −ia (u∂u + v∂v + p + 2)
∫ ∞

0
dz zp+1e−iazf(uz)g(vz)

= − (u∂u + v∂v + p + 2) (u∂u + v∂v + p + 1)
∫ ∞

0
dz zpe−iazf(uz)g(vz).
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By moving the right-hand side to the left, we arrive at the homogeneous differential equations
satisfied by I±∓±, which are free from source terms,

Dα
u Îp1p2p3

±∓±,αβ(u, v) = 0 , (2.36)

where the differential operator D is defined as

Dα
u ≡ u2∂2

u − 2u∂u + µ2
α + 9

4 − u2 (u∂u + v∂v + p2 + 2) (u∂u + v∂v + p2 + 1)

= u2
(
1− u2

)
∂2

u − u2v2∂2
v − 2u

[
1 + u2 (p2 + 2)

]
∂u − 2u2v (p2 + 2) ∂v

− 2u3v∂u∂v +
(

µ2
α + 9

4

)
− u2(p2 + 2)(p2 + 1) , (2.37)

giving the bootstrap equation for Î±∓± with respect to u. In the same way, one can derive
the one with respect to v,

Dβ
v Îp1p2p3

±∓±,αβ(u, v) = 0 , (2.38)

where the operator Dβ
v is obtained by replacing u ↔ v and α ↔ β in (2.37). In summary, we

find that the seed integral Î±∓± simultaneously satisfies the homogeneous partial differential
equations (2.36) and (2.38).

The similar procedure is applicable to the other seed integrals. However, a distinction
arises when the derivative operators are applied to the time-ordered propagators D̂±±, where
the δ-function on the right-hand side of eq. (2.9) introduces additional source terms. For
instance, in the case of Î±±∓, we obtain:[

u2∂2
u − 2u∂u + µ2

α + 9
4

]
Îp1p2p3
±±∓,αβ

= u2 (u∂u + v∂v + p2 + 2) (u∂u + v∂v + p2 + 1) Îp1p2p3
±±∓,αβ

+ H−2u2
∫ ∞

0
dz1dz2dz3 zp1+2

1 zp2+2
2 zp3

3 e∓iz1∓iz2±iz3δ (z1 − uz2) D̂β
±∓ (vz2, z3) , (2.39)

where the second line appears due to the δ-function term in (2.30). Performing the z1-integral
and changing a variable by z̃2 = (u + 1)z2, this source can be simplified as

H−2up1+4

(u + 1)p12+5

∫ ∞

0
dz̃2dz3 z̃p12+4

2 zp3
3 e∓iz̃2±iz3D̂β

±∓

(
v

u + 1 z̃2, z3

)
. (2.40)

Remarkably, this source term now contains only one massive propagator and two time
integrals, which is actually associated to the seed integral for single massive exchange with
one linear mixing vertex Ip1p2

ab,α and its exact closed analytical expression has already been
investigated in details in the previous work [138] (also see appendix B for a summary of the
results). To be more explicit, the seed integral with single-exchange that we will frequently
utilize in this work is

Ip1p2
ab,α =H−2k5+p12

3 (−ab)
∫ 0

−∞
dτ1dτ2(−τ1)p1(−τ2)p2eiak124τ1+ibk3τ2Dα

ab (k3;τ1, τ2) , (2.41)
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where the notation used here is the same as that we defined in the double-exchange seed in-
tegral.3

It turns out that the seed integral Ip1p2
ab,α (R) depends on a specific momentum ratio

R = 2k3/k1234. By using the single-exchange seed integral Ip1p2
ab,α (R), eq. (2.40) can be

expressed as (see eq. (B.4) for detailed derivation)

up1+4

vp12+5 Ip12+4,p3
±∓,β

(
R = 2v

1 + u + v

)
. (2.43)

Therefore, we obtain the bootstrap equation for Î±±∓ with respect to u,

Dα
u Îp1p2p3

±±∓,αβ(u, v) = up1+4

vp12+5 Ip12+4,p3
±∓,β

(
R = 2v

1 + u + v

)
, (2.44)

which is an inhomogeneous differential equation. In addition, Î±±∓ should also satisfy another
differential equation when the operator Dβ

v is applied. One difference is that Dβ
v will act on

the non-time ordering propagator Dβ
±∓ which has no source term contribution. Consequently,

the differential equation related to Dβ
v should be homogeneous. Following the same procedure,

we can derive all bootstrap equations, which are summarized below:

The summary of bootstrap equations of different seed integrals.

• The fully factorised seed integral Î±∓±:

Dα
u Îp1p2p3

±∓±,αβ(u, v) = 0, (2.45)

Dβ
v Îp1p2p3

±∓±,αβ(u, v) = 0. (2.46)

• The partially factorised partially nested seed integral Î±±∓:

Dα
u Îp1p2p3

±±∓,αβ(u, v) = up1+4

vp12+5 Ip12+4,p3
±∓,β

(
R = 2v

1 + u + v

)
, (2.47)

Dβ
v Îp1p2p3

±±∓,αβ(u, v) = 0. (2.48)
3Due to a non-linearly realized symmetry, whenever there exists a quadratic interaction of the form (2.11),

it must come also with the following cubic interaction, denoted as the “Lorentz-covariant” combination

Sint = −
∑

α

∫
dτd3x

√
−g

ρα

2f2
π

gµν∂µφ∂νφσα , (2.42)

where fπ is an energy scale denoting the normalisation of the primordial curvature fluctuation, see section 5
for more details. With the insertion of one massive propagator and a quadratic vertex, this cubic interaction
gives rise to a single-exchange bispectrum diagram related to the seed integral (2.41) via

⟨φk1 φk2 φk3⟩
′ = −

∑
α

ρ2
αH3

f2
π

· 1
16 (k1k2k3)2

·
∑

a,b=±

lim
k4→0

[
k2

12 − k2
3

k2
3

I0−2
ab + ia

k12
(
k2

3 − k2
1 − k2

2
)

k1k2k3
I−1−2

ab + k2
3 − k2

1 − k2
2

k1k2
I−2−2

ab

]

+ 2 perms.
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Figure 2. The schematic diagram illustrates the double-exchange bootstrap equations. When acting
on it with the differential operator Dα

u (Dβ
v ) associated with the massive fields σα (σβ), the double-

exchange diagram reduces to a single-exchange diagram without the corresponding massive propagator.

• The fully nested seed integral Î±±±:4

Dα
u Îp1p2p3

±±±,αβ(u, v) = up1+4

vp12+5 Ip12+4,p3
±±,β

(
R = 2v

1 + u + v

)
, (2.49)

Dβ
v Îp1p2p3

±±±,αβ(u, v) = vp3+4

up23+5 Ip23+4,p1
±±,α

(
R = 2u

1 + u + v

)
. (2.50)

The differential operator Dα
u is defined in (2.37). The explicit expressions of

Ip1p2
ab,α (R) can be found in (B.5) and (B.6).

Here “factorised” or “nested” is associated with the time integral. For the other partially
factorised partially nested seed integral Î∓±±,αβ(u, v), the expression can be easily obtained
through replacing u ↔ v, α ↔ β and p1 ↔ p3 in the result of Î±±∓,αβ, (2.47) and (2.48).

In figure 2, we show the schematic diagram of these differential equations. Once applying
the differential operators Du (Dv), the double-exchange diagram is reduced to the single-
exchange one for which exact closed results are already known from the previous work [138].
To be more specific, when the two SK indices of one massive propagator are opposite,
applying the corresponding differential operator causes the right-hand side of figure 2 to
vanish, resulting in homogeneous equations. Conversely, if the two indices are the same, an
additional δ-term introduces a source term, which can be expressed using the seed integral
of the single-exchange diagram.

Alternatively, as mentioned in the appendix of [131], one can apply another differential
operator to both sides of figure 2 to further reduce another massive propagator. In doing so,
the source becomes the simple contact one, but the trade-off is that the differential equations
become of order four, and we noticed that it is then difficult to solve them. Instead, in this
work, we stand on the shoulders of giants, leveraging the known results of the single-exchange
diagram to derive those of the double-exchange one. By following a similar procedure, we can

4Similar differential equations for the fully nested integral were also derived in the appendix of [131], for a
double-exchange bispectrum with a specific coupling.
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apply analogous differential operators for more complicated diagrams. In the double-exchange
trispectrum depicted in figure 1 which we calculate in this paper, the interactions have two
quadratic mixings along with one quartic coupling of the schematic form φ2σ2. Additionally,
our method could be used to calculate another type of double-exchange four-point correlator,
that generated by two cubic interactions, one φ2σ and one φσ2, and one quadratic mixing.
Another important example is the seed integral for triple-exchange diagrams, with a four-point
correlator generated by a quartic interaction φσ3 and three quadratic mixings. In appendix D,
we present the first steps of this calculation, leaving the detailed work for a future publication.

Before moving to the solutions of those bootstrap equations, let us first address the
limitations related to the procedure employed here. Indeed, although our analytical results will
represent the exact solutions to the bootstrap equations we just derived, those equations were
found using working hypotheses. The most crucial assumption is that the free Hamiltonian is
diagonal, i.e. there is no linear mode mixing and, rather, quadratic mixings are treated as
vertices of the perturbation theory. If we relax this assumption, we would need to consider
a coupled system of quantum operators Φ̂A

k (τ) = ∑
a ΦA

a,k(τ)âa
k + h.c. with independent

(creation and) annihilation (â†a
k and) âa

k operators and defining a matrix of mode functions
ΦA

a,k(τ) and related propagators. Our assumption forces us to consider the quadratic mixings
of the form ΩABΦA′ΦB , with ΩAB an anti-symmetrix matrix, as quadratic vertices, therefore
assuming their effect is negligible compared to the kinetic and mass terms (we can without
loss of generality assume that the mass matrix is diagonal in the basis of these ΦA [77]).
This assumption imposes upper bounds on the quadratic mixings that we consider explicitly
in this work, ρα ≲ H. By consistency, it also justifies our neglect of the other quadratic
mixings between the massive fields σα identified in [175], as those would result in higher-order
corrections suppressed by additional powers of small coupling constants. Having delineated
the regime of validity of the analytical results will be important when we will dig into
the phenomenology of double-exchange diagrams and compare predictions of the theory to
observational constrains. It will also be important to compare our analytical results to an
independent method not relying on this perturbative scheme for the quadratic mixings, as
provided by the Cosmological Flow framework [170, 171] and its numerical implementation
CosmoFlow [172]. These endeavours are undertaken in section 5 in great detail. We finish
this section by mentioning another hypothesis leaving room for future works: we assumed
that the inflaton fluctuations φ have unit speed of sound, while be it in general single-field
inflation or in the framework of the effective field theory of inflationary fluctuations, c2

s ̸= 1
is ubiquitous. In particular, it was recently understood that a small speed of sound could
result in interesting phenomenology in the soft limits of single-exchange diagrams, denoted
as “low-speed collider” [90, 132], and it would be interesting to extend our results to this
intriguing scenario.

3 Analytical computations for bootstrap equations

In this section, we will solve all the bootstrap equations derived in section 2. Readers who
are not interested in technical details can directly skip to section 3.3 for the summary of
final results.
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Let us start from Î±∓±, which satisfy the homogeneous partial differential equations (2.45)
and (2.46), or explicitly,{

u2
(
1− u2

)
∂2

u − u2v2∂2
v − 2u

[
1 + u2 (p2 + 2)

]
∂u − 2u2v (p2 + 2) ∂v

− 2u3v∂u∂v +
(

µ2
α + 9

4

)
− u2(p2 + 2)(p2 + 1)

}
Îp1p2p3
±∓±,αβ = 0 , (3.1){

v2
(
1− v2

)
∂2

v − v2u2∂2
u − 2v

[
1 + v2 (p2 + 2)

]
∂v − 2v2u (p2 + 2) ∂u

− 2v3u∂v∂u +
(

µ2
β + 9

4

)
− v2(p2 + 2)(p2 + 1)

}
Îp1p2p3
±∓±,αβ = 0 . (3.2)

We find that this system of partial differential equations can be solved analytically by

Îp1p2p3
±∓±,αβ =

∑
a,b=±

c±∓±,ab u
3
2−iaµαv

3
2−ibµβ F4

 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1− iaµα, 1− ibµβ

u2, v2

 ,

(3.3)

where c±∓±,ab with a, b = ± are four undetermined coefficients, which will be fixed later by
imposing proper boundary conditions. F4[· · · ] is the dressed Appell series defined in (A.9).
Note that F4[· · · ] with this definition is only convergent for u + v < 1, and we will discuss in
detail the continuation to all physical kinematic regions in the next section.

The other seed integrals satisfy inhomogeneous equations, and therefore, the general
solutions can be expressed as the sum of homogeneous solutions, as shown in (3.3), and
particular solutions, which will be discussed in the following subsections.

3.1 Particular solutions

Here we aim to find particular solutions for the inhomogeneous bootstrap equations repre-
sented by (2.47)–(2.50). These particular solutions are denoted as P̂p1p2p3

±±∓,αβ and P̂p1p2p3
±±±,αβ,

respectively.

The particular solution P̂±±∓. This solution contributes to the partially factorised
partially nested seed integral and must satisfy a system of specific equations

Dα
u P̂p1p2p3

±±∓,αβ(u, v) = up1+4

vp12+5 Ip12+4,p3
±∓,β

(
R = 2v

1 + u + v

)
, (3.4)

Dβ
v P̂p1p2p3

±±∓,αβ(u, v) = 0 . (3.5)

To find solutions, we begin by rescaling

P̂±±∓ = up1+4

vp12+5 P̃±±∓, (3.6)

and change variables by ri = 2ki/k1234, then

2u

1 + u + v
= 2k1

k1234
≡ r1,

2v

1 + u + v
= 2k3

k1234
≡ r3, (3.7)
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such that equations (3.4) and (3.5) become[
r2

1(1− r1)∂2
r1 − r2

1r3∂r1∂r3 −
(
(4 + p1) r1 − 2 (3 + p1)

)
r1∂r1

− (3 + p1) r1r3∂r3 + µ2
α +

(
p1 +

5
2

)2
]
P̃p1p2p3
±±∓,αβ(r1, r3) = Ip12+4,p3

±∓,β (r3) , (3.8)

[
r2

3(1− r3)∂2
r3 − r1r2

3∂r1∂r3 +
(
(5 + p12) r3 − 2 (6 + p12)

)
r3∂r3

+ (6 + p12) r1r3∂r1 + µ2
β +

(
p12 +

13
2

)2
]
P̃p1p2p3
±±∓,αβ(r1, r3) = 0 . (3.9)

The differential operator appears asymmetric at the moment due to the unbalanced rescaling
of P̃ as defined in (3.6). Referring to (B.5), the right-hand side of (3.8) originates from the
factorised component of the single-exchange seed integral and is explicitly provided by

Ip12+4,p3
±∓,β (r3) =

∑
a=±

e∓i π
2 (p12−p3)

210+p123−2iaµβ π
1
2
Γ
[

5
2 + p3 + iµβ , 5

2 + p3 − iµβ , 13
2 + p12 − iaµβ , iaµβ

3 + p3

]

× r3
13
2 +p12−iaµβ 2F1

[
1
2 − iaµβ , 13

2 + p12 − iaµβ

1− 2iaµβ
r3

]
. (3.10)

The source term exhibits non-analytic behavior in r3 (like a r
iaµβ

3 term). Motivated by
this observation and the series expansion of the hypergeometric function (A.3), we propose
the following ansatz for P̃,

P̃p1p2p3
±±∓,αβ(r1, r3)=

e∓i π
2 (p12−p3)

210+p123π
1
2
Γ
[

5
2+p3+iµβ , 5

2+p3−iµβ

3+p3

]∑
a=±

∞∑
m,n=0

A±±∓(a)
m,n rm

1 r
n+p12+ 13

2 +iaµβ

3 .

(3.11)

We usually denote the oscillatory terms as CC signals, which can help identify the mass of
exchanging particles based on the frequency of oscillation patterns. On the other hand, the
featureless analytic terms are commonly termed as the background, upon which the signals
are situated, and its effect can often be mimicked by inflaton self-interactions. Here we note
that this ansatz is designed to be analytical along the r1 direction but exhibit non-analytical
oscillatory behavior along the r3 direction as stated above. This characteristic suggests that
it represents the contribution that arises from the mixing between the background and the
signal. The coefficients A±±∓(a)

m,n are determined by the differential equations (3.8) and (3.9).
Upon substituting the ansatz, we obtain the following recurrence relations,

A±±∓(a)
m+1,n = (3 + p1 + m) (m + n + p12 + 13/2 + iaµβ)

(m + p1 + 7/2)2 + µ2
α

A±±∓(a)
m,n , (3.12)

A±±∓(a)
0,n = iπ1/2 csch(aπµβ)

µ2
α + (p1 + 5/2)2Γ

[
1
2 + n + iaµβ , 13

2 + p12 + n + iaµβ

1 + n, 1 + n + 2iaµβ

]
, (3.13)

A±±∓(a)
m,n+1 = (1/2 + n + iaµβ) (m + n + p12 + 13/2 + iaµβ)

(n + 1)(n + 1 + 2iaµβ)
A±±∓(a)

m,n , (3.14)
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where the first two are obtained from (3.8) while the last one is from (3.9). These recurrence
relations can be solved5

A±±∓(a)
m,n = iπ 1

2 csch(aπµβ)
µ2

α + (m + p1 + 5/2)2
(3 + p1)m(

5
2 + p1 − iµα

)
m

(
5
2 + p1 + iµα

)
m

× Γ
[

1
2 + n + iaµβ , 13

2 + m + n + p12 + iaµβ

1 + n, 1 + n + 2iaµβ

]
, (3.15)

where (a)m ≡ Γ(a + m)/Γ(a) is the Pochhammer symbol. Upon inserting it back into (3.11),
we derive the particular solution. It is noteworthy that one of the infinite summations, for
instance, the n-summation, can be explicitly performed. After performing the summation
over n, we obtain

P̂p1p2p3
±±∓,αβ =∑

a=±

up1+4

vp12+5 ·
i e∓i π

2 (p12−p3)

210+p123
r

p12+ 13
2

3 ×Γ
[

5
2+p1+iµα, 5

2+p1−iµα, 5
2+p3+iµβ , 5

2+p3−iµβ

3+p1,3+p3

]

×
∞∑

m=0
csch(πaµβ)rm

1 r
iaµβ

3 Γ
[

3+m+p1
7
2+m+p1−iµα, 7

2+m+p1+iµα

]
2F1

[
1
2+iaµβ , 13

2 +m+p12+iaµβ

1+2iaµβ

r3

]
.

(3.16)

The particular solution P̂±±±. Lastly, we examine the particular solution for the fully
nested seed integral P̂p1p2p3

±±±,αβ, which satisfies the system of differential equations,

Dα
u P̂

p1p2p3
±±±,αβ(u, v) = up1+4

vp12+5I
p12+4,p3
±±,β

(
R = 2v

1 + u + v

)
, (3.17)

Dβ
v P̂

p1p2p3
±±±,αβ(u, v) = vp3+4

up23+5I
p23+4,p1
±±,α

(
R = 2u

1 + u + v

)
. (3.18)

Similarly to the previous discussion, it is advantageous to perform rescaling in the following way

P̂±±± = up1+4

vp12+5 P̃±±± , (3.19)

and changing variables by (3.7). Then, the bootstrap equations are transformed into[
r2

1(1− r1)∂2
r1 − r2

1r3∂r1∂r3 −
(
(4 + p1) r1 − 2 (3 + p1)

)
r1∂r1

− (3 + p1) r1r3∂r3 + µ2
α +

(
p1 +

5
2

)2
]
P̃p1p2p3
±±±,αβ(r1, r3) = Ip12+4,p3

±±,β (r3) , (3.20)

[
r3

2(1− r3)∂2
r3 − r1r3

2∂r1∂r3 +
(
(5 + p12) r3 − 2 (6 + p12)

)
r3∂r3

+ (6 + p12) r1r3∂r1 + µ2
β +

(
p12 +

13
2

)2
]
P̃p1p2p3
±±±,αβ(r1, r3) =

(
r3
r1

)p123+9
Ip23+4,p1
±±,α (r1) ,

(3.21)
5The solution is completely fixed by (3.12) and (3.13). One can explicitly check that the remaining

relation (3.14) is automatically satisfied by the solution (3.15).
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where the source term originates from the nested part of the single-exchange diagram, and
its exact expression can be found in (B.6),

Ip12+4,p3
±±,β (r3)=

±i e∓i π
2 p123

210+p123π
1
2
Γ
[

5
2+p3+iµβ , 5

2+p3−iµβ

3+p3

]
×
{
∓2iπ

1
2 r3

p123+9
3F2

[
1,p123+9,3+p3

7
2+p3−iµβ , 7

2+p3+iµβ

∣∣∣∣∣ r3

]

+
∑
a=±

e∓πaµβ22iaµβΓ
[13
2 +p12−iaµβ , iaµβ

]
r3

13
2 +p12−iaµβ 2F1

[
1
2−iaµβ , 13

2 +p12−iaµβ

1−2iaµβ

∣∣∣∣∣ r3

]}
,

(3.22)

where pFq is the dressed hypergeometric function defined in (A.4), and Ip23+4,p1
±±,α (r1) is given

by the same form as (3.22) with replacement r1 ↔ r3, p1 ↔ p3, and α ↔ β. Inspired by the
structure of the source term and the series expansions (A.3)–(A.4), we choose the following
ansatz for the particular solutions:

P̃p1p2p3
±±±,αβ(r1, r3)=

±ie∓i π
2 p123 rp123

3

210+p123π
1
2

∞∑
m,n=0

[
C±±±

m,n rm
1 r3

n+9

+
∑
a=±

{
A±±±(a)

m,n rm
1 r3

n−p3+ 13
2 +iaµβ +B±±±(a)

m,n r
n−p1− 5

2 +iaµα

1 r3
m+9

}]
,

(3.23)

which comprises three terms, each exhibiting distinct analytic structures about r1 and r3 due
to their different origins. The C-term is analytic in both the r1 and r3 directions, indicating
that neither of the massive propagators excites CC signals, and thus, it serves purely as
the background. On the other hand, the A and B-terms feature oscillatory behavior in
one direction, suggesting that one of the massive propagators excites CC signals, making
it the signal-background mixing term. By substituting the ansatz into (3.20) and (3.21),
we obtain the recurrence relations for the different terms which are summarized at the
end of this subsection.

With the explicit forms of the coefficients and after performing one of the infinite
summations in (3.23), we finally obtain the particular solution as

P̂p1p2p3
±±±,αβ = up1+4

vp12+5 ·
e∓i π

2 p123

210+p123
[
µ2

α+(p1+5/2)2
] Γ[ 5

2+p3−iµβ , 5
2+p3+iµβ

3+p3

]

×
∞∑

m=0

(3+p1)m rm
1(

7
2+p1−iµα

)
m

(
7
2+p1+iµα

)
m

{
r9+p123

3 ×3F2

[
1,3+p3,9+m+p123

7
2+p3−iµβ , 7

2+p3+iµβ
r3

]

±
∑
a=±

(
coth(πaµβ)∓1

)
r

13
2 +p12−iaµβ

3 ×2F1

[
1
2−iaµβ , 13

2 +m+p12−iaµβ

1−2iaµβ
r3

]}

+

 µα ↔µβ

p1 ↔ p3
u↔ v

 . (3.24)
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The summary of recurrence relations and solutions of different coefficients.

• The coefficient related to the background term C±±±
m,n :

C±±±
m+1,n = (m+3+p1)(m+n+p123+9)

µ2
α+(p1+m+7/2)2 C±±±

m,n , (3.25)

C±±±
0,n = ∓i2

√
π[

µ2
α+(p1+5/2)2

][
µ2

β+(p3+5/2)2
] (3+p3)nΓ(p123+9+n)(

7
2+p3−iµβ

)
n

(
7
2+p3+iµβ

)
n

,

(3.26)

C±±±
m,n+1 =

(n+3+p3)(m+n+p123+9)
µ2

β+(p3+n+7/2)2 C±±±
m,n , (3.27)

C±±±
m,0 = C±±±

0,n with (p1 ↔ p3, α↔β,n→m) . (3.28)

• The coefficient related to the background-signal mixing term A±±±
m,n :

A±±±(a)
m+1,n =

(m+3+p1)
(
m+n+p12+ 13

2 +iaµβ

)
µ2

α+(p1+m+7/2)2 A±±±(a)
m,n , (3.29)

A±±±(a)
m,n+1 =

(
n+ 1

2+iaµβ

)(
m+n+p12+ 13

2 +iaµβ

)
(n+1)(n+1+2iaµβ)

A±±±(a)
m,n , (3.30)

A±±±(a)
0,n = i e±πaµβ

√
π csch(πaµβ)

µ2
α+(p1+5/2)2

×Γ
[

1
2+n+iaµβ , 13

2 +n+p12+iaµβ , 5
2+p3−iµβ , 5

2+p3+iµβ

1+n,3+p3,1+n+2iaµβ

]
.

(3.31)

As for the other coefficient B±±±(a)
m,n , it satisfies the same relation as A±±±(a)

m,n with
the replacement p1 ↔ p3 and α ↔ β.

• Finally, solutions of those recurrence relation are given by

C±±±
m,n = ∓i2

√
πΓ(p123+9+m+n)[

µ2
α+(p1+5/2)2

][
µ2

β+(p3+5/2)2
]

× (3+p1)m (3+p3)n(
7
2+p1−iµα

)
m

(
7
2+p1+iµα

)
m

(
7
2+p3−iµβ

)
n

(
7
2+p3+iµβ

)
n

,

(3.32)

A±±±(a)
m,n = i

√
πe±πaµβ csch(πaµβ)
µ2

α+(p1+5/2)2
(3+p1)m(

7
2+p1−iµα

)
m

(
7
2+p1+iµα

)
m

×Γ
[

5
2+p3−iµβ , 5

2+p3+iµβ ,m+n+p12+ 13
2 +iaµβ , 1

2+n+iaµβ

1+n,3+p3,1+n+2iaµβ

]
,

(3.33)

B±±±(a)
m,n =A±±±(a)

m,n with (p1 ↔ p3, α↔β) . (3.34)
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3.2 Determine the coefficients

Summarizing the results so far and recalling the relation I = u−4−p1v−4−p3 Î, the general
solutions for the seed integral I are given by

Ip1p2p3
abc,αβ =

∑
d,e=±

cabc,deu
− 5

2−p1−idµαv−
5
2−p3−ieµβ F4

 4+p2−i(dµα+eµβ)
2 ,

5+p2−i(dµα+eµβ)
2

1− idµα, 1− ieµβ

u2, v2


+

P̂p1p2p3
abc,αβ

up1+4vp3+4 , (3.35)

where the particular solutions are given by P̂p1p2p3
±∓±,αβ = 0, (3.16) and (3.24) respectively. cabc,de

are undetermined coefficients and should be fixed by boundary conditions. Previous works
on single-exchange diagrams typically use the folded limit and factorised limit as boundary
conditions [106], but obtaining the formula under such limits can be challenging in our case.
Instead, we adopt an alternative method proposed in [135], where the double soft limit u, v → 0
is imposed as the boundary conditions. Under this limit, the seed integral (3.35) becomes

lim
u,v≪1

Ip1p2p3
abc,αβ =

∑
d,e=±

cabc,deu
− 5

2−p1−idµαv−
5
2−p3−ieµβ Γ

 4+p2−i(dµα+eµβ)
2 ,

5+p2−i(dµα+eµβ)
2

1− idµα, 1− ieµβ

 .

(3.36)

Note that the particular solutions (the second term of (3.35)) are subdominant in this limit.
On the other hand, the time integral under such limit can be readily determined by employing
the partial Mellin-Barnes representation, as detailed in the appendix C. By comparing the
expressions, we can fix the coefficients as

c±∓±,de = −e∓i π
2 (p13−p2) csch (πdµα) csch (πeµβ)× Γ̃(p1, p2, p3, µα, µβ) , (3.37)

c±±∓,de = ∓i e∓i π
2 (p12−p3) csch (πdµα) csch (πeµβ) e∓πdµα × Γ̃(p1, p2, p3, µα, µβ) , (3.38)

c±∓∓,de = c∓∓±,ed with (p1 ↔ p3) and (α ↔ β) , (3.39)
c±±±,de = e∓i π

2 p123 csch (πdµα) csch (πeµβ) e∓π(dµα+eµβ) × Γ̃(p1, p2, p3, µα, µβ) , (3.40)

with the new defined function,

Γ̃(p1, p2, p3, µα, µβ) ≡
π

1
2

24+p13−p2
Γ
[

5
2 + p1 − iµα, 5

2 + p1 + iµα, 5
2 + p3 − iµβ , 5

2 + p3 + iµβ

3 + p1, 3 + p3

]
.

(3.41)

3.3 Summary of solutions

After lengthy calculations, we have finally arrived at the exact solution for the double massive
exchange seed integral (2.10). In this section, we summarize the detailed forms of various
types of seed integrals for reference. We also remind readers again of our notation. The
numbers pi characterize the types of vertices in the seed (2.10), and the summation is denoted
by pij = pi + pj , etc. The indices α, β label the massive fields with masses mα and mβ . The
momentum ratio is defined as u = k1/k24 and v = k3/k24, where k24 = k2 + k4, and we
further introduced r1 = 2u/(1 + u + v) = 2k1/k1234 and r3 = 2v/(1 + u + v) = 2k3/k1234.
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The functions 3F2 and F4 represent the dressed versions of the hypergeometric function and
the Appell series, defined in (A.4) and (A.9), respectively. The coefficient Γ̃(p1, p2, p3, µα, µβ)
is defined in eq. (3.41).

• The fully factorised seed integral:

Ip1p2p3
±∓±,αβ =−e∓i π

2 (p13−p2) Γ̃(p1,p2,p3,µα,µβ)
∑

a,b=±
csch(πaµα)csch(πbµβ)u− 5

2−p1−iaµαv− 5
2−p3−ibµβ

×F4

[ 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1−iaµα,1−ibµβ

u2,v2

]
. (3.42)

• The partially factorised partially nested seed integral:

Ip1p2p3
±±∓,αβ =

∓ie∓i π
2 (p12−p3) Γ̃(p1,p2,p3,µα,µβ)

∑
a,b=±

csch(πaµα)csch(πbµβ)e∓πaµαu− 5
2−p1−iaµαv− 5

2−p3−ibµβ

×F4

[ 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1−iaµα,1−ibµβ

u2,v2

]

+ i
π1/2

r
p12+ 13

2
3

vp123+9
e∓i π

2 (p12−p3)

26+2p2
Γ̃(p1,p2,p3,µα,µβ)×

∑
a=±

∞∑
m=0

Γ
[

3+m+p1
7
2+m+p1−iµα, 7

2+m+p1+iµα

]

×csch(πaµβ)rm
1 r

iaµβ

3 ×2F1

[
1
2+iaµβ , 13

2 +m+p12+iaµβ

1+2iaµβ

r3

]
. (3.43)

The results for Ip1p2p3
±∓∓,αβ can be obtained by replacing u ↔ v (r1 ↔ r3), p1 ↔ p3, and

α ↔ β in Ip1p2p3
∓∓±,αβ.

• The fully nested seed integral:

Ip1p2p3
±±±,αβ =

e∓i π
2 p123 Γ̃(p1,p2,p3,µα,µβ)×

∑
a,b=±

csch(πaµα)csch(πbµβ)e∓π(aµα+bµβ)u− 5
2−p1−iaµαv− 5

2−p3−ibµβ

×F4

[ 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1−iaµα,1−ibµβ

u2,v2

]

+
{

r
p12+ 13

2
3

vp123+9 · e∓i π
2 p123

210+p123

[
µ2

α+(p1+5/2)2
] Γ[ 5

2+p3−iµβ , 5
2+p3+iµβ

3+p3

]

×
∞∑

m=0

(3+p1)m rm
1(7

2+p1−iµα

)
m

(7
2+p1+iµα

)
m

(
r

p3+ 5
2

3 3F2

[
1,3+p3,9+m+p123

7
2+p3−iµβ , 7

2+p3+iµβ

r3

]

±
∑
a=±

(
coth(πaµβ)∓1

)
r
−iaµβ

3 ×2F1

[
1
2−iaµβ , 13

2 +m+p12−iaµβ

1−2iaµβ

r3

])
+

 µα ↔µβ

p1 ↔ p3

u↔ v


 .

(3.44)
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4 Continuation to all kinematic regions

4.1 Continuation and resummation

The homogeneous solutions presented in the last section are expressed using a specific type
of two-variable special function, namely the Appell function F4. This function converges only
when u + v < 1. Meanwhile, some parts of the particular solution exhibit divergence when
u + v > 1. Therefore, the aforementioned results about the trispectrum are only applicable
when the two massive propagators are relatively soft. Adding to this concern, the physical
regions for the bispectrum are constrained to u + v > 1, aligning with the triangle inequality
k1 + k3 > k2.6 In this section, we aim to extend the analytical results to all kinematic regions,
ensuring validity even in the bispectrum limit. Without loss of generality, we fix the power
indices as p1 = p2 = p3 = −2 in this section. The results for alternative values of pi can be
derived by applying appropriate differential operators to the subsequent results [135]. Also,
we will mainly focus on three representative integrals, namely I+−+, I++− and I+++, since
other components can be obtained by taking complex conjugations or permuting the variables.

Seed integral I+−+. Let us begin with the most straightforward case, denoted as I+−+,
which is completely factorised in the time integrals and satisfies the homogeneous bootstrap
equations, (2.45) and (2.46). To speed up the convergence of series, we observed that
employing the variables ri ≡ 2ki/k1234 or r̃i ≡ 2ki/k123 (for the case of the bispectrum),
defined as substitutes for (u, v), proves to be more efficient. Note that the divergence for
u + v > 1 mentioned above appears in the region r1 + r3 > 1 for the new variables.

Two-variable hypergeometric series F4, which are present in the homogeneous solu-
tion (3.42), can be transformed into another second-type Appell function F2 with arguments
ri using the formula (A.10). Subsequently, F2 can be expanded as a series of hypergeometric
functions through (A.11). This allows us to express the original expression as follows,

I+−+(r1, r3) =
∑

a,b=±

∞∑
m=0

−π2

23 csch(2πaµα) csch(2πbµβ) (r1 + r3 − 2)3r
− 1

2 +m+iaµα

1 r
− 1

2 +ibµβ

3

× Γ
[

1
2 + m + iaµα

1 + m, 1 + m + 2iaµα

]
2F1

[
1
2 + ibµβ , 2 + m + iaµα + ibµβ

1 + 2ibµβ
r3

]
.

(4.1)

In the obtained result, there are four series corresponding to indices a, b = ±. One can
check numerically that each term diverges when the sum of r1 and r3 exceeds one. However,
intriguingly, cancellations occur when all terms are summed together. To better visualize
these cancellations, we can regroup the terms in pairs and employ the hypergeometric function

6A similar divergence in three-point correlators also emerges in the conformal correlation functions in
momentum space, specifically in the Triple-K integrals [176].
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transformation (A.5) to rewrite the expression as

I+−+(r1, r3) =
∞∑

m=0
iπ2csch(2πµα) sech(πµβ)

(
r1
2 + r3

2 − 1
)3

Γ
[

1
2 + m + iµα, 2 + m + iµα − iµβ

1 + m, 1 + m + 2iµα, 1
2 + iµβ

]

× r
− 1

2 +m+iµα

1 r
− 1

2 +iµβ

3 2F1

[
1
2 + iµβ , 2 + m + iµα + iµβ

5
2 + m + iµα

1− r3

]
+
(
µα → −µα

)
. (4.2)

The final expression of I+−+ is now well-behaved even in regions where r1 + r3 > 1,
and thus the validity of the analytical expression is extended to all physical kinematic
regions. Regarding the bispectrum limit, one can simply replace every ri above with r̃i,
and the convergence is also guaranteed. Alternatively, we can take a different perspective
on the continuation procedure. In the initial steps of solving homogeneous equations, we
can directly introduce an ansatz, similar to our approach to finding particular solutions.
After the resummation of one variable, the ansatz for the homogeneous solution will take
the form outlined above.

Seed integral I++−. The case of the partially factorised partially nested seed integral
I++− closely parallels our previous discussion. The particular solution after summing over
the series of rn

3 shows great convergence within the three-point region (k1 + k3 > k2). Then,
the only thing we need to be concerned about is the homogeneous parts Y++−, which can be
addressed using the same procedure as before. After changing variables and expanding the
results as the hypergeometric series, we noticed that the expressions can be systematically
regrouped in pairs, which finally reads as

Y++−(r1, r3)=
∞∑

m=0

{
−π2

2 [csch(πµα)+sech(πµα)] sech(πµβ)Γ
[

1
2+m+iµα,2+m+iµα+iµβ

1+m,1+m+2iµα, 1
2−iµβ

]

×r
− 1

2 +m+iµα

1 r
− 1

2−iµβ

3

(
r1
2 + r3

2 −1
)3

2F1

[
1
2−iµβ ,2+m+iµα−iµβ

5
2+m+iµα

1−r3

]
+
(
µα →−µα

)}
.

(4.3)
Adding the particular solution (3.16), we obtain the final results valid for all physical
kinematic regions,

I++−(r1, r3)=
∞∑

m=0

{
−π2

2 [csch(πµα)+sech(πµα)] sech(πµβ)Γ
[

1
2+m+iµα,2+m+iµα+iµβ

1+m,1+m+2iµα, 1
2−iµβ

]

×r
− 1

2 +m+iµα

1 r
− 1

2−iµβ

3

(
r1
2 + r3

2 −1
)3

2F1

[
1
2−iµβ ,2+m+iµα−iµβ

5
2+m+iµα

1−r3

]
+
(
µα →−µα

)}

+
∞∑

m=0

{
iπ2csch(2πµβ)sech(πµα)Γ

[
1+m

3
2+m−iµα, 3

2+m+iµα

]

×rm
1 r

− 1
2 +iµβ

3

(
r1
2 + r3

2 −1
)3

2F1

[
1
2+iµβ , 5

2+m+iµβ

1+2iµβ
r3

]
+
(
µβ →−µβ

)}
, (4.4)
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where the first and second summations represent homogeneous and particular solution
respectively. Before moving to the discussion about the most challenging case, let us first
comment on the order of summation. Initially, the particular solution involves a double
summation series over rm

1 rn
3 , and we are able to sum up one layer of an infinite series. As

we chose earlier, the initial step involves summation over rn
3 , resulting in a convergent series.

However, an alternative approach involves initially summing over the series related to r1.
In this case, the particular solution then becomes

P++−(r1, r3) =
∞∑

n=0
iπ2csch(2πµβ) sech(πµα)

(
r1
2 + r3

2 − 1
)3

× Γ
[

1
2 + n + iµβ

1 + n, 1 + n + 2iµβ

]

× r
− 1

2 +n+iµβ

3 3F2

[
1, 1, 5

2 + n + iµβ
3
2 − iµα, 3

2 + iµα
r1

]
+
(
µβ → −µβ

)
, (4.5)

but one can verify numerically that this series is divergent for regions where r1 + r3 > 1 (more
precisely, it behaves as an asymptotic series). To ensure the final contribution is convergent,
instead of expanding it as a series of hypergeometric functions with the argument r3 as
in (4.1), we should expand it with argument dependence on r1, which is

Y++−(r1, r3)=
∑

a,b=±

∞∑
m=0

−iπ2eπaµα csch(2πaµα)csch(2πbµβ)
(r1

2 + r3

2 −1
)3

r
− 1

2 +iaµα

1 r
− 1

2 +m+ibµβ

3

×Γ
[

1
2+m+ibµβ

1+m,1+m+2ibµβ

]
2F1

[
1
2+iaµα,2+m+iaµα+ibµβ

1+2iaµα

r1

]
. (4.6)

Unfortunately, regrouping it in pairs, as in (4.3), to achieve convergence is not possible
in this expression since the coefficient of each term does not match. This is expected, as
the particular solution (4.5) is superficially divergent and requires another component to
cancel it. We have explicitly verified that although both (4.5) and (4.6) exhibit superficial
divergences at kinematic regions relevant for three-point correlators, the summation of these
two is actually well convergent in all physical regions, yielding the same results as (4.4). In
other words, we should treat (4.5) and (4.6) as a whole, which provides a complete and
finite result. Let us highlight the difference in these two final expressions: for I++−, the
argument inside the hypergeometric function is r3, representing the summation over the r3
direction being performed first. On the other hand, for P++− and Y++− in equations (4.5)
and (4.6), we summed over r1 first. In summary, to obtain the final convergent result, we
observe that the order of summation is crucial, and both the particular and homogeneous
solutions should be summed along the same direction to eliminate the superficial divergence.
Otherwise, we may end up with an unphysical result.

Seed integral I+++. Finally, let’s examine the fully nested time integral I+++, which
poses the most challenging case. By employing the same procedure of expanding the original
homogeneous solution, we reach the following result,

Y+++(r1, r3)=
∑

a,b=±

∞∑
m=0

π2eπ(aµα+bµb)csch(2πaµα)csch(2πbµβ)
(

r1

2 + r3

2 −1
)3

r
−

1
2 +m+iaµα

1 r
−

1
2 +ibµβ

3

×Γ
[ 1

2+m+iaµα

1+m,1+m+2iaµα

]
2F1

[ 1
2+ibµβ ,2+m+iaµα+ibµβ

1+2ibµβ

r3

]
. (4.7)
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This homogeneous component remains superficially divergent at kinematic regions relevant
for three-point correlators and cannot be regrouped into pairs to cancel out the divergence.
Similar to the preceding discussion, we therefore need to incorporate contributions from
both the homogeneous and particular solutions to obtain finite and convergent results. By
incorporating the particular solution, the final expression takes the form,

I+++(r1, r3) =∑
a,b=±

∞∑
m=0

π2eπ(aµα+bµb)csch(2πaµα) csch(2πbµβ)
(

r1
2 + r3

2 − 1
)3

r
− 1

2 +m+iaµα

1 r
− 1

2 +ibµβ

3

× Γ
[

1
2 + m + iaµα

1 + m, 1 + m + 2iaµα

]
2F1

[
1
2 + ibµβ , 2 + m + iaµα + ibµβ

1 + 2ibµβ
r3

]

+
{ ∞∑

m=0

π2

2
[
csch(πµα)− sech(πµα)

]
sech(πµβ)

(
r1
2 + r3

2 − 1
)3

r
− 1

2 +m−iµα

1

× Γ
[

1
2 + m − iµα

1 + m, 1 + m − 2iµα

]
3F2

[
1, 1, 5

2 + m − iµα
3
2 − iµβ , 3

2 + iµβ
r3

]
+
(
µα → −µα

)}

+
{ ∞∑

m=0

π2

2
[
csch(πµβ)− sech(πµβ)

]
sech(πµα)

(
r1
2 + r3

2 − 1
)3

rm
1 r

− 1
2−iµβ

3

× Γ
[

m + 1
3
2 + m − iµα, 3

2 + m + iµα

]
2F1

[
1
2 − iµβ , 5

2 + m − iµβ

1− 2iµβ
r3

]
+
(
µβ → −µβ

)}

+
∞∑

m=0
π2sech(πµβ) sech(πµα)

(
r1
2 + r3

2 − 1
)3

rm
1

× Γ
[

1 + m
3
2 + m − iµα, 3

2 + m + iµα

]
3F2

[
1, 1, 3 + m

3
2 − iµβ , 3

2 + iµβ
r3

]
, (4.8)

where the first summation comes from the homogeneous solution, while the second and
third summations arise from the particular solution with a partially non-analytical structure
(signal-background mixing term). The last summation is the result of the particular solution,
which is analytical in both r1 and r3 (purely background term). As previously emphasized, the
order of summation is crucial, and in the formula above, each term involves a summation along
r3. Alternatively, one can first sum along the r1 direction, yielding similar results. In figure 3,
we compare the exact analytical results (4.8) with the corresponding numerical calculations.
We have chosen r1 = r3 = r, while the mass parameters µα and µβ are different in the left
and right panels. We can see that the analytical expression shows excellent agreement with
the numerical calculations. Interestingly, unlike the single-exchange diagram, the oscillatory
pattern shown in figure 3 displays novel features, akin to the overlay of two oscillation signals.
In section 5, as we delve into phenomenology, we will explore these characteristics in detail.

In summary, certain series may initially exhibit superficial divergences, nevertheless,
by properly organizing and treating them as a whole, the final expression yields a finite
result applicable to all configurations of physical momentum. It is anticipated that certain
terms in the final results can be related to each other through some mathematical formulae,
potentially leading to the explicit cancellation of divergent components. For example, one
potential approach involves employing the expansion series of the hypergeometric function
around the arguement unity [177], particularly in the regions where r1 + r3 > 1. However,
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Analytical

Numerical

10-4 10-3 10-2 10-1 100
-10-1
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Analytical

Numerical

10-4 10-3 10-2 10-1 100

-0.2

0

0.2

0.4

Figure 3. The comparison between the numerical calculation and exact analytical result (4.8). The
gray dots and red solid line represent numerical and analytical results, respectively. For the numerical
calculation, we directly perform the time integral of the seed integral (2.10). In both figure we set
r1 = r3 = r. The masses are chosen as µα = µβ = 2 in the left panel and µα = 1.5, µβ = 2 in the
right panel. For better visualization, we multiplied I+++ by a factor r1/2.

this transformation introduces significant complexity and further complicates the expression.
These transformations and simplifications are beyond the scope of this paper, and we leave
a more detailed discussion to future work. As a final note, we stress that although our
final analytical results are still expressed as (single-layer) infinite summations, the series
expansions are explicitly convergent. For concrete evaluation, one may therefore incorporate
any number of terms to reach an arbitrary precision. For example, in figure 3, we included
all terms with m ≤ 20, an approximation which perfectly matches the numerical calculation
of the integrals, as far as the eye can tell, and the summations could always be more precise
by adding more terms.

4.2 Consistency checks at different limits

To further verify the correctness of the analytical expressions, in this subsection, we will
perform a detailed examination of their behaviors under different limits. For example, with
the standard Bunch-Davies vacuum choice, some spurious poles should cancel out, such
that the total results should be smooth when k1 = k234 or k3 = k124, equivalently, r1 or
r3 approaches the unity, which is similar to the folded singularity cancellation present in
the single-exchange diagrams [106, 178, 179].

Double soft limits. The first simple and important limit is the case when both r1 and r3
approach zero, which is the regime in which the non-analytic cosmological collider signals
will become the dominant components. This double soft limit is not a consistency check but
rather an interesting limit for the phenomenology of the trispectrum which will be discussed
in section 5. Under such a limit, the seed integrals become,

lim
r1,r3→0

I+−+(r1, r3)=−π3 csch(2πµα)csch(2πµβ)
22iµα−2iµβ

×Γ
[

2+iµα−iµβ

1+iµα,1−iµβ

]
r
− 1

2 +iµα

1 r
− 1

2−iµβ

3 +c.c.

∼O
(
e−π(µα+2µβ)

)
r
− 1

2 +iµα

1 r
− 1

2−iµβ

3 +c.c., (4.9)
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lim
r1,r3→0

I++−(r1, r3)=−ieπµα
π3 csch(2πµα)csch(2πµβ)

22iµα−2iµβ
×Γ

[
2+iµα−iµβ

1+iµα,1−iµβ

]
r
− 1

2 +iµα

1 r
− 1

2−iµβ

3

∼O
(
e−2πµβ

)
r
− 1

2 +iµα

1 r
− 1

2−iµβ

3 . (4.10)

Without loss of generality, we have assumed µβ ≥ µα and neglected terms with heavier
Boltzmann suppression in the second lines. For the fully nested seed integral I+++, let us
investigate separately contributions from both the homogeneous solution and the particular
solution which is

lim
r1,r3→0

Y+++(r1, r3)=−eπ(µα+µβ) π3 csch(2πµα)csch(2πµβ)
22iµα+2iµβ

×Γ
[

2+iµα+iµβ

1+iµα,1+iµβ

]
r
− 1

2 +iµα

1 r
− 1

2 +iµβ

3

∼O
(

e−π(µα+µβ)
)

r
− 1

2 +iµα

1 r
− 1

2 +iµβ

3 , (4.11)

lim
r1,r3→0

P+++(r1, r3) =
π3/2

22iµβ−1
csch(πµβ) + sech(πµβ)

1 + 4µ2
α

× Γ
[

5
2 + iµβ

1 + iµβ

]
r
− 1

2 +iµβ

3 +
(

µα ↔ µβ

r1 ↔ r3

)

− 32
(1 + 4µ2

α) (1 + 4µ2
β)

∼O
(
e−πµβ

)
r
− 1

2 +iµβ

3 +O
(
e−πµα

)
r
− 1

2 +iµα

1 + constant . (4.12)

It is clear that each signal is accompanied by a corresponding Boltzmann factor. In the
homogeneous part Y+++, both massive fields contribute to the CC signals, resulting in a total
amplitude of approximately O(e−2πµ). Regarding the particular solutions, some components
exhibit a non-analytic structure along one direction, leading to a suppression of O(e−πµ),
while entirely analytic terms remain unaffected by any suppression.

Double folded limit. As we mentioned previously, an essential consistency check is to
consider the limit where both ri approach the unity. With the standard Bunch-Davis initial
condition, the final result should be finite under this limit. Any spurious divergence present in
each term of the analytical expression should cancel out. This is similar to the single massive
exchange case, where the spurious divergence under the folded limit is also eliminated [106].
Let us start from the simplest I+−+ case. After regrouping the result as in (4.2), it is then
easy to take such a limit, where

lim
r3→1

I+−+(r1, r3)

=
∞∑

m=0
i π2

2
csch(2πµα)sech(πµβ)(r1−1)3

(1+2m+2iµα)(3+2m+2iµα)
Γ
[
2+m+iµα−iµβ ,2+m+iµα+iµβ

1+m,1+m+2iµα

]
×r

− 1
2 +m+iµα

1

+
(
µα →−µα

)
=−iπ2csch(2πµα)sech(πµβ)

(
r1
2 − 1

2

)3
r
− 1

2−iµα

1 ×3F2

[
1
2−iµα,2−iµα−iµβ ,2−iµα+iµβ

5
2−iµα,1−2iµα

r1

]
+
(
µα →−µα

)
. (4.13)

Clearly, there is no divergence as r3 approaches unity. Regarding the limit as r1 tends to
one, one simply needs to sum over the r1 series first in equation (4.1) and then take the
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limit, resulting in a similar expression. The double-folded limit r1, r3 → 1 can also be easily
verified based on our results (4.13), which is

lim
r1,r3→1

I+−+(r1, r3) = −
(

k24
k1

)3
π2µ csch2(2πµ) sinh(πµ) . (4.14)

This is O(e−3πµ) and here for simplicity, we assume equal masses for both massive exchanges
(µα = µβ = µ). The prefactor originates from (r1 + r3 − 2)3 in the initial expression (4.2),
and we have used the relation ri = 2ki/k1234. As for the seed integral I++−, through the
same procedural steps, we observe the cancellation of spurious poles upon summing all
contributions. Consequently, the finite terms under the double folded limit r1, r3 → 1 become

lim
r1,r3→1

I++−(r1, r3) = −
(

k24
k1

)3 [π2

32
(
4µ2 − 3

)
sech2(πµ) + iπ

2µ

2 csch(2πµ)
]

, (4.15)

which is O(e−2πµ). The other partially factorised partially nested integral I−++ behaves in
the same way. For the fully nested part I+++ (4.8), it can be verified that the poles under the
limit r3 → 1 cancel each other out order by order in the summation. However, expressing the
general form for the finite terms is challenging, making it difficult to derive a closed formula
under the double folded limit. Instead, as an illustrative example and for the purpose of
subsequent application, we can consider the limit relevant for three-point correlators. Then,
under the squeezed limit, r̃3 → 1 and r̃1 → 0, therefore we only need to keep the first order
in the summation (4.8) as we will demonstrate below.

Total energy limit. Interesting information lies in the limit where the total energy kT ≡
k1234 → 0, as the coefficients of the leading kT singularities correspond to those of flat
spacetime scattering amplitudes [103, 162]. For the diagrams we investigate in this work, the
total energy pole is indistinguishable from the partial energy poles due to the linear-mixing
between the massive fields σα and the inflaton fluctuation φ [150], although this degeneracy
can be broken by introducing different sound speeds [131]. The analysis of the leading
singularity behavior of the double exchange diagram under a vanishing total energy limit
is not as straightforward as in the single-exchange case. Under kT → 0 limit, the variables
we used, r1, r3, approach infinity. In this limit, the leading singularity arises from the fully
nested seed integral I+++ (more precisely, the last term in (4.8), since it is fully connected in
the bulk time integral.) Since we have already summed the solution series in one direction
and packaged it as some hypergeometric functions with arguments either r1 or r3, then we
can first use the expansion of the hypergeometric function as r3 → ∞, where the leading
singularity behavior exhibits some logarithm dependence:

lim
kT →0

I+++ = lim
kT →0

− π

8cosh(πµ)
r3

13 log(r3)
r3

∞∑
m=0

Γ
[

1 + m, 2 + m
3
2 + m − iµ, 3

2 + m + iµ

]
rm

1 . (4.16)

Here, we have assumed for simplicity equal masses for both massive exchanges. Now, another
series with summation variable m can be performed explicitly,

lim
kT →0

I+++ = lim
kT →0

− 1
(µ2 + 1/4)

r3
13 log(r3)
8 r3

× 3F2

[
1, 1, 2

3
2 − iµ, 3

2 + iµ r1

]
, (4.17)
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and by expanding around infinity again, we can determine the leading singularity as follows:

lim
kT →0

I+++ = r3
13

8 r1 r3
log(r1) log(r3) ∼

k3
13

4k1k3kT
log2(kT ) . (4.18)

Thus, we find that the coefficient is independent of the masses. This was expected since
the kT poles arise from the past infinity τ → −∞ where all mass terms become negligible.
This form of the leading singularity (4.18) can also be found using the early time expansion
of the mode functions without the knowledge of the full solution. For example, the mixing
propagator between σ and φ, see [131], under the limit is:

lim
τ→−∞

K(k, τ) ≡ lim
τ→−∞

∫ 0

−∞
dτ ′(τ ′)−2

eikτ ′
D++(k; τ, τ ′) ∼ −τ eikτ

2k
log(−kτ) , (4.19)

so the fully nested integral under such limit becomes

I+++ = −i k3
24

∫ 0

−∞
dτ

eik24τ

τ2 K(k1, τ)K(k3, τ) ∼ −i k3
24

4k1k3

∫ 0

−∞
dτ eikT τ log(−k1τ) log(−k3τ)

∼ − k3
24

4k1k3

log2(kT )
kT

, (4.20)

and noting that k24 = −k13 under kT → 0, it exactly matches (4.18).

Squeezed limit. Another intriguing limit that will play significant roles in the subsequent
discussion is the so-called squeezed limit where r̃3(r3) → 1 and r̃1(r1) → 0. For the fully
factorised seed integral, the result under r3 → 1 is already obtained in (4.13) and we only
need to take the series expansion around r1 = 0 which gives

lim
r3→1
r1→0

I+−+(r1, r3) =
π2

4
sech2(πµ) csch(πµ)

3i− 2µ
× r

− 1
2 +iµ

1 +
(
µ → −µ

)
, (4.21)

with an amplitude O(e−3πµ). For two partially factorised partially nested integrals, following
the same way, the results are

lim
r3→1
r1→0

I++−(r1, r3)=
π2

2

[
1−tanh(πµ)

][
1+coth(2πµ)

]
3+2iµ ×r

−
1
2 +iµ

1 +
(
µ→−µ

)
, (4.22)

lim
r3→1
r1→0

I−++(r1, r3)=
(

π2

4
sech2(πµ)

[
1+coth(πµ)

]
2iµ−3 + π1/2

24−2iµ
2µ+5i
2µ+3i Γ

[1
2−iµ, iµ

]
sech(πµ)

)
×r

−
1
2−iµ

1

+
(
µ→−µ

)
, (4.23)

where both of them have an amplitude O(e−2πµ). For the fully nested seed integral I+++,
as mentioned previously, under r1 → 0, we will only retain the first order in the series
summation. It is straightforward to show that the poles that would diverge as r3 → 1 are
canceled, yielding the final finite contributions

lim
r3→1
r1→0

I+++(r1, r3)=
(

π2

2
csch(2πµ)sech(πµ)

2µ−3i + π1/2

24+2iµ
2iµ+5
2µ−3iΓ

[1
2+iµ,−iµ

](
1+tanh(πµ)

))
r
−

1
2 +iµ

1

+
(
µ→−µ

)
, (4.24)
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where the first term arises from the homogeneous solution and is suppressed by O(e−3πµ).
In contrast, the second term comes from one of the particular solutions, wherein only one
massive propagator contributes to the signal and the other massive line lies within the
analytic region and contributes to the background. Hence, the overall magnitude of the
second term is only suppressed by O(e−πµ).

For the bispectrum in the squeezed limit, the dominant signal arises from the CC signals,
with the leading contribution experiencing the least Boltzmann suppression from I+++.
Substituting this expression into (2.15), we obtain an approximate result for the three-point
correlator in the squeezed limit which is useful for later discussion

lim
k1→0

⟨φk1φk2φk3⟩
′= (4.25)

− ρ2λH

(k1k2k3)2 ·Re
{[

π1/2

24+2iµ
2iµ+5
2µ−3iΓ

[1
2+iµ,−iµ

](
1+tanh(πµ)

)
+O

(
e−2πµ

)](
k1

k3

)1
2 +iµ

+O
(

k1

k3

)}
,

where ρα and λαβ are reduced to ρ and λ for the equal mass case, and the O(k1/k3) term
arises from the leading analytical background contribution. Since I+++ dominates in the
squeezed limit, and because we will also discuss the CC signals with multiple isocurvature
species in the next section, for later convenience, here we also show the expression when
two propagators have different masses explicitly:

lim
r3→1
r1→0

I+++(r1, r3)=−i π3/2

24+2iµα
sech(πµβ)

[
1+tanh(πµα)

]
×Γ

[
−iµα

−1−iµα+iµβ ,−1−iµα−iµβ

]

×r
− 1

2 +iµα

1 3F2

[
−3

2−iµα,−1−iµα−iµβ ,−1−iµα+iµβ

−1
2−iµα,−1

2−iµα
1
]
+
(
µα →−µα

)
,

(4.26)
and the three-point function in the squeezed limit becomes:

lim
k1→0

⟨φk1φk2φk3⟩′ = (4.27)

∑
α,β

ραρβλαβH

(k1k2k3)2 ·Re
{[

i π3/2

24+2iµα
sech(πµβ)

[
1+tanh(πµα)

]
×Γ

[
−iµα

−1−iµα+iµβ ,−1−iµα−iµβ

]

×3F2

[
−3

2−iµα,−1−iµα−iµβ ,−1−iµα+iµβ

−1
2−iµα,−1

2−iµα

1
]
+O

(
e−2πµα ,e−2πµβ

)](k1

k3

) 1
2 +iµα

+O
(

k1

k3

)}
.

5 Double massive exchange phenomenology

In this section, we discuss the physical effects that can be read off our analytical solution,
eqs. (4.2), (4.4) and (4.8). We also compare it to the predictions from different techniques,
namely the effective single-field description when the massive fields are integrated out and an
exact numerical evolution that does not rely on a perturbative scheme in terms of quadratic
mixings. In the subsequent sections, we explore different regimes of interest. Before that, we
start by presenting the motivation for the setup and these complementary techniques.

Field content, interactions and relations to multifield inflation. For almost all
concrete applications of this section, we focus on a simple field content made of the inflaton’s
massless fluctuations φ and a single extra massive scalar field σ (see an exception in section 5.4).
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These are already mixing at the level of the quadratic interactions, as encoded by eq. (2.11)
with ρα = ρ × δα1 and σ1 = σ. Additional cubic interactions leading to double-exchange
diagrams that we consider are described by eq. (2.12) with λαβ = λ × δα1δβ1 and are leading
to a three-point correlator of φ given by the double-exchange seed integral in the limit k4 → 0
and with (p1, p2, p3) = (−2,−2,−2), see eq. (2.15). Considering these particular interactions
is motivated by different though complementary approaches to multifield inflation, as well
as by the potential of detectability of this channel.

First, popular multifield realizations of the inflationary paradigm, called general non-
linear sigma models and encoding both potential and kinetic interactions, generically predict
their existences. In this two-field context, the quadratic mixing ρ can be related to the
dimensionless rate of turn of the background trajectory in field space, η⊥, as ρ = 2Hη⊥, while
the cubic interaction λ is given as a combination of the turn rate and the scalar curvature
of the field space of mass dimension −2, Rfs, as λ = (H2η2

⊥ − ϵH2M2
PlRfs)/f2

π [174]. In this
expression, f2

π represents the normalisation of the curvature fluctuation with respect to the
massless inflaton’s fluctuations φ = −(f2

π/H)× ζ. Therefore, in the weak quadratic mixing
regime where the power spectrum of φ is negligibly affected by its interactions with the
massive fields, one can relate the typical size of the curvature fluctuation ∆ζ to the one of
a massless uncoupled field in de Sitter ∆φ = H/(2π) as

∆ζ ≡ A1/2
s = H

f2
π

∆φ = H2

2πf2
π

, (5.1)

with As = 2.1× 10−9 [180] at CMB scales. This equality enables one to express f2
π as a large

number in units of H2. Actually, for more than one additional massive field σα, the form of
the interactions depends on the choice of the basis chosen for these fluctuations, leading to a
subtle interplay between flavor and mass bases eigenstates as described in ref. [77]. In the
latter reference, the form of the interactions in the mass basis is specified, from the knowledge
of the ones in the flavor basis in the context of non-linear sigma models with any number of
fields, first derived in ref. [175]. We will explore this more generic situation in section 5.4.

Second, generic arguments from the effective field theory of multifield fluctuations tell us
that we have to entertain the possibility of these interactions. In this language, the adiabatic
curvature fluctuation ζ is related by a gauge transformation to the Goldstone boson of broken
time diffeomorphisms, π [181, 182]. At the linear level and when defining the Goldstone
boson in the flat gauge, this gauge transformation reads ζ = −Hπ + . . ., where dots stand for
order two and more terms in fluctuations. One can then couple it to either massless [183] or
massive [3] additional scalar fields σα. In the unitary gauge, the adiabatic degree of freedom
is hidden in the spacetime metric fluctuation δg00, that can couple to these additional fields
via couplings of the form b

(n)
α (δg00)nσα , c

(n)
αβ (δg00)nσασβ, etc. Those couplings generically

lead to interactions of the forms that we considered above (amongst other ones) [171], after
the Stückelberg trick reintroducing the Goldstone boson via, e.g., δg00 → −2π̇ + ∂µπ∂µπ.

Third, the focus of this work is on double-exchange diagrams, where two massive field
propagators are exchanged at tree level via the existence of a cubic interaction with two powers
of σ’s, motivated by its potential of detectability. Indeed, simpler single-exchange bispectra
with a single power of σ in the cubic interaction generically lead to a small observable signal.
First, the “Lorentz-covariant” combination ∝ ρ × ∂µφ∂µφσ from the unitary gauge operator
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ρ×δg00σ has a strength fixed by symmetries to be proportional to the quadratic mixing ρ; the
latter being treated in perturbation theory in most analytical calculations, this enforces the
corresponding bispectrum to be small. Even in the less explored regime of a large quadratic
mixing, see refs. [28, 31, 90, 170], this channel can at most lead to non-Gaussianities of
order roughly unity [171]. Second, although from the effective field theory point of view
there may exist another cubic vertex leading to a single-exchange bispectrum with a size
independent from the quadratic mixing (of the form ∝ ρ̃ × (φ′)2σ with ρ̃ potentially large),
this interaction is not found in the large class of general non-linear sigma models of inflation.
On the contrary, as we have just argued in the two previous paragraphs, cubic interactions
leading to double-exchange diagrams are both natural to consider from the effective field
theory point of view and found in practice in concrete multifield realizations of inflation. The
size of this interaction is not fixed by the small quadratic mixing and may therefore be large
while respecting the perturbative scheme used for the derivation of our analytical results.
And indeed, it was shown that this channel could lead to potentially large non-Gaussianities
both in the small and large mixing regimes [171].

Perturbativity bound, naturalness and size of the bispectrum. Although we have
just argued that the signal from the double-exchange diagram may be large, it cannot be
arbitrary large. First, cubic interactions naturally define strong coupling scales, ensuring
that the perturbative expansion in powers of fields’ fluctuations is a meaningful series. To be
precise, the cubic vertex responsible for the double-exchange diagram is particular in the sense
that λφ′σ2 is a marginal operator (of mass dimension 4 in 4 dimensions), so that the coupling
λ appearing in the time integrals is dimensionless and cannot be used to define a strong
coupling scale. However, for consistency of the perturbative expansion in a similar fashion to
the interpretation of strong coupling scales, we should still ask that this cubic interaction
remains smaller than the kinetic (and mass) terms used to define the free theory [171], from
which one can derive the perturbativity bound

Perturbativity bound: |λ| ≲ 1 . (5.2)

Additionally, one may want to ask the size of the cubic interaction to be natural in order to
avoid requiring fine-tuning to explain the smallness of loop corrections. In particular for the
interaction under study, it was shown in ref. [171] that asking a mass of σ naturally of order
H in the effective field theory of multifield fluctuations framework, amounts to setting7

Naturalness criterion: |λ| ≲ (2π∆ζ)1/2 . (5.3)
7More precisely, this naturalness criterion corresponds to asking that loop corrections to the mass of the

heavy field, from such cubic interactions, are not larger than the bare mass m used in the calculation. For
m ∼ H, this gives the upper bound (5.3), see ref. [171]. Indeed, naturalness is a statement about limiting the
amount of fine-tuning required to explain the value for a quantity given by the algebraic sum of several terms.
In the reasoning above, the fine-tuning for a mass of order Hubble with a large λ is clear: both the bare mass
and the loop corrections should be large and almost cancel to give a final value ∼ H. Fine-tuning for a large λ

can also be seen by specifying to concrete models of inflation. For the large class of non-linear sigma models,
the masses of isocurvature fluctuations go as [174, 175] m2/H2 = −λf2

π/H2 + V;ss/H2, where V;ss represents
consistent projections of the Hessian matrix of the potential. Clearly, having a large λ while maintaining
m ∼ H requires some degree of fine-tuning. Because the corresponding naturalness criterion, |λ| ≲ 2π∆ζ for a
weak quadratic mixing, is (slightly) more model-dependent, we will not use it in the following.
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Given the observed amplitude of curvature fluctuations at CMB scales, the bound from
naturalness is O(100) times more constraining than the one from perturbativity. Note
however that the status of the naturalness criterion is less firm, as asking naturalness is not
a prerequisite for a theory to be well-behaved. Indeed, (approximate) cancellations may
be explained by (approximate) symmetries, accidental or not, or simply by an appropriate
amount of fine-tuning. On the contrary, perturbativity is not negotiable in our framework,
and we will always enforce it.

One can read the parametric dependence of the bispectrum for the inflaton’s fluctuations
φ, e.g. in eq. (4.25), and translate it in terms of the one for the curvature fluctuation. More
precisely, we will be using the dimensionless bispectrum shape function S, related to the
bispectrum of φ, in the weak mixing regime where ∆φ = H/(2π), as follows:

⟨φk1φk2φk3⟩
′ = − H5

f2
π(k1k2k3)2 S(k1, k2, k3) . (5.4)

Without entering yet into the complicated mass and kinematical dependence of the entire shape
function, we read its parametric dependence related to the size of the usual fNL’s parameters:

S ∼ fNL ∼ (∆ζ)−1 × (ρ/H)2 × λ , (5.5)

where we used that f2
π is related to ∆−1

ζ in the regime of validity of our analytical calculations.
This confirms that, even in the weak mixing regime with ρ/H ≪ 1 and respecting the
perturbativity bound |λ| ≲ 1, it is possible to have non-Gaussianities of order one or more
thanks to the large factor (∆ζ)−1 ∼ O(104). If one adds the requirement of naturalness, it
is still possible to get order one non-Gaussianities by pushing towards intermediate values
of the quadratic mixing, ρ/H ∼ O(10−1), or even beyond (a regime not encompassed by
our analytical approach from the bootstrap perspective but nevertheless perfectly viable
theoretically).

Single-field effective theory. When the mass of the additional fluctuation σ is large
enough, it may be integrated out of the theory [184–186], leading to an effectively single-field
theory for the curvature fluctuation only. This procedure including all cubic interactions
for two-fields non-linear sigma models was performed in [174] and for any number of fields
in [171]. Repeating the procedure only for the cubic interaction considered here, we find the
following single-field effective theory in terms of the curvature fluctuation directly:

LEFT = a3ϵM2
Pl

c2
s

[
ζ̇2 − c2

s

(∂ζ)2

a2 +
( 1

c2
s

− 1
)

A
ζ̇3

H

]
, with (5.6)

1
c2

s

− 1 =
(

ρ

H

)2
× H2

m2 and A = −2c2
s ×

λf2
π

H2 × H2

m2 . (5.7)

Within this single-field theory, it is straightforward to compute the bispectrum shape function
in all kinematical regimes:

SEFT(k1, k2, k3) =
3A

2

( 1
c2

s

− 1
)

k1k2k3
k3

123
, (5.8)
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where k123 = k1 + k2 + k3. This shape not only peaks on equilateral configurations but is
also very correlated with the equilateral shape template, consisting of:

Seq(k1, k2, k3) =
(

k1
k2

+ 5 perms
)
−
(

k2
3

k1k2
+ 2 perms

)
− 2 . (5.9)

Indeed, defining as usual the cosine between two shapes as their correlation [187, 188]

Cos (S1, S2) =
S1 · S2√

(S1 · S1)(S2 · S2)
with (5.10)

S1 · S2 =
∫ 1

1/2
dx2

∫ x2

1−x2
dx3 S1(k, x2 × k, x3 × k)S2(k, x2 × k, x3 × k) , (5.11)

one finds Cos (SEFT, Seq) ≃ 0.988. We thus safely dub its amplitude at equilateral configura-
tions the parameter f eq

NL that one can look for in the data with an equilateral shape template.
To put it in a nutshell, the single-field effective theory for the double-exchange diagram
predicts an equilateral bispectrum shape with amplitude

f eq
NL = −1

9

(
ρ

H

)2 1
1 + ρ2/m2 × λf2

π

H2 × H4

m4 . (5.12)

Note that this single-field EFT does not rely on the assumption of a weak quadratic mixing
and is therefore valid for values of ρ/H larger than unity. In the regime of a weak quadratic
mixing though (that we read actually extends up to ρ ≲ m), we recover the scaling with
parameters naively derived in eq. (5.5), together with additional information in this regime:
the kinematical dependence of the shape is dominantly equilateral and the exact prefactor
including mass dependence is −H4/(18πm4). Note however that the single-field effective
theory relies on the hierarchy m2c2

s ≫ H2 [174], and therefore implicitly also on the absence
of any other hierarchy in the theory. A subtlety comes about when looking at soft limits of
correlation functions, at which there is a kinematical hierarchy. As far as the bispectrum is
concerned, the unique soft limit is the squeezed one. Let us fix k3 the smallest momentum, in
the squeezed limit the ratio k3/k1 is very small and, therefore, one may well have (k3/k1)×
(m2c2

s/H2) ≲ 1 although the field σ is very massive. Said otherwise, we expect the single-field
description to fail to capture not only the region of parameter space with masses of order
H or smaller, but also the kinematical region corresponding to soft limits. As well known,
these soft limits indeed encode striking signatures of particle production which cannot be
described within the single-field framework.

Exact numerical evolution. The double-exchange bispectrum diagram may also be com-
puted exactly from first principles by computing its time evolution in the bulk of the
inflationary spacetime. It is precisely the aim of the so-called Cosmological Flow [170, 171]
to propose a framework for automatically solving the differential equations verified by the
different two- and three-point correlators of any inflationary theory defined at the level of
fluctuations. The numerical implementation of this approach is called CosmoFlow, it is open
source and available on GitHub and the paper describing it is ref. [172]. It is straightforward
to implement the interactions leading to the double-exchange bispectrum diagram within it,
and in the coming sections we use it as a non-trivial check of our analytical results. Indeed,
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importantly, the Cosmological Flow approach does not rely on a perturbative scheme for
the quadratic mixing. Strictly speaking, it therefore does not solve for the same theory as
the one described in this work, however in the common regime of validity we should expect
both bootstrap analytical predictions and numerical calculations to agree.

In the next sections, we explore the parametric and kinematical dependencies of the
double-exchange bispectrum. We then compare them to the ones of the single-exchange
channel.

5.1 Equilateral value and mass dependence

We start by exploring the size of the signal on the equilateral configuration k1 = k2 = k3 and its
dependence on the mass of the double exchanged field. At this particular point in kinematical
space, we expect the single-field effective description to be valid as soon as m2c2

s/H2 ≫ 1. In
practice we will focus on masses m ≳ H and on a quadratic coupling ρ/H smaller than unity
as required by consistency of the bootstrap approach, a situation for which c2

s ≃ 1.
In the left panel of figure 4, we compare the analytical prediction from the multifield

bootstrap approach with the single-field effective theory description of eq. (5.12) and the
complete numerical resolution not relying on a perturbative quadratic mixing with CosmoFlow,
for ρ/H = 0.1. The agreement between the two exact methods in this regime is impressive. As
an example, both predict a change from positive to negative values with µ growing, precisely
at the same threshold µ ≃ 1.5. As expected, the single-field effective theory prediction is only
faithful at large values of the mass, roughly µ ≳ 5, and always predicts a negative bispectrum
at the equilateral configuration. In this regime of a small quadratic mixing and a large mass,
a simple fitting formula for our bootstrap result can be derived,

Sbootstrap(k, k, k) ≃
µ≫1

−0.11×
(

ρ

H

)2
× λf2

π

H2 × 1
µ4 , (5.13)

which precisely matches the single-field effective theory result (5.12) with the same numerical
coefficient −1/9 ≃ −0.11 (we remind that µ =

√
m2/H2 − 9/4 ≃ m/H in the regime of

a large mass).
In the right panel of figure 4, we show the true size of the bispectrum at equilateral

configurations for ρ/H = 0.1 as a function of the mass parameter µ and the cubic coupling
constant λ. We compare the result to observational constraints from Planck, f eq

NL = −26± 47
at 1σ [189], by assuming that the bispectrum can be qualitatively constrained with an
equilateral shape, an assumption to which we will come back in the next section. We find
instructive to see that the necessary theoretical constraint from perturbativity is close to
current observational constraints. We also show how, if one additionally asks for naturalness,
this reduces even more the possible size of the bispectrum to less than unity.

5.2 Shape dependence

Our analytical expression for the result of the bootstrap equation corresponding to the
double-exchange bispectrum is valid for all kinematical configurations of physical relevance.
In particular, it is valid beyond the equilateral configuration whose size dependence on the
quadratic and cubic couplings, as well as the mass of the exchange field, has been studied
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Figure 4. Left: comparison of the values of the double-exchange bispectrum at equilateral config-
urations from the exact numerical resolution using CosmoFlow (blue line), the bootstrap analytical
prediction of this work (orange dashed line), as well for the corresponding single-field effective theory
(green line). The quadratic coupling is fixed as ρ = 0.1H and the mass of the double exchanged field
varies along with the horizontal axis. The time evolution with CosmoFlow starts being numerically
more demanding for larger values of µ so it has been cut at µ ∼ 10 for purely computational costs
reasons. Note that the overall amplitude has been rescaled by the constant factor λ(2π∆ζ)−1 that may
be way larger than unity, leading to potentially large primordial non-Gaussianities even in this regime
of a small quadratic mixing. Right: true size of the double-exchange bispectrum at the equilateral
configuration for ρ/H = 0.1 as a function of the mass parameter µ and the coupling constant λ.
White regions correspond to unobservably small values < 10−3 removed for clarity. The contour line
“observations” (solid line) stands for the 1σ constraint on f eq

NL from Planck [189], while the other
ones are theoretical constraints. The perturbativity one (dashed line) is necessary to enforce, while
the naturalness one (dotted-dashed line) may or not be required. The vertical valley visible by eye
corresponds to the dip in the left panel at which the bispectrum equilateral value changes from positive
to negative, from left to right in the figure, when λ > 0.

in the previous section. Here we instead investigate the shape dependence on (x2, x3) of
the bispectrum S(k, x2k, x3k), normalized to unity on equilateral configurations. We fix
ρ/H = 0.1 for definiteness, although in the regime of weak mixing the shape is independent of
it. In figure 5, we compare the exact numerical prediction using CosmoFlow to the analytical
predictions derived from the bootstrap equation, for a few values of the mass of the exchanged
field. Unfortunately, the analytical formula converges slowly in the folded limit region,
corresponding to x2 + x3 ≃ 1 (the lower ridge of the triangle). In practice we have therefore
evaluated the shape on the following kinematical region: x2 ∈ [0.58, 1] , x3 ∈ [1.15− x2, x2],
which corresponds to roughly 72% of the total area. Note that the numerical resolution does
not suffer from this and can be evaluated quickly on any configuration but the very squeezed
ones corresponding to x2 ∼ 1 and x3 ≪ 1 (left corner of the triangle), but for making the
comparison explicit we evaluated it on the same reduced triangle region as the analytical
prediction. Agreement between the two methods is impressive.

For completeness, we also calculate the correlations of the double-exchange bispectrum
shapes for a few representative values of the mass with the four shape templates that are
most used in data analysis: equilateral, flattened, orthogonal and local bispectra. For this,
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we use the Cosine expression of eq. (5.10) and the shapes from CosmoFlow since we already
showed agreement with the bootstrap ones and that it allows to probe a larger kinematical
region; we simply cut at x3 = 0.1 to avoid lengthy numerical evaluations in the squeezed
limit. The results are displayed in figure 6 below, where we also show for reference the
correlations between the shape templates for our kinematical region. As expected, the shape
resembles the local one for not-so-large masses m ≲ H and the equilateral one for masses
slightly larger than Hubble, m ≳ H. The limiting case m = 3H/2 seems to support almost
the same correlation with the local and the equilateral shape. However, we remind that our
correlations are computed in a restricted kinematical regime, x3 ⩾ 0.1, and that having access
to even more squeezed configurations would reveal that all shapes are less correlated with
the local template. Even the case m = H would be affected, as indeed the correct template
is the one of a quasi-local shape as first found in ref. [5].

5.3 Cosmological collider signal

The CC signal lies in the soft limits of higher-order correlation functions, chief amongst
which is the squeezed limit in the primordial bispectrum. It consists in an imprint left by
the production of heavy particles during inflation and is not encompassed by single-field
effective theories. We have already shown the explicit expression of the dominant squeezed
bispectrum corresponding to the exchange of two massive fluctuations of the same field
σ in eq. (4.25). Translated in terms of the primordial curvature fluctuation bispectrum
shape function, it reads:

SDE
CC,LO =(
ρ

H

)2
×λ(2π∆ζ)−1×Re

{[
π1/2

24+2iµ
2iµ+5
2µ−3iΓ

[1
2+iµ,−iµ

](
1+tanh(πµ)

)
+O

(
e−2πµ

)]
κ

1
2 +iµ

}
,

(5.14)

where “DE” stands for Double-Exchange, “CC” for Cosmological Collider signal as before,
and “LO” for Leading-Order. We introduced the more usual squeezing parameter κ ≡ k1/k3
and the squeezed limit corresponds to κ ≪ 1. Although this quantity (5.14) indeed represents
the leading-order squeezed behaviour, its mass suppression is exponential in the large µ limit:
SDE

CC,LO ∼ O
(
κ1/2µ−1/2e−πµ

)
. On the contrary the so-called background signal, denoted

by “BG”, that is decaying quicker in the squeezed limit, as κ1, may be dominant in not-
so-squeezed configurations since its mass suppression is only polynomial: SDE

BG ∼ O
(
µ−4)

as can be seen, for example, from its expression according to the single-field EFT and that
we derived in eq. (5.12).

For practical predictions at intermediate squeezed configurations, we find it useful to define
and use next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) corrections
to the LO cosmological collider signal shown explicitly above. Let us clarify their meanings.
In the final bootstrap result, focusing on the squeezed limit, we are dealing with two different
series expansions. The first series is present in the analytical expressions given by eqs. (4.2)–
(4.4)–(4.8), where we have a summation variable m. Each term in the m summation series is
then expanded in terms of the squeezing parameter κ. The terms “next-” and “next-to-next-”
refer to the orders in κ. For the CC signal part (containing non-analytic terms of the form
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Figure 5. Comparison of the shape functions for three masses of order the Hubble parameter obtained
with CosmoFlow and the bootstrap method, for a quadratic mixing ρ/H = 0.1. The projected surface
is shown for representation purposes only and contains the same information as the 3D-shape.
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Mass value m = H m = 3H/2 m = 2H m = 5H/2 m = 3H m = 7H/2
Cos(S, Seq) 0.71 0.87 0.87 0.92 0.93 0.93
Cos(S, Sflat) 0.92 0.84 0.29 0.72 0.69 0.72
Cos(S, Sorth) −0.66 −0.48 0.14 −0.32 −0.28 −0.31
Cos(S, Sloc) 0.99 0.90 0.36 0.76 0.75 0.78

Si Seq Sflat Sorth Sloc
Cos(Si, Seq) 1 0.46 0.01 0.66
Cos(Si, Sflat) 1 −0.88 0.91
Cos(Si, Sorth) 1 −0.68
Cos(Si, Sloc) 1

Figure 6. Shape correlations between the double-exchange bispectrum at weak mixing, ρ/H = 0.1,
with equilateral, flattened, orthogonal and local bispectrum templates for a few representative values
of the mass of the double exchanged fluctuation. We also show for reference the correlations between
these shape templates for the kinematical region that we consider, with a cut at x3 = 0.1 in the
squeezed limit. The dominant component is highlighted in bold.

κiµ), the series expansion of the m-term in the sum takes the following schematic form:
SDE

CC,m ∼ κ1/2+iµ+m
(
1 +O(κ) +O(κ2) + . . .

)
. Moreover, explicit calculation shows that the

O(κ) correction to the LO m = 0 term exactly cancels with the leading-order part of the
m = 1 term. Therefore, the total CC signal part scales as SDE

CC ∼ κ1/2+iµ (1 +O(κ2) + . . .
)
.

Given the large suppression of the first non-zero correction to the CC signal in the squeezed
limit, it is clear that we should take into account the BG part (containing only analytical
terms, i.e. polynomial in κ). However, for the latter, each term in the m-summation begins
at order κ in the squeezed limit: SDE

BG,m ∼ κ1 (1 +O(κ) +O(κ2) + . . .
)
. In principle, to be

consistent, one should therefore perform the sum over all values of m. However, the higher the
order in the m-summation, the more they are suppressed by the mass parameter. Therefore,
in the large mass limit, µ ≳ 1, it is consistent to keep only the first m-terms. In practice, we
therefore keep the first three terms corresponding to m = {0, 1, 2} to approximate the BG
signal, and consistently keep the dominant terms in the squeezed limit. The NLO correction
corresponds to the addition of the leading-order scaling O(κ) from this approximated BG
signal. The NNLO correction corresponds to the addition of the O(κ2) terms from the
BG signal. Note that the NNNLO one would be the correction to the CC signal scaling
as κ5/2, but we do not consider it explicitly here. Given the discussion above, it should
be clear that we expect the NLO and NNLO corrections to badly encapsulate the cases
where the mass is not large enough. Indeed, this can be seen for example in the case
m = 2H in figure 7, for which the LO term alone performs better. The NLO and NNLO
expressions are derived from our general bootstrap result, and remain fully analytic. They
are quite long and not enough illuminating to be shown here, however they do allow for
instantaneous evaluation for any value of κ and µ, in opposition with the general result for
which squeezed configurations are computationally expensive to evaluate. As mentioned
previously, there exist potential methods to speed up the convergence of the exact solution
around folded/squeezed regions. For instance, one approach involves employing the expansion
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series of the hypergeometric function around the unit [177] to refine the results. However,
this transformation introduces considerable complexity, especially with additional layers of
series. Further transformation and simplification is beyond the scope of this paper, and we
leave this interesting discussion to future work.

We now discuss the relative size of the cosmological collider signal from the double-
exchange channel that we have been focusing on in this work, compared to the one from the
single-exchange channel. For concrete comparison, we consider the only cubic interaction
leading to a single-exchange diagram that is encountered in non-linear sigma models of
inflation. We have already mentioned that its strength is fixed by a non-linearly realized
symmetry to be proportional to the quadratic mixing, ρ/(2f2

π)× ∂µφ∂µφσ (see eq. (2.42)).
The explicit expression of the cosmological collider signal from this single-exchange interaction,
first found in ref. [4] and then exactly confirmed with an independent method in ref. [77],
is shown in eq. (5.18) below. We find the ratio of the two squeezed limits, at leading-order
in κ and µ, to be remarkably simple:

SDE
CC,LO

SSE
CC,LO

= λ(2π∆ζ)−1 × 2
µ2 +O

(
µ−3

)
, (5.15)

where “SE” denotes this Single-Exchange channel. The parametric suppression in terms of
the mass is exactly the same as the relative size of the equilateral background signals from
both channels (indeed SSE

CC,LO ∼ O
(
κ1/2µ3/2e−πµ

)
and SSE

BG ∼ O
(
µ−2)). In particular, the

absence of further “Boltzmann” exponential suppression was guessed in [125], and here we
have rigorously proved it. Importantly, this implies that for values of the mass leading to a
signal potentially observable, corresponding to µ of at most a few, the cosmological collider
signal from the double exchange bispectrum is dominant as long as λ(2π∆ζ)−1 ≳ 1. Such
values are perfectly allowed by perturbativity bounds, and can even be natural, as discussed
at the beginning of section 5, therefore making the double-exchange channel an interesting
prospect for detecting the cosmological collider signal.

We now compare our exact bootstrap results (limited to close-to-equilateral configurations
κ ≳ 0.1) with the LO, NLO and NNLO expansions in the squeezed limit, as well as the exact
numerical results with CosmoFlow (whose only limitation is the computational cost of very
squeezed configurations, in practice we restrict to κ ≳ 10−3). The results are shown in figure 7,
in the weak mixing regime for ρ/H = 0.1 where our analytical predictions hold, and for a few
representative values of the mass of the massive field. It is interesting to notice the excellent
agreement between CosmoFlow results and i) the exact bootstrap result where it can be
evaluated efficiently, close to equilateral configurations; ii) the LO expansion in the squeezed
limit; iii) the NLO and NNLO expansions for not-so-squeezed configurations when the mass
is sizeable (µ ≳ 1). Altogether, our example showcases the utility and synergy of analytical
and numerical methods, with precise and trustworthy predictions for the double-exchange
bispectrum for all configuration values, ranging from equilateral to extremely squeezed ones.

For completeness, we will also quickly explore the strong quadratic mixing regime. The
phenomenology of the cosmological collider signal in this regime has been thoroughly explored
numerically in [171]. One of the main lessons is the rescaling of the mass to an effective
mass by the large quadratic mixing: m2 → m2

eff = m2 + ρ2, visible in the frequency of the
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Figure 7. Cosmological collider signals in isosceles triangle configurations of the primordial bispectrum,
for the double-exchange channel in the weak mixing regime with ρ/H = 0.1, and normalized to unity
in equilateral configurations, for four representative values of the mass m.

oscillations in the cosmological collider signal, now dictated by µeff =
√

µ2 + ρ2/H2. In
figure 8, we explore how the analytical formula performs under such substitution compared to
the exact numerical result obtained in the strong mixing regime for ρ/H = 1 with CosmoFlow,
though the analytical formulas are valid only for the weak quadratic mixing regime by
construction. Note that for this value of the quadratic mixing, the true size of the bispectrum
is exactly 100 times bigger than the one shown in the right panel of figure 4, pushing it to a
level comparable to current and upcoming observational constraints, even for natural values
of the cubic coupling constant λ that are well below the perturbativity bound, thus making
an impressive case for the double-exchange channel. Interestingly, the modified analytical
formulas correctly capture not only the frequency of the oscillations, but also the overall shape
of the signal. They seem to miss however a slight damping of the CC signal, as well as a small
phase shift towards larger values. It would be interesting to pursue analytical calculations
tailored to the strong quadratic mixing regime and precisely predict these interesting features,
but this goes beyond the scope of this article.
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Figure 8. Cosmological collider signals in isosceles triangle configurations of the primordial bispectrum,
for the double-exchange channel in the strong mixing regime with ρ/H = 1, and normalized to unity
in equilateral configurations, for two representative values of the effective mass meff . The bootstrap
predictions are obtained by the naive replacement µ → µeff in our analytical formulas. This replacement
works surprisingly well, even though it misses a slight damping of the CC signal as well as a small
phase shift towards larger values.

5.4 Disentangling double-exchange from single-exchange channels

We have shown that the bispectrum signal from the double-exchange channel can easily be
larger than the one from the single-exchange one. We proved this to be correct both for the
equilateral configuration value and for the cosmological collider signal lying in the squeezed
limit. However, we still lack a striking feature of the double-exchange channel that cannot be
mimicked by the single-exchange one. In this section, we explore three directions in order to
address this question: i) information in the phase of the cosmological collider signal; ii) the
exchange of two massive fluctuations pertaining to two different isocurvature species with
unequal masses; iii) the information in the primordial trispectrum.

Phase information in the CC signal. The shape functions of single-exchange and double-
exchange bispectra, on isosceles squeezed configurations, can be written as:

SSE
CC,LO =

(
ρ

H

)2
× Re

[
κ1/2+iµASE(µ)ei δSE(µ)

]
, (5.16)

SDE
CC,LO =

(
ρ

H

)2
× λ(2π∆ζ)−1 × Re

[
κ1/2+iµADE(µ)ei δDE(µ)

]
. (5.17)

Here ASE,DE denote the amplitudes of the CC signals and δSE,DE their phases. In general,
the phase of CC signals depends on the mass of exchanged fields as well as the form of the
couplings [82]. Nevertheless, for concreteness in this phenomenological discussion, we will
fix once and for all the interactions to (2.11) and (2.12) since those are the relevant ones in
well-motivated non-linear sigma models of inflation. Then the expression for ADE(µ)ei δDE(µ)

can be directly read off eq. (5.14), while the one for the single-exchange channel can be
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found explicitly in refs. [4, 77]:

ASE(µ)ei δSE(µ) = −i π3/2

24+2iµ

Γ(7/2 + iµ)
(2µ − i)Γ(1 + iµ) tanh(πµ)e−πµ [coth(πµ)− i csch(πµ) + 1]2 .

(5.18)
In the regime of validity of this analysis, the frequency of the CC signal is directly given by µ.
It was argued in ref. [82] that the phase of the CC signal may bring additional information to
help distinguishing the channel at the origin of this signal. In the latter reference, differences
in the phases were investigated between two cubic interactions leading to single-exchange
diagrams: the standard Lorentz-covariant interaction denoted as “SE” in our work and a
more exotic Lorentz-violating one with schematic form ρ̃φ′2σ, but nevertheless allowed from
an effective field theory point of view. Here, we compare the phases between the ubiquitous
single-exchange “SE” channel with Lorentz-covariant interaction and the double-exchange one
for the first time. As can be seen in the left panel of figure 9, information about the phase,
once the frequency µ is determined, indeed places interesting constraints on the possible
channel to generate the CC signal. At large values of µ though, the two phases become
indistinguishable, but fortunately this is any way the regime for which the CC signal is
unobservably small. In the right panel of figure 9, we instead investigate the dependence of
an effective phase δDE(µ, κ) in mildly squeezed configurations, as a function of κ and for a
few values of the mass, when adding the first non-vanishing correction to the CC signal in
the squeezed limit expansion, scaling as κ5/2 as already mentioned. These not-so-squeezed
configurations are of particular relevance to observations, and it is therefore important to
dispose of full predictions for all kinematic regimes as we do.

Multiple isocurvature species: inflationary flavor oscillations. Before the current
paragraph, all phenomenological consequences that we have shown were derived under the
assumption that there exists an unique massive species σ, with mass m and mass parameter
µ. This choice was motivated by the long-standing tradition to explore CC signals in this
restricted class of multiple fields content, and under the implicit assumption that only the
lightest of massive degrees of freedom may leave an imprint on cosmological observables.
However, it was discovered in ref. [77] that even heavier species may strongly impact the
primordial bispectrum in its squeezed limit, due to an interesting interplay between the values
of the masses (mα) and of the mixing angles of the theory (in ρα) that define mass eigenstates
with respect to the flavor ones. The most striking manifestation of multiple massive species
is the appearance of modulated oscillations in place of the usual single-harmonics CC signal,
signaling the presence of inflationary flavor oscillations analogous to those appearing in
the Standard Model of particle physics. By determining the frequencies and relative sizes
of the different modes, it was proposed that observations could help measuring not only
the masses but also the mixing angles of the inflationary theory. Explicitly, the sum of all
single-exchange diagrams with multiple isocurvature species gives the following leading-order
CC signal in the squeezed limit [77]:

SSE,multi
CC,LO =

∑
α

(
ρα

H

)2
Re
[
κ1/2+iµαASE(µα)eiδSE(µα)

]
, (5.19)
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Figure 9. Left: comparison of the phases of single- and double-exchange diagrams, as defined in
eqs. (5.16) and (5.17). The figure shows the one-to-one correspondences between frequency and phase
of the oscillations, unveiling the potentiality to disentangle different CC channels from the phase
information. This is particularly true whenever µ is not too large, which is the most interesting case.
Both dashed lines represent the leading contribution in the large µ limit, with a single power of the
Boltzmann suppression, O(e−πµ). Solid lines represent the total result including all contributions,
making for a non-negligible correction in the small µ region. Right: evolution of the phase, for three
representative masses, as a function of the squeezing parameter when adding the first non-vanishing
correction scaling as κ5/2 in the CC signal. Only the region κ ∈ [0.1, 1] is affected by the deviation
from a constant, and we expect higher-order corrections in κ in the CC signal to also play a role when
κ → 1.

where ASE and δSE were already defined in eqs. (5.16) and (5.18). Here, we extend the
discussion of the latter reference to the double-exchange channel. Where previously we had
the exchange of two fluctuations of the same species σ, we now allow for multiple species
σα with a priori unequal mass parameters µα.

In the case of multiple isocurvature species, the double-exchange diagram results in a
superposition of oscillatory signals in the squeezed limit, with the dominant contribution
being given by

SDE,multi
CC,LO =

∑
α,β

ραρβ

H2 × λαβ(2π∆ζ)−1 × Re
[
κ1/2+iµαAmulti

DE (µα, µβ)eiδmulti
DE (µα,µβ)

]
, (5.20)

where Amulti
DE and δmulti

DE are uniquely determined from our analytical formulae (4.27). Disen-
tangling individual contributions β to the same frequency signal set by µα is impossible, so
we also define the effective amplitude and phase of individual modes in the CC signal as:

SDE,multi
CC,LO =

∑
α

(
ρα

H

)2
Re
[
κ1/2+iµαÃα

DEeiδ̃α
DE
]

, (5.21)

with Ãα
DEeiδ̃α

DE =
∑

β

ρβ

ρα
× λαβ(2π∆ζ)−1 ×Amulti

DE (µα, µβ)eiδmulti
DE (µα,µβ) ,

where we have factorised out two factors of ρα for simpler comparison to the single-exchange
diagram. Although a detailed study of the phenomenology of the multiple isocurvature
species double-exchange diagrams — and its comparison to the single-exchange one — is
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Figure 10. Inflationary flavor oscillations in the squeezed limit of the bispectrum from the double-
exchange diagram. In both the left and right panels, the masses of different isocurvature species are
set to µ1 = 1.5 and µ2 = 0.5, while the mixing angles θ12 are chosen as π/10 (left panel) and π/4
(right panel). The four distinct cases, corresponding to different forms of the cubic interaction matrix
λαβ , are described in the main text below this figure. For better visualization, we have introduced a
κ−1/2 rescaling factor, and the shape function is arbitrarily normalized to its value at κ = 10−1 .

beyond the scope of this article, we already note an interesting feature. When there is a single
isocurvature species, we have seen in figure 9 that the phase is fixed by the frequency of the
CC signal once the couplings are given, for both kinds of diagrams. With several isocurvature
species, a similar statement still holds for the single-exchange diagram: each individual mode
α in the CC signal has a phase fixed by its frequency. However, this relation is broken in
the double-exchange case, as both the amplitude and the phase of the mode α depend also
on all other isocurvature species’s masses µβ and mixing angles in ρβ , as long as their cubic
interactions as encoded in λαβ have non-trivial non-diagonal elements. Therefore, in the
occasion that we can measure both the effective amplitude and phase of different modes in
the CC signal, it is very likely that single-exchange diagrams can be ruled out, if the relation
between phase and frequency is not verified. The opposite is harder, as a single mode in a
double-exchange diagram signal can mimic the phase of a single-exchange one. In figure 10,
we illustrate these new effects from the non-diagonal elements of the cubic interactions in
λαβ . We plot the signal in the squeezed limit corresponding to inflationary flavor oscillations
for a model with φ coupled to two massive scalar fluctuations (σ1, σ2), with mass parameters
(µ1, µ2) = (1.5, 0.5). The mixing angle θ12 between the inflationary flavor and mass eigenstates
is defined by (ρ1, ρ2) = (ρ cos(θ12) , ρ sin(θ12)). It was shown in ref. [77] that this angle is
found from the rotation matrix used to diagonalize the non-trivial mass matrix present in the
flavor basis. The left panel corresponds to θ12 = π/10, which was identified in the previous
work as leading to striking signatures even from the single-exchange channel. The right
panel corresponds to θ12 = π/4, for which the mode mixing in the single-exchange channel
can hardly be seen. In each of the panels, we vary the form of the cubic interaction matrix
λαβ ≡ λ× eαβ as follows, where we only mention the non-zero components: case 1 has e11 = 1
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only and forbids the presence of mode mixing; case 2 has e11 = e22 = 1 and corresponds to a
situation analogous to the single-exchange diagram (mode mixing can only be seen for small
mixing angles); case 3 has e11 = e12 = e21 = 1 and Case 4 has e11 = e22 = e12 = e21 = 1,
they both correspond to new features of the double-exchange channel not reproducible by the
single-exchange one. Although definitely leading to signals of different natures in the squeezed
limit, which can help to disentangle single-exchange diagrams from double-exchange ones
from observations in principle, it would be desirable to identify another striking signature of
the exchange of two different isocurvature species. In this perspective, we now turn to a first
study of the CC signal in the trispectrum from a double-exchange diagram.

Towards the primordial trispectrum. In the trispectrum, as evidenced by the patterns
observed in figure 3, the oscillation features are totally different from those of the single-
exchange, appearing as if two signals with different frequencies were superimposed. Therefore,
at the trispectrum level, in principle, we can clearly distinguish between single-exchange
and double-exchange through the oscillation patterns. In this subsection, we will delve into
the details of these distinct features. Firstly, let us define the dimensionless trispectrum
T as follows

⟨φk1φk2φk3φk4⟩
′ = H8

f4
π

(k1234/4)3

(k1k2k3k4)3T (k1, k2, k3, k4) . (5.22)

The interactions chosen here are specified in (2.11) and (2.16), then the four-point functions
can be related to the seed integral through the simple relation (2.18). With these coupling
choices, the τNL typically denoting the size of the trispectrum, has the following parametric
dependence:

T ∼ τNL ∼ (ρ/H)2 ×
(
H2λ̃

)
× (2π∆ζ)−2 . (5.23)

The kinematic dependence of the trispectrum from this diagram is relatively simple, with no
dependence on the diagonals of the quadrangle formed in Fourier space by the four wavevectors
ki, so we will simply write T (k1, k2, k3, k4). Similar to what we did in the bispectrum case, in
the regime of perturbative quadratic mixing and the large mass, we can easily find a simple
fitting formula from the analytical result in regular configurations:

T (k, k, k, k) ≃
µ≫1

0.07× ρ2λ̃ × f4
π

H4 × 1
µ4 . (5.24)

To investigate the phenomenon indicated in figure 3, we will focus on one particular channel
of the trispectrum, setting k2 = k4 = k and k1 = k3 = rk, with r → 0 representing the double
soft limit. To gain a clear understanding of the origin of this phenomenon, instead of dealing
with the complicated exact solution, we will rely on some approximate formulae discussed
in section 4.2. Specifically, the approximation here arises from a series expansion around
r ∼ 0 of the exact solutions. Under this limit, we divide the approximate expression into
three distinct parts, each with their own interpretations,

Tapprox = Tss + Tsb + Tbb . (5.25)
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Figure 11. The comparison between the numerical calculation and analytical result. The gray dots,
blue solid line and red line represents numerical results, approximation expression and exact result
from (4.8) respectively. In the figure we set k2 = k4 = k amd k1 = k3 = rk, the masses are chosen as
µα = µβ = 2 and the coupling λ̃ ·ρ2 is set to 10−2. The left region (light red) is dominated by the term
r2iµ while the right region (light blue) is dominated by the oscillation riµ. For better visualization, we
have multiplied the dimensionless trispectrum T (rk, k, rk, k) by a factor r−7/2.

different terms mass dependence r dependence

Tss µ3/2e−2πµ r3+2iµ

Tsb µ3/2e−πµ r7/2+iµ

Tbb µ−4 r4

Table 1. The leading order mass and r dependence of each term in eq. (5.25).

Tss arises when both momenta associated with massive propagators are soft, leading to a CC
signal from each. Given that the time-ordered part I+++ dominates due to lighter Boltzmann
suppression, let us simplify and focus solely on this term for clarity. In this context, Tss
originates from the homogeneous solution Y -2 0 -2

+++ , under the double soft limit, analogous to
eq. (4.11) discussed earlier. For Tsb, the CC signal is generated only from one propagator,
while the other contribution arises from the particular solution, similar to eq. (4.12) under
the double-soft limit. Additionally, due to permutations, there is another contribution where
only one massive propagator becomes soft, approximated by eq. (4.24). The last term Tbb,
represents the leading-order analytical background.

Because the formula is lengthy even for the leading-order series expansion, we do not
intend to present details of in this section, but it can be directly obtained using the methods
introduced in section 4.2. Here, we summarize the key information about the magnitude and
dependence on r of each term in table 1, where we have only kept the leading order in the series
expansion around r = 0. Now, it is clear to see the origins of the unique oscillation pattern.
Tss excites CC signals in both massive propagators, thus the signal is suppressed by O(e−2πµ),
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and the frequency is doubled to 2µ. As a compensation, it features a dominant scaling with
respect to the soft variable r when it approaches zero, and the overall r dependence is r3+2iµ.
In contrast, Tsb is suppressed by O(e−πµ) and oscillates as r7/2+iµ. Consequently, there is a
competition between mass and r dependence. In very soft regions, the term with the lower
power in r will dominate, whereas in intermediate regions, the term with less Boltzmann
suppression will prevail. To illustrate this idea, in figure 11, we compare the analytical
expression with the numerical results. The approximation depicted by the blue line closely
matches the numerical calculations represented by the gray dots, except in the region close to
the equilateral configuration. In this region, we employed the exact solution shown as the red
line, which actually matches perfectly the numerical results. In this figure, we have assumed
equal masses with µ = 2 and we have multiplied the dimensionless trispectrum T (rk, k, rk, k)
by a factor of r−7/2 for better visualization. Now, based on our discussion above, we can
understand the superimposed oscillation shape in figure 11. This shape arises from the
competition between the oscillation signals O(e−2πµ)× r2iµ+3 and O(e−πµ)× riµ+7/2. In the
very soft region (with a light red background in figure 11), the term from the homogeneous
solution dominates due to the additional r−1/2 factor, and the frequency is 2µ. In the blue
regions, due to lighter Boltzmann suppression, riµ+7/2 dominates with a frequency of µ.
This explains why the frequency on the left side of figure 11 is double that of the right
region, making for a definitely striking feature of the double-exchange channel. Lastly, as
mentioned previously, there exists another type of double-exchange four-point correlator
involving two cubic interactions: one φ2σ and one φσ2, along with one quadratic mixing.
The analytical expression for this trispectrum can be computed using the methods presented
in this work, albeit requiring additional significant efforts. Nonetheless, the distinguishing
features of the trispectrum discussed in this subsection, which differentiate between single-
and double-exchange diagrams, are expected to be quite general and to hold for this other
diagram too. Indeed, the double-frequency oscillations arise from the generation of CC signals
in both massive propagators when their momenta are relatively soft. This characteristic
feature cannot be mimicked by any single-exchange process. Since the excitation of CC
signals at each massive propagator is always accompanied by the Boltzmann suppression
factor O(e−πµ), the leading-order mass suppression of each term depends on the number of
massive propagators that excite CC signals. Therefore, the suppression power summarized in
table 1 is likely applicable to other double-exchange diagrams, although the exact coefficients
would require detailed analytical calculations, which we leave for future studies.

6 Conclusions and outlooks

Cosmological correlators inherit information about all primordial fields, with any masses,
spins, mixing angles, and including all kinds of interactions with the curvature perturbation
and the two polarisations of the gravitational waves. In order to have at hand full predictions
in any given inflationary scenario, as well as for not biasing the interpretation of (upcoming)
cosmological data, channels involving multiple massive exchanges must be taken into account.
However, obtaining analytical solutions for these channels is highly challenging. In this work,
we present the first example wherein we apply recently developed bootstrap equations to
find the exact and explicit solutions of four-point and three-point correlation functions with
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the exchange of two massive fields. The approach employed in this paper involves applying
differential operators associated with each massive propagator individually, thereby expressing
derivatives of the double-exchange seed integral as the corresponding single-exchange one
without this propagator. By utilizing known results from prior research as input, we ultimately
derive exact analytical solutions for these bootstrap equations. Through proper selection
of variables, our final results exhibit a simplified form, comprising only one layer of series
summation. This simplification facilitates faster convergence and makes it easier to investigate
the analytic structure. The primary results of the four-point function exhibit divergences
in certain terms for specific kinematic regions, making the task of taking the three-point
function limit challenging. However, we observed that by employing the continuation of
certain special functions and regrouping the divergences in pairs, treating all contributions
as a whole, the final expression is explicitly convergent. We also conducted a detailed
analysis of the phenomenology related to double-exchange correlation functions, together
with a careful comparison with an independent numerical method using CosmoFlow. We
concluded that the primordial bispectrum generated from this channel may be large, both at
equilateral configurations and in the squeezed limit where the cosmological collider dominates,
thereby opening the thrilling possibility to probe the existence of massive primordial fields
via cosmological observations. We explored diverse phenomenological aspects that make the
double-exchange channels particularly intriguing, including specific phase information in the
CC signal, new features in the inflationary flavor oscillations pattern and a unique transition
to double frequency in the double soft limit of the primordial trispectrum. More generally,
our work showcases the utility of using diverse methods for the calculations of cosmological
correlators, and taking full advantage of their synergies.

There are many aspects that deserve further investigation in the future. Here we outline
a few of them. First, as previously mentioned in the main text, it would be desirable to find
simplified analytical expressions when the special functions are evaluated on arguments with
values close to unity. Second, as demonstrated by the example of the triple-exchange channel
provided in appendix D and for which we derived preliminary results, our technique can be
used to obtain fully analytical results for diagrams involving more-than-two exchanges of
massive fields, definitely providing fascinating directions for future work. Third, it would be
intriguing to investigate whether the well-known Suyama-Yamaguchi inequality [190], relating
the collapsed limit of the trispectrum to the squeezed one of the bispectrum, still holds in
the context of heavy field exchanges, depending on the number of such exchanges. Fourth, as
already acknowledged in the main text and following the now standard tradition in computing
cosmological correlators, we focused here on the exchange of massive fields in pure dS, but
future works on multiple exchange diagrams should also include symmetry-breaking cases,
such as those with non-unit sound speed, chemical potential, IR effects, and time-dependent
masses and coupling constants. Fifth, it is worth delving deeper into understanding the
mathematical structures of these boundary bootstrap differential equations involving multiple
exchanged fields, such as those explored in [148, 149] for the three-site chain of conformal
scalars.8 Sixth, although we did mention inflationary flavor oscillations in the context of
double-exchange channels and uncovered first interesting unique features, it remains yet to

8We thank the anonymous referee for pointing this out.
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conduct a thorough investigation of how to tell different channels apart in practice from
(to-be) observations. Seventh, with the analytical results of tree-level double-exchange here,
and the known result of the 1-loop bubble diagram [136] that also contains two massive
propagators, it would be interesting to compare the signals originating from these different
channels. Eighth, we explained in the phenomenology section 5 that the cubic interaction
λ, relevant for double-exchange channels, can be related to the field-space curvature in
general non-linear sigma models of inflation; it would be thrilling to explore double-exchange
correlators in the context of concrete models of moduli field spaces in string compactifications
or the coset field space of (pseudo-)Nambu-Goldstones from spontaneous symmetry breaking
patterns. Lastly, only very recently was the CC signal arising from varied single-exchange
diagrams searched for in the cosmological data [156, 157], but given the relatively higher
prospects of detectability of the double-exchange channels as we explained at length, it seems
important to extend the search to templates proposed in this work. We plan to address
several of these directions in future works.
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A Mathematical formulae

In this appendix, we provide a summary of definitions and formulae frequently utilized in this
work. Most of these formulae can also be found in Mathematical functions handbook [173].

Following refs. [135, 138, 141], we use shorthand notations for products of Gamma
function,

Γ [z1, · · · , zm] ≡ Γ (z1) · · ·Γ (zm) , (A.1)

Γ
[

z1, · · · , zm

w1, · · · , wn

]
≡ Γ (z1) · · ·Γ (zm)

Γ (w1) · · ·Γ (wn)
. (A.2)

Several types of hypergeometric functions are used in the main text, which we collect their
definitions here. First, the (generalized) hypergeometric function pFq is defined by

pFq

[
a1, · · · , ap

b1, · · · , bq
x

]
=

∞∑
n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n! , (A.3)

where (a)n ≡ Γ[a + n]/Γ[a] is the Pochhammer symbol.

– 51 –



J
H
E
P
0
9
(
2
0
2
4
)
1
7
6

We also use its “dressed” version, which is defined by

pFq

[
a1, · · · , ap

b1, · · · , bq
x

]
≡ Γ

[
a1, · · · , ap

b1, · · · , bq

]
pFq

[
a1, · · · , ap

b1, · · · , bq
x

]

=
∞∑

n=0
Γ
[

a1 + n, · · · , ap + n

b1 + n, · · · , bq + n

]
xn

n! . (A.4)

There are many formulae changing the variables of hypergeometric functions. The one
frequently used in the main text is

sin (π(c − a − b))
π

2F1

[
a, b

c
x

]

= 1
Γ [c − a, c − b] 2F1

[
a, b

a + b − c + 1 1− x

]
− (1− x)c−a−b

Γ [c − a, c − b]2F1

[
c − a, c − b

c − a − b + 1 1− x

]
.

(A.5)

Next, let us move to the hypergeometric series of two variables. In this paper, we used
two types of Appell series, F2 and F4, whose definitions are given by

F2

[
a

∣∣∣∣∣ b1, b2
c1, c2

∣∣∣∣∣x, y

]
=

∞∑
m,n=0

(a)m+n (b1)m (b2)n

(c1)m (c2)n m!n! xmyn, (A.6)

F4

[
a, b

c1, c2
x, y

]
=

∞∑
m,n=0

(a)m+n(b)m+n

(c1)m (c2)n m!n!x
myn, (A.7)

and their dressed versions are expressed as

F2

[
a

∣∣∣∣∣ b1, b2
c1, c2

∣∣∣∣∣x, y

]
=

∞∑
m,n=0

Γ
[

a + m + n, b1 + m, b2 + n

c1 + m, c2 + n

]
xmyn

m!n! , (A.8)

F4

[
a, b

c1, c2
x, y

]
=

∞∑
m,n=0

Γ
[

a + m + n, b + m + n

c1 + m, c2 + n

]
xmyn

m!n! . (A.9)

Note that the function F2 is convergent for |x|+ |y| < 1, while the function F4 for
√
|x|+√

|y| < 1. Here are some useful conversion formulae. The Appell F4 function is related
to Appell F2 through

F4

[
a
2 , a+1

2
b1 + 1

2 , b2 + 1
2

x2, y2
]
= (1 + x + y)−aF2

[
a

∣∣∣∣∣ b1, b2
2b1, 2b2

∣∣∣∣∣ 2x

x + y + 1 ,
2y

x + y + 1

]
, (A.10)

and the Appell F2 can be expanded as summation of Gauss hypergeometric function 2F1 as

F2

[
a

∣∣∣∣∣ b1, b2
c1, c2

∣∣∣∣∣x, y

]
=

∞∑
m=0

(a)m(b1)m

(c1)m

xm

m! 2F1

[
a + m, b2

c2
y

]
. (A.11)

Finally, the FC-type of Lauricella’s hypergeometric functions of m variables x1, · · · , xm

appears in appendix D, which is defined by [191],

FC

[
a, b

c1, · · · , cm
x1, · · · , xm

]
=

∞∑
n1,...,nm=0

(a)n1+···+nm(b)n1+···+nm

(c1)n1
· · · (cm)nm

n1! · · ·nm!x
n1
1 · · ·xnm

m , (A.12)
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with convergent radius √
|x1|+ · · ·+

√
|xm| < 1. (A.13)

Note that Lauricella’s FC function is reduced to Appell’s and Gauss hypergeometric functions
F4 and 2F1 for m = 2 and m = 1, respectively.

B Seed integral with single massive exchange

Here we show analytic expressions of the seed integral with single exchange, which appear as
source terms of bootstrap equations for double-exchange: the right-hand side of (2.47), (2.49),
and (2.50). The analytical solution of the single-exchange tree-level diagram is well-established
in the literature, as we mentioned in the introduction. Further, in cases where one vertex
involves linear mixing, the solution provides an exact closed form. This solution as the source
terms is utilized extensively in our main text discussion. The comprehensive derivation can be
found in detail in [138]. Here, we just collect the results in a convenient format for our purpose.

To do so, let us transform the seed integral with single exchange (2.41) by changing
the variables

z1 ≡ −k124τ1, z2 = −k3τ2, (B.1)

and introducing

Dα
ab (k3; τ1, τ2) = k−3

3 D̂α
ab

(
R

2− R
z1, z2

)
, (B.2)

where

R ≡ 2k3
k1234

. (B.3)

Under these change, eq. (2.41) can be written as

Ip1p2
ab,α (R) = H−2

(
R

2− R

)1+p1

(−ab)
∫ ∞

0
dz1dz2 zp1

1 zp2
2 e−iaz1−ibz2D̂α

ab

(
R

2− R
z1, z2

)
. (B.4)

Note that the seed integral depends only on a specific momentum ratio R.
A summarized version of the explicit expression for eq. (B.4) as a function of R is given by

Ip1p2
±∓,α(R)= e∓i π

2 p̄12

26+p12−2iµαπ
1
2
Γ
[

5
2+p2+iµα, 5

2+p2−iµα, 5
2+p1−iµα, iµα

3+p2

]

×R
5
2 +p1−iµα 2F1

[
1
2−iµα, 5

2+p1−iµα

1−2iµα
R

]
+(µα →−µα), (B.5)

Ip1p2
±±,α(R)=

{
±i e∓i π

2 p12e∓πµα

26+p12−2iµαπ
1
2

Γ
[

5
2+p2+iµα, 5

2+p2−iµα, 5
2+p1−iµα, iµα

3+p2

]

×R
5
2 +p1−iµα 2F1

[
1
2−iµα, 5

2+p1−iµα

1−2iµα
R

]
+(µα →−µα)

}

+ e∓i π
2 p12Γ(p12+5)

µ2
α+
(

5
2+p2

)2

(
R

2

)5+p12

3F2

[
1,5+p12,3+p2

7
2+p2−iµα, 7

2+p2+iµα
R

]
, (B.6)

where p12 ≡ p1 + p2 and p̄12 ≡ p1 − p2.
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C Boundary conditions of seed integrals

In the main text, in section 3.2, we imposed the soft limit (u, v → 0) as the boundary
conditions to determine the coefficients of bootstrap equations. In this appendix, we present
the calculation of the time integrals under these limits. In principle, one can employ the
late-time expansion of the Hankel function to directly evaluate the time integral under
these limits. Instead, as suggested by previous work [135], the partial Mellin-Barnes (MB)
representation proves to be an efficient approach for handling such time integrals. So in this
appendix we will adopt the MB representation to find the boundary condition. We will not
extensively discuss the derivation details, but instead, we will present the final results in a
format suitable for our purposes. Further details on the use of the partial MB method to
evaluate double-exchange correlators can be found in [141] .

The key trick of this method is to use the following representation of Hankel function,

H(j)
iµ (−kτ)=

∫ i∞

−i∞

ds

2πi
(−kτ/2)−2s

π
e(−1)j+1(2s−iµ−1)i π

2 Γ
[
s− iµ

2 ,s+ iµ
2

]
, (j =1,2) (C.1)

by which the time-integral in the seed integral can be trivially performed. Then, the
remaining complex integral with variable s can be done by the residue theorem. With (C.1),
the factorised propagators in the seed integral (2.10) can be expressed as

Dα
±∓ (k1; τ1, τ2) =

H2πe−πµα

4 (τ1τ2)3/2 H
(2,1)
∓iµα

(−k1τ1)H
(1,2)
±iµα

(−k1τ2)

= H2

4π

∫ i∞

−i∞

ds1
2πi

ds2
2πi e

∓iπ(s1−s2)
(

k1
2

)−2s12

(−τ1)−2s1+3/2 (−τ2)−2s2+3/2

× Γ
[
s1 −

iµα

2 , s1 +
iµα

2 , s2 −
iµα

2 , s2 +
iµα

2

]
, (C.2)

and similarly for Dβ
±∓ (k3; τ2, τ3). For time-ordered propagators, it has been observed that a

more effective way involves dividing them into factorised and time-ordered components through

Dα
±± (k1; τ1, τ2) = Dα

±∓ (k1; τ1, τ2) +
[
Dα

∓± (k1; τ1, τ2)− Dα
±∓ (k1; τ1, τ2)

]
θ (τ1 − τ2) , (C.3)

Dβ
±± (k3; τ2, τ3) = Dβ

∓± (k3; τ2, τ3) +
[
Dβ

±∓ (k3; τ2, τ3)− Dβ
∓± (k; τ2, τ3)

]
θ (τ3 − τ2) . (C.4)

Then accordingly, we define factorised and time-ordered parts of the seed integral by [141]

I±∓± , (C.5)
I±±∓ = I±±∓,F + I±±∓,T , (C.6)
I±∓∓ = I±∓∓,F + I±∓∓,T , (C.7)
I±±± = I±±±,FF + I±±±,TF + I±±±,FT + I±±±,TT , (C.8)

where I±∓± is already factorised from the beginning. The subscript F(T) indicates that it
originates from the factorised (time-ordered) part of the time-ordered propagators. In the soft
limit, the (fully) factorised part will dominate [141]. To clarify further, the dominant parts are

I±∓± = ± iH−4k9+p123
24

∫ 0

−∞
dτ1dτ2dτ3(−τ1)p1(−τ2)p2(−τ3)p3e±ik1τ1∓ik24τ2±ik3τ3

× Dα
±∓ (k1; τ1, τ2)Dβ

∓± (k3; τ2, τ3) , (C.9)
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I±±∓,F = ± iH−4k9+p123
24

∫ 0

−∞
dτ1dτ2dτ3(−τ1)p1(−τ2)p2(−τ3)p3e±ik1τ1±ik24τ2∓ik3τ3

× Dα
±∓ (k1; τ1, τ2)Dβ

±∓ (k3; τ2, τ3) , (C.10)

I±∓∓,F = ∓ iH−4k9+p123
24

∫ 0

−∞
dτ1dτ2dτ3(−τ1)p1(−τ2)p2(−τ3)p3e±ik1τ1∓ik24τ2∓ik3τ3

× Dα
±∓ (k1; τ1, τ2)Dβ

±∓ (k3; τ2, τ3) , (C.11)

I±±±,FF = ∓ iH−4k9+p123
24

∫ 0

−∞
dτ1dτ2dτ3(−τ1)p1(−τ2)p2(−τ3)p3e±ik1τ1±ik24τ2±ik3τ3

× Dα
±∓ (k1; τ1, τ2)Dβ

∓± (k3; τ2, τ3) . (C.12)

As mentioned above, the things to do are to insert the MB representations of the SK
propagators (C.2) into the seed integrals above, perform τi (i = 1, 2, 3)-integral, and evaluate
the complex sj (j = 1, 2, 3, 4)-integral by residue theorem. After straightforward calculation,
we gets the results summarized below.

As for the fully factorised seed integral Ip1p2p3
±∓±,αβ, the final results are

Ip1p2p3
±∓±,αβ = e∓i π

2 (p13−p2)

27+p13π
u−p1− 5

2 v−p3− 5
2Γ
[

5
2+p1−iµα, 5

2+p1+iµα, 5
2+p3−iµβ , 5

2+p3+iµβ

3+p1,3+p3

]

×
∑

a,b=±

∞∑
n2,n3=0

(
u

2

)2n2−iaµα
(

v

2

)2n3−ibµβ (−1)n23

n2!n3!

×Γ[−n2+iaµα,−n3+ibµβ ,p2+4+2n23−i(aµα+bµβ)] , (C.13)

where n23 = n2+n3. Under the limit u, v ≪ 1 for boundary conditions of bootstrap equations,
the dominant contribution comes from n2,3 = 0 in summations. Then, utilizing the following
formulae for the Gamma function,

Γ[z, 1− z] = π

sin πz
, Γ

[
2z

z, z + 1
2

]
= 22z−1

π1/2 , (C.14)

one may summarize

lim
u,v≪1

Ip1p2p3
±∓±,αβ = −

∑
a,b=±

e∓i π
2 (p13−p2) csch (πaµα) csch (πbµβ) Γ̃(p1, p2, p3, µα, µβ)

× u− 5
2−p1−iaµαv−

5
2−p3−ibµβ Γ

 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1− iaµα, 1− ibµβ

 , (C.15)

with

Γ̃(p1, p2, p3, µα, µβ) ≡
π

1
2

24+p13−p2
Γ
[

5
2 + p1 − iµα, 5

2 + p1 + iµα, 5
2 + p3 − iµβ , 5

2 + p3 + iµβ

3 + p1, 3 + p3

]
.

(C.16)
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A similar procedure can be applied to both the partially factorised (partially nested) and
fully nested seed integrals. Under double soft limits, they yield:

lim
u,v≪1

Ip1p2p3
±±∓,αβ, = ∓ i

∑
a,b=±

e∓i π
2 (p12−p3) csch (πaµα) csch (πbµβ) e∓πaµαΓ̃(p1, p2, p3, µα, µβ)

× u− 5
2−p1−iaµαv−

5
2−p3−ibµβ Γ

 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1− iaµα, 1− ibµβ

 ,

(C.17)

lim
u,v≪1

Ip1p2p3
±±±,αβ =

∑
a,b=±

e∓i π
2 p123 csch(πaµα)csch(πbµβ)e∓π(aµα+bµβ)Γ̃(p1,p2,p3,µα,µβ)

×u− 5
2−p1−iaµαv−

5
2−p3−ibµβ Γ

 4+p2−i(aµα+bµβ)
2 ,

5+p2−i(aµα+bµβ)
2

1−iaµα,1−ibµβ

 .

(C.18)

The results for Ip1p2p3
±∓∓,αβ can be directly obtained by replacing u ↔ v, p1 ↔ p3, and α ↔ β

in the expression of Ip1p2p3
∓∓±,αβ.

D Toward triple exchange

In principle, the bootstrap equation approach we applied to the double-exchange diagram
in this work can be easily generalized to any tree-level diagrams. In this section, let us see
how it works for the triple-exchange diagram, keeping in mind that obtaining the complete
analytic form remains a non-trivial task for future work. In particular, the bispectrum with
triple massive exchange would be phenomenologically important because it can give a sizable
signal known, as first emphasized in the context of quasi-single-field inflation [1].

Here again, we start from the seed integral for the four-point inflaton correlator, but
from a triple exchange, which can be defined by

Ip1p2p3p4
abcd,αβγ = H−6k13+p1234

4 (abcd)
∫ 0

−∞

4∏
i=1

dτi (−τi)pieiak1τ1+ibk2τ2+ick3τ3+idk4τ4

× Dα
ad (k1; τ1, τ4)Dβ

bd (k2; τ2, τ4)Dγ
cd (k3; τ3, τ4) . (D.1)

It can be diagrammatically expressed as shown in figure 12. The three-point correlator with
triple exchange can be obtained by setting the external momentum soft, i.e., k4 → 0. In
the following, we consider a situation where three massive fields contribute to the seed from
the mixing vertex σασβσγ . Without ambiguity and for the sake of brevity, we will omit
mass indices (α, β, γ) in the following text.

Similarly to the procedure shown in the main text, we transform the seed (D.1) to a
more convenient form through changing the integration variables by

−kiτi = zi, (i = 1, 2, 3, 4), (D.2)
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Figure 12. Four-point and three-point diagrams with triple massive exchange. For generality, distinct
colors here denote massive scalar fields σα, σβ and σγ with different mass.

and define the hat propagator in the same way as eqs. (2.22)–(2.24). Then, the seed
integral (D.1) can be written as

Ip1p2p3p4
abcd

= H−6(abcd)
w4+p1

1 w4+p2
2 w4+p3

3

∫ ∞

0

4∏
i=1

dzi zpi

i e−iaz1−ibz2−icz3−idz4D̂ad (z1,w1z4)D̂bd (z2,w2z4)D̂cd (z3,w3z4) ,

(D.3)
≡ 1

w4+p1
1 w4+p2

2 w4+p3
3

Îp1p2p3p4
abcd (w1,w2,w3) , (D.4)

where

wi ≡
ki

k4
, (i = 1, 2, 3). (D.5)

Now let us derive the bootstrap equations for Î. For example, repeating the same
procedure as in the main text, we find Î±±±∓ to satisfy the following homogeneous differential
equations

D(3)
wi

Îp1p2p3p4
±±±∓ = 0, (i = 1, 2, 3) , (D.6)

where the differential operators D(3)
wi (i = 1, 2, 3) are defined by

D(3)
wi

≡w2
i ∂2

wi
−2wi∂wi+µ2

i +
9
4−w2

i

 3∑
j=1

wj∂wj +p4+2

 3∑
j=1

wj∂wj +p4+1


=w2

i

(
1−w2

i

)
∂2

wi
−2w3

i ∂wi

∑
j ̸=i

wj∂wj −w2
i

∑
j,k ̸=i

wjwk∂wj ∂wk
−2wi

(
1+(p4+2)w2

i

)
∂wi

−2(p4+2)w2
i

∑
j ̸=i

wj∂wj +µ2
i +

9
4−(p4+2)(p4+1)w2

i , (D.7)

where µi is the mass parameter of the massive field associated with the momentum ki.
Remarkably, this can be analytically solved by

Îp1p2p3p4
±±±∓ =

∑
abc=±

c±±±∓,abc w
3
2−iaµ1
1 w

3
2−ibµ2
2 w

3
2−icµ3
3

× FC

[ 2p4+11−2i(aµ1+bµ2+cµ3)
4 , 2p4+13−2i(aµ1+bµ2+cµ3)

4
1− iaµ1, 1− ibµ2, 1− icµ3

w2
1, w2

2, w2
3

]
, (D.8)
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Figure 13. The schematic diagram illustrates the triple-exchange bootstrap equations. a, b, c and d
are the SK indices. When the two SK indices of one massive propagator are opposite, applying the
corresponding differential operator results in homogeneous equations. Conversely, if the two indices
are the same, an additional δ-term introduces a source term, which can be expressed using the seed
integral of the double-exchange diagram.

where the function FC [· · · ] is Lauricella’s hypergeometric function with three variables defined
in (A.12). The eight coefficients c±±±∓,abc could be determined by proper boundary conditions.

As a next example, let us see Î∓±±∓ including a single time-ordered propagator for σα,
D̂∓∓(z1, r1z4). In this case, we obtain an inhomogeneous term in the bootstrap equation
after acting with the differential operator D(3)

w1 ,

D(3)
w1 Îp1p2p3p4

∓±±∓,αβγ = w4+p1
1 w4+p2

2 w4+p3
3

(1 + w1)p1234+13 Ip2,p14+4,p3
±∓±

(
u = w2

1 + w1
, v = w3

1 + w1

)
, (D.9)

while the other equations with D(3)
w2 and D(3)

w3 still satisfy the homogeneous ones,

D(3)
w2 Îp1p2p3p4

∓±±∓,αβγ = D(3)
w3 Îp1p2p3p4

∓±±∓,αβγ = 0 . (D.10)

Note that the right-hand side of the first equation (D.9) is written as the seed integral of
double-exchange diagram, which we obtained analytic forms in the main text. This structure
is generic: the seed integral with n-massive field exchange, denoted as In, emerges as a source
term in the bootstrap equations of In+1. Consequently, we can systematically solve more
complex tree-level diagrams, although the detailed calculations remain non-trivial tasks: as
shown in (D.8), the homogeneous solutions can be written down as known special functions,
which is true even for more general diagram with n-massive exchanges. However, determining
particular solutions would be a non-trivial task since the source term (the right-hand side
of (D.9) for triple exchange) becomes more and more complicated as n increases, and we
leave the detailed derivation for future work.
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Similarly, deriving the remaining bootstrap equations for other seed integrals follows a
straightforward procedure. However, we do not intend to delve into all the tedious details
within this work. Instead, we illustrate the structure of the bootstrap equations in figure 13.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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