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ABSTRACT: We study a conformal field theory with cubic anisotropic symmetry in presence
of a line defect. We compute the correlators of the low lying defect operators using Feynman
diagrams and derive explicit expressions for the two, three and four point defect correlators
at the cubic fixed point in 4 — e dimensions to O(e). We also compute the defect g-function
for this setup and demonstrate that this is in agreement with the g-theorem, which states
that the g-function is monotonic under the renormalisation group flow along the defect. Next,
we focus on conformal bootstrap techniques to determine the CFT data associated with
the defect operators, which is the main objective of the paper. We utilize the framework
of crossing symmetric Polyakov bootstrap and compute the averaged CFT data to O(e) up
to a finite number of ambiguities. We comment on unmixing the CF'T data for the double
trace operators at O(e) and use this to compute the O(e?) data. Finally, we study these
defect correlators non-perturbatively using numerical methods and isolate them near the
free theory limit close to four dimensions.
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1 Introduction

Conformal field theories (CFTs) are sub-class of quantum field theories (QFTs) and play an
important role in understanding the physics of critical phenomena. CFTs lie at the endpoints
of the renormalisation (RG) group flows and characterize the ultraviolet and infrared fixed
points of QFTs. CFTs posses an enhanced symmetry which includes translation, rotation,
scale invariance and special conformal symmetry. These symmetries are powerful tools to
constrain the structure of the correlation functions which encode the information of the
observables in the theory. However, in order to connect with real-world systems it is important
to consider the presence of impurities or defects in CFTs. Defects are used to probe the
CFTs and capture the finite size effects in conformal systems. Defects appear in different
branches of condensed matter and statistical physics, namely the Kondo problem that arises
due to magnetic impurities in metals and surface phase transitions occurring in systems
with differently-ordered regions separated by domain walls are some examples of real-world



defect systems [1-5]. The study of CFTs in presence of defects has seen a resurgence of
interest over the past few years [6-15].

Defects break some of the symmetries of the bulk CFT. Hence the correlation functions
in defect theories are less constrained than those without the defects. However, defects
preserve enough symmetries of the bulk CFT which provide important information about the
observables. The idea of defect conformal bootstrap is to use the symmetry and consistency
conditions to constrain the correlation functions of the theory. In presence of a defect, the
CFT can have a) bulk operators: that live on the bulk and b) defect operators: that are
localised on the defect. This allows the correlation functions to be decomposed in different
channels depending on the operator product expansion (OPE). Crossing symmetry of the
correlator imposes non-trivial constraints on the bulk and the defect CFT data, that capture
the dynamical information of the CFT. These constraints can be studied using the techniques
of boundary and defect conformal bootstrap [16-31]. This approach is based on symmetry
and is independent of the Lagrangian description.

Defect CFTs can as well be studied from the Lagrangian point of view using the tools of
perturbative quantum field theory and renormalisation group. For our purpose, we restrict
our attention to one-dimensional line defects. Line defects act as a relevant perturbation in
the bulk CFT and undergo an RG flow in the space of coupling. These defects are represented
by a relevant line operator of scaling dimension A < 1 in the UV. The entire setup is captured
by an RG flow from one defect CF'T in the UV to another defect CF'T in the IR, during which
the bulk CFT remains at the same critical point [32]. The RG monotones can be constructed
for such defect RG flows. It was shown in [33] that one can define a defect g-function which
captures universal information about the defect CFT and has a monotonicity property as one
flows from the UV to IR [34-36]. The irreversibility of g shows that g decreases monotonically
along the RG flow i.e. gyy > grr. For specific types of defects this quantity can also be
connected to quantum information theory as discussed in [37, 38].

The model considered in this paper is a defect CFT with global symmetry, specifically a
CFT with N scalar fields ¢;,7 = 1,2, --- N, with a cubic anisotropic quartic interaction in
the bulk in 4 — € space-time dimensions. These theories are relevant to study the magnetic
systems where the O(NN) symmetry is broken by the crystal structure of the materials. Such
systems are described by deforming the O(N) interaction term by an interaction that prefers
the direction of the magnetization [39]. Note that the cubic anisotropic system reduces
to the Ising-like system when N = 2. Renormalisation group analysis shows that these
theories can have different bulk fixed points depending on the bulk couplings [39]. We focus
on the cubic fixed point in the paper. As a next step, we insert a relevant line defect to
this bulk theory which breaks the cubic symmetry. The line defect can be thought of as a
localised impurity embedded in the cubic anisotropic system and plays the role of an external
field. The line operator undergoes an RG flow that takes it to a defect fixed point while
the bulk theory remains at the cubic fixed point. We analyse the properties of the defect
operators at the defect fixed point. The cubic anisotropic model with global symmetry in
the presence of line defects has been studied earlier in [40] with symmetry breaking defects
along several internal directions.! Our bulk theory is the same as that studied in [40] whereas

'Bulk theory in presence of cubic anisotropic symmetry was explored using the conformal bootstrap
approach in [41-44].



the defect in [40] is distinct from ours, which correspond to activating external fields along
several internal directions.

The paper aims to study the correlation functions of the defect operators using different
methods. The first part of the paper is based on computing the defect correlators using
Feynman diagrams. The second part is focused on extracting the defect CFT data using the
bootstrap method which relies on the conformal block decomposition of the one dimensional
CFT correlator and is agnostic to the Lagrangian description of the theory. The dynamical
information is encoded in the four point defect correlators. The absense of the lightcone
limit makes the study of the one dimensional CFT correlators challenging. It can be studied
efficiently using the crossing symmetric inversion formula [45] or equivalently the Polyakov
bootstrap [46-49]. The idea of Polyakov bootstrap was initiated in higher dimensions in [50]
and subsequently developed in [46, 51-54].2 This formulation is manifestly crossing symmetric
and leads to efficient computation of the CFT data in perturbative CFTs by supressing the
contributions from the double trace operators in the spectrum. Similar supressions have also
been observed in [61]. We show how to compute the defect CFT data upto a finite number
of unfixed parameters using this framework. At this level we combine the results from the
Feynman diagram computations with bootstrap to fix these parameters.

The main results are summarised below:

 The defect fixed point is computed at O(e?) and the g- function of the cubic anisotropic
theory is studied perturbatively in the parameter €. It is shown in (3.27) that the g-
function decreases monotonically along the defect RG flow at O(e) satisfying gy > grg.

o The correlation functions of defect operators are computed using the Feynman diagrams.
There could be different types of defect operators that transform differently under the
global symmetry. We denote these operators by ¢1(7) and ¢4 (7) where @ = 2,3,--- N.
The two, three and four point correlation functions of these operators are computed
up to O(e) in (4.5), (4.11), (4.14) and (4.16). It is observed that the operator ¢g(7)
has non-zero anomalous dimension unlike the tilt operator that appears in the O(N)
symmetry breaking defect [7] and transform in the vector representation of O(N — 1).

e The defect operators are studied using the framework of Polyakov bootstrap. The
defect CFT data, namely the averaged scaling dimensions and the OPE coefficients
are computed at O(e), upto a finite number of unfixed parameters. At this level we
combine the results from the Feynman diagram computations with bootstrap to fix
these unknown parameters. We have explicitly done this analysis for cubic and O(N)
symmetric CFTs. We address the issue of mixing of double trace operators at O(e).
We show how to disentangle the CFT data of approximate two towers at O(e) by
considering different correlators of two defect operators. Finally, a part of the spectrum
at O(€?) has been computed in (5.42).

2Also see [55-58] for an equivalent formulation of these sum rules but using only two channel crossing
symmetry. The Regge-bounded Polyakov blocks can only be made two channel crossing symmetric in higher
dimensions because of the presence of spins> 2. A different category of analytic functionals, more suitable for
numerical applications in higher-dimensional conformal field theories (CFTs), was studied in [59, 60].



e We do a numerical bootstrap analysis by considering the correlators of ¢4(7) when the
bulk CFT is invariant under O(N) global symmetry. We show that Polyakov blocks
can isolate the defect CF'T by considering a specific gap optimization problem in the
singlet sector when ¢ is very small.

The paper is organised as follows. We begin by introducing the cubic anisotropic model
in section 2 following [39]. The effect of the line defect in this model is discussed in section 3.
In particular, we compute the beta function of the defect coupling when the bulk theory
is tuned to the cubic fixed point in 4 — € dimensions in (3.17). In section 3.2 we study the
g-function for this set up and comment on its monotonicity property under the RG flow.
We compute the correlation functions of some low-lying defect operators in section 4 using
Feynman diagrams upto O(e). Section 5 is dedicated towards the study of defect correlators
using the conformal bootstrap approach. The numerical analysis is done in section 6. Finally
we conclude in section 7. The appendices contain some computational details.

2 Cubic anisotropic model

We consider a theory of N scalar fields ¢; (i = 1,2,--- N) with two types of ¢* interaction
terms in d 4+ 1 space-time dimensions. The action in this theory is given by

21 1 X o
S = /dT dez [2(8@-)2 + ] ;)\i]’k@lqﬁ](ﬁk(ﬂ ) (2.1)
1=
where we denote the coordinates as z* = (7, Z). The interaction vertex can be written as [39]

Nijki = %(5@'51@1 + 03k 01 + 6i10jk) + 92 Oijrt » (2.2)

where

1, ifi=j=k=I
Oijki = .
0, otherwise .

There are two coupling constants g; and go in (2.2). The interaction term go breaks the
O(N) symmetry of the theory and is referred to as the cubic anisotropic interaction, which
is added to the O(N) interaction term ¢;. For g1 # 0,g2 = 0 this reduces to the theory
with O(N) global symmetry. Depending on the values of the coupling constants, the cubic
anisotropic system can have the following four fixed points:

Gaussian fixed point: g3 =0 = g9,

Ising fixed point: g1 =0, go # 0,

e O(N) fixed point: go =0, g1 #0,

Cubic fixed point: g1 #0, g2 #0.



We will focus on the cubic fixed point in what follows. The propagator in the free theory
is given by [32]

ddEdw efi(k.i"%urr)
(2m)dtl W2 4 k2

<¢z (Tv f)d)] (07 6)> = 52‘]‘

Sat1
where
= Sao 2479720 ((d — a) /2)

The theory is studied using dimensional regularisation in d = 3 — € dimensions within the
minimal subtraction scheme. We quote below the values of the couplings at the cubic fixed
point in this scheme [39]

€ 125N —19N? — 106 ,

- _ € 3
gix = N + 97N + O(G ),
N —4  17TN3+93N?% — 534N +424 , 3
q * — , 2
72 IN €+ e e+ 0(€) (2.5)
where we have introduced modified coupling constants
_ 9i .
= =1,2. 2.6
gl (47_[_)2 9 ? ) ( )

We will rename g; as ¢g; and drop the superscript g in what follows.

3 Cubic anisotropic model with a line defect

In this section we discuss the effect of adding a line defect to (2.1). We choose the line defect
along the field with internal direction ¢, (see [7, 32] for similar analysis in the context of O(N)
model) and localised in the & = 0 space. Since we single out a particular internal direction ‘1¢
for the defect, it breaks the symmetry of the bulk theory (2.1). The defect action is given by

Sp = /ded_’ 1(agzs)Q S gjx-m%w%’ —I—Wo/ dr ¢1(r, @ = 0) (3.1)
2 4l =" D ’ .

where D is the worldline of the defect. Line defects of more general type have been considered
in [40] where the defects break the symmetry in different directions in the internal symmetry
space. This line defect triggers a renormalisation group flow along the defect. Assuming that
the bulk theory is at the cubic fixed point, we study the effect of the line defect as we move
from the ultraviolet (UV) region to the infrared (IR). Note that the defect operator ¢, is a
relevant perturbation in d < 3 and irrelevant in d > 3. The defect term can be thought of as
a magnetic field breaking the cubic anisotropic symmetry with the defect coupling

Yi = Y0 6i1 . (32>



(a) { > /
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Figure 1. Feynman digrams for (¢ (7, & = 0)) upto O(g?, g3, g192). The filled red square denotes the
bulk couplings whereas the filled circle denotes the defect coupling.

3.1 Defect renormalisation group flow

In order to study the renormalisation group flow in the presence of the defect we need to
renormalise the defect coupling vg. We compute the beta function of the defect coupling by
demanding that the renormalised one point functon (¢1(7 = 0, Z)) is finite at a distance |Z|
from the defect in the limit € — 0 for all values of g;, go and ~y. The diagrams contributing
to the one point function of (¢1(7 = 0,Z)) upto quadratic order in the bulk couplings are
shown in figure 1.

Note that we have not assumed that the defect coupling g is small. So we need to
keep all the diagrams with aribitrary number of defect insertions for O(g12, g3, g1 g2). We
define the following renormalisation constants that relate the bare fields to the renormalised
ones in the dimensional regularisation

i 4 4 Z
A ot =u T g =u s e, 7(?:#6/27%% (3.3)

where p is the energy scale. We use the superscript B to denote the bare quantities. The
renormalisation constants for the bulk theory are unaffected by the defect and are given in
terms of the renormalised couplings following [39]

o N +2 1

7 -1_ _ Sl N o 10 3.4
4 3 9 (2N +40 144+ N 22 8
Zgy=14g1-+g2- +g T +9192 | 5 — =
€ € 3e 3e € €

T (495)4 (692 - :z) +0(g°),

N +38 2 N +8)2 22+45N
Zg =14+q c +gze+g%<( 962)— ¢ )
124+ N 4 ) 1
+9192< 2 —6)+9§<62—6>+0(93)- (3.5)

In order to evaluate the diagrams in figure 1 we transform the one-point function from
position space to momentum space. This results in the following expression

(pr1(k)) = [(a) + (b) 4 (c) + (d) + () + (') + (&) + (d') + (') + (") + (") + ("] ,

(3.6)

-



where

B
(a) =~ - (3.7)

L2720 @E - art (4 -1)

(b) = g7 (%) T (3.8)
N+2 T@-ar (%)
(C) = ,73(91 )2 92d+3 Ot f5— 2dF( ) (39)
5 (N +38) =% cot (md) sec (%)
(d) = (70 ) (gl ) 97d—10 gfl1— 3dI‘< ) ( 1) ( ) (310)
b ey 27206 — 2d)T0 ( 1) -
(€) = (§)°(a7)? Sk 8)3d S (3 0] (3.11)
0) = Ologs ()= 35 Olnon @) = g @l
/ /! 6 Ui
(6) = (e)‘gl—>92 ) (C ) = m(c)’g%—mlgz ) (d ) = 2(d)‘9%—>9192 ’
(e”) - 2(6)|95H9192 ’ (3-12)

We can express (3.6) in terms of the renormalised couplings given in (3.3) and expand the
expression in powers of g1 and go, but not 7. Demanding that all poles in e should cancel at
each order in g1, g2 we get the following expression for Z, in the minimal subtraction scheme

) (_72 (992 +4N +32) +72 (972+8N+64)>

v 1
10272 9 1105927 ¢ 22118474 €2

2 2 2 2 2 2 2 2
of Y (YH4) (¥ +8) v (v*+4) | v (7 +8) 3
_ _ O(¢*). (3.13
+92< oosrte Toastenie? ) T2\ T giaante T imasenie | TOW). (313)

Zy=1+(g1+92)

We have determined all the renormalisation constants in the defect theory upto quadratic
order in bulk coupling. We are now in a position to compute the beta function associated
with this defect. We note that since the bare coupling 7y should be independent of the
energy scale we must have

- 9 < j2 2y >
—~B_ €220 =0. 3.14
Hap 0 = kg \W 7 (3.14)
This can rewritten in the form
= + uaa \/» + 5( ) = where  S(vy) = ,u,gz : (3.15)
This results in the following beta function for the defect
3 4 2
_ o« ¥ 10+ )
B(y) = ik (91 +92) 062~ 192 15364
27 (3PN +N+2) (7 +37 1) 3
— . 1
o 92167 92 gyrom T O (3.16)



Now inserting the couplings at bulk fixed point (2.5) we get the defect fixed point

9N 1203274 N2 + 43272N2% — N2 — 271367* N — N + 542727 + 2
€

~2 2
TENoT T 864(N — )N +0(e%),
(3.17)
with the redefined defect coupling
r= 1 (3.18)

Ar2

We will rename 7 as v and drop the superscript in what follows. The defect fixed point has
been computed earlier for cubic anisotropic symmetry with multiple line defects at leading
order in [40]. To the best of our knowledge, our result at O(e) is a new finding. The anomalous
dimension of the defect operator ¢; comes out to be

0
A(gr) =1+ 6775(7”7*

(3.19)

_ 2 _3_(N—1)(N+2)> 3
—1+6+6( 5 38042 +0(e).

This completes the study of the defect RG flow for the cubic anisotropic symmetry at O(e?).

3.2 Defect g-function

In this section we compute the defect g function of (3.1).The defect g-function with a circular
defect of radius R is defined as [6, 7]

Zbu1k+defect
) : (3.20)

log g = log (Zbulk
where Z is the partition function of the corresponding theory. We assume that the theory is

at the bulk critical point but the defect coupling in generic can be arbitrary. The g-function
upto one-loop in the bulk couplings reads

2 4 4
logg = %/DdTldTQGo(QZ(Tl),.T(TQ)) - W/ddy</DdTG0(y,$(T))) + 0(g%).

(3.21)
We parametrize the circular defect of radius R as
x#(0) = (Rcosb, Rsinb,0,0,,---), 0<60<2m. (3.22)
The free propagator (2.3) in this parametrization is given by
Si+1
Go(z(m1),z(12)) = (@(m) — ;{(Tg))dl
= Sa1 (3.23)

d-1)/2
(4]1?2 sin? 102 )( /



and can be used to evaluate (3.21). The first integral in (3.21) reads

9% 2m 2m 9 9 01 _ 92 —(d—1)/2
/ dTl/ dTQGO(.’I)(Tl),.T(TQ)) =R Sd+1/ d91/ d92 (4R sin )
D D 0 0 2

=—7+ O(€?) (3.24)

This integral can be evaluated using the master integral in [62] resulting in the following

g-function

logg| =—292+0(e)
Ve 8
1872 N )
= — . 2
EN_1+O(6) (3.25)
The g-function without the defect reads
log g =1. (3.26)
v=0
Comparing (3.25) and (3.26) we get
logg| >logg = guv > JIR - (3.27)
v=0 Y

This result is in agreement with the fact that the defect g-function is monotonic [6].

4 Computing defect correlators using Feynman diagrams

In this section we compute the correlators of the low lying defect operators using Feynman
diagrams. Using this we are able to extract the anomalous dimensions and OPE coeffcients
of the low lying defect operators to O(e).

4.1 Two point correlators

We begin by evaluating the two point correlators of the defect theory. We first study the
correlators (¢q(7)pp(0)). This can be obtained by evaluating the following Feynman diagrams:

(Ga(T)9(0)) = R o S + 0(62). (4.1)

It is possible to have two types of fields on the defects depending on how they transform
under the global symmetry group. We have correlators of two different fields given by

¢1(Z,0), s a=2,3,---N. (4.2)

We will use a = 1, a to denote these indices in what follows. The correlator can be written

in terms of the renormalised fields

o1 =\/Zg, (0], 0= VZ4,]ta] (4.3)



We refer to the operators t; as anomalous ‘tilt’ operators. Their dimensions remain protected
if the bulk symmetry possesses a conserved current, behaving similarly to typical tilt operators.
However, in the cubic anisotropic case there is no conserved current and therefore we will
see below that it has anomalous dimensions.

The renormalisation factors are obtained by demanding the finiteness of the two point
functions (¢ (7)pp(0)) which results in

2
B Y 2 92
Z¢1 =1- m(gl +g2) + 0(9179279192)a

2
Z, =1

a - mgl + 0(9%79579192) . (44)

The defect two point function takes the following form

(1l 0)) = -
N,
({[tal(m)[t1(0)) = 04 5, - (4.5)
where

Ay, =1+e+0(e%),
Ny = 47711_2 {1 - %(3+2log7r—|- Q’YE)} + 0(62),
At:162((];;__41))+0(62)’
/vt:;rg[ugg:ﬁ (4_3N+7E+log7r)]+0(62), (4.6)

and vp is the Euler Gamma function. Note that both the operators ¢; and t; receive
corrections at O(e). The fact that the operator ¢; has anomalous dimension is unlike the
defect in the O(N) symmetric model, where the operators t; are protected. In the O(N)
model, the operator t; quantifies the breaking of the Noether current on the defect whereas
for the cubic symmetry group, there is no such conserved current in the bulk.

4.2 Three point correlators

In this section we determine the three point defect correlators or the OPE coefficients. These
results are obtained from Feynman diagram computations, keeping terms up to O(e) in the €
expansion. Symmetry fixes the functional form of the three-point correlators

N(91N02N03 0(910203

<01<T1)02(7—2)O3(T3)> T CAI+A—A3 A1 +A3—As _As+Az—A; (47)
T12 713 723

We focus on the simplest three point functions with only the fundamental scalar. It is
obtained by the following Feynman diagram at O(e)

(da(r1) oo(12) Pe(m3)) = o+ O(€). (4.8)

,10,



Since this diagram involves one bulk vertex, this is proportional to g1, gox o € it is sufficient
to evaluate this integral in d = 4 [27].

dT4d4.CC5 27‘(’4

lim / = . 4.9
Z1,%2,%3,84—0 x%5x%5x§5xi5 T12713723 ( )

The OPE coefficient takes the following form
C¢a¢b¢c X M (5(16561 + 5a15bc + 6a05b1) + g2+Vx 5abcl . (410)

This can be decomposed into irreducible representations of the global cubic symmetry for
(N — 1) scalar fields. This results in the following non-vanishing OPE coefficients

N-—-1
me + O(€?),

C¢1 o161 —
e

Cougyon = UNIN=T) +0(e%). (4.11)

4.3 Four point correlators

In this section we study the four point correlator in the defect theory (3.1). The four point
correlator upto O(e) is obtained by summing over the following Feynman diagrams

(Ga(m)p(m2)be(T)gal(ra)) = wmmeume 4 P A vo@). @12

L L NEVAP S Y

We can write the renormalised correlator in terms of the cross-ratio

p = 1273 (4.13)
T13724
The correlator of the operator ¢ reads
([@1)(1)[1](72)[61](73) [P1](74))
1 z \*41 4N -1)
=— |1 28 () ——] 2 4.14
(12712501 { + 2751 4 po— +e€ ~ (z)] +0(e), (4.14)
where
2% log z
I(z) = . + zlog(l —2). (4.15)
-z
The correlator of the t; operator can be written as
([tal () [t) () [te] (73) [t gl (74))
1 0,705
- (T12734) 280 [QS 0ap0eq + 91 (0ae0g + 05405 — 204pe0) + Gv (613136& - ]\?b_ai)
+Ga (564556 - 5@5534) } + 0(62) , (4.16)

where A; is defined in (4.6). We have decomposed the correlator into the irreducible
representations of the cubic anisotropic symmetry for N — 1 scalar fields [39, 41]. This ensures

— 11 —



that the defect breaks the global symmetry in one internal direction but keeps it invariant
in the remaining N — 1 directions. The functions in (4.16) are defined below

1 22
Gg= (1—1-]\7_1('2_1)2 (2—22+z2)+6)\flogz2+e)\§log(2—l)2> ,

2

AS = —2(N_1)§N(Z_1)2 <(z2+6z—6) NZ-4(22432-3) N+12(z—1)> :

A5 = 2(N—1)2ZN(z—1)2 (8z2(N—1)2—|—((28—15N)N—16)2+8(N—1)2—4(N—1)(1—z)2> :

2(22—2¢+42
Gr= ('2(22(2_15)2)4—0\{ logz2+e)\glog(z—1)2> ,
2’2
A = TN (((z—2)z—|—2)N2—4(2—2)2N—82+8> ,
A = 4(N—1)jV(z—1)2 <8(N1)z2+(N20)Nz+16z+8N8) :
2 (22 —22+42
Gy = (Z(fz—l;) +eA log 22 +eXy log(z—l)Q) ,
Z2
)\Y — SN _DN(_1)? <(2—z(z+2))N2+4 (22+z—1) N—8z+8> ,
AY = 0 1)}( 2 <4z2N2—7zN2+4N2+822—12z2N+2OzN—12N—16z+8> :
_ P
—92)53
Ga= (;Z(Z_;;+e)\flogz2+e)\‘2410g(zl)2) ,
A (N—4)z*
AQ - ’
AN—1)(z—1)2
M =2} z-2)z. (4.17)

Note that the correlators computed in (4.14) and (4.16) are crossing symmetric under the
exchange of x9 <> x4 which serves as a consistency check.

5 Bootstrapping four-point correlators

In this section, we use analytic bootstrap tools to compute the CFT data, namely the
scaling dimensions and the OPE coeflicients of the defect correlators. The goal is to show
that the CFT data can be fixed upto a finite number of unfixed parameters using the
analytic functionals® [46, 47, 63]. These parameters as well as the correlators can be fixed
unambiguously if we use the inputs from other techniques like the Feynman diagrams. Let us
first consider the four-point correlator of ¢; on the defect. On the line defect the correlators
are invariant under SL(2,R): the one-dimensional conformal group. Therefore the four-point
correlator is fixed upto an arbitrary function of single cross ratio z,

(61(70)01(m2)61(75)1 (1)) = g G(2). (51)

T2 T34

SWhile analytic functionals may encompass a wide range of functionals, for our purposes, we specifically
consider those that equivalently lead to Polyakov bootstrap equations. Therefore, we use the term Polyakov
bootstrap or analytic functionals interchangeably without distinction.

— 12 —



These functions G(z) can be expanded in terms of SL(2,R) conformal blocks,
2 =Y aaCal2) (52)
A

where
Ga(z) = 229 F1(A A 24 2) (5.3)

are the conformal blocks and aa are the OPE coefficients of the exchanged operators with
scaling dimensions A. It was shown in [46] that G(z) also admits an expansion in terms of
crossing symmetric Polyakov blocks, Pa(z) with the same OPE coefficients an,

= ZCLAPA(Z) . (5.4)
A
Polyakov blocks admit an expansion in terms of the SL(2,R) blocks and their derivatives,

Pa(z) = Ga(z) = 3 an(A)Ga Z Ba(A)IGA, (2). (5.5)

If we sum over the Polyakov blocks after multiplying with appropriate OPE coefficients and
claim that the two expansions, eq. (5.2) and (5.4) agree, we get the following two sets of
discrete sum rules that constrain the CFT data,

Z aaBrn(A) = 0, Vnon-negative n,

(5.6)
Z apan(A) = 0, Vnon-negative n.

Here o, (A) and S, (A) are the linear functionals that can be computed as contour integrals
of crossing symmetric equation with kernels constrained appropriately [46]. We have briefly
reviewed this construction and the relation with exchange and contact Witten diagrams in
appendix A. For our purpose what is important is that a,(A) and ,(A) are kinematically
fixed functions of A and the OPE data of any correlator of identical scalar operators on a
line have to satisfy these sum rules. We now apply these sum rules to compute the CFT
data. The functionals can be written as follows,

Ba(B) = N(A, 85) (B2(A, Ag) +20,(A, Ag)) + ARn,

(5.7)
an(B) = N (A, Ag) (3(A, Ag) + 204, (A, Ag)) + AS,,.

The parameter A is fixed by demanding that one of the functional equation is missing,i.e.,
say we decide to use n = 0 beta equation to fix it then,

N, Ag) (B(D, D) +265(A, Ag)) + ARy =0,

Ry

(5.8)

— A=-— (b5(, Ag) + 26H(A, Ay)) .

All the explicit expressions of relevant quantity in above equations are given in appendix B.
Now we have to assume the spectrum and the bootstrap equations (5.6) will fix the CFT
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data. We assume that upto first sub-leading order in perturbation theory only the identity
and the double trace operators appear in the OPE of ¢;,* at the leading order in any
perturbative theory,

o1 X p1 ~ T+ (1) + - . (5.9)

Note that for CFTs with N-scalar fields transforming under a global symmetry with a line
defect, there is also another family of double trace operators (¢q¢%)n, a = 2,3, -- N, having
the same bare dimension as ¢1, which mix with the one written above in (5.9). Hence, our
result contains averaged values with contributions of multiple operators that are degenerate
at lower orders in the perturbation theory. Later on, we will show how to disentangle
the individual CFT data in section 5.4. The CFT data of double trace operators can be
expanded in the parameter e,

A, =2+2n+~te+O(2),

5.10
an = ad +ale + O(e?), (5.10)

for n =0,1,2,---. The dimension of the external scalar Ay, is also taken as an input,
Ay, =1+e+0(?) +---. (5.11)

The leading order OPE coefficients can be obtained by looking at «a,(A) equation (5.6).
The OPE coefficient is given by,

212(2n + 2)I'(2n + 3)
0
= —a,(0) = . 5.12
an = =(0) = o T + 3) (5.12)
Then we expand (,(A) and find the following two contributions at O(e):
i. contribution of the operator with dimension Ay,
aS(v6 =23+ DT (n + 2
070 2
€ 3 , (5.13)
220 (n!)2T (20 + 3)
ii. contribution of the operator with dimension A,
—eal(=2++1). (5.14)

Summing over the above two contributions (5.13) and (5.14) we find the following expressions
for the averaged value of the anomalous dimensions of the double trace operators

2T (2n + 2)2({ad~d) + 4n(2n + 3)) '

['(4n + 3) (5-15)

(apyh) =

4A similar type of computation appeared in [46] where the authors studied ¢* flow in AdS. Here the
spectrum is more subtle as there is a mixing of double trace operators and that would change the details of
the computation.
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Similarly, we expand «,(A) to find the following corrections to the OPE coefficients
VA2 () — (20 + 2) (—Hansr + Hy, 1 +log(4))

T (QTL + %) (5.16)

" 8 (H2n+1 + Hopnto — Hyngo — 1) F(Q’I’L + 2)21"(2n + 3)
I'(2n+ 1)'(4n + 3) ’

where H,, is the Harmonic number of order n
Hy=)Y —. (5.17)

Thus the CFT data to order O(e) is fixed in terms of one unknown parameter, agys, which is
the CFT data of the leading double trace operator with n = 0. This serves as an independent
cross-check of our results derived from Feynman diagrams (4.14). For convenience we provide
the value of the unfixed parameter below,

2(2N + 19
(andy = 2BV g o),
N +8 (5.18)
42N -1) _
{(apyy) = N for cubic.

5.1 Four point correlator of anomalous tilt operator

In our defect setup, the fields ¢4 with & = 2,3, ..., N transform under the cubic anisotropy
group. The correlators can be expanded into the irreducible sectors of the global sym-
metry group,

GUM (2 Z © uGelz (5.19)

where the sum runs over all channels which in this case are singlet (S), symmetric vector (T),
traceless (V) and antisymmetric (A) representation of cubic symmetry group. Each channel
can be expanded in terms of conformal blocks or equivalently Polyakov blocks,

ZaAGA ZZ P (2) (5.20)

b runs over all the irreducible sectors. A general prescription for any real group was given
n [63]. For the present case, there are three Regge bounded contact Witten diagrams.
Therefore the Polyakov blocks will be defined in terms of exchange Witten diagrams and by
suitably adding these contact Witten diagrams (see appendix C). This will lead to losing
three equations and therefore our perturbative solutions constructed using this basis will
be fixed in terms of three parameters (ambiguities). Since these functionals didn’t appear
anywhere We have written down the explicit form of the sum rules in appendix A.

While matching this data with prediction from Feynman diagram we have to provide
three CFT data to fix the ambiguities which bootstrap alone can’t fix. Now as usual first we
assume that upto O(e) there are only identity and double trace like operator in the OPE of
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ta and t;. Therefore there will be identity in the singlet (S) channel and then in the S,T,V/
channel the operators will have dimension 2 + 2n 4 7€ and in the antisymmetric(A) channel
the operator will have dimension 3 + 2n + ’y;?e. We provide the OPE data of these sectors,

(aS~5) = V2 i 1(10n(2n+i’>)<al%> (n—1)(2n+5)(a55))T (2n+2)
i 5T (on+3) |

V(N - 4)2 An= 1n(2n+3) (2n+2)

oTATy = _
{an ) T (20+3)

+x/7r4‘2" 1F(2n+2)((N Dn(2n+43)((a575) —10(af71)) +10(N —2)ag 7o )
B(N—2)T (2n+3) ’
VA(N=4)274" "1 (N+4n°+6n+1) T'(2n+2)
(N-2)T (2n+3)
VA(N=1)27*" " n(2n+1)T(2n) ((a575) (13N +4n°+6n—23) —10(a?+7) (3N +4n°+6n—3))
5(N—-2)T" (2n+%)

(ay vy )=—

+

_ VA(N=1)2"*"n(2n+1)ag v I'(2n)
T (2n+3)

)

A A T(N=4)47""OT(4n+5) (=4(N —=2)L(4n+7) —7°T (2n+3)T'(2n+4))
{an )
nn (N=2)(N=1)I' (2n+3) T (2n+3) T'(4n+4)
7 (N=1)278" " (n4-1) (a5 )T (2n+3)T(2n+4)
5(N=2)T (2n+3)T (2n+13)
_ T (N=14"" P (n+1) (a7 41)T(2n+3)0(2n+4) (5.21)
(N=2)T (2n+2)T (2n+1) '

+

We have obtained similar expression for OPE coefficients as well. This agrees with CFT
data obtained from (4.17). We write down the value of undetermined parameters found
from Feynman diagram computation below,

6 (N2 —2N +2) 2(N?—7N —3) N% —8N +4

S S\ _ S S\ _ T. T _

%) = " ey 0 (e0) B(N—12N 00 (N-1)N
(5.22)

5.2 O(N) global group

Now we deal with the defect CFT when the bulk CFT has global symmetry O(N). So
the defect contains a tilt operator with protected dimension 1 and it transforms under the
O(N — 1) group. We obtain the following OPE data,

S\ VT2 I (2n4+2) (N —1){(ad~5 ) (B(N —1)+2(N —2)n(2n+3)) —2(N —2)(N +1)n(2n+3)ad ¥4 )

() = 3(N—1)2T (2n+2) ’
T T 9=in=3 (34" P20 y{ (3(N=1)+2(N+1)n*+3(N+1)n) T(n+1)°T (n+3)
I ) = 5 Gt ) ( N8
5vAas) (3),, (De-1)*(3), , TC(+1)) (2n+3)>
(1)n,1(( ), )2(3)n \T(2n+1) ’
Can-s s T
(a2 = VT2 (n+1)F(§:;4)((F(2nl<g3v 0)=(N+Daow) (5.23)
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where (a), = Lat ) %) are the Pochhammer symbols. We also obtain similar expressions for OPE

coefficients. The CFT data obtained here is in agreement with [27]° For convenience we also

write the values of undetermined parameter found from Feynman diagram computation below,
2(N +1) 1 4

S Sy _ T.7_ 1 ‘

(%0) = NN 18 W ToNTR

(5.24)

5.3 Mixed correlators

Recently Polyakov bootstrap was generalized to multiple correlators setup [64]. We will use
this setup for our case with a straightforward generalization to CF'Ts in presence of global
symmetry. So here we consider mixed correlator,

GoM(2) Z anGEM (2 (5.25)

It also admits an equivalent expansion in terms of crossing symmetric mixed Polyakov blocks,

gzjkl Za PZ]le (526)

The explicit sum rules can be written down in the following form,

ij,kl;s 1_7 kl;s Z],kl t zg,kl t z] kl u Z],kl u\
Z aa,p (’I“A poap AN aj = 0. (5.27)
A, P=+

Now let us focus on the case of the correlator of the fields ¢ and ¢; and a is the vector index
of a global symmetry and understand what does the above expression mean in this context.
First of all, this comes from expanding the correlator in terms of a crossing symmetric
object. Therefore unlike the usual s-channel expansion of (¢1¢1tat;) where only the s—

channel OPE appears, here exchanges in all three channel appears in the sum rule. Moreover,

we have introduced a vector r*i¢ which indicates how a particular operator appears in

the ¢ channel of correlator (¢;¢;¢r¢r). In the correlator (¢1¢1tat;), singlets appear only in
klis — 1 and r@kit/v = (. Similarly for vector exchanges, only ¢ and u

channels have non-zero r. Strictly speaking, ks

s-channel, therefore r
also includes the tensor structure which
in this case is d4, which we have taken into account and since it is the same in all channels,
therefore, we throw it out. Next, we see that functionals are labeled by I, which accounts
for all the s— channel double traces we can write down. So in our present case, we have
(¢101)n and (tqty), having dimension of 2A4, + 2n and 2A; + 2n and we find sum rules
labelled by each of these n. The explicit construction of the functionals a*5¢ from the
relevant exchange and contact Witten diagrams was explained in [64] so we don’t repeat
it here. We find from bootstrapping (¢1¢1t4t;) of bulk O(NN) and cubic theory the average
OPE times anomalous dimensions of the singlets,’

VT T51610,050,702 T (20 + 2)

(V@61610,, 4110, Yn) = 5 (5.28)
T (2n+3)
5The tensor structure of traceless symmetric sector is related as There = 2T*tere  The convention for other

abéd
sectors are same.

5In actual derivation one has to deal with another subtlety that is the collision of poles. Since the dimension
of ¢1 and t, operator starts off as 1 so in perturbation theory the o (g, ¢,), and o), functionals will collide
to give ay, and (,. The results are derived from these functionals.
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We also find similar expressions for correction to the product of the averaged OPE coefficient.
The unfixed parameters are

2
\/m’m = ?, for O(N)
V01 61000tt0, Y0 =

5.4 Unmixing the CFT data

(5.29)

2=

, for cubic.

In this section, we examine the OPE data of double-trace singlet operators. It’s important to
highlight that we can construct these operators in two different ways using the derivatives
along the defect: ¢1(9;)*"¢1 and ¢4(0,)?"¢*. Notably, there is exactly one operator at
level n, characterized by 2n derivatives of 7, which corresponds to the direction along the
defect. The most general operator at this level can be expressed as a linear combination of
n operators. However, to ensure they are primaries- meaning they are annihilated by the
special conformal transformation generator (K)- we impose n — 1 constraints. This leads
to only one independent primary operator remaining at level n involving fields ¢1 and ¢,
separately. Note that if we only had these operators then considering the correlators of two
external fields would be sufficient to disentangle the two towers completely.

However in our case, there is another category of double-trace operators, specifically
$40;0" . .. $,, where i represents directions orthogonal to the defects. By incorporating these
orthogonal derivatives, we can construct multiple but finite number of primary operators at
each level n. In this paper we considered correlators involving two external operators, i.e.,
¢1 and t;. So the best we can do is to isolate two towers using these correlators. At a first
glance it might seem that this data is not useful as the true theory of line defects have a
different spectrum. It is important to mention that the one dimensional numerical bootstrap
works very differently than its higher dimensional counterpart. In the extremal spectrum of
mixed correlator bootstrap (on the line) we can only see two towers of operators [64]. So in
the space of CFTs when we will search for this line defect numerically, we can compare the
CFT data with our analytical prediction. In other words we can only approximately be close
to a true theory with finite set of correlators. In section 6, we will carry out this analysis
using a single correlator, leaving the mixed correlator numerics for future work.

Since we have solutions for correlators involving ¢ and t; we can actually unmix the
anomalous dimension of two double trace operators each with a bare dimension of 242n. Using
this data we would be able to predict O(€?) result. Basically we have six data in a mixed fashion

0 1 0 1 0 0 1
(a9, 4,0, 780 (080, 78)s (a%,6,0,) (ah0,)s (1/a%0,9,6,0,):(/800,9%,610,78))- Here Oy
denotes a singlet operator. Since we have six parameters and six equations we can just solve

for them and we find unmixed physical anomalous dimension and OPE coefficient.
For O(N) theory we obtain the following data for individual double trace operators,
0 ['(2n+2)?
a 0., —
P1010n AT (2n4-1)T (4n+3)

{(4 (2n+3n+1) (2N +4(N+8)n?+6(N+8)n+19) T(2n+1)

+ (—3N—4(N+8)n2+A—6(N+8)n—20) F(2n+3)) :
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- (4 (2n2+3n+1) (2N+4(N+8)n2+6(N+8)n+ 19) I'(2n+1)— (3N +4(N+8)n>
+A+6(N+8)n+20)I‘(2n+3)) } (5.30)

16~"T(2+2n)
(N—1)AD(2n+1)T (2n+3) T(4n+3)

ago, =
{(ﬁ(NH) (2n2—|—3n+ 1) [(2n+1)0(4n+3)+16"(—3N —4(N +8)n?
+ A—6(N+8)n—20)T(2n+2)T(2n+3)T (2n+;’) )
<16" (BN +4(N+8)n?+A+6(N+8)n+20) T (2n+;’) T'(2n+2)T(2n+3)

—/T(N+1) (2n2+3n+1) F(2n+1)F(4n+3)> } (5.31)

1_{\/E+3N+2(1\f+8)n(2n+3)+20 —\/E+3N+2(N+8)n(2n+3)+20} (5.32)
= 2N+8)(nt1)(2n+1) 2(N+8)(n+1)(2n+1) '

where
B = N2 (16n4 + 4803 + 4402 + 12n + 1) N (256n4 + 76803 + 78402 + 3120 + 40)
+64(n+1)2n+1)(4n(2n + 3) +5)

and

A= <N2 + 40N + 16(N + 8)2n" + 48(N + 8)*n® + 4 (1LN? + 196N + 864) n?,

1
2
+12 <N2 + 26N + 144) n+ 320) .

For cubic symmetry, we find the following set of unmixed data,
\_ J6N?—14N +2N?(n+1)> = N*(n+ 1) +4N(n+ 1) =2N(n+1) + 8
T = 2N —1)N(n+ D2n+1)—1)
n Ve
* ((_1) T 3) 4N—-1)Nn+1)2n+1)—1)
6N? — 14N +2N?*(n+1)2 = N*(n+ 1)+ 4N(n+1)> —2N(n+1) + 8
2(N-1)N(n+1)(2(n+1)—1)
VGO
(N-1)Nn+1)(2(n+1)-1)
with the following OPE coefficients,
V2T (20 4 2)(N ((va)2 + ()2 — 2)n(2n + 3) — 4) + 2)
N(y1 = (14)2)0 (2n.+3)
V27T (20 + 2) (N (7)1 + ()1 — 2)n(2n + 3) — 4) +2) }
N((3h)1 = (h)2)T (20 + )

(5.33)

- ((—1)”+1 + 3) i

0
Ap1610n = { -
(5.34)
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and
277)2l(2n42)°T(2n+3) /716~ " (3(N—2)N+(N—4)N(—n)(2n+3)+6)T'(2n+2)
0 (N—1)I'(2n+1)I"(4n+3) (N—I)QNF(QTL-‘,-%)

a On = —
" V)1 — V)2

(5.35)

I'(4n+2) NT(2n+3)
(N = 12((v)1 — (7m)2)

T(2n 4 2) ((W}L)I(N—I)F(Qn-&-fi) L \/E16"(N(—3N+(N—4)n(2n+3)+6)—6)>

where we have denoted the two unmixed anomalous dimensions at each level n as ()
and (v.})2 and

Y (3(=1)""1=5) (36(n+1)" =36(n+1)*~39(n+1)2+24(n+1)+1)
2 (5.36)
S (3(=1)"*1=5) (36(n+1)" =36(n+1)*~21(n+1)2+15(n+1)+2

1

5.5 O(€?) data

Since we have disentangled the OPE data in the previous order, we can now compute the
data that appears in four-point function of the ¢; operator at O(¢?). To the best of our
knowledge, this is a new computation. At O(€?), in addition to the double trace operators,
there will be a new operator in the ¢; x ¢1 OPE, which is ¢; itself. We work out a specific
example below. We start with the nonperturbative sum rule,

> aaBi(A) =0. (5.37)
A

Then we expand this equation to O(e?). We isolate the contribution of double twist operator
with n = 0 and n = 1 from rest. The contribution of n = 0 operator at this order is
the following:

42R(2)ad(v5—2)* | 1 1
8( (2)ao (3 )+a8<7&(2299'yé9110)+307§605¢2+9024)+10a(1)('yé2) ,

T 300
(5.38)
where R(A) = %ﬂ' (1/)(1) (M) — M (é». The n =1 double trace operator contributes,

2 2

1
+ﬁa?(55054(711 —4)y] —1057% +2105¢p2 +220216) —a] (v{ —2)
(5.39)

€

) (13580}1(4)@9(7% —2)2
Y

Rest of the double trace operators contribute the following,
0 (1 _ 9)216m 5

p i 0l (7, = 2)216™T (2m + 3)

=, m/2(m — 1)m(2m + 3)(2m + 5)['(2m + 2)

x (7r (20m = )m(2m + 8)(2m + 5) (4m? + 6m + 5) — 1) + 27 (m — 1)m(2m + 3)(2m + 5)

(2m(2m + 3)(m(2m +3) +4) +7) (wm (;(Qm + 3)> — M @(Qm + 2))) ) (5.40)
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Finally the operator ¢; itself contributes,

(35 — 47%) €

agp, 192 (5.41)

So far what we have done is true for the real theory. We can see the appearance of quantities
like a¥ (v}, — 2)? which requires unmixing of leading order anomalous dimension. But here
we use the unmixed value we have obtained in the previous section to get an estimate of
approximate answer. Substituting the value of the OPE coefficient a4, from Feynman diagram
computation, we obtain” the following results for O(N) defects,

(a2 +aid)
n=1

1
= (2664N? 4+ 95707N — 54007%(N + 8) — 3600(N + 8)¢(3 605960)
1800(N+8)2( + (N +8) (N +8)C(3) +

1 0.2 1.1
+ 10<an’7n + anVn

(5.42)
n=0
We find similar expressions for other n but we couldn’t manage to obtain a closed form in
n. Note this equation is fixed up to n = 0 data which bootstrap can’t fix as expected.This
is an important set of data because this captures the double discontinuity of the correlator.
We also obtain similar expressions for cubic anisotropic defect,

<a273 - ahi>

n=1
N24+N-2 #*(N-1) 1 13571 14903
- _ — — (8¢(3) — —— ) —8((3) + —— 5.43
69171 N2 3N N < ¢@) 900 > ¢@3)+ 900 (5.43)
1
+<a0'y2+a171>

It will be interesting to consider larger set of external correlators so that we can unmix the
larger number of double trace opertors and get an estimate of O(e?) result of the actual
underlying line defect theory.

6 Numerical results

In this section, we will design an optimization problem that seems to give us the defect CFTs
as extremal CFT. For this purpose let’s consider defect with unbroken O(2) symmetry. An
extensive numerical analysis using derivative functionals has been done in [27] for € = 1. Here
we focus on the small € region. From the perturbation theory result, we can see that the defect
theory in one dimension starts as a generalized free theory when e is very small and as it is
tuned to € = 1 we go to a strongly coupled sector. Now we consider the four-point correlation
function of the tilt operator with protected dimension 1. We set € = 10~3 such that we can
trust the epsilon expansion results at this point. We notice that in the Polyakov basis, two
functionals are missing. In other words, the deformation of GFF theory is ambiguous up

"To evaluate the sum over m we evaluate the sum to a very high precision and then we write it in a basis
of transcendental functions and fix the rational coefficients.
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Figure 2. Maximizing the gap in the singlet sector with varying the OPE coefficient a4, with
fixed QT -

to two unfixed parameters. Also, there is an operator ¢; which appears in the OPE of the
tilt operator with itself at O(e?). This operator is not part of a GFF family and it must
be considered as an extra degree of freedom which we need to fix from somewhere else. To
summarise, there are three parameters for which we don’t have equations. Hence we give
inputs to fix these ambiguities and then run the numerics. First, we demand that there are
operators Ag = 1.001 and A7 = 2.00018. We also set the gap in the antisymmetric sector
to 3 (which is the free GFF dimension of the first nontrivial antisymmetric operator). Now
as a function of ayg and ayr we look for a spectrum that has operator Ag=2.001. We find
that this problem is very constrained and there is a regime close to (ay7r = 1, aye, = 0.0001)
where we can find such an operator. All other dimensions also appear to be of the same
magnitude as it is predicted for O(N) defect theory from perturbative computations.

Now we perform the same exercise but at e = 1 with Ag = 1.55 and Ap = 2.23. Again
we look for a spectrum that contains an operator with Ag=2.36 as a function of a;g and
agr. Again we find an interesting point that contains such a spectrum. Note that this point
is strongly correlated. Therefore we can’t compare the dimensions of the other operators.

We observe that by considering this single correlator we couldn’t resolve the degeneracy
of double trace operators. We see only one double trace-like operator in the spectrum. This
is expected. Because in perturbation theory we observed that we have to consider a mixed
correlator of tilt and ¢; operator to lift off the degeneracy of the double trace operators.
The same phenomena is also observed in cubic anisotropic case. But in this case there are
total four ambiguities even when we try to bootstrap single correlator of anomalous tilt
operator. We are currently investigating mixed correlator setups for both cases using analytic
functionals, which will be presented as a separate work in the near future.

7 Discussions

We study the effect of a line defect in a CFT with cubic anisotropic symmetry in 4 — ¢
dimensions. The line defect acts as a relevant deformation that breaks the bulk global
symmetry and only a subgroup of the cubic symmetry is preserved depending on the direction
of the defect. We work in the setup where the bulk theory is at the cubic fixed point and
there is an RG flow along the defect. The correlation functions of various defect operators at
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the defect fixed point are computed using the Feynman diagrams at O(e). We have computed
the defect g-function related to the impurities introduced in the system due to the defect
and shown that this defect entropy is monotonic under the defect RG flow.

We also bootstrap the correlators of the defect operators using the methods of Polyakov
bootstrap. We find that this method determines the defect CFT data up to a finite number
of ambiguities. This outcome is expected since adjusting these parameters could lead to
different CFTs residing on a line. By using the results from the Feynman diagrams to fix
these ambiguities, we demonstrate that all other data precisely aligns with the results from
the Feynman diagram computations at O(e). By fine-tuning this unfixed parameter, we are
able to simultaneously reproduce the data for O(N) and cubic defects. At O(e), there is a
mixing of double-trace operators, which we subsequently unmix for two operators. As a result,
we compute the OPE data of the operators appearing in the ¢1 x ¢1 OPE at O(€?), up to
one unfixed parameter. We provide explicit expressions for both O(NN) and cubic anisotropic
defects for n = 1 double-trace operators and obtain similar data for other values of n. Since
this flow is perturbatively fixed up to a finite ambiguity we showed that it is possible to locate
O(N) defect CFTs by numerical bootstrap where we scan over these unfixed parameters.

Along the line of this work, there are several interesting directions to pursue in future.
One interesting avenue would be to try fixing the ambiguity associated to the defect CFT
data at O(e?). On a more ambitious ground, it would be very nice to push these results to
higher orders in e. At O(e®) there will be new towers of operators and it would be fascinating
to understand how we can bootstrap these new data.

In this work we have studied a single correlator using the numerical bootstrap methods.
It would be interesting to bootstrap mixed correlators and see how the new operators appear
in the spectrum. One can also apply the fuzzy sphere technique [65] to reproduce some of
the low-lying spectrum of this defect theory. That can guide us to set up the optimization
problem while improving the assumptions as well as help in the numerical search at ¢ = 1,
i.e. non-perturbative regime. We hope to report on this mixed correlator setup for both
O(N) and cubic defect CFT in the near future.

Another useful idea would be to incorporate the bulk locality constraints in numerics.
Recently analytic functionals have been constructed that act on the form factors involving
the bulk operators and boundary fields [66, 67]. This has led to powerful sum rules. It would
be interesting to develop such functionals tailored for our line defect setup. In contrast to
the focus of the present paper, which mainly centers on the defect operators while taking
the bulk data as input, these sum rules encompass the data pertaining to both bulk and
defect operators. Consequently, one can reasonably anticipate a more restrictive parameter
space for the CFTs. It’s worth noting that we also need to formulate the sum rules involving
the two-point correlation functions of the bulk stress tensor along the lines of [67]. This
endeavor would enable us to establish a positively semi-definite framework involving bulk
and boundary OPE coefficients, facilitating their direct application in numerical bootstrap
methods. We hope to return to these questions in the near future.

Furthermore, it would be intriguing to explore the broader scope of defect setups. Recently,
surface defects have been investigated in a series of papers [12, 68-70]. Analyzing how these
modifications affect the correlation functions of the defect operators and the parameter space
of general defect CFTs would provide valuable insights in this direction.
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A Quick review of Polyakov bootstrap

In this appendix, we briefly outline the construction of analytic functionals. Let’s consider the
four-point correlator of an operator ¢ with dimension A,. The correlator can be expanded
in terms of the conventional SL(2,R) conformal blocks,

G(z) = Y aaGal2), (A1)
A
or equivalently we can also expand the same correlator in terms of the Polyakov blocks,

G(z) = ZCLAPA(Z). (A.2)
A

The conceptual difference between these two approaches is that the conventional blocks
are not manifestly crossing symmetric, whereas the Polyakov blocks are crossing symmetric
on their own. Therefore conventionally the bootstrap equations arise by demanding the
crossing symmetry (equivalence) in different channel expansions. But in the second approach,
the blocks are manifestly crossing symmetric and hence the bootstrap equations arise from
demanding consistency with OPE expansion. This can be seen when we decompose the
Polyakov blocks in SL(2, R) blocks itself,

Pa(2) = Gal2) = ) _(an(A)(2)Ga, + Bn(D)0G A, ) (2). (A-3)

n

Now if we sum over OPE coefficient,

S asPa(z) = Y asCals) - Y [(anm))ama + (ZaAﬂn<A>)aGAn<z>] ,
A A n A A

(A.4)
we see that the first term will give us the full correlator but there are other terms present
and this could be a valid expansion of the physical correlator only if,

ZaAozn(A) =0
A
ZaAﬁn(A) =0.
A
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Also, notice in equation (A.4) that we have actually swapped the sum over n and A and
this is a subtle step as we are commuting two infinite sums. Poyakov blocks are suitably
constructed so that we are allowed to do this swapping [46, 71]. We call o, (A) and £, (A)
functionals because we can find them by acting on crossing anti-symmetric vector,

Fa(z) = 272%¢Ga(2) — (1 - 2)*2Ga(1 - 2) (A.6)

by integrating against its discontinuity around 1,
wn(A) = / d2he (2)Tm(Fa(2)). (A7)
1

Another property of the analytic functionals are that they satisfy certain orthogonality
relations depending on the particular construction we are interested in. For solutions where
A, i.e. the dimensions of the conformal block that appeared in the expansion of Polyakov
block is equal to 2A4 + 2n, the orthogonality relations are the following,

an(Am) = Om,n an(aAm) = 5ma n— dn(sm,0>

' (A8)
Bn(Am) =0 /Bn(aAm) = 5m,n - cn(sm,O- .

These properties fix the form of the kernel h%(z). The most efficient and quicker way to get
these functionals is from the AdSs Witten diagrams. The sum of s, ¢ and u exchange Witten
diagrams in AdSj is crossing symmetric on its own and also Regge bounded. This crossing
symmetric sum also admits an equivalent expansion in terms of SL(2, R) conformal blocks,

Wa() + WAR) + WAG) = ¥ [al ()26, (2) + 8 (A)()0Ga, (). (49
Now we can apply analytic functionals to the crossing symmetric sum of Witten diagrams
and we get the following equations,

n

So this tells us that the analytic functionals are related to crossing symmetric Witten
diagrams up to some shifts. These shifts have a physical interpretation in terms of Regge
bounded contact terms in AdSs. Since these are Regge bounded contact terms therefore
these deformations should be allowed by our basis. So if we had concluded that only the
exchange Witten diagrams form the basis dual to the generalized free field of bosons then we
would exclude the ¢* deformations in AdSs which is a perfectly well-defined theory. So the
main message is that crossing symmetric sum of exchange Witten diagram and the Regge
bounded contact Witten diagrams with scalar external legs forms a basis to expand the
physical correlator and they are related in a straightforward way to analytic functionals.
This construction also generalizes to any 1D CFT with global symmetry and also multiple
correlator cases. Let us discuss the construction of these analytic functional in the context of
correlators of four scalar operators transforming under cubic global symmetry. In this case,
there are three sectors- singlet(S), symmetric (T), traceless diagonal (V) where parity even
operators are exchanged and in the antisymmetric (A) sector, the parity odd operator gets
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exchanged. Also the crossing equation leads to f