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API and its internal dependencies
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Abstract

Reflective operations are powerful APIs (Application Programming Inter-
face) that let developers build advanced tools and architectures. Reflec-
tive operations are used for implementing tools and development environ-
ments (e.g., compilers, debuggers, inspectors) or language features (e.g.,
distributed systems, exceptions, proxies, aspect-oriented programming). In
addition, languages are evolving, introducing better concepts, and revising
practices and APIs. Since 2008 Pharo has evolved from Squeak and its reflec-
tive API has evolved accordingly, diverging consequently from the original
Smalltalk reflective API. With more than 500 reflective methods identified,
Pharo has one of the largest reflective feature sets ranging from structural
reflection to on-demand stack reification. Those operations are often built
on top of the other, creating different layers of reflective operations, from
low-level to high-level ones.

There is a need to understand the current reflective APIs to understand
their underlying use, potential dependencies, and whether some reflective
features can be scoped and optional. Such an analysis is challenged by new
metaobjects organically introduced in the system, such as first-class instance
variables, and their mixture with the base-level API of objects and classes.

In this article, we analyze the reflective operations used in Pharo 12
and their interdependencies. We propose a classification based on their
semantics and we identify a set of issues of the current implementation.
Such an analysis of reflective operations in Pharo is important to support
the revision of the reflective layer and its potential redesign.
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1. Introduction

Reflective operations are powerful APIs that let developers build ad-
vanced tools or architectures that otherwise would have to be implemented
in language implementation engines, would require complex infrastructure
(such as code representation), or may simply not be possible. These reflec-
tive features support the implementation of tools (e.g., compilers, debug-
gers, inspectors), frameworks and libraries (e.g., serialization, persistence,
logging), and language infrastructure (e.g., exceptions, distributed systems,
continuations, green threads). Such a set of tools and frameworks are both
used during the development and deployment of applications (See Section 2).

Giving too much power to developers is, however, also a burden. Reflec-
tive features defeat static analysis [43] and are usable as security exploits.
For example, they allow malicious users to violate encapsulation or execute
methods that were not intended to be executed [27, 56, 47, 37].

Reflection has always been a thorn in the side of Java static analysis

tools. Without a full treatment of reflection, static analysis tools are

both incomplete because some parts of the program may not be included

in the application call graph, and unsound because the static analysis

does not take into account reflective features of Java that allow writes

to object fields and method invocations. However, accurately analyz-

ing reflection has always been difficult, leading to most static analysis

tools treating reflection in an unsound manner or just ignoring it en-

tirely. This is unsatisfactory as many modern Java applications make

significant use of reflection [43].

While the quote above is about Java, this tension is exacerbated in the
case of deeply reflective languages such as Smalltalk descendants. Pharo,
for example, as a descendant of Smalltalk is the essence of a reflective lan-
guage with advanced reflective operations such as bulk pointer swapping
[48], on-demand stack reification, and first-class resumable exceptions. In
addition, in Smalltalk-80 and many of its derivatives, reflective facilities are
mixed with the base-level API of objects and classes [35, 57, 6]. They are
a key part of the kernel of the language and libraries. Finally, since 2008
the Pharo programming language continuously evolved: new concepts were
added (slots, packages, pragmas...). There is a need for a deep analysis of
reflective features.
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In this paper, we present an analysis of existing reflective features in
Pharo 12. We scope the analysis to runtime reflection to focus on the core
reflective features of the language and its associated virtual machine. Pharo
inherited the reflective operations and facilities originally present in Squeak
and Smalltalk-80, and extended them over the years. Some reflective meth-
ods like Object≫instVarAt: are still present and used, some names have
changed and new reflective facilities have appeared.

Extension. This paper extends the workshop paper Pharo: a reflective lan-
guage – A first systematic analysis of reflective APIs [67] with two new
analyses whose goal is to better understand how existing reflective opera-
tions could be redesigned into a modular reflective API.

We chose to use the term reflective API to talk about reflective methods,
as it highlights the fact that this is a programming interface offered by Pharo
to developers.

The contributions of this article are:

• an up-to-date catalogue of the reflective features in Pharo,

• a classification and an analysis of such operations,

• a discussion of potential re-designs of such reflective operations,

• Extension: a dependency analysis between the reflective categories,

• Extension: a classification of layers appearing between the reflective
categories.

These contributions are of key importance since they set the foundation
for a redesign of the reflective capabilities of Pharo for example to offer
optional reflective capabilities and more controlled ones in the context of a
more secure and modular version of the language [61].

The outline of the paper is as follows: first, we explain the need for
reflective features in Section 2. In Section 3 we highlight why we need a
classification. Section 4 presents an overview of the reflective APIs based on
the classes supporting them and their interactions. In Section 5 we present
with a high-level perspective the analysis of the runtime reflective APIs in
Pharo 12. The technical report [66] lists the detailed selectors. For each
of the categories, we analyze the capabilities it provides and how they are
used in Pharo. Section 6 presents the dependencies of reflective categories.
Section 7 presents the layered architecture of reflective operations. Section 8
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presents a high-level discussion of considerations to be taken into account to
improve such APIs. It also sketches some points for the design of a future
MetaObject Protocol(MOP) for Pharo.

2. The need for reflective behavior

Reflection is the ability of a program to manipulate as data some-
thing representing the state of the program during its execution.
There are two aspects of such manipulation: introspection and
intercession [...] [7]

Reflective features in object-oriented languages are central to the devel-
opment of advanced behavior ranging from enhanced development tools to
new paradigm implementation such as Aspect-Oriented Programming [39].
In the middle of the 90s, reflection was heavily explored: structural [13, 9],
computational [32, 45], message-based [32, 15], compile-time [17] and partial
reflection [60, 59].

Reflection is an important tool that enables many important features
of modern languages [21]. For example, message-passing control is one of
the cornerstones of a broad range of applications and an important feature
of reflective systems. Applications that use message-passing control are
roughly sorted into three main categories.

• The first category is application analysis and introspection that are
based on tools that display interaction diagrams, class affinity graphs,
and graphic traces [36, 49, 12, 24].

• The second category is language extension. In such a case, message
passing control allows one to define new features from within the lan-
guage itself: Garf [34], Distributed Smalltalk [4], or [46] transparently
introduce object distribution. Language features such as multiple in-
heritance [8], backtracking facilities [42], and instance-based program-
ming [3, 2] have been introduced. Futures [52, 41] or atomic messages
[33, 45] are also based on message-passing control capabilities.

• The third category is the definition of new object models, introducing
concurrent aspects such as active objects (Actalk [13]) and synchro-
nization between asynchronous messages (Concurrent Smalltalk1 [71]).

1Concurrent Smalltalk is based on the extension of the virtual machine and new byte-
code definition. However, the synchronization of asynchronous messages uses the doesNo-
tUnderstand: technique.
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Other work proposes new object reflective models such as CodA which
is a meta-object protocol that controls all the activities of distributed
objects [45], meta helix [18] or submethod reflection using Abstract
Syntax Tree (AST) annotation [26, 21].

More elaborate schemes have been proposed (e.g., partial behavioral re-
flection [60, 59]) that provide a more flexible and fine-grained way to specify
both the location being reflected and the metaobject invoked. Context-
oriented [20] or aspect-oriented programming implementations are often
based on reflection [10, 5].

The importance and need for reflective features are also illustrated by
the effort to offer them in more static languages such as C++ [17], Ada [58],
and Java [70, 54, 55, 60].

Often virtual machine implementations impose restrictions on the changes
that are possible [16]. For example, even if Pharo is one of the most ad-
vanced reflective languages due to its large spectrum of capabilities, some
reflective features (typically intercession e.g., tracing any instance variables
accesses or any message sends) are not possible due to their inherent runtime
cost. Indeed, virtual machines are engines highly optimized for speed.

3. The need for an up-to-date reflective feature classification

More than 25 years of evolution. Between 1996 and 2008, Squeak evolved
from the original Smalltalk reflective API with many contributions. In 2008
Pharo was born from Squeak. Pharo on its turn saw many different con-
tributions. To give an idea of the activity in Pharo, since 2019 and the
versioning of Pharo on GitHub, Pharo has around 100 yearly contributors
(with up to 30 regular ones). As of the writing of this article, its commit
history counting only since 2019 is more 20 000 commits.

For an up-to-date analysis. Back in 1996, Rivard [57] proposed the first
classification of Smalltalk reflective features. Such classification is, how-
ever, old, and includes aspects such as the compiler which are orthogonal
to runtime reflective features. In addition, it is based on VisualWorks a
proprietary Smalltalk that is not easily accessible nowadays. Finally, it does
not take into account traits [31, 29, 63, 65], first-class instance variables,
and the introduction of new tools using reflection such as the new inspector
framework [19], reflectivity [21], object-centric debugging [24], error han-
dling infrastructure [23], and on the fly deprecated message rewritings [30]
to name a few. Callau et al., [14] studied the use of dynamic features of pro-
gramming languages and used Pharo as a case study. Their study is limited
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and focuses on the use of a limited set of elements. They do not embrace the
full reflective APIs. Demers and Malenfant proposed to compare reflective
capabilities in logic, functional, and object-oriented programming [25], but
it is not related to a concrete Pharo implementation.

Importance of the analysis. Deploying an application with unneeded reflec-
tive facilities produces, however, potential safety issues: reflective operations
might be used to bypass security measures or affect the stability of the ex-
ecuting application [61].

Removing unneeded reflective operations requires, however, a complete
understanding of their usage and analysis to see if they can be separated from
the language kernel and core libraries. The challenge is how to improve the
modularity and security of the language core, without affecting the features
used by tools, frameworks, and libraries. For example, serialization libraries
such as STON highly use reflective operations to serialize and deserialize
objects; removing those operations to improve the security of the application
impedes the use of such a library. This is why in future work, we will analyze
more precisely the potential issues that reflective operations may generate
in productive applications and their impact on the safety and security of the
application. As a first step in that direction, there is a need for a deep and
up-to-date analysis that embraces the full spectrum of reflective features.
This is what we develop from Section 4 and this is why we list the complete
API in the technical report [66].

4. Metaobjects, classes and their related APIs

Before giving an overview of the API, we briefly present the structural
metamodel of Pharo. The current version is Pharo 12.

4.1. Pharo structural meta model

A class is a central entity in Pharo’s structural meta-model [6]. We
briefly describe it, since a large part of the API is currently associated with
classes.

• A class defines instance variables or slots. Since several versions of
Pharo, slots (first-class instance variables) have been introduced and
the fusion between instance variables and slots is under development.
A class also defines class variables (a.k.a static variables) and uses zero
or more shared pools which are collections of constants.
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Class CompiledMethod

Slot

InstanceVariable
Selector

SharedPools

ClassVariable
Pragma

Trait

has

composed of

inherits from

refers to

has

has

Figure 1: The structural Pharo metamodel: Class aggregates variables, methods, constant
management (SharedPools) and method annotation (Pragma) and exposes related APIs.

• A class inherits from another class and has zero or more subclasses.
Since a couple of versions, a class is composed of traits (class fragments
defining methods and state).

• A class contains methods. Methods have a selector and are annotated
using zero or more Pragmas [28].

4.2. Overview of the reflective APIs

Figure 2 shows an overview of the reflective API of Pharo, structured
with the classes that expose such APIs in the Pharo 12 release.

MetaObjects. Grey boxes represent first-class objects. Object, Slot, Class,
ClassVariable, and CompiledMethod are structural metaobjects. The classes
CompiledMethod and CompiledBlock are two entry points to AST nodes and
sub-method reflective APIs. We decided not to add such a dimension since
submethod reflection is optional and can be seen as compile-time reflection
[23].

Implementation objects. We put the MethodDictionary, CompiledBlock, and
BlockClosure in a white box because it is unclear whether we need or not
a metaobject for them. Indeed in Pharo, the method dictionary is rather
simple and does not offer a reflective entry point per se. It is more of an
implementation object. Similarly, BlockClosure can be introspected as an
object it is unclear that it represents a metaobject.

Perspective. The dashed package-like packages represent two aspects of the
system: on the one hand Memory which allows users to iterate memory with
methods such as nextInstance and, on the other hand, Runtime which rep-
resents the execution aspect of the system with Context (stack reification),
Messages, Thread, and Environment (keeping class and variable binding).
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Installer
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Figure 2: metaobjects controlling the reflective APIs of Pharo.

Note that some APIs are not controlled by metaobjects per se. For
example, the Reference API is an API defined on Object as such every object
may override it.

5. A classification and analysis of runtime reflective operations

Rivard[57] classified reflective operations in the following categories: Meta-
Operation (objects), Structure (class), Semantics (compiler), Message Send-
ing, and Control State (thread). The Semantics part is just a description
of the compilation process and involved classes - as such it is not relevant
for our analysis since it boils down to adding a new compiled method to a
method dictionary. We complement and revisit this classification by adding
References, and Memory Scanning (See Table 1).

We propose a detailed and systematic description of the APIs and run-
time reflective behavior. Our classification subsumes the one of Rivard. In
addition, we distinguish APIs supporting introspection from modification
since modification has more impact in terms of state encapsulation. We are
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Categories APIs

A – Chasing and Swapping pointers
A1 – Bulk pointer swapping
A2 – Find pointers to

B – Class structural Inspection

B1 – Class kind testing
B2 – Class variable inspection
B3 – Class/Metaclass shift
B4 – Instance variable inspection
B5 – Iterating and querying hierarchy
B6 – Pragma
B7 – Selectors and methods inspection
B8 – Shared pool inspection
B9 – Slot inspection
B10 – Traits
B11 – Variable lookup

C – Class structural Modification

C1 – Anonymous class creation
C2 – Class variable modification
C3 – Fluid Builder class creation
C4 – Hierarchy modification
C5 – Instance variable modification
C6 – Old class creation
C7 – Selector/Method modification
C8 – Shared pool modification
C9 – Slot modification

D – Memory Scanning
D1 – Memory Scanning
D2 – Instances of a class

E – Message sending & code execution

E1 – Arbitrary method/primitive execution
E2 – Control message passing
E3 – Message send reification
E4 – Method lookup
E5 – Reflective message send
E6 – Runtime and Evaluation

F - Object Inspection
F1 – Accessing object class
F2 – Accessing object identity
F3 – State inspection

G - Object Modification
G1 – Object class change
G2 – State modification

H – Stack Manipulation
H1 – Context
H2 – Controlling the stack

I – Structural queries On methods
I1 – Class references
I2 – Method element references
I3 – Method slot uses

Table 1: Overview of the reflective categories and APIs alphabetically sorted. Leading
letters are used for Figure 3.
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aware that systematically presenting lists may be tedious for the reader, this
is why the technical report [66] describes systematically all the APIs.

Table 1 gives an overview of the classification: it groups reflective meth-
ods into APIs and APIs in high-level categories. The categories are sorted
alphabetically. The letters are used to understand Figure 3.

For each of the APIs we briefly describe it, list its key methods (we often
group similar ones), the offered possibilities, and the areas of improvement
when appropriate.

Finally, note that the existence of an API is more important than the
fact that we classify it under a given heading. For example, asking an object
to reflectively execute a method is listed together with other execution-
oriented APIs and not directly in the object-centered API. In addition, the
next subsections are organized to follow Rivard’s classification order.

Sections 6.2 and 7 identify dependencies and layers among the categories.

5.1. Methodology

To analyze and classify the reflective API we focus on the base image of
Pharo 12, build 6362. We manually identified reflective methods by reading
the code of the base image, specifically code belonging to the explicit list of
metaobjects and packages present in Figure 1 and Figure 2. We identified
reflective methods using definitions of reflection from [7, 11] and categorized
them based on a categorization that builds on top of Rivard’s. We then
tagged the identified reflective methods with a pragma3 parametrized with
its reflective category.

Using this methodology we identified and marked 532 methods with 344
unique selectors as reflective. This number shows the extent of the reflective
API in Pharo [66]. The reflective method category tagging was proposed as
a pull request to the Pharo repository and accepted by the community in
September 20234. In what follows, we refer as reflective method any method
that is marked in our list. A reflective operation is an operation performing
reflection and implemented through one or more methods.

In the remainder of this section, we present and analyze the reflective
methods and operations we found, divided into categories. Later, in Sec-
tion 6, we analyze the dependencies between these categories.

2Pharo-12.0.0+build.836.sha.8b241ecb87492515bbdd975557ecf8491a4af88b (64 Bit)
3A pragma is a method annotation in Pharo’s parlance
4https://github.com/pharo-project/pharo/pull/14821
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5.2. Object inspection reflective operations

The first category of reflective operations is centered around object in-
spection. Rivard [57] described these operations in the Meta-Operations
category, but he grouped inspection and modification. Our category is com-
posed of three subcategories:

• State inspection to read the values of the variables of an object.

• Accessing object identity to identify an object.

• Accessing object class to read the class of an object.

In Pharo, all instance variables are private, meaning they are not read-
able and writable by any other object. They are only accessible through
getter or setter methods. Developers decide which instance variables are
accessible by implementing or not methods to access them. Pharo also in-
cludes class instance variables and shared variables, these work in the same
fashion as instance variables, and the analysis for instance variables is di-
rectly extensible to them. Using the State inspection operations is breaking
the encapsulation and bypasses the decisions of the developer.

Several methods exist on the class Object allowing access to the state of
internal variables. Key examples of this category are Object≫instVarAt: and
Object≫instVarNamed:, which read an instance variable of an object from
its index or name respectively. These operations combine well with those in
the Accessing object class subcategory to work on object internal structure
e.g.,Behavior≫allInstVarNames.

Possibilities offered. The State inspection operations give a uniform API
to inspect all the instance variables of any object, including classes. They
are particularly useful for designing tools addressing crosscutting needs, like
debugging, inspecting an object, serializing it... The Accessing object iden-

tity supports checking the identity of an object. basicIdentityHash is used
for implementing identityHash variants, scanning for an object in a method
dictionary, and testing.

Examples of uses.

• Serializing objects.

• Inspecting objects.

• Implementing hash methods.
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This use raises the question of whether accessing object identity is a re-
flective operation and not just part of the base-level object API in a language
where references are ubiquitous.

Areas of improvement.

• In the analyzed Pharo version, there is currently no provided solution
for intercession on state read or write on a class or even on a specific
object. This requires using additional libraries or implementing ad
hoc solutions [22]. Such tools rely heavily on reflection, and loading
several tools at the same time might lead to bugs and instabilities due
to incompatibilities between them.

5.3. Object modification reflective operations

The second category of reflective operations is centered around object
modification. It is the counterpart of the first one and it is composed of State
modification , Manipulating object identity , and Object’s class change.

• State modification to write the values of variables of an object.

• Manipulating object identity to manipulate the identity of an object.

• Object’s class change to change the class of an object.

Possibilities offered. The State modification operations allow one to bypass
encapsulation and modifying variables of third-party objects. This could be
used to write variables in an unanticipated way when they were originally
designed to not be changed via base-level message passing. This is for exam-
ple useful for deserialization. They allow one to build tools that will modify
objects. The Object’s class change operations allow one object to become
an instance of another class, which is particularly important in Pharo’s live
environment when a class has to be rebuilt. The Manipulating object iden-

tity category contains only one operation becomeForward:copyHash:5

Examples of uses.

• Copying objects.

• Deserializing objects.

5Using becomeForward:copyHash: to swap a reference it is possible to change the object
identity.
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• Modifying object on the fly in the debugger.

• Migrate instances between two class versions.

Areas of improvement. The API on object class change is weak and limited.
The object state may be lost in the process and some constraints (the two
classes should have the same format) make it difficult to change the actual
class. Overriding the methods providing these operations provides a way
to limit reflection at the cost of limiting services such as instance migration
provided by the environment.

5.4. Class structural inspection reflective operations

This category groups reflective APIs that query the class structure and
its constituents: methods, variables (instance/class/slots). It is composed
of the following subcategories:

• Class/metaclass shift to navigate between a class and its metaclass.

• Iterating and querying hierarchy to query class hierarchies.

• Instance variable inspection , Class variable inspection , Shared pool

inspection , Slot inspection to query variable definitions. Slot inspec-

tion provides a higher level view compared to Instance variable in-

spection . Slots are either defined locally in a class or imported, for
example from a trait. Thus the existence of the localSlots and slots
operations.

• Selector and method inspection to query the set of methods/selectors
implemented by a class.

• Variable lookup the access the binding of a variable.

• Pragmas to query pragmas.

• Class kind testing to query the state of a class (installed, obsolete,
anonymous...).

Possibilities offered. The structural class introspection is large. It is mainly
used by tools. It supports the interpretation of object inspection. Iterating

and querying hierarchy methods support navigation of the graph with mes-
sages such as superclass and allSubclasses. Selector and method inspection

methods allow one to check existing selectors and methods. All variable
query operations allow one to list existing variables. Some methods such
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as isKindOf: or respondsTo: produce suboptimal designs when used at the
base level. respondsTo: allows one to query if an object understands a given
selector.

Examples of uses.

• Object Serialization and Deserialization.

• Code browsing.

• Object inspection.

Areas of improvement.

• There is spurious redundancy between isClassSide and isMeta. Such
double methods should be corrected.

• As a general remark, the question of the systematic application of the
Law of Demeter should be discussed because it bloats the API. For
example, messages such as selectSuperclasses: / selectSubclasses: do
not seem to be necessary. In addition, withAllSuperAndSubclasses and
includesBehavior: look superfluous.

• We see the old protocol with cryptic names such as instSize to mean
instanceVariableSize.

• The duality of instance variables and slots is an artifact of the current
evolution of Pharo. Nevertheless, this is important that in the future,
instance variables get fully replaced by slots and that the correspond-
ing reflective APIs get merged.

• The duality of selectors versus methods should be evaluated. Since a
method dictionary always has the selector of the method as a key, the
API could favor selectors for most of the queries and only favor one
access to compiled methods (via methods such as methodNamed:).

5.5. Class structural modification reflective operations

This category is the counterpart of the previous one. It is composed of
the following APIs whose objectives are clear: Hierarchy modification, In-
stance variable modification , Shared pool modification , Slot modification ,
Selector/Method modification , Old class creation , Fluid class creation ,
and Anonymous class creation . It focuses on the modification of the struc-
tural relation a class has with its constituents.
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Possibilities offered. Structural modification operations allow the user to
modify the current structure/shape of classes. They include operations to
add/remove subclasses, instance variables, and class variables. We distin-
guish introspection and modification APIs because we want to stress that
modification is destructively modifying the executed system and that as such
they represent more powerful operations.

In addition to the traditional class creation API (kept for backward
compatibility) and the fluid API, Pharo introduced the notion of anonymous
classes (message newAnonymousSubclass) [27]. It helps to define instance-
specific methods.

Examples of uses.

• Reflective code modification.

• Object-Centric Reflection.

• Proxy implementations.

Areas of improvement.

• The unification of Slots and variables should be continued to avoid
duplication at the reflective API level.

• About Selector/Method modification . The ’silently’ prefix raises the
question of the management of the notification of modification. In-
deed, some tools need to be notified to react to new elements. Nev-
ertheless, this duality suggests a layered API where low-level API el-
ements are identified.

• The API Anonymous class creation can be packaged separately from
the Fluid class creation .

5.6. Method creation reflective operations

The API Compiled method creation is a low-level API that supports
the definition of compiled methods. Such an API is often ignored but it is
central because it is responsible for the creation of new compiled methods.

Possibilities offered. Compiled method creation offers the possibility to cre-
ate a compiled method and this even without the need for the compiler.
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Examples of uses. This API supports the modularization of the system core
such as making the compiler optional in the system bootstrap. It is used by
Hermes a binary binary code loader. It is an important asset that supports
the bootstrap of Pharo [53] and ensures that the compiler is loadable into a
system without having a compiler to compile and install code.

Areas of improvement. Since the code for creating compiled methods is just
the code of the CompiledMethod class. It has not been explicitly designed
to be a MOP API. Revisiting this central API in the context of the Selec-

tor/Method modification and the interplay between the two could lead to
a stronger MOP.

5.7. Structural queries on methods reflective operations

This category supports the cross-referencing between methods, instance
variables, and classes. It is composed of two subcategories:

• Method slot uses to query usages of variable read/writes.

• Method element references to query internal implementation of meth-
ods.

Possibilities offered. These two subcategories are central for all the cross-
referencing and code navigation in Pharo.

Examples of uses. These operations are important for the IDE and tools.

• query method senders and implementors

• query methods reading/writing a variable

Areas of improvement.

• The duality of selectors and methods could be handled better, e.g.,which-
MethodsReferTo: vs whichSelectorsReferTo:. We suggest not exposing
the compiled method, since it is always possible to get the method out
of a selector. It would lead to a more compact API.

• Method slot uses looks like an optional API that can be packaged
with the tools. A unification between the two APIs would produce a
more coherent API.
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5.8. Message sending and code execution reflective operations

This category of operations allows us to explicitly send messages, handle
lookup failures, or execute compiled methods. It is composed of different
subcategories:

• Reflective message send to lookup and execute methods.

• Arbitrary method/primitive execution to execute methods without
lookup.

• Method lookup to simulate the method lookup.

• Control message passing to control message sends.

• Message send reification to access message information.

In Pharo, when sending a message to an object, the first step is to search
the message selector in the class hierarchy of the message’s receiver. This is
the lookup. Once a compiled method is found in the receiver’s class or one
of its superclasses, the method is applied to the receiver. When the lookup
does not find any corresponding method, doesNotUnderstand: is sent to the
receiver with the message reified as an instance of MessageSend. This allows
the receiver to specialize message error. The APIs are central to bringing
flexibility to applications. In particular Reflective message send with its
perform: methods is important for pluggable UI logic. While the methods
of Reflective message send do a method lookup, methods of Arbitrary

method/primitive execution allow us to execute directly a compiled method
or a primitive operation6. While the methods of Reflective message send

do a method lookup, methods of Arbitrary method/primitive execution

allow us to execute directly a compiled method or a primitive7.

Possibilities offered. These operations allow us to explicitly send a message
and handle failure cases. The selector sent is determined dynamically from
an input, a string, or a symbol. Run a specific primitive operation or ver-
sion of a compiled method without needing to install a method in the class
hierarchy.

6A primitive operation is a call to a virtual machine internal behavior.
7A primitive operation is a call to a virtual machine internal behavior.
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Examples of uses.

• Implementing frameworks with naming flexibility such as in SUnit.

• Decouple user interfaces from model objects.

• Proxy implementations.

• Debugging and profiling.

Areas of improvement.

• Pharo offers two ways of representing a message via the class Message-
Send and Message. This situation shows that the addition of concepts
was not done carefully to avoid duplication. Message represents a
message when an error occurs (doesNotUnderstand:). It supports the
possibility to perform a lookup via the message sendTo: which is the
counterpart of doesNotUnderstand:. MessageSend represents the con-
cept of sending a message and holds in addition a receiver. Such a
class is not used by the runtime and offers an API compatible with
block closures: The messages value: and its variants allow one to exe-
cute a message. We suggest merging MessageSend into Message since
this last one is used to reify messages on error.

• Having several ways to express the same behavior can be improved.
There are, for example, three different reflective methods implement-
ing similar behavior in Arbitrary method/primitive execution . We
suggest that only methods on CompiledMethod should be kept. The
definition on ProtoObject would have the pernicious side effect of mak-
ing domain developers think that it is safe to use such messages.

• The direct execution of a compiled method as offered by the Arbitrary

method/primitive execution API is dangerous because the system
does not check that the executed method can be executed on the re-
ceiver. This is usually ensured by the lookup. Therefore while it makes
sense to use methods of the Reflective message send API, we believe
domain developers should not be exposed to the Arbitrary method-

/primitive execution API. In addition, this API should be packaged
separately to expose its nature.
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5.9. Chasing and atomic pointer swapping reflective operations

The APIs in this category are Find pointers to and Bulk pointer swap-

ping (supports the atomic swapping to references). The first one is rarely
mentioned but Pharo supports the possibility of identifying pointers to a
given object (e.g., ProtoObject≫pointersTo and ProtoObject≫pointsTo:).

Possibilities offered. Find pointers to is useful for building tools to identify
a memory leak; it is optional and its use is well-scoped.

The second one, Bulk pointer swapping , is one of the hallmarks of
Smalltalk reflective APIs. Pharo’s implementation implements this opera-
tion efficiently by using forwarders at the VM level [48]. It should be noted
that Pharo offers two semantics for swapping: become: which symmetrically
swaps the pointers and becomeForward: which is one way. In addition, one
cannot be used to express the other at the language level.

Examples of uses.

• Memory leak analyzers.

• Dynamically updating existing instances to new class shapes.

Areas of improvement. Such API while useful during development sessions
should be limited during deployment. A precise analysis of the use of Bulk

pointer swapping should be done to differentiate the places where it is
mandatory from the places where it is a convenient optimized solution. It
should be noted that Find pointers to could be implemented on top of a full
memory scan API such as the ones presented in the next section. Similarly,
a slower version of Bulk pointer swapping could be possible.

5.10. Memory scanning reflective operations

This category contains two subcategories: Memory scanning that sup-
ports the traversal of the complete heap and Instances of a class that gives
access to all the instances of a class.

Possibilities offered. This API is usually not mentioned in the literature
but it is at the core of live programming [62]. The method nextObject and
nextInstance are key to building other functionalities such as allInstances.
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Examples of uses. The main use is the migration of instances between two
versions of one class. All objects need to be obtained to be migrated to the
new class and be potentially rebuilt if there are changes in their shape e.g.,
if a variable is added/removed. Other uses such as collecting all instances
of a class are more anecdotal and reflect the lack of an explicit registration
mechanism in the domain.

Areas of improvement. Understanding whether such a reflective API can be
optional and only be loaded on demand would be a step toward building a
more compact, tidier, and secure reflective MetaObject protocol.

5.11. Stack manipulation reflective operations

This category groups together all APIs that support traversing and mod-
ifying the execution stack. These APIs are accessible from two main entry
points: the Process class that provides access to the existing processes and
their suspended execution stack, and the thisContext pseudo-variable that
provides access to the current method execution. Both these entry points
provide instances of Context that represent a method execution and make
the execution stack in a linked list.

Possibilities offered. Stack manipulation operations provide on the one hand
low-level access to the call stack (e.g., sender, programCounter), context
meta-data (e.g., method), and context operand stack (e.g., push:, pop and
at:), and on the other hand support for continuations built on top of the
previous APIs (e.g., return:, resume:).

Examples of uses.

• Implementing exceptions.

• Debuggers.

• Bytecode interpretation.

Areas of improvement. Stack manipulation support for stack modification
and intercession is, at the moment of this writing, limited. A single class
Context is allowed, and its instances are reified on-demand by the execution
engine by the Virtual Machine implementation. This means that the APIs
described above cannot be refined in subclasses to modify the behavior of
method execution. Currently, such fine-grained intercession is achieved by
bytecode rewriting using frameworks such as reflectivity [21].
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Additionally, the fact that essential language features such as exceptions
are built on top of it makes this support mandatory. Optional stack ma-
nipulation requires a major redesign such as a re-implementation of such
essential features on the Virtual Machine, or at the extreme considering
exceptions as optional reflective features too.

6. Reflective API Interdependencies

We extend the categorization of reflective operations shown in Section 5
with inter-category (Section 6.2) and inter-method dependencies (Section 7).
Understanding the dependencies between reflective APIs will help in evolv-
ing the current API. This means, for example, restructuring parts of the
API to fit better in the system or, identifying optional APIs that could be
packaged separately. This would lead to a simpler, lighter base language,
with potentially less threats to the stability of the system. In this section,
we present an analysis of interdependencies between the categories presented
in Section 5.

6.1. Methodology

We identify dependencies between reflective methods using static anal-
ysis based on their selectors, given that Pharo is a dynamically-typed lan-
guage without type annotations. We say that reflective selector A depends
on reflective selector B if any method with the selector A sends a message
with selector B. Unless specified otherwise, we focus only on users who are
reflective methods themselves. When relevant, we extend our analysis to
base-level users.

Unless stated otherwise, when analyzing categories interdependencies
we leave outside of our analysis some selectors that present both reflective
implementors and not reflective implementors. This is the case of largely
used selectors such as at:, at:put: and size that are implemented as reflective
methods in Context but have non-reflective counterparts in collections. We
also ignore from our analysis a dozen other selectors that have reflective
implementors in different categories. (See Appendix A for the full list.)

Thus, the uses of these selectors do not necessarily imply dependencies
on the reflective version of the method.

Section 6.2 presents a high-level view of the interdependencies in the
reflective categories. For the sake of presentation, the dependency analysis
removes, in addition to the previous list of selectors, the selector class as it
is the one with the highest number of connections (28 other selectors have
at least one method depending on class).
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6.2. Reflective categories interdependencies overview

Figure 3 presents a graph that illustrates how all reflective categories
connect with their dependencies. The figure shows that most reflective cat-
egories are building on each other.

Isolated category      Provider category      Client category          Hub category             Other category                              

Figure 3: Reflective category dependency graph. The size of the circle corresponds to the
number of selectors in the category. Line thickness depends on the number of dependent
selectors. For more details see Appendix B

Based on this data we identified four types of categories based on their
dependency topology, shown in Figure 4:

• Isolated categories: These categories do not depend on any other cat-
egories and no other category depends on them.

• Provider categories: These categories do not depend on any other cat-
egories but they provide operations that are used by other categories.

• Client categories: These categories depend on other categories, but no
other reflective category depends on them.
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• Hub categories: These categories depend on a lot of other categories
and many other categories depend on them.

Repartition of categories by number of users and 
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Figure 4: Categories according to the number of incoming and outgoing dependencies.

Isolated and Client categories are two types of categories that could be
the first candidates for being packaged in a library. This would also require
analyzing the base-level uses of their APIs in the base image, which is outside
the scope of this paper.

6.3. Isolated reflective categories

Memory Scanning - Memory Scanning , Object Inspection - Access-

ing object identity , and Chasing and swapping pointers - Bulk pointer

swapping are not relying on any other categories because they rely on prim-
itive operations. There is also no other reflective category relying on them.
To understand how they fit in Pharo, in this specific section analyze all users
–reflective and not– in the base image, not only the ones that are reflective
methods. As explained below, they provide low-level APIs that are either
not used in the base image ( i.e., their selector appears neither in reflective
nor non-reflective code) or used for low-level implementation details like
defining equality and growing collections in memory.

For Memory Scanning - Memory Scanning , implementations of both
nextObject and someObject are directly calling primitive operations. Those
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are two low-level methods that allow us to iterate on the memory. The only
sender of nextObject in the base image is a regression test on ProtoObject
checking for a previous image crash. someObject is never used.

For Object Inspection - Accessing object identity , 7 out of 11 methods
are calling primitive operations, two have an internal dependency to basi-
cIdentityHash. The two remaining methods are the overriding versions of
basicIdentityHash and identityHash for SmallInteger which are based on the
value of the integer itself. Those methods are used to implement hash func-
tions and check for equality. They are not used by other reflective features.

The three members of Chasing and swapping pointers - Bulk pointer

swapping rely on three methods in Array that call the primitive opera-
tions. While the method become: is only used for some tests, becomeFor-
ward:copyHash: is used in a proxy implementation in the Iceberg package,
a version control package. becomeForward: is the most used of the three,
but for non-reflective purposes: during the bootstrap to handle undeclared
variables, to edit the specialObjectsArray, to manage internal representations
of collections and method dictionaries, and to convert weak announcements
into strong ones.

6.4. Provider categories

We have four categories that are not relying on any other categories, but
are providing APIs used by others :

• Class structural inspection - Class/Metaclass shift . Its implemen-
tations of classSide, instanceSide, and variants rely on the metamodel
and its hierarchy. In terms of selectors that have been removed for
clarity, it is only using class once. Its messages are however used in a
dozen of other categories.

• Class structural inspection - Slot inspection . Slots are stored in the
metaobjects of Pharo in a collection. Their implementation does not
rely on primitive operations. Accessing the slots and querying them
are used to access the state of an object or class and modify it, but
also to create or modify the instance variables of a class. This covers
seven categories of reflective operations.

• Object Inspection - Accessing object class Its four methods rely on
the same primitive operation, either directly or indirectly. It is usu-
ally used either for comparisons or to access the API of the class.
In terms of reflective API Context≫objectClass: and MirrorPrimitives
class≫classOf are used to access instance variables, send messages,
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and execute arbitrary methods/primitive operations. With more than
4800 senders in both the base-level and reflective methods, class is one
of the selectors that is the most used in the Pharo image. This is why
in the rest of this article, ProtoObject≫class is excluded when looking
at the connections between categories. The class method is used di-
rectly by 15 out of 40 categories, from which 13 use only class from
this category.

• Class structural inspection - Traits. Like slots, traits do not rely
on primitive operations. They are implemented in the metaobjects of
Pharo. In the reflective API, they are only used in the Class structural

inspection - Class kind testing to test for users of a class defining a
trait.

6.5. Client categories

We have eleven categories which are relying on other categories and are
not used by others:

• Chasing and swapping pointers - Find pointers to

• Class structural inspection - Pragma

• Class structural modification - Anonymous class creation

• Class structural modification - Class variable Modification

• Class structural modification - Instance variable modification

• Class structural modification - Old class creation

• Class structural modification - Selector/Method modification

• Memory Scanning - Instances of a class

• Message sending and code execution - Arbitrary method/primitive

execution

• Object Modification - Object class change

• Stack Manipulation - Context

• Structural queries on methods - Method slot uses

As there are eleven client categories, we focus on highlighting common-
alities instead of detailing each of them. Five of them are from the bigger
category: Class structural modification . Client categories usually provide
higher-level APIs, like Structural queries on methods - Method slot uses.
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For example, in Class structural modification - Instance variable mod-

ification , the methods relying on other categories are the ones offering
to add or remove instance variables by their names. Those methods hide
the complexity of the implementation with slots, which is powerful but more
complicated to understand. Another case is the old class creation API. These
API methods have been rewritten to rely on the new fluid class builder. We
believe that it has no users because of the migration to the new API. This
API is only present for retro-compatibility and class creation required by
other reflective APIs like slot modification using the new API.

6.6. Iterating and querying hierarchy, a hub category

In Figure 3, we identify one hub category in the top left that presents
many more connections than the others. In Figure 4 we see that this category
appears to rely on three other categories for its implementation and has 16
categories using it directly. The Class structural inspection - Iterating

and querying hierarchy is a hub category. In particular, its user with
the strongest connection is Class structural inspection - Instance variable

inspection . The operations to iterate and query the class hierarchy are used
to look up for instance variable definitions. The three categories it relies on
are:

• Class structural inspection - Class kind testing . The two messages
isTrait and isMetaclassOfClassOrNil are used respectively in the imple-
mentations of includesBehavior: and subclassesDo: to check for specific
cases in the Metaclass class.

• Class structural inspection - Class/Metaclass shift . Both instance-
Side and classSide are used by three Metaclass methods: subclasses,
subclassesDo: and obsoleteSubclasses. Those three methods rely on
the instance side to get the subclasses: instances of Metaclass have a
parallel hierarchy to the instances of class. The subclasses of the class
side are the same as the class side of the instance side’s subclasses.

• Message sending and code execution - Runtime and Evaluation .
The messages value: and value:value: are used to evaluate blocks in
eight methods, including five enumeration and iteration methods, and
a method looking for a superclass verifying a criteria passed as a block.
These are false positives due to polymorphism between reified messages
and blocks.
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7. Layers and internal dependencies in reflective categories

To analyze the dependencies within a single category, we build visual-
izations showing each selector’s dependencies (See Section 6.1 for the de-
pendency heuristic). All selectors belonging to the studied categories are
in black while selectors from other categories have other colors. To get a
more detailed view in this analysis, we keep all selectors including the one
excluded previously.

The graph is laid out to show the hierarchy of dependencies with depen-
dent selectors placed below the ones they depend on. Two selectors with a
dependency relationship are placed as close as possible while respecting the
vertical positioning. (For example in Figure 5 sender is just above pointer-
sToExcept:among: instead of being higher on the graph). This leads to the
apparition of some visual layers (see the blue annotations on the following
figures).

pointersToExcept:among:pointersToExcept:

sender

pointsOnlyWeaklyTo:

pointersTo pointersToAmong:

instSize

pointsTo:

instVarsInclude:

instVarAt: class

Help

Selector belongs to :
       Current category
       Other categories

Layer separation

Figure 5: Subgraph of Chasing and swapping pointers - Find pointers to. The black
selectors belong to the studied category.

7.1. Chasing and swapping pointers - Find pointers to

The category Chasing and swapping pointers - Find pointers to is an
example of the layers that emerge in some reflective APIs. When looking
at the graph in Figure 5 we see that the method pointsTo: is the core one
of this category, with all others except pointOnlyWeaklyTo: relying on it.
This pointsTo: method tests for the presence of the parameter either as the
class or in the instance variables of the receiver. By building on top of this
method, we get more complex operations that allow one to get all pointers
to an object.

We also notice that pointersTo: and pointersToAmong: rely respectively
on pointersToExcept: and pointersToExcept:among:. The simpler APIs rely
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on the ones with more parameters for their implementations, therefore avoid-
ing code duplication and facilitating code evolution. The presence of those
simpler APIs in addition to the ones with more parameters reflects the ab-
sence of default parameters in Pharo.

pointsOnlyWeaklyto: is isolated in the category because it provides an
independent operation: when calling it, a precondition is that the receiver
is pointing to the parameter. This method tests if the references are weak
or not. To do so it is using a lower level API, as information on the strength
of references is not available at the abstraction level of pointsTo:.

7.2. Memory Scanning - Instances of a class

The category Memory Scanning - Instances of a class is another
example of a layered API. Here we got three root methods in the category
allowing to access the instances of a class: allInstancesOrNil, someInstance,
and nextInstance. More complicated iteration methods and methods access-
ing sub-instances are built on top of those.

We notice in Figure 6 that allInstancesOrNil and allInstances look similar
but do not depend on each other. This is due to both of them relying on the
same primitive operation. While allInstancesOrNil fail when running out of
memory, allInstances has a backup implementation, which relies on someIn-
stance to get the first instance of a class and nextInstance to iterate. The pres-
ence of both operations could be due to historical and retro-compatibility
reasons.

Another noticeable point is the fact that while allInstancesDo: relies
on allInstances, allSubinstances relies on allSubinstancesDo:. This is because
allSubinstances requires iterating over instances of subclasses, and therefore
if one wants to call a method on all subinstances, it is better to apply it
directly rather than creating a new collection and then reiterate over it.
While unintuitive, this is an optimization for subinstances.

7.3. Message sending and code execution - Runtime and Evaluation & Mes-
sage sending and code execution - Reflective message send

Figure 7 shows in black the Runtime and Evaluation subcategory, and
in teal operations of the Reflective message send subcategory. The former
relies on the latter. Moreover, these categories are organized in different
layers. In Reflective message send, the simpler APIs, with few argu-
ments each as a different parameter, rely on the perform:withArguments:
that takes an array of arguments in its second parameter. Finally per-
form:withArguments: itself relies on perform:withArguments:inSuperclass:. This
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Figure 6: Subgraph of Memory Scanning - Instances of a class. Black selectors belong to
the studied category.

is a similar structure as hashing and swapping pointers - Find pointers to

category, seen in Section 7.1.
Runtime and Evaluation contains value, cull: and their variants with

one or more arguments. Variants of value assume that they are given the
appropriate amount of arguments, while variants of cull ignore exceeding
arguments. This leads to a horizontal layer in the API with all the variants
of value relying on the perform: variant with the corresponding number of
arguments. Variants of cull: rely both on the value variant with the same
number of arguments if there is the right number of arguments, and the cull:
version with one less argument in case there are too many arguments. The
cull: method with only one argument relies instead on the value message if
no arguments are expected. This highlights the cost of using cull: variants
when the number of arguments is known.

Once again here we observe that the absence of default arguments in
Pharo leads to more methods being created to compensate. With empty de-
fault parameters, variants of cull:, value:, and perform: could be summarized
by three methods with the maximum number of parameters.

8. Discussions

As we have seen in the previous sections, if reflective operations are
extremely powerful and useful to implement tools to navigate Pharo’s live
environment [40], they are also impeding application safety in multiple ways.
Analyzing and designing a new modular MOP is a clear challenge. In this
section, we discuss various aspects ranging from the analysis we presented
to the consideration to be taken into account.
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Figure 7: Subgraph of Message sending and code execution - Runtime and
Evaluation and Message sending and code execution - Reflective message
send

8.1. Threats to validity

By construction, this study is susceptible to false negatives on reflective
methods, both false positives and false negatives on dependencies.

False negatives in reflective methods. As the identification of reflective meth-
ods was done manually, we might have missed some packages and methods
as we could not read through the whole image. Therefore some reflective
methods might not be identified and tagged as such. However, with 532
identified methods, we believe that the presented study is representative
of the Pharo reflective API. Moreover, those tags have been submitted to
Pharo, reviewed, and integrated for later versions.

False positives in dependency identification. Having base-level methods be-
ing polymorphic with reflective ones might lead to false positives during the
static analysis. While we identified a few selectors (at:, at:put:, size and
value) for which identified dependencies are not reliable, some others might
have slipped through unidentified. In the dependency graph of selectors,
selectors belonging to more than one category are shown. However, we do
not differentiate between the dependencies of methods belonging to different
categories. This may lead to some false positives. For example, if a single
method implementing the selector has a dependency, the categories of the
other methods implementing this selector will show the dependency even if
it is not their version of the method.
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False negatives in dependency identification. As we removed selectors be-
longing to several categories when drawing the category dependencies graph,
some dependencies relationships are missing. However, only 13 selectors on
344 are removed and they belong to varied categories. This leads us to the
conclusion that no strong dependencies are going by unidentified.

One of the limits of the study is that we only look at direct depen-
dencies between reflective methods. Therefore if a reflective method calls
a non-reflective method, which itself calls a second reflective method, the
dependency between both reflective methods will not be identified.

Non-formal definition of layers. While visual layers used in Section 7 of-
fer a way to understand the hierarchy of dependencies, they do not have
a formal definition. Slightly different visualizations of dependencies could
generate other layers. However, as the organization of the selectors by the
visualizations is specified, this makes those more reproducible.

8.2. General concerns

About dual entities. On several occasions, the MOP proposes a kind of du-
plicated API: one for selectors and the other for compiled methods, or one
for a variable and its name. Having only one API based on the object is
not good because it forces the developer to have an object when it may not
be possible. It means that using a name is a good approach. In particular,
such metaobjects (compiled method, slot) expose their name. We suggest
reducing the API spectrum by not proposing two APIs but instead favoring
one based on the name for query and access. For modifications, the devel-
oper will query first based on the name to access an object and then perform
the corresponding operation. In that regard, the question of the application
of the Law of Demeter should be evaluated since it tends to produce larger
APIs.

Absence of clear layers between base-level and meta-level. On several occa-
sions, we see the need to identify the level of API. Indeed some methods re-
quire mere index (instVarAt:) while some others require names (instVarName:).
While the first one is needed, we suggest (1) a clear naming convention that
helps understand the level of the functionality, (2) a better naming (meth-
ods named instSize that returns the number of instance variables that feel
outdated in a modern language). Finally, some APIs are large because basic
functionality is augmented with helper behavior built on top of such basic
functionality. While this is a good practice to promote code reuse and offer
developers stronger APIs, we suggest laying off such APIs and making sure
that high-level APIs are optional with clearly identified users.
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About metaobject Protocol and piecemeal growth. In Smalltalk, reflection is
exposed as methods of objects that modify the internals of the system and
the causal connection makes sure that the modifications get in effect. We
see this approach as an organic one and from this perspective we say that
the metaobject Protocol of Smalltalk has been less designed than the one of
CLOS [38].

We suggest that the design of a new MOP should consider how certain
objects represent customization points and avoid piecemeal and accidental
MOP growth. For example, in CLOS it is possible to specify at the metaclass
level, the class of the executed method. The Method class is then a natural
metaobject exposing a method that can be specialized to for example count
the number of executions of the methods. In Pharo, the hook to specify the
class of a method is not clear. More important, when a method is executed
no identified method is called before the method execution. Frameworks
such as Method Proxy, MethodWrappers [12] build such functionality using
VM hooks such the possibility to place any object in a system dictionary
and that such an object receives the message run:with:in:.

A MOP may decide to expose customization points as dedicated objects
and not necessarily objects that are currently been executed [45]. For ex-
ample in CodA, different lifetime aspects of objects (message-send, message
received, state access, execution,...) are reified via specific metaobjects.

Execution-Time Reflection. In our analysis, we have centered on the reflec-
tive API during the execution time. We analyzed the operations that are
executed during code execution. In this sense, we have left outside oper-
ations performed outside the execution of the code. Operations such as
static code analysis and rewriting, memory dump inspection and modifi-
cation, refactoring, and on-load code rewriting or instrumentation are not
performed during execution time. Those operations are outside our defini-
tion of reflective operations.

Compiler. In contrast to Rivard [57] who considers the compiler as part
of the reflective API of the system, in our analysis we keep it out. We
have taken this decision as the reflective API provides ways of creating and
installing methods. In Pharo reflective API a method is created from its
bytecode, literals, and header. The complexity of generating such a set of
bytecode, literals, and header for the method is outside the reflective API.
The compiler has as input the source code of the method. Through a series
of complex transformations (such as parsing, AST building, AST rewrit-
ing, AST optimizations, Intermediate Representation Building, and byte-
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code generation) the compiler generates the bytecode, literals, and headers.
A compiler is just one possible source of these elements. For example, in
Pharo, we have a binary code loader that generates and installs methods.
This binary code loader is used without the compiler to load code during the
bootstrap process of the image. The compiler and the binary code loader
both use the same reflective API, that allows them to create and install new
methods in the running environment. Moreover, it is possible to have more
alternative tools to generate methods profiting Pharo reflective API.

Package Loading / Unloading Missing. The existing reflective API does not
present a clear metamodel to handle the concept of Packages. Even though
this concept is used outside the execution of code. It is a key element in
the metamodel of Pharo. It is used to load, unload, and version classes,
methods, and extensions existing in Pharo. Moreover, it is the key element
to support method extensions.

A clear reflective API is required to handle the loading, unloading, ver-
sioning, and modification of packages in Pharo. Also, clear modeling of the
package allows for additional points of extension to the metamodel and the
ability to improve existing tools (e.g., scoping extensions, dependencies).

We have left outside of this paper the analysis of the features and a
possible design of such Package API, but we recognize the importance of
such reflective API.

Architecture for notification. In our analysis, we have found that there is no
clear API for handling the notifications of changes. Tools working on the
metamodel of Pharo require a good integration to be notified of changes. For
example, a Code Browser requires a clear way of getting notifications when a
new method or class is added to the system. Also, there are scenarios where
the tools modify the system but this modification should not be notified. For
example, when instrumenting a method, if the original method is replaced
there is no need for the Code Browser to be notified.

A clear notification API should guarantee that the tools and libraries
scope the notifications they want to produce and consume.

An extensive analysis of this notification architecture is outside the scope
of this paper, however, we realize that such a notification architecture is
required.

About definition and method reification. In early versions of Squeak, a com-
piled method did not know its class or its selector. It was then expensive to
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ask a compiled for its selector since it required scanning all the methods in-
stalled in a class. Over the years compiled methods saw their API and repre-
sentation improved. At the same time, there is a need to be able to represent
methods that are not installed in a class, for example, to browse multiple
versions of a method or perform branch analysis [69]. In this scenario, there
is a need to represent a method with a source code that is not one of the
currently installed compiled methods. Similarly, several meta-models such
as Ring and Ring2 have been designed to support the analysis of code not
loaded in an image (browsing, crossreferencing, remote browser...). There is
a need to have method definitions as well as compiled methods. This raises
the question of whether the tools should not manipulate method definitions
and not compiled methods. Such method definitions could be connected to
a compiled method when the compiled method is installed in the system.
From a reflective API, compiled methods could be more executable objects
and expose only information related to their execution and for all the other
needs the tools could request the associated method definition. By making
sure that the tools and reflective API always go from a method definition
to the compiled method, we could restrain the compiled method API. Such
architecture, however, should be built and validated because, in an image for
development, it would double the number of objects representing methods
or special caches should be done to support method cross-referencing.

8.3. Mirror architecture

At the language level, Mirrors [11, 68] aims for stratification of meta-
level facilities and gives access to reflective capability based on a reference
to a mirror factory. Mirrors were implemented in several languages, for ex-
ample, Self [68], StrongTalk [1] and Newspeak [64]. Mirrors offer a mirror
implementation in Pharo. However, given that MirrorPrimitives is a class, it
is registered in the global environment, making access to this facility possi-
ble from anywhere. This defeats the idea of restricting access to reflection
through the use of references to mirror factories. In [50] the authors ad-
vocate that mirrors should also address structural decomposition. Mirrors
should not only be the entry points of reflective behavior but also be the
storage entities of meta-information. Pharo offers a first implementation of
Mirrors (with APIs to read/write fields, check the class and the identity of
an object, and execution of a method with another receiver) but it is not
systematically used and adds another mechanism.
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8.4. Controlling reflection

Optional reflective features. Our analysis identified some APIs of reflective
behavior that are optional. This is important and we suggest continuing this
effort to obtain a minimal core with modular and optional extensions. This
is particularly interesting because the expectations of a development session
should be automatically the same as the one of a deployed application. Of
course, this is handy to be able to do fancy reflective actions on deployed ap-
plications to debug them, but this is important that MOP designers consider
other scenarios such as more constrained application deployment setup.

Controlling reflection. N. Papoulias et al., [51] proposes a model for the
reification of the control of reflection. Indeed controlling the run-time be-
havior of reflective facilities introduces several challenges, such as compu-
tational overhead, the possibility of meta-recursion, and an unclean separa-
tion of concerns between the base and the meta-levels. They present five
dimensions of meta-level control from related literature that try to remedy
these problems. These dimensions are namely: temporal and spatial control,
placement control, level control, and identity control. Making a reflective
feature optional and identifying its dependencies is one way to control it.

External reflection. Another approach is to separate the implementation of
the language from the reflective API. Lorenz proposes a pluggable reflection
[44], in which the reflective API should be external to the language. This
solution allows tools using reflectivity to process information coming from
different sources (source code, live environment) as long as the same external
API is available. This solution aims at flexibility and interoperability. While
this might seem to not fit the model of the Smalltalk/Pharo live environment
with all its embedded tools, having such an external reflective API could
remote debugging while removing the reflectivity inside the image.

9. Conclusion

This article acknowledged that the runtime reflection offered by Pharo
needed a deep and systematic analysis after the evolution of Squeak and
the subsequent evolution of Pharo since 2008. The analysis of Rivard [57]
while interesting is simply dated. Indeed Pharo metaobjects evolved and got
[31, 29, 63, 65], first-class instance variables, and the introduction of new
tools using reflection such as the new inspector framework [19], reflectivity
[21], object-centric debugging [24], error handling infrastructure [23] and on
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the fly deprecated message rewritings [30]. This is not counting the full
rewrite of the compiler.

In this article, we presented a new systematic and deep analysis of the
reflective APIs revealing some often undocumented aspects such as memory
scanning or method installation. In addition, the analysis proposes some
potential improvements to the existing MOP. The discussion raises the bar
of the analysis because MOP designers should challenge the monolithic per-
ception that a MOP should be omnipotent and cover all the aspects all the
time. We believe that a faceted MOP where on-demand reflective operations
can be made available is the way to create a more versatile system that has
different varieties of flavors depending on the kind of applications that one
wants to deploy and their companion security properties.
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Appendix A. Ignored Selectors

In our analysis, we have ignored some selectors. Some of the ignored
selectors are left out of the diagrams and figures to make them more read-
able (like class), others are highly polymorphic selectors used in non-reflective
libraries and frameworks, and they introduce noise in the whole analysis es-
pecially producing false positives in the dependency analysis (like at:). In
this section, we explain the reasons for ignoring them and the complete list
of ignored selectors.

Selector class is removed by default for presentation’s sake. An analysis
of its uses is in Section 6.4, in paragraph Object Inspection - Accessing

object class.
The following selectors are removed due to polymorphism with non-

reflective selectors:

• at:

• at:put:
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• value

• size

The following selectors are removed due to polymorphism across multiple
reflective categories:

• valueWithEnoughArguments:

• outerContext

• usingMethods

• receiver

• numArgs

• arguments

• arguments:

• instVarAt:put:

• selector

• selector:

• receiver:

• isClass

• sender

Appendix B. Dependency matrix

Figure B.8 presents a table with all the categories and the interdepen-
dency of them. The intersection of categories shows the number of selectors
used by the category on top of the category on the right. A higher number
shows a higher level of dependency between the two categories.
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A1 – Bulk pointer swapping

A2 – Find pointers to

B1 – Class kind testing

B2 – Class variable inspection

B3 – Class/Metaclass shift

B4 – Instance variable inspection

B5 – Iterating and querying hierarchy

B6 – PragmaB7 – Selectors and methods inspection

B8 – Shared pool inspection

B9 – Slot inspection
B10 – TraitsB11 – Variable lookup

C1 – Anonymous class creation

C2 – Class variable modification

C3 – Fluid Builder class creation

C4 – Hierarchy modification

C5 – Instance variable modification

C6 – Old class creation

C7 – Selector/Method modification

C8 – Shared pool modification

C9 – Slot modification

D1 – Memory Scanning

D2 – Instances of a class

E1 – Arbitrary method/primitive execution

E2 – Control message passing

E3 – Message send reification

E4 – Method lookup

E5 – Reflective message send

E6 – Runtime and Evaluation

F1 – Accessing object class

F2 – Accessing object identity

F3 – State inspection

G1 – Object class change

G2 – State modification

H1 – ContextH2 – Controlling the stack

I1 – Class references

I2 – Method element references

I3 – Method slot uses

Figure B.8: Matrix of dependencies between categories. The category in row X depends on
the category in Column Y if there is a number at the intersection. The number corresponds
to the number of different selectors depending on the other category
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