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Abstract 
 
DNA methylation is an essential epigenetic chromatin modification, and its maintenance in 
mammals requires the protein UHRF1. It is yet unclear if UHRF1 functions solely by stimulating 
DNA methylation maintenance by DNMT1, or if it has important additional functions. Using 
degron alleles, we show that UHRF1 depletion causes a much greater loss of DNA methylation 
than DNMT1 depletion. This is not caused by passive demethylation as UHRF1-depleted cells 
proliferate more slowly than DNMT1-depleted cells. Instead, bioinformatics, proteomics and 
genetics experiments establish that UHRF1, besides activating DNMT1, interacts with 
DNMT3A and DNMT3B and promotes their activity. In addition, we show that UHRF1 
antagonizes active DNA demethylation by TET2. Therefore, UHRF1 has non-canonical roles 
that contribute importantly to DNA methylation homeostasis; these findings have practical 
implications for epigenetics in health and disease.  
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Introduction 
DNA methylation is an essential epigenetic mark in mammals. The methylation of cytosines, 
mostly in the CpG context, ensures the proper regulation of imprinted and tissue-specific 
genes, silences repeated elements, and contributes to the function of key functional elements 
of the genome such as centromeres1,2. 
 The DNA methylation pattern observed in mammalian tissues is the result of a dynamic 
process. First, most of the cytosine methylation brought by the gametes is erased in early 
development, in a process that involves active demethylation by the TET enzymes3. Then, the 
proper tissue- and cell-specific methyl marks are re-established in the embryo starting at the 
time of implantation. This re-establishment of DNA methylation depends on "de novo" 
methyltransferases, of which two exist in humans: DNMT3A and DNMT3B4.  
 Even after cells have acquired their proper DNA methylation pattern, the overall 
stability of this pattern depends on a dynamic equilibrium of gains and losses of cytosine 
methylation. There can be local losses of DNA methylation due to TET activity, compensated 
by de novo DNA methylation, in the cell types that do express DNMT3A or DNMT3B. In 
addition, there is a global remodeling of DNA methylation at the time of DNA replication. 
Indeed, at this point, the two parental strands of DNA carrying cytosine methylation are 
separated, and each is used as a template for the synthesis of a daughter strand, which is 
initially totally devoid of cytosine methylation. It follows that every CpG that was 
symmetrically methylated before replication becomes hemimethylated. The process whereby 
the hemimethylated sites return to a fully methylated state is called "maintenance DNA 
methylation", and it involves two key actors: DNMT1 and UHRF15.  
 The first crucial participant in maintenance DNA methylation is the enzyme DNMT16. 
Unlike the de novo methyltransferases, DNMT1 is expressed in every replicating cell, and it 
has higher DNA methyltransferase activity on hemimethylated than on unmethylated sites. 
This specificity of DNMT1 comes in part from intramolecular inhibitions, which have to be 
lifted for the enzyme to come into action7. Some of the molecular mechanisms contributing 
to lifting this inhibition after DNA replication have been uncovered, and they involve the 
protein UHRF18–10. 
 UHRF1 has an SRA domain that binds DNA with a preference for hemimethylated 
CpGs11. It also has a Tandem Tudor Domain (TTD) which, together with the adjoining PHD 
domain, binds histone H3K9me312. In addition, the TTD domain binds an H3K9me3-like motif 
within DNA Ligase 1 (LIG1), which ligates Okazaki fragments on the lagging strand13,14. These 
different interactions contribute to the recruitment of UHRF1 to replicating chromatin, where 
it can then modify histones. Its Ubiquitin-Like (UbL) domain cooperates with its RING 
finger15,16, which then targets histone H3 for mono-ubiquitination at two positions, H3K14 and 
H3K1817. The H3K14Ub/K18Ub then binds with high affinity to the RFTS domain of DNMT1, 
relieving the auto-inhibition18. In a similar fashion, UHRF1 also mono-ubiquitinates the PCNA-
associated factor PAF15, which can then bind the RFTS, freeing the catalytic domain of 
DNMT119. To summarize, there is incontrovertible evidence that UHRF1 is an upstream 
activator of DNMT1, yet these advances leave some important questions open.  
 One such question is whether UHRF1 controls DNA methylation only by acting on 
DNMT1, or whether it also impinges on other epigenetic actors. Besides its importance for the 
biology of normal cells, this question is especially relevant for cancer. Indeed, the DNA 
methylation pattern of cancer cells has characteristic abnormalities, marked by global 
hypomethylation and focal hypermethylation20, and these abnormalities are likely caused, at 
least in part, by imperfect DNA methylation maintenance21. In parallel, most tumors express 
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high levels of UHRF122, overexpression of UHRF1 is oncogenic22, and UHRF1 is necessary for 
colon cancer cells to maintain their DNA methylation pattern and survive23,24. Therefore, 
UHRF1 is a key regulator of the cancer epigenome, and it is important to elucidate its role, 
both for basic research and for medical purposes. 
 Therefore, the questions we address in this paper are: how does UHRF1 control DNA 
methylation in human cancer cells? Does it only stimulate DNMT1 or does it have other 
functions? If yes, which one(s)?  
 The model we chose to investigate the question in is colorectal cancer, a prevalent 
disease in which the contribution of epigenetic is solidly established. Earlier studies have 
yielded valuable information23,25, but some of their conclusions have suffered from technical 
limitations. In particular, the loss-of-function approaches have been imperfect: siRNA has 
effects that are asynchronous, limited in time, and sometimes partial; shRNA can be partial or 
select for cells with the least depletion; constitutional knock-outs can lead to adaptation; 
whereas inducible knock-outs have delayed kinetics. In contrast, degron alleles have emerged 
as very powerful tools for loss-of-function studies, permitting rapid, total, and synchronous 
depletion of proteins of interest in cells26.  
 We have generated and validated degron alleles of UHRF1 and/or DNMT1 in human 
colorectal cancer cell lines. We then used genomics and bioinformatics to precisely describe 
the DNA demethylation dynamics in these cells, leading to the conclusion that UHRF1 
maintains DNA methylation in cancer cells not only by stimulating DNMT1. Proteomics and 
genetics lead us to conclude that UHRF1 regulates DNMT3A, DNMT3B and TET2 activity in 
addition to regulating DNMT1. The tools we have developed will be valuable for future 
research efforts, and our results advance our understanding of cancer epigenetics, with 
potentially important therapeutic applications. 
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Results 
 
Establishment of degron alleles for UHRF1 and DNMT1 in colorectal cancer cell lines 
To investigate the respective roles of DNMT1 and UHRF1 in cancer cells, we chose as a model 
the human colorectal cell lines HCT116 and DLD1, as they have been widely used to study the 
genetic and epigenetic events that cause and sustain transformation. Both lines have an 
activated Kras and microsatellite instability but maintain a near-diploid karyotype. HCT116 
cells have functional p53, whereas DLD1 cells have mutated p5327. 
 In these cells, we utilized the Auxin-Inducible Degron (AID) system to perform precisely 
controlled, rapid, and synchronous loss-of-function experiments26. To prevent unwanted 
degradation of the target proteins in basal conditions, we employed HCT116 with a 
doxycycline-inducible OsTIR128, while we used the recently optimized F74G variant of OsTIR1 
in the DLD1 background 29,30. 
 Using Cas9-mediated knock-in, we introduced the tags into the endogenous UHRF1 
and/or DNMT1 genes in the HCT116 and DLD1 cell lines, and both genes simultaneously in 
HCT116 (Fig. 1A-B, Fig. S1A). As UHRF1 can be inactivated by N-terminal modifications15,16, we 
inserted the AID tag at the C-terminus along with the green fluorescent protein, mClover (Fig. 
1A). In contrast, N-terminal tagging of DNMT1 can be used to generate a degron allele31. For 
this reason, we placed the AID tag at the N-terminus of DNMT1, accompanied by the red 
fluorescent protein mRuby2 (Fig. 1A). Three independent clones were generated for each 
construct and used in further experiments (Fig. 1C, Fig. S1B).  
 
Characterization and validation of the tagged cell lines 
Having obtained the lines of the desired genotypes, we then characterized them by growth 
assays, microscopy, and DNA methylation measurements. In the absence of auxin, the UHRF1-
AID, DNMT1-AID, or UHRF1-AID/DNMT1-AID cells grew indistinguishably from the parental 
HCT116 or DLD1 cells (Fig. S1C-E). We next examined the localization of tagged UHRF1 and 
DNMT1. In fixed cells, both proteins were nuclear with some colocalizing foci (Fig. 1D). In live-
cell microscopy, we found, as expected, that DNMT1 and UHRF1 had a dynamic nuclear 
distribution and formed colocalizing foci during S phase (Supplemental Movies 1-3).  
 We further verified the functionality of the tagged proteins by measuring DNA 
methylation levels in HCT116 derivatives by 3 independent methods: a restriction-enzyme-
based assay (LUMA), liquid chromatography followed by tandem mass spectrometry (LC-
MS/MS), and whole genome bisulfite sequencing (WGBS). These data showed no significant 
difference between parental and single AID-tagged cells in HCT116, yet the compound UHRF1-
AID/DNMT1-AID line showed ~10% less DNA methylation than its wild-type counterpart (Fig. 
1E). We also carried out LUMA in the DLD1 derivatives and found that the UHRF1-AID and 
DNMT1-AID cells had a small but significant reduction of DNA methylation (6% less than in the 
WT, Fig. S1F). 
 Collectively these results confirm that the tags added to UHRF1 and DNMT1 do not 
measurably affect cell viability, growth, or nuclear localization, and have minimal effects on 
DNA methylation, therefore validating their use for functional analyses. 
 
The depletion of UHRF1 and/or DNMT1 is efficient and causes growth arrest 
After validating these basal conditions, we next tested the effects of triggering the 
degradation of UHRF1 and/or DNMT1 in the AID-tagged cell lines. Western blotting revealed 
that, as early as two hours after treatment with auxin, UHRF1 and/or DNMT1 protein levels in 
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HCT116 and DLD1 cells became undetectable, and that this depletion persisted as long as 
auxin was present (Fig. 2A; Fig. S2A). We have noted in 3 independent clones that the 
degradation of DNMT1 and UHRF1 in the compound mutant cells is equally rapid but 
incomplete by ~ 8 hour after treatment with auxin, for reasons that are yet undetermined (Fig. 
2A). 
  We then measured cell proliferation after auxin addition, using Incucyte 
videomicroscopy. The control cells (expressing OsTIR1 but having no AID-tagged protein) grew 
vigorously in the presence of auxin, as expected. However, cells depleted for UHRF1 and/or 
DNMT1 proliferated significantly slower than the control cells (Fig. 2B). This decrease in cell 
proliferation was markedly more pronounced after UHRF1 depletion than after DNMT1 
depletion, and the compound UHRF1/DNMT1 depletion had a slightly stronger effect than the 
single UHRF1 depletion (Fig. 2B). Incucyte measurements detect confluency, which depends 
not only on the number of cells but on their size as well, so we also performed standard cell 
counting; these data confirmed the slower proliferation in UHRF1-depleted compared to 
DNMT1-depleted HCT116 cells (Fig. 2C). A similar trend was seen in DLD1 cells, where UHRF1 
depletion led to a stronger inhibition of proliferation than DNMT1 depletion (Fig. S2B). 
 A previous study has reported that inducible DNMT1-KO in HCT116 cells caused mitotic 
catastrophe and apoptosis within 4 days32, so we sought to determine whether the decrease 
in cell proliferation may result from cell death. For this, we measured cell viability with trypan 
blue staining every four days after auxin treatment, but we did not detect any significant cell 
viability loss (Fig. S2C). Together these results indicate: that UHRF1 and/or DNMT1 depletion 
occurs effectively in the AID-tagged cell lines; that this depletion leads to profound growth 
retardation without detectable cell death; and that UHRF1 depletion has a more severe effect 
than DNMT1 depletion. 
 
Genetic rescues identify the domains of UHRF1 and DNMT1 critical for supporting growth  
We next investigated the mechanism underlying the growth retardation. For this, we used 
genetic rescue of the AID-tagged HCT116 cell lines with DNMT1 and UHRF1 variants bearing 
point mutations in their critical domains (Fig. 2D). All the mutant proteins were expressed at 
levels similar to, or slightly higher than, the corresponding endogenous protein (Fig. S2D-E).  
 For the UHRF1 rescue constructs, we observed that the exogenously expressed WT 
and TTD mutant rescued cell proliferation to a similar extent (Fig. 2E). In contrast, inactivating 
the UBL, PHD, SRA, or RING domain rendered UHRF1 non-functional for supporting growth 
(Fig. 2E).  
 The WT DNMT1 construct and its PBD mutant derivatives both rescued the cell 
proliferation (Fig. 2F). In contrast, the UIM mutant, H3K9me3 binding motif mutant, or 
catalytically inactive form of DNMT1 were all unable to rescue the slow growth phenotype.  
 To summarize, some but not all of the domains of UHRF1 and DNMT1 are required to 
support cell proliferation in HCT116 cells. The links between the proliferation defect and DNA 
methylation loss are explored in the following sections. 
 
UHRF1 depletion induces a more severe DNA methylation loss than DNMT1 depletion 
We then examined the dynamics of DNA methylation loss upon removal of UHRF1 and/or 
DNMT1. As above, we started our experiments with the HCT116 cells and used 3 independent 
methods that measure DNA methylation levels: LUMA, LC-MS/MS, and shallow-coverage 
WGBS (Fig. 3A). 
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 LUMA showed that the parental cells (WT) displayed no change in DNA methylation 
over the course of a 12-day auxin treatment. In contrast, cells depleted of UHRF1 and/or 
DNMT1 progressively lost DNA methylation, as expected (Fig. 3A). Strikingly, UHRF1 depletion 
caused a markedly stronger loss than DNMT1 depletion; for instance, 6 days after treatment, 
the percentage of restriction-resistant sites was ~75% in WT cells, ~55% in DNMT1-depleted 
cells, and ~40% in UHRF1-depleted cells (Fig. 3A). The cells depleted for both UHRF1 and 
DNMT1 had a slightly stronger loss than the cells lacking UHRF1 only.  
 LC-MS/MS and WGBS results were fully consistent with the LUMA data (Fig. 3B-C). In 
addition, LUMA on DLD1 degron cells showed that UHRF1 depletion caused a more severe 
loss of methylation than DNMT1 depletion in this cellular background as well (Fig. S3A).  
 Lastly, we used LUMA after auxin treatment to verify which of the rescue constructs 
can maintain DNA methylation levels following degradation of the endogenous UHRF1 or 
DNMT1 proteins (Fig. S3B-C). The only mutant form of UHRF1 supporting DNA methylation 
maintenance was the TTD mutant (Fig S3B), while the only mutant form of DNMT1 that 
retained activity towards DNA methylation was the PBD mutant (Fig. S3C). Therefore, for the 
9 variants of UHRF1 and DNMT1 that we have tested, there is a one-to-one correspondence 
between the ability to support growth, and the ability to maintain DNA methylation.  
 Together these results further suggest that loss of DNA methylation underpins the 
growth retardation of the various degron lines treated with auxin. In addition, they show that 
UHRF1 depletion causes a more severe loss of DNA methylation than DNMT1 depletion, in 
parallel with a more severe growth retardation. Importantly, the slower growth of UHRF1-
depleted cells rules out passive dilution of DNA methylation as an explanation for the greater 
loss of methylation they experience, when compared to DNMT1-depleted cells.  
 
UHRF1 depletion decreases DNA methylation at DNMT1, DNMT3A, and DNMT3B target sites 
Our previous data clearly suggested that the role of UHRF1 in DNA methylation homeostasis 
goes beyond its canonical function of promoting DNMT1 activity. To get deeper insight into 
the mechanism(s) underlying this phenomenon, we performed deep-coverage WGBS, 
focusing on the early time points after auxin addition (days 0, 2, 4), which showed interesting 
dynamics yet minimize secondary effects due to growth differences.  
 For our analysis, we segmented the genome into 1-kb bins. Four days after auxin 
addition, cells lacking DNMT1 showed ~600,000 tiles that had lost 25% or more DNA 
methylation relative to day 0. However, that number was over twice as great in the UHRF1-
depleted cells, which showed more than 1.3 million demethylated tiles (Fig. 4A). The joint 
depletion of UHRF1 and DNMT1 had an effect similar to, but slightly stronger than, UHRF1 
depletion alone. A similar analysis performed only 2 days after auxin addition yielded similar 
results, albeit with smaller numbers of demethylated tiles (Fig. S4A). The Venn diagrams of 
Fig. 4B and S4B illustrate that most of the tiles demethylated after DNMT1 depletion were 
also demethylated after UHRF1 depletion.  
 We then refined this analysis by looking at distinct genomic regions (Fig. S4C). The loss 
of DNA methylation in UHRF1 and/or DNMT1-depleted cells is pervasive and affects 
promoters, gene bodies, and intergenic regions. However, we noticed that gene bodies in 
particular experience greater loss of DNA methylation upon UHRF1 depletion than upon 
DNMT1 depletion (Fig. S4C). 
 Gene-body methylation involves the de novo methyltransferases DNMT3A and 
DNMT3B33–35, so the results prompted us to examine whether UHRF1 might have an effect on 
the targets of DNMT3A and DNMT3B, which are expressed in HCT116 cells. 
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 In previous studies, kinetic DNA methylation studies performed with randomized 
oligonucleotides have determined systematically which flanking sequences are favored by 
DNMT1, DNMT3A, and DNMT3B in vitro, and the in vitro preferences are reflected in the 
cellular DNA methylation patterns36–40. We have exploited these data in the following manner 
(Fig. 4C): for each of the enzymes, we created a table in which the 256 possible NNCGNN 
sequences are ranked by order of preference in vitro. In parallel, we ranked the 256 possible 
NNCGNN sequences by average methylation level in each point of our WGBS dataset. Then 
we calculated pairwise Pearson r-correlation coefficients between the in vitro preferences and 
the actual WGBS values. This bioinformatic approach quantifies how much the flanking 
sequence preferences of a particular enzyme match to the actual genome-wide methylation 
in cells.  
 Fig. 4C shows the results for 4 conditions: DNMT1-AID and UHRF1-AID cells, each 
before and 4 days after auxin addition. The data show that, before auxin is added, there is 
high correlation between the in vitro DNMT1 and DNMT3A preferences, and the actual 
average methylation levels in NNCGNN bins observed in cells, suggesting that these two 
enzymes have a strong contribution in shaping the methylome of HCT116 cells under our 
experimental conditions, which is not the case for DNMT3B (correlation score close to zero). 
When DNMT1 was depleted by auxin addition, its most preferred target sites were no longer 
among the most methylated ones, as the correlation coefficient dropped from 0.423 to 0.183. 
In contrast, the sites favored by DNMT3A were less affected, as the coefficient only marginally 
declined from 0.443 to 0.338. Therefore, DNMT1 depletion seems to affect preferentially 
DNMT1 target sites, as expected, providing a validation of our analysis. 
 After UHRF1 depletion, the preferred DNMT1 sites lost methylation as well, which was 
also expected. Notably, the drop was more profound after UHRF1 depletion (from 0.436 to -
0.078) than after DNMT1 depletion. As DNMT1 is already completely depleted in the DNMT1-
AID cells, this means that another activity contributing to methylation of the DNMT1 sites is 
also decreased in the UHRF1-AID cells. Interestingly, UHRF1 depletion also had a very strong 
effect on the DNMT3A sites, for which the correlation score went from 0.430 to 0.070, 
suggesting that the enzyme was no longer a major contributor to the DNA methylation 
pattern. The values for DNMT3B went from 0.040 to -0.451, indicative of a strong 
anticorrelation, and meaning that the best DNMT3 sites actually fell among the least 
methylated sites when UHRF1 was removed. 
 To summarize, this rich dataset shows that UHRF1 depletion leads to profound 
decreases of DNA methylation not just at the best DNMT1 target sites, but also at the best 
DNMT3A and DNMT3B target sites suggesting that UHRF1 also has a role in DNMT3A and 
DNMT3B mediated DNA methylation.  
 We obtained further support for this scenario by examining DNA methylation losses at 
H3K36me3-marked CpG islands, which are a well-described target of de novo 
methyltransferases in HCT116 cells34. We extracted from our WGBS data the methylation 
values for CpG islands and ranked them in 10 bins according to their H3K36me3 content (Fig. 
4D). CpG islands with low levels of H3K36me3 lost the same amount of DNA methylation after 
UHRF1 depletion or after DNMT1 depletion: the methylation difference between these two 
conditions was close to zero. In contrast, CpG islands with higher levels of H3K36me3 lost 
significantly more methylation when UHRF1 was removed than when DNMT1 was removed 
(Fig. 4D). As a control, we carried out the same analysis with H3K79me2, another histone mark 
that is also found in gene bodies but is not associated with de novo DNA methyltransferases 
(Fig. S4D). In that case we found no correlation between H3K79me2 levels and reliance on 
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UHRF1. This analysis shows that regions of the genome that are especially reliant on de novo 
methyltransferases to gain DNA methylation are also especially reliant on UHRF1 to maintain 
their DNA methylation.  
 
Physical, functional, and genetic interactions between UHRF1 and the de novo 
methyltransferases 
To test a possible physical association between UHRF1 and DNMT3A or DNMT3B, we 
performed a series of co-immunoprecipitation (co-IP) experiments. These experiments 
showed that UHRF1 indeed interacts with both DNMT3A and DNMT3B (Fig. 5A); furthermore 
the TTD domain was sufficient for interaction (Fig. 5A). We repeated these co-IP with full-
length UHRF1 in the presence of Ethidium Bromide and obtained identical results, indicating 
that the interactions are not bridged by chromatin (Fig. S5A-B). 
 Work with UHRF1 deletion mutants showed that the TTD and PHD domain were 
necessary for interaction with DNMT3A and DNMT3B, whereas the UBL, SRA, and RING finger 
were not (Fig. 5B). As the experiments pointed to an important role of the TTD, we performed 
a last series of co-IP experiments, with a mutant form of UHRF1 that is full-length but has two 
mutations (Y188A/Y191A) that inactivate the hydrophobic pocket of the TTD. The mutations 
significantly reduced the capacity of UHRF1 to interact with both DNMT3A and DNMT3B (Fig. 
5C). To summarize, we detect a physical interaction between UHRF1 and the two de novo 
methyltransferases in HCT116 cells, this interaction involves the TTD, and it is not indirectly 
mediated by chromatin.  
 We identified a further mechanistic link between UHRF1 and the de novo 
methyltransferases by a fully independent approach. We used a recently developed 
proteomic approach41 to characterize the "chromatome" of our cell lines at various time 
points after DNMT1 or UHRF1 depletion (Fig. S5C). One of the proteins that was less abundant 
in chromatin after UHRF1 removal than after DNMT1 removal was DNMT3B (Fig. S5D). We 
carried out western blotting on whole-cell lysates and found that UHRF1 depletion had no 
discernible effect on the amount of DNMT1 or DNMT3A, but that it led to a decrease of 
DNMT3B abundance, while DNMT1 depletion had no such effect (Fig. 5D). The decrease of 
DNMT3B on chromatin in the absence of UHRF1 is therefore mirrored in whole-cell extracts.  
 We then explored the genetic interactions between UHRF1, DNMT1, DNMT3A, and 
DNMT3B. For this, we generated CRISPR knockouts of DNMT3A and DNMT3B in the DNMT1-
AID and UHRF1-AID lines (Fig. S5E), and observed their effects on DNA methylation levels. As 
expected, removing DNMT3A and DNMT3B from the DNMT1-AID line (D3AB DKO derivative) 
led to a greater loss of DNA methylation upon auxin treatment (Fig. 5E). In contrast, the D3AB 
DKO mutations did not make the loss of methylation more severe in the UHRF1-AID line (Fig. 
5E). This important result suggests that UHRF1 does not act in parallel to, but instead 
upstream of, DNMT3A and DNMT3B, which is consistent with our co-IP results.  
 Lastly, these genetic experiments brought another crucial conclusion: the DNMT1-
AID/DNMT3A KO/DNMT3B KO, which are completely devoid of DNMT activity upon auxin 
addition, still lose DNA methylation more slowly than the UHRF1-AID line treated with auxin 
(Fig 5E). Therefore, besides stimulating the activity of the DNA methyltransferases, UHRF1 
must be preserving DNA methylation homeostasis by at least one other mechanism.  
 
UHRF1 opposes active demethylation by TET2 
To guide the next set of experiments, we went back to our WGBS data. The sequence 
preferences of TET1 and TET2 have been identified in vitro42, and we asked whether the 
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optimal target sites of these enzymes were particularly likely to lose methylation in the 
absence of DNMT1 or UHRF1. We used the same workflow described earlier in Fig. 4C, and 
calculated correlation coefficients between WGBS-derived methylation data and in vitro data 
for the TET enzymes (Fig. 6A).  
 We found that the optimal TET1 and TET2 sites became strongly hypomethylated upon 
DNMT1 removal (correlation coefficients of -0.330 and -0.451 respectively). However, the 
demethylation at these sites became even more marked after UHRF1 was removed 
(coefficients of -0.451 and -0.579 respectively). This result is compatible with heightened TET 
action upon UHRF1 removal, suggesting that UHRF1 might oppose TET activity.  

We tested this possibility genetically, focusing on TET2, which is the more expressed 
enzyme in HCT116 cells.  For, this, we generated stable shTET2 derivatives of our UHRF1-AID, 
DNMT1-AID, and UHRF1-AID/DNMT1-AID HCT116 lines. The knockdown efficiency was ~80% 
at the mRNA level (Fig. 6B). We then measured DNA methylation by the LUMA assay in the 
various shCtrl and shTET2 lines, before and after auxin addition. 
 In the absence of auxin treatment, shTET2 led to a small but significant increase of DNA 
methylation, only in the DNMT1-AID and UHRF1-AID/DNMT1-AID lines (Fig. S6A). Upon 4 days 
of auxin treatment, the UHRF1-AID, DNMT1-AID, and compound UHRF1-AID/DNMT1-AID lines 
expressing non-targeting shRNA lost DNA methylation to various extents, with the cells lacking 
UHRF1 losing more DNA methylation than the cells lacking DNMT1 (Fig. 6C), which agrees with 
all of our previously presented data.  
 We then examined the effects of shTET2 combined with auxin treatment. In the 
DNMT1-AID line, the shTET2 did not rescue the DNA methylation loss, suggesting that active 
demethylation by TET2 is not the main contributor in this situation. In contrast, the shTET2 
did significantly alleviate the DNA methylation loss experienced by UHRF1-AID or UHRF1-
AID/DNMT1-AID cells (Fig. 6C). This key result establishes that TET2 activity contributes to 
DNA methylation loss when UHRF1 is absent, but not when DNMT1 is absent. Similar results 
were obtained after 8 days of auxin depletion (Fig. S6B). In addition, we measured cell 
proliferation in all the cell lines to eliminate possible confounding factors (Fig. S6C). In all 
cases, the shTET2 derivatives grew faster than the matched shControl line. Therefore, shTET2 
does not preserve DNA methylation in UHRF1-depleted cells by preventing passive DNA 
methylation.  
 We therefore conclude that UHRF1 protects the genome against TET2 activity, which 
contributes to the more severe DNA hypomethylation seen in UHRF1-depleted cells, as 
compared to DNMT1-depleted cells, or even cells lacking all three DNMTs (See model in Fig. 
7). 
 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 11, 2023. ; https://doi.org/10.1101/2023.07.11.548318doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548318


 

11 
  

Discussion 
Using degron tools, we have carried out a precise time-resolved analysis of DNA methylation 
loss upon removal of UHRF1, DNMT1, or both. Our genomics data coupled to genetic 
experiments show that, in addition to its well-described role as an activator of DNMT1, UHRF1 
also interacts functionally with DNMT3A and DNMT3B. In addition, we show that UHRF1 
opposes the DNA demethylating activity of TET2. Besides their conceptual importance, these 
findings may be relevant for developing novel cancer therapies.  
 
A powerful tool to study UHRF1 and DNMT1 function 
We generated colorectal cancer cell lines in which the endogenous copies of UHRF1 and/or 
DNMT1 are tagged with fluorescent markers as well as degron tags, allowing for their rapid 
and controlled depletion. These cell lines constitute a valuable resource for research into the 
dynamics and functions of these two essential epigenetic regulators.  
 In the absence of auxin, the fluorescently labeled UHRF1 and DNMT1 proteins appear 
fully functional (Fig. 1D and Supplemental Movies). This provides an ideal system with which 
to study the abundance, localization and dynamics of these two key epigenetic actors. For 
instance, a chemical screen to identify regulators of UHRF1 protein stability has previously 
been carried out with an exogenous UHRF1-GFP protein43, and it may be worthwhile to repeat 
it on the endogenously tagged protein. 
 In addition, we chose the mClover/mRuby fluorescent protein pair because it can be 
used for FRET analysis44. This opens up opportunities for future work, including high-content 
microscopy screens45,46 to identify chemical compounds or genes that regulate the 
colocalization of endogenous UHRF1 and DNMT1.  
 The proteins are rapidly, fully, and synchronously degraded upon auxin addition, 
allowing us to examine DNA demethylation dynamics upon removal of the key regulators. This 
question has been addressed in the past, for instance by using shRNA23 or by transfecting the 
Cre protein into conditional KO cells47. However our degron approach has unprecedented 
temporal resolution and population homogeneity, permitting more precise analyses.  
 Our system also lends itself to rescue experiments, allowing us to examine which 
domains of UHRF1 and DNMT1 are essential for their function. The results we obtained 
confirmed earlier results obtained with other systems, such as shRNA23. However, the better 
kinetics and homogeneity of the degron system make it possible to consider more systematic 
screens, such as alanine scanning mutagenesis of the entire proteins in order to reveal new 
critical positions. This would be a useful complement to other approaches addressing the 
same question, such as high-density CRISPR scanning48.  
 Lastly, the degron system is reversible upon auxin removal, and can be coupled to cell 
synchronization. These features will be valuable in designing future experiments addressing 
the roles of UHRF1 and DNMT1 in the different phases of the cell cycle. 
 
Roles of UHRF1 and DNMT1 in cancer cell proliferation or viability 
The addition of auxin to our AID-tagged cells leads to a rapid and extensive decrease in UHRF1 
and/or DNMT1 protein abundance. This leads to a severe impairment of cell growth both in 
HCT116 and DLD-1 cells, yet the cells maintain viability.  
 These results are consistent with a recent report describing DNMT1-degron cells31, yet 
they contrast with earlier publications: most notably, the inducible deletion of the DNMT1 
gene in HCT116 cells has been reported to cause a G2 arrest, eventually followed by escape 
and mitotic catastrophe32. Possible causes for this discrepancy with our observations might 
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include the removal of an uncharacterized important genetic element along with the targeted 
DNMT1 genomic sequence and/or the expression at low levels of a truncated DNMT1 protein 
that has negative consequences in the knockout cells. However, we cannot rule out the 
possibility that minute amounts of DNMT1 escaping degradation in our system are sufficient 
to promote survival.   
 Similarly, previous reports in which UHRF1 was depleted by siRNA or shRNA reached 
various conclusions as to the effects of the depletion23,25. Removal of the protein by a CRISPR 
KO has been attempted, but only yielded hypomorphs49, suggesting that the protein might be 
essential. In our study, we observed a strong cell proliferation defect after UHRF1 depletion 
compared with WT cells (Fig. 2B, C). This likely explains why UHRF1 KO have not yet been 
reported in cancer cells. It also suggests that caution should be exercised when carrying out 
and interpreting siRNA or shRNA experiments on UHRF1, as the least depleted cells will have 
a growth advantage over the most depleted ones. 
 The mechanisms underpinning the essentiality of UHRF1 and DNMT1 for long-term 
cancer cell proliferation have been suggested to be linked with their role in DNA methylation 
homeostasis23. Our rescue experiments are compatible with this hypothesis, as mutants that 
rescue DNA methylation also rescue growth, and vice versa. However, the number of mutants 
we and others have examined is still limited, and the mutations studied, such as the RING 
finger inactivation, may affect other important functions in addition to DNA methylation 
maintenance. The tools we have developed may help reveal if the functions of DNMT1 and 
UHRF1 in cell proliferation and DNA methylation maintenance are indeed fully linked, or 
whether they can be dissociated.  
 
Functional and physical interaction between UHRF1, DNMT3A and DNMT3B 
There have been some indications in the past that UHRF1 might be connected to the de novo 
DNA methylation machinery50–52 but our results now rigorously establish this connection, 
ground it in molecular detail, and determine its effects on DNA methylation genome-wide. 
 The physical interaction between proteins involves the TTD of UHRF1 and, more 
precisely still, its hydrophobic pocket. Our co-immunoprecipitations in the presence of 
Ethidium Bromide eliminate the possibility that the interaction is bridged by chromatin, 
however we cannot presently conclude whether the interaction is direct, or involves other 
unknown factors. We note that DNMT3A contains a histone-like TARK motif that is methylated 
on the lysine by G9A and GLP53. This situation is reminiscent of other proteins directly bound 
by the TTD, namely histone H3 and DNA Ligase 113,14. Thus, one possibility for future 
exploration will be to test the possibility that UHRF1 interacts directly with the TARK motif of 
DNMT3A. 
 We find that depleting UHRF1 leads to decreased abundance of the DNMT3B protein, 
without affecting DNMT1 or DNMT3A (Fig. 5D). Additional experiments could be carried out 
in the future to identify the underlying mechanism which could be direct or indirect, for 
example depending on the fact that methylated nucleosomes appear to stabilize DNMT3B54.  
 Lastly, we have carried out our experiments in human cancer cells, but it will be 
worthwhile in the future to clarify whether UHRF1 also promotes DNMT3A/DNMT3B activity 
in other systems, such as mouse embryonic stem cells.  
 
UHRF1 inhibits TET2 activity 
Our epistasis studies reveal that TET2 contributes to DNA demethylation more actively when 
UHRF1 is absent. This finding may at first sight appear discordant with a recent report, which 
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found that UHRF1 actually recruits the short form of TET1 to heterochromatin, where it 
catalyzes DNA hydroxymethylation55. However, disparities in cellular systems, coupled to 
dissimilarities between TET1 and TET2, could contribute to the contrast between our results. 
Also, we note that the recruitment of TET1 by UHRF1 appears to be limited to the late S-phase, 
and could be counterbalanced by other processes in other phases of the cell cycle.  
 At this stage, we cannot say if the decreased TET2 action is due to an inhibition at the 
level of transcription, translation, stability, or activity of the protein. However, an interesting 
parallel might possibly be drawn with results obtained in mouse ES cells, where UHRF1 has 
been proposed to inhibit SETDB1 activity by binding hemimethylated DNA56. A similar 
regulation might occur between UHRF1 and the TETs.  
 
UHRF1 as a therapeutic target in cancer 
Cancer cells have an aberrant epigenome, and this creates opportunities for anti-tumoral 
therapies57. Among the various epigenetic marks, DNA methylation has been validated as a 
valuable target20. The DNMT1 inhibitor 5-aza-cytidine is successfully used in the clinic against 
Myelodysplasia and Acute Myeloid Leukemia but has limitations such as high toxicity, rapid 
degradation, and emergence of resistance58. The new generation of selective DNMT1 
inhibitors that has been developed59 may alleviate some of those issues, yet these molecules 
still trigger DNMT1 degradation60, which might have unwanted side effects. Our data point 
out that an altogether different strategy may be viable, by targeting UHRF1 instead of DNMT1, 
which justifies drug design efforts currently ongoing in the community61–64. As with any 
essential protein, one of the challenges will be to identify a therapeutic dosage window and/or 
appropriate delivery methods such that cancer cells are harmed while healthy cells are spared. 
It is possible that the high expression levels of UHRF1 in tumors22,23 will provide such a 
window. Altogether, our work reveals new, non-canonical functions of UHRF1, and open up 
avenues for further exploration of this key epigenetic regulator in normal cells and in disease.  
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Materials and Methods 
 
Plasmid Construction 
We utilized the pX330-U6-Chimeric_BB-CBh-hSpCas9 plasmid, obtained from Feng Zhang 
(Addgene #42230), as the basis for constructing CRISPR/Cas vectors. The construction process 
followed the protocol outlined by Ran et al.65 . To generate the mAID donor plasmids, we 
modified constructs of the Kanemaki lab (Addgene #72827 and #121180). In order to 
incorporate mRuby2, we replaced mCherry2 in the donor plasmid (Addgene #121180).  
 For the rescue experiments, wild-type (WT) UHRF1 and each of the point mutants 
(M8R/F46V, Y188A, DAEA, G448D, and H741A) were cloned into pLenti6.2/V5-DEST 
(invitrogen). Likewise, WT DNMT1 and each of the point mutants (H170V, 
D381A/E382A/S392A, W464A/W465A, C1226W) were cloned into pSBbi-Bla (Addgene: 
#60526). To target DNMT3A and DNMT3B, we cloned the oligonucleotide sequences for gRNA 
into the lentiCRISPR v2-Blast vector (Addgene #83480). Additionally, we cloned the shRNA 
targeting TET2 into the pLKO.1-blast vector (Addgene #26655). Plasmids were generated using 
PCR, restriction enzymes, or Gibson Assembly Cloning techniques. All plasmids underwent 
sequencing prior to their utilization. The oligonucleotide sequences inserted into the 
LentiCRISPR v2-Blast vector and pLKO.1-blast vector are available in Supplementary File 1. 
 
Cell Culture, Transfection, and Colony Isolation 
The HCT116 cell line, which conditionally expresses OsTIR1 under the control of a tetracycline 
(Tet)-inducible promoter, was obtained from the RIKEN BRC Cell Bank 
(http://cell.brc.riken.jp/en/) and genotyped by Eurofins. HCT116 cell lines were cultured in 
McCoy's 5A medium (Sigma-Aldrich), supplemented with 10% FBS (Gibco), 2 mM L-glutamine, 
100 U/mL penicillin, and 100 µg/mL streptomycin. The DLD1 cell line, which constitutively 
expresses OsTIR1 (F74A), was provided by the Kanemaki Lab. DLD1 cell lines were cultured in 
RPMI-1640 medium (Sigma-Aldrich), supplemented with 10% FBS (Gibco), 2 mM L-glutamine, 
100 U/mL penicillin, and 100 µg/mL streptomycin. Both cell lines were maintained in a 37℃ 
humid incubator with 5% CO2. 
 To establish stable cell lines, cells were seeded in a 24-well plate and transfected with 
CRISPR/Cas and donor plasmids using Lipofectamine 2000 (Thermo Fisher Scientific). Two days 
post-transfection, cells were transferred and diluted into 10-cm dishes, followed by selection 
in the presence of 700 µg/ml G418 or 100 µg/ml Hygromycin B. After a period of 10-12 days, 
colonies were individually picked for further selection in a 96-well plate. 
 For the induction of AID-fused protein degradation in HCT116 cell lines, cells were 
seeded and incubated with 0.2 µg/mL doxycycline (Dox) and 20 µM auxinole for one day. 
Subsequently, the medium was replaced with fresh medium containing 0.2 µg/mL Dox and 
500 µM indole-3-acetic acid (IAA), a natural auxin. Similarly, to induce AID-fused protein 
degradation in DLD1 cell lines, cells were seeded and incubated with regular medium for one 
day, followed by medium replacement with 1 µM 5-Ph-IAA. 
 
Confocal microscopy analysis 
Cells were fixed in 2% paraformaldehyde at room temperature for 10 min. After fixation, cells 
were permeabilized with 0.5% Triton X-100 in PBS for 10 min at 4℃, then washed with PBS. 
Cells were mounted with ProLong Diamond Antifade Mountant with DAPI (P36961, Thermo 
Fisher Scientific). Images were obtained using a Leica DMI6000 (Leica Microsystems).  
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Videomicroscopy analysis 
For live cell imaging, cells were grown on 35 mm FluoroDish (World Precision Instruments) 
with 0.17 mm thick optical quality glass bottom and fitted with a 4-well silicone insert (Ibidi). 
Timelapse images were taken every 10 minutes for 20 hours using an inverted Eclipse Ti-E 
microscope (Nikon) equipped with a CSU-X1 (Yokogawa) spinning disk integrated in 
Metamorph software, and a 4-laser bench (Gataca systems). ∼45 μm Z stacks were acquired 
(Z-step size: 3 μm) with a 60× CFI Plan Apo VC oil-immersion objective (numerical aperture 
1.4). The microscope has a motorized Nano z100 piezo stage (Mad City Lab), a stage top 
incubator (Tokai Hit) and an EMCCD camera (Evolve, Photometrics). The images were 3D 
deconvolved using the NIS Elements software (Nikon). 
 
Infection/ transfection for rescue experiments 
The generation of lentiviral or Sleeping Beauty transposon vectors followed the methodology 
of "Plasmid Construction." Subsequently, the cell lines were either infected or transfected 
with WT, UHRF1-AID, DNMT1-AID, or UHRF1/DNMT1-AID. To ensure stable expression of the 
target genes or shRNA, the infected or transfected cells were incubated with 10 µg/mL 
Blasticidin for a period of one week, allowing for the selection of stable cell populations. 
 
Western blot analysis 
Cells were harvested after trypsinization, washed twice with PBS, and lysed with RIPA buffer 
(Sigma-Aldrich) with protease inhibitor (1 mM phenylmethanesulfonyl fluoride and 1 x 
Complete Protease Inhibitor Cocktail; Roche), then sonicated with a Bioruptor (Diagenode). 
The sonicated samples were centrifuged at 16,000 g for 15 min, then the supernatants were  
subjected to the Bradford Protein Assay Kit (BioRad). Equivalent amounts of protein were 
resolved by SDS-PAGE and then transferred to a nitrocellulose membrane. The primary 
antibodies used for western blot analysis are listed in Supplementary File 2. 
 
Cell proliferation assay 
For cell proliferation studies, HCT116 cells were seeded at a density of 5,000 cells per well in 
a 96-well plate. They were then treated with 0.2 µg/mL Dox and 20 µM auxinole for one day. 
Following this, the medium was replaced with fresh medium containing 0.2 µg/mL Dox and 
500 µM IAA. Throughout the experiment, images were captured every 2 hours using an 
IncuCyte ZOOM microscope (Essen Bioscience). The IncuCyte ZOOM software was utilized to 
determine the cell confluency (%) based on the acquired images.  
 To obtain cell count data and assess cell viability, trypan blue staining was performed 
after every 4 days of auxin treatment. The TC20 Automated Cell Counter (BioRad) was used 
to obtain the cell count data and calculate the cell viability rate. 
 
DNA methylation analysis 
LUMA and Pyrosequencing analyses were conducted following standard procedures. Whole-
genome bisulfite sequencing (WGBS) libraries were prepared using the tPBAT protocol, as 
described by Miura et al66,67. The library preparation involved using 100 ng of genomic DNA 
spiked with 1% (w/w) of unmethylated lambda DNA from Promega. Subsequently, sequencing 
was carried out by Macrogen Japan Inc. utilizing the HiSeq X Ten system. 
 To process the sequenced reads, BMap was employed to map them to the hg38 
reference genome. The mapping information was then summarized using an in-house 
pipeline, which has been previously described67. Custom scripts for this pipeline can be 
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accessed via GitHub at the following link: https://github.com/FumihitoMiura/Project-2. A 
summary of the mapping information can be found in Supplementary File 3. 
 Once the methyl reports data was obtained, methylKit was utilized to determine the 
methylation levels of individual CpG sites and identify differential methylated regions (DMRs). 
In this analysis, DMRs were defined as having a methylation difference greater than 25% and 
a q-value lower than 0.01. 
  
Flanking sequence analysis 
Genome-wide DNA methylation profiles were used to extract methylation level of individual 
CpG sites and their flanking sequences as described earlier68. CpGs with sequences coverage 
>= 10 were included in the downstream analysis. Enzymes’ flanking sequence profiles were 
combined from published data37–40,42. Pearson r-values were determined with Microsoft Excel. 
Symmetrical preference profiles for DNMT3A and DNMT3B were generated by averaging the 
preferences of pairs of corresponding complementary flanks36. 
 
ChIP-seq analysis 
ChIP-seq data for HCT116 cells was obtained from ENCODE. Upon downloading the data, we 
performed quality checks on the reads using FASTQC (v0.11.9, available at 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads with low quality and 
adaptor sequences were removed using Trimmomatic with default settings (version 0.38). 
Subsequently, the reads were aligned to the hg38 reference genome using bowtie 2 (v2.4.5). 
 To calculate the histone read coverage within each CGI (CpG island), we utilized the 
BEDtools coverage function. Initially, CGIs with less than 4 read counts in the ChIP-seq data 
were excluded to avoid including randomly mapped regions. The read counts were then 
adjusted to counts per 10 million based on the total number of mapped reads per sample. 
Additionally, the counts were divided by the input read count to normalize the read counts. 
To prevent normalized counts from becoming infinite in regions where the input sample had 
zero reads, an offset of 0.5 was added to all windows before scaling and input normalization. 
Regions where the coverage was zero in all samples were removed from the analysis. 
 In order to statistically analyze differences in histone modification levels, we compared 
the normalized read depths across CGIs using a Wilcoxon rank sum test. This test allowed us 
to assess the significance of differences in histone modification levels between samples. 
 
Chromatome analysis 
We followed the protocol we have recently published41. 
 
Transfection and co- immunoprecipitation with GFP trap beads 
In a 10 cm dish with HCT116 cells at 60% confluency, 12 micrograms of GFP-tagged plasmid 
(GFP, hUHRF1, UBL, TTD, PHD, SRA, RING, ΔUBL, ΔTTD, ΔPHD, ΔSRA, ΔRING, hUHRF1-TTD-mut) 
and 12 micrograms of dsRed-tagged plasmid (DNMT3A, DNMT3B) were transfected using 60 
µL Lipofectamine 2000 (Thermo Fisher Scientific). After a 3-hour incubation with 
Lipofectamine, the medium was replaced with McCoy's 5A medium and incubated for 1 day. 
The transfected cells were then collected by trypsinization, washed twice with PBS, and 
subjected to co-immunoprecipitation. 
 Co-immunoprecipitation was carried out following the manufacturer's protocol for 
GFP-Trap Agarose (chromotek). The collected cells were suspended in 200 µL lysis buffer (10 
mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP-40, 2.5 mM MgCl2, 1 mM PMSF, 
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Protease inhibitor cocktail (Roche)) and incubated on ice for 30 minutes. The lysed samples 
were centrifuged at 16,000 g for 10 minutes at 4°C. A portion of the supernatant was collected 
as input, and the remaining supernatant was combined with dilution buffer (10 mM Tris/Cl pH 
7.5, 150 mM NaCl, 0.5 mM EDTA, 1 mM PMSF, Protease inhibitor cocktail (Roche)) to a final 
volume of 500 µL. 
 Subsequently, 30 µL of GFP-Trap Agarose, pre-equilibrated with dilution buffer, was 
added to each lysate sample. The samples were incubated overnight at 4°C with gentle 
rotation. The GFP-Trap Agarose was then washed 5 times with lysis buffer and boiled for 10 
minutes with SDS-PAGE sample buffer to elute the bound proteins for further analysis. 
 
RNA extraction and quantitative reverse transcription PCR (RT-qPCR)  
Total RNA was extracted from cells with RNeasy Plus Mini kit (Qiagen) according to the 
manufacturer’s instructions and quantified using Qubit RNA BR Assay kit on Qubit 2.0 
Fluorometer (Thermo Fisher Scientific). For RT-qPCR, total RNA was reverse transcribed using 
SuperScript IV Reverse Transcriptase (Thermo Fisher Scientific) and random primers 
(Promega). RT-qPCR was performed using Power SYBR Green (Applied Biosystems) following 
to manufacture protocol with TET2 and internal control (TBP1 and PGK1) primers. RT-qPCR 
primer sequences are available in Supplementary File 1. 
  
Data availability 
The WGBS data has been submitted to GEO under reference GSE236026 
 
The mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE69 partner repository with the dataset identifier PXD043254 
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(C) Cell proliferation of the HCT116 derivatives in the continuous presence of auxin for the indicated durations (cell
counting). The error bars represent the SEM of biological triplicates. (D) Schematic of the rescue experiments. (E)
UHRF1 domain map showing the mutants studied (left panel) and corresponding cell proliferation analysis (Cell
count, right panel). Error bars represent the SEM of biological triplicates. (F) Same as panel E, but for DNMT1.
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Figure S2. Growth of DLD1 derivatives after UHRF1 or DNMT1 degradation; additional controls on the
HCT116 derivatives and the rescue experiment.
(A) Immunoblot of DLD1 cells following treatment with Auxin (5-ph-IAA) at the indicated time points (hours) and
before treatment (NT). (B) Cell proliferation of DLD1 derivatives after auxin addition (Cell counting). Error bars
represent the SEM of biological triplicates. (C) Cell viability of HCT116 derivatives following UHRF1 or DNMT1
degradation (trypan blue staining). Error bars represent the SEM of biological triplicates. (D) Immunoblot images for
validation of exogenous UHRF1 rescue constructs. The pink arrow indicates endogenous UHRF1 tagged with AID
and mClover. The purple arrow indicates exogenous UHRF1 tagged with V5. (E) Immunoblot images for validation
of exogenous DNMT1 rescue constructs. Legend as in panel D.
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Figure 3. UHRF1-depleted cells show more severe DNA hypomethylation than DNMT1-depleted cells.
(A) Global DNA methylation analysis in the indicated HCT116 derivatives after auxin treatment for the indicated
duration (LUMA). Error bars represent the SEM of biological triplicates. (B) As in panel A, but the quantitation of 5-
mC was done by LC-MS/MS. (C) As in panel A, but the quantitation of DNA methylation was done by WGBS.
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Figure S3. Validation of the effects of UHRF1 and DNMT1 degradation on DNA methylation in DLD1 cells; 
identification of the domains essential for DNA methylation. 
(A) Global DNA methylation analysis in the indicated DLD1 derivatives after auxin treatment for the indicated 
duration (LUMA). Error bars represent the SEM of biological triplicates.
(B) Global DNA methylation analysis in the indicated HCT116 UHRF1-AID rescue lines. Error bars represent the 
SEM of 3 independent experiments. (C) As in panel B, but for DNMT1-AID.
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Figure 4. Greater loss of DNA methylation upon UHRF1 depletion than upon DNMT1 depletion; UHRF1
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(A) Volcano plot of differentially methylated regions (DMRs, 1kb bins) after 4 days of depletion of UHRF1 and/or
DNMT1. Blue dots: hypomethylated regions (>25% loss of methylation, q-value < 0.01), red dots: hypermethylated
regions (>25% gain of methylation, q-value < 0.01). Gray dots: no significant change. (B) Venn diagram of the
hypomethylated regions in the indicated cell lines, 4 days after depletion of the proteins. (C) Workflow used to
quantitatively compare WGBS methylation values to the in vitro preferences of DNMT1, DNMT3A and DNMT3B.
(D) Higher levels of H3K36me3 correlate with larger losses of DNA methylation in CpG islands. The CGIs were
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Figure 5. Physical and functional interaction between UHRF1, DNMT3A, and DNMT3B.
(A) Western blotting after the indicated co-immunoprecipitation experiments. hUHRF1: Full-length protein. The other
names indicate isolated domains, as depicted in Figure 2E. (B) Same as in A, except we used truncated constructs
in which the indicated domains were deleted from the full-length protein. (C) Same as in A, except we used a full-
length UHRF1 protein with a point mutation in the Tandem Tudor Domain (Y188A). (D) Western blotting showing
abundance of the indicated proteins in total cell extracts. (E) Quantitation of the loss of DNA methylation in the
indicated cell lines after 8 days of protein depletion, by LC-MS/MS. Tukey HSD test: N.S. p>0.05, **p < 0.01.
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Figure 6. UHRF1 protects against active demethylation by TET2.
(A) Workflow used to quantitatively compare WGBS methylation values to the in vitro preferences of TET1 and
TET2. (B) RT-qPCR analysis for validation of TET2 knockdown for HCT116 UHRF1 and/or DNMT1-AID cell lines.
(C) Global DNA methylation analysis (LUMA) for HCT116 UHRF1 and/or DNMT1-AID cell lines combined with
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Figure S6. UHRF1 protects against active demethylation by TET2: additional data and controls.
(A) Global DNA methylation analysis (LUMA) for HCT116 UHRF1 and/or DNMT1-AID cell lines combined with
TET2 knockdown, in the absence of auxin. Error bars represent the SEM of 3 independent experiments. Student t-
test: N.S. p>0.05, *p < 0.05, **p < 0.01. (B) As in Panel A, but following 8 days of auxin treatment. (B) Growth
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Figure 7. A revised and expanded model for UHRF1 functions in DNA methylation homeostasis.
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