
HAL Id: hal-04576164
https://hal.science/hal-04576164

Submitted on 1 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Selfish Grower Behavior Can Group-optimally Eradicate
Plant Diseases Caused by Coinfection

Frank Hilker, Lea-Deborah Kolb, Frédéric M. Hamelin

To cite this version:
Frank Hilker, Lea-Deborah Kolb, Frédéric M. Hamelin. Selfish Grower Behavior Can Group-optimally
Eradicate Plant Diseases Caused by Coinfection. International Game Theory Review, 2024, 26 (2),
pp.2440006. �10.1142/s0219198924400061�. �hal-04576164�

https://hal.science/hal-04576164
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


SELFISH GROWER BEHAVIOR CAN GROUP-OPTIMALLY

ERADICATE PLANT DISEASES CAUSED BY COINFECTION

FRANK M. HILKER∗

Institute of Mathematics and Institute of Environmental Systems Research,
Osnabrück University, Barbarastr. 12, D–49076 Osnabrück, Germany

frank.hilker@uni-osnabrueck.de

LEA-DEBORAH KOLB

Department of Ecosystem Services, Helmholtz Centre for Environmental Research–UFZ,

Institute of Biodiversity, Friedrich Schiller University Jena, and

German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig,
Puschstr. 4, D–04103 Leipzig, Germany

lea-deborah.kolb@idiv.de
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Game-theoretic behavioral and epidemiological models suggest that it is impossible to

eradicate a disease through voluntary control actions when individuals behave according
to their own interests. The simple reason is that free-riding behavior, which is best

for self-interest, leads to a control coverage on the group level that is insufficient to

eradicate the disease. Here we show that, for diseases that are caused by coinfection, self-
interest can actually result in the socially optimal outcome of disease eradication. Our

result challenges the conventional wisdom that selfish behavior undermines the group

interest; it resolves a social dilemma in the absence of any cooperation, institutional
arrangements, or social norms. Our model is motivated by coinfecting plant viruses,

common among agricultural crops and natural plants, and the behavioral dynamics of
growers to adopt protective action (biological or chemical control). The epidemiological
scenario, in which the disease is eradicated by self-interest, is characterized by a positive

feedback process in which coinfection enhances infectivity. Similar feedback structures
exist for a range of typical epidemiological processes that facilitate disease persistence if

prevalence is sufficiently large. The underlying mechanism may therefore be applicable

to other diseases.

Keywords: Infectious disease; human behavior; mathematical model; epidemiological

game; imitation dynamics.
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1. Introduction

Human behavior plays an important role in the control of infectious diseases (Funk

et al., 2010; Schaller, 2011; Bauch & Galvani, 2013; Verelst et al., 2016; Chang

et al., 2020; Bedson et al., 2021). Individual decision-making, e.g., on whether or

not getting vaccinated, adhering to social distancing, or wearing face masks, can

significantly affect disease spread on a population level. It is a basic tenet of epi-

demiology that the successful control of disease spread requires a sufficiently large

fraction of the population adopting disease control (Anderson & May, 1982; Fine,

1993; Keeling & Rohani, 2007; Stone et al., 2012). This is probably most famously

expressed by the “herd immunity” threshold, which translates into disease eradica-

tion as long as a critical proportion of the population has been afforded protection,

e.g., in the form of vaccination.

In fact, it is not required that all individuals engage in disease control, because

they can be indirectly protected by the action of others. By adopting protective

measures, an individual reduces the risk of infection, but this comes with some fi-

nancial expense, possibly social cost, or even health risk. Alternatively, by avoiding

protective measures, an individual can spare the costs but still benefit from avoiding

infection when the other individuals and potential contacts have engaged in protec-

tive measures. The latter behavior is also known as “free-riding” and impedes the

efforts toward disease control. Voluntary control measures can be understood as a

social dilemma (or collective action problem, Siegal et al., 2009), as the self-interest

of an individual may not be the best option for the population (Fine & Clark-

son, 1986). The self-limiting effect of the participation in protective measures may

be a major reason for the failure of some disease eradication programs (Geoffard

& Philipson, 1997). Indeed, the recent review by Chang et al. (2020) has revealed

that, according to all models accounting for human behavior, individual self-interest

prevents disease eradication, unless some specific conditions are met.

Here, we consider diseases that are caused by coinfection of hosts by two or more

pathogen species or strains of the same species (Balmer & Tanner, 2011; Vaumourin

et al., 2015; Hamelin et al., 2019). Coinfection by multiple viruses is widespread in

agricultural crops (Allen et al., 2019; Moreno & López-Moya, 2020) and natural

plant communities (Seabloom et al., 2009; Susi et al., 2015). Often, infection by

only one virus results in rather mild symptoms, but coinfection can be particularly

damaging. Plant diseases caused by coinfection are a main threat to global food

security and human health (Reynolds et al., 2015; Rybicki, 2015). Examples include

maize lethal necrosis (caused by Maize chlorotic mottle virus and a virus from

the family Potyviridae; Redinbaugh & Stewart, 2018), sweet potato virus disease

(caused by Sweet potato feathery mottle virus and Sweet potato chlorotic stunt virus;

Kokkinos et al., 2006), and rice tungro disease (caused by Rice tungro bacilliform

virus and Rice tungro spherical virus coinfection; Hibino et al., 1978).

A notorious feature of coinfection is that the presence of two viruses can enhance

the infectivity and thus promote transmission of the viruses (Alcaide et al., 2020;
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Lamichhane & Venturi, 2015). This induces a self-reinforcing feedback loop: The

more coinfections, the higher the transmission rates. If neither virus by itself is able

to invade the host population, the self-reinforcing feedback can nevertheless facili-

tate the spread of the viruses, provided the prevalence of coinfection is sufficiently

large (Allen et al., 2019; Keeling & Rohani, 2007, Sect. 4.1.3). This creates a bistable

situation, mathematically related to a backward bifurcation. The eradication of the

disease is particularly difficult in this case, because it is not sufficient when control

measures reduce the basic reproduction number below one. Instead, control must

be more intensive to reduce the basic reproduction number even further because of

the coinfection-induced bistability.

The management of plant diseases and the understanding of control successes

or failures increasingly relies on dynamic modeling (Cunniffe et al., 2016; Hamelin

et al., 2021; Ristaino et al., 2021). The extension of epidemiological models beyond

single viruses is considered a key challenge in modeling plant diseases (Cunniffe

et al., 2015, challenge 4). Moreover, while there is an increasing number of epi-

demiological models accounting for human behavior and socio-economic feedbacks

in the control of human (e.g., Bauch et al., 2003; Galvani et al., 2007; Fenichel

et al., 2011; Cascante-Vega et al., 2022) and animal diseases (e.g., Hidano et al.,

2018; Delabouglise & Boni, 2020; Cristancho Fajardo et al., 2021), there are only

a few studies for plant diseases (Milne et al., 2015, 2020; McQuaid et al., 2017;

Bate et al., 2021; Saikai et al., 2021; Murray-Watson et al., 2022; Murray-Watson

& Cunniffe, 2022, 2023). However, their model structures are relatively complex

and obscure how the epidemiological and behavioral processes interrelate (see Jeger

et al., 2023).

In this paper, we first develop a very simple epidemiological model that cap-

tures the essence of coinfection-induced infectivity enhancement and that results

in bistability between a disease-free and an endemic coinfection equilibrium. We

then extend this coinfection model to include dynamic grower behavior regarding

the use of pesticides or natural enemies (i.e., chemical or biological control) as a

protective measure of disease control. Grower behavior is described by imitation

dynamics (Hofbauer & Sigmund, 1998; Helbing, 2010), a social learning process in

which individual growers adopt the action of growers with better pay-off. We show

that, in the epidemiological regime of infectivity-enhanced bistability, self-interest

can actually lead to successful disease eradication.

2. Model description

We begin with describing the epidemiological dynamics of the model. Later, we will

add the behavioral dynamics and arrive at the integrated behavioral-epidemiological

model.
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2.1. Coinfection model

The derivation of the coinfection model follows the approach in Hamelin et al.

(2019). We consider a compartment model for a host plant population and two

virus strains. Let J∅ ≥ 0 be the density of host plants that carry neither virus,

J1 ≥ 0 and J2 ≥ 0 the densities of host plants that carry exclusively virus 1 and

virus 2, respectively, and J1,2 the density of host plants that are coinfected by both

viruses and thus develop the disease. The epidemiological dynamics are given by

J ′
1 = F1J∅ − (F2 + γ1) J1 + γ2J1,2 ,

J ′
2 = F2J∅ − (F1 + γ2) J2 + γ1J1,2 , (1)

J ′
1,2 = F2J1 + F1J2 − (γ1 + γ2) J1,2 ,

where the prime denotes differentiation with respect to time. γ1, γ2 > 0 are the

per-capita recovery rates from infection with virus 1 and 2, respectively. The total

host population density N = J∅ + J1 + J2 + J1,2 remains constant. F1 and F2 are

the forces of infection of virus 1 and 2, respectively:

F1 = θ1J1 + (1 + σ1)θ1J1,2 ,

F2 = θ2J2 + (1 + σ2)θ2J1,2 ,

where θ1, θ2 > 0 are the horizontal transmission coefficients of virus 1 and 2, re-

spectively. Coinfected hosts are assumed to have a modified infectivity compared to

hosts that carry exclusively one virus. This is described by the relative infectivities

σ1, σ2 > −1. If σ1 > 0, then coinfected hosts have an enhanced infectivity of virus 1

compared to hosts infected exclusively by virus 1. If −1 < σ1 < 0, then coinfected

hosts have a diminished infectivity of virus 1 compared to hosts infected exclusively

by virus 1. If σ1 = 0, then there is no effect of coinfection on infectivity of virus 1.

Analogously for σ2.

Let I1 = J1 + J1,2 and I2 = J2 + J1,2 be the densities of host plants that have

been infected (not necessarily exclusively) by virus 1 and virus 2, respectively. Then

the forces of infection can be written as

F1 = θ1 (I1 + σ1J1,2) ,

F2 = θ2 (I2 + σ2J1,2) .

N − I1 and N − I2 are the host densities susceptible to infection by virus 1 and 2,

respectively. System (1) can then be written as

I ′1 = θ1 (I1 + σ1J1,2) (N − I1)− γ1I1 ,

I ′2 = θ2 (I2 + σ2J1,2) (N − I2)− γ2I2 , (2)

J ′
1,2 = θ1 (I1 + σ1J1,2) (I2 − J1,2) + θ2 (I2 + σ2J1,2) (I1 − J1,2)− (γ1 + γ2) J1,2 .

We now show that the coinfected density J1,2 can be substituted by the product

I1I2/N . Let Z = I1I2/N − J1,2. Then

Z ′ = − [θ1 (I1 + σ1J1,2) + θ2 (I2 + σ2J1,2) + γ1 + γ2]Z .
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Since the expression in the brackets is strictly positive, Z(t) → 0 as t→ ∞. Conse-

quently, J1,2 → I1I2/N as t→ ∞. Therefore, system (2) asymptotically reduces to

a two-dimensional system. Replacing J1,2 by I1I2/N , we obtain

I ′1 = θ1I1(1 + σ1I2/N)(N − I1)− γ1I1 ,

I ′2 = θ2I2(1 + σ2I1/N)(N − I2)− γ2I2 .

For simplicity, let us assume that the epidemiological parameters do not differ be-

tween the two viruses, i.e.,

θ1 = θ2 = θ , σ1 = σ2 = σ , γ1 = γ2 = γ ,

which yields the symmetric model

I ′1 = θI1(1 + σI2/N)(N − I1)− γI1 ,

I ′2 = θI2(1 + σI1/N)(N − I2)− γI2 .
(6)

2.2. Behavioral model

Let us now introduce disease management and the behavioral dynamics of growers.

Control options taken will depend on the transmission pathways of the disease. In

general, there are various routes of transmission. For example, the viruses causing

maize lethal necrosis are transmitted both horizontally by insects and vertically via

seed, and there is also evidence for soil-borne transmission (see Hilker et al., 2017,

and references therein). There is little information on the management practises

most often applied to control diseases caused by coinfection. However, many plant

viruses are vectored by insects such as aphids, thrips, and whiteflies (Eigenbrode

et al., 2018). Pesticides reduce vector populations and, thus, virus transmission.

Chemical (or biological) control therefore emerges as a control option for growers

with the sufficient financial assets (Strange & Scott, 2005) and will be the one

considered here.

We assume that growers always choose between two strategies X and ¬X,

namely to apply pesticides as a form of disease control or not to apply them, re-

spectively. Along the game dynamic approach by Bauch (2005), growers adopting

disease control are assumed to receive the payoff

pX = −cX ,

where cX > 0 are the costs of purchasing and applying pesticides. The perceived

payoff for growers who do not adopt disease control depends on the cost cI > 0 of

diseased plants (e.g., lost harvest or lower crop quality) and on the perceived risk

of disease:

p¬X = −cImI1I2/N2 .

The perceived risk of disease is proportional to the disease prevalence (I1I2/N
2),

where a higher value of m > 0 means that growers perceive the disease as more
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Fig. 1. Illustration of the coupled behavioral-epidemiological model (14). Dashed arrows indicate
that the disease prevalence is given by the product of coinfected plants, which influences the

proportion of farmers applying control, which in turn feeds back onto the virus transmission.

harmful. Note that we assume that disease damage only occurs due to coinfection

and that infection with a single virus causes no notable reduction in payoff.

In the proportional imitation dynamics (Cressman, 2003), growers are assumed

to sample each other randomly at rate ψ > 0. If the payoff of the sampled grower

is higher than one’s own payoff, the strategy of the sampled grower is adopted with

a probability proportional to the expected gain in payoff. The payoff gain from

switching to disease control is

∆p = pX − p¬X = −cX + cImI1I2/N
2 .

The fraction of controllers in the grower population changes according to the fol-

lowing equation well-known from imitation dynamics (e.g., Bauch, 2005):

x′ = ψ(1− x)xρ∆p

= ψρx(1− x)
(
−cX + cImI1I2/N

2
)
, (10)

where ρ is the constant of proportionality between switching probability and ex-

pected payoff gain.

2.3. Coupled model

Coupling the coinfection model (6) with the behavioral model (10), we obtain

I ′1 = (1− x)θI1(1 + σI2/N)(N − I1)− γI1 , (11a)

I ′2 = (1− x)θI2(1 + σI1/N)(N − I2)− γI2 , (11b)

x′ = ψρx(1− x)
(
−cX + cImI1I2/N

2
)
. (11c)

In (11a) and (11b), we multiply the terms accounting for new infections with (1− x).

This represents the effect of growers using pesticides on the epidemiological dynam-

ics. There are a number of implicit assumptions in this model formulation. First,

ACCEPTED MANUSCRIPT / CLEAN COPY

https://doi.org/10.1101/2023.11.19.567700
http://creativecommons.org/licenses/by-nc-nd/4.0/


November 18, 2023 12:43 WSPC/INSTRUCTION FILE output

Selfish grower behavior can group-optimally eradicate plant diseases caused by coinfection 7

pesticides affect the transmission pathways of the two viruses equally. This certainly

holds for coinfecting viruses that share the same vector species, of which there are

many examples (e.g., Lacroix et al., 2014; Salvaudon et al., 2013; Holt & Chancel-

lor, 1996). Although there are also many examples where coinfecting viruses have

different vector species (e.g., Peñaflor et al., 2016), the pesticide may still be as-

sumed equally effective in these cases. Second, growers who use pesticides in their

fields are assumed to sufficiently reduce the local vector population to prevent new

infections. Assuming growers own fields of equal area, the reduction in the overall

increase in infection is proportional to the fraction of growers employing pesticides.

Let us now nondimensionalize system (11). We introduce

Ĩ1 =
I1
N
, Ĩ2 =

I2
N
, t̃ = γt , R0 =

θN

γ
, (12)

and

b =
ψρ

γ
mcI , c =

cX
mcI

.

Parameter R0 is the basic reproduction number (which is identical for the two

viruses due to the assumption of virus symmetry). Parameters b and c are composite

socio-economic parameters. They both include the term mcI. In the remainder, we

shall refer to c as relative costs because it is additionally influenced by the costs of

disease control, cX. We shall refer to b simply as scaled learning rate because it is

additionally influenced by the imitation parameters ψρ.

Dropping the tildes in (12) for notational convenience, system (11) becomes

I ′1 = (1− x)R0(1 + σI2)I1(1− I1)− I1 , (14a)

I ′2 = (1− x)R0(1 + σI1)I2(1− I2)− I2 , (14b)

x′ = bx(1− x)(I1I2 − c) , (14c)

where the prime now denotes differentiation with respect to time, which has been

scaled relative to the period of virus infectiousness. This is the model that we will

analyze in this paper. We shall henceforth refer to it as coupled model, but we note

that models of this type are also called “behavior-prevalence” models (e.g., Bauch

et al., 2013). All parameters are strictly positive, except σ > −1. Note that all three

state variables are fractions, i.e., the proportion of host plants infected with virus

1 or 2, or the proportion of growers applying disease control. That is, the state

space of the model is (I1, I2, x) ∈ [0, 1]3. The structure of the model is illustrated in

Fig. 1. The formulation of the model reveals that the fraction of controllers among

the growers increases if and only if the perceived disease risk (represented by the

prevalence I1I2) outweighs the relative costs of disease control (c), see Eq. (14c).
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-1 0 1 20
σ

1

R0

Larger endemic equilibrium

globally stable

Disease-free

equilibrium

globally stable

Bistability

Fig. 2. Dynamical regimes of the coinfection model (15) without control. In the bistable region,
the two attractors are the disease-free equilibrium and the larger endemic equilibrium. The red

curve corresponds to saddle–node bifurcations and is given by condition (16). The dashed (solid)
black curves are backward (transcritical, respectively) bifurcations.

3. Results on the coinfection model

3.1. No control

In the absence of control, i.e., x = 0, system (14) simplifies to

I ′1 = R0(1 + σI2)I1(1− I1)− I1 ,

I ′2 = R0(1 + σI1)I2(1− I2)− I2 .
(15)

This system has been analyzed in Appendix A. The dynamics depend only on

two epidemiological parameters and can be summarized as follows (see Fig. 2). If

R0 > 1, both viruses spread in the population and establish a stable unique endemic

equilibrium in which both viruses coexist. If R0 < 1, the disease-free equilibrium is

locally asymptotically stable. However, if and only if σ > 1 and

4σ

(σ + 1)2
< R0 < 1 , (16)

then there is a bistable scenario in which both the disease-free equilibrium and the

larger of two endemic equilibria are locally stable. That is, the disease may persist

even though R0 < 1, provided the infectivity enhancement, i.e. σ, is sufficiently

large.

3.2. Constant control

If x is not a dynamic state variable but a constant parameter, system (14) simplifies

to

I ′1 = (1− x)R0(1 + σI2)I1(1− I1)− I1 ,

I ′2 = (1− x)R0(1 + σI1)I2(1− I2)− I2 .
(17)
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Fig. 3. Minimum control coverage required for disease elimination in the model with constant

control (17). The yellow and red surfaces are given by (18a) and (18b), respectively.

Following basic epidemiological theory (e.g., Keeling & Rohani, 2007), the minimum

control coverage to eradicate the disease (i.e., for the disease-free equilibrium to be

globally asymptotically stable) is

xmin =


1− 1

R0
for σ < 1 (18a)

1− 1

R0

4σ

(1 + σ)
2 for σ ≥ 1 (18b)

This is the constant control coverage needed for “herd immunity”. The expression

in (18a) is the same as the one required for voluntary vaccination (e.g., Keeling &

Rohani, 2007); see the yellow surface in Fig. 3. The expression in (18b) is the one

required because of coinfection effects; see the red surface in Fig. 3. Note that the

coinfection effects elevate the minimum control coverage.

4. Results on the coupled model

We now turn to the coupled coinfection-behavior model in which the fraction of

controllers among the growers changes dynamically. Table 1 summarizes the results

of the mathematical analysis. The details are given in Appendix B. An important

role is played by I∗C =
√
c; it represents the minimum infection levels of I1 and

I2 required for disease control to become worthwhile for the growers. That is, the

control coverage x increases for I1,2 > I∗C (or I1I2 > c) and decreases for I1,2 < I∗C
(or I1I2 < c).

4.1. Bistable epidemiological scenario

The phase portraits in Fig. 4 illustrate the dynamics of the coupled model, when

the coinfection model is bistable (i.e., R0 < 1). I∗C is marked by a blue vertical line;
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Table 1. Equilibria
(
I∗1 , I

∗
2 , x

∗) of system (14) and their existence and local

stability conditions.

Description Components Existence Stability

Disease-free E0 = (0, 0, 0) always R0 < 1

Full control EF = (0, 0, 1) always never

Mono-pathogenic

virus 1

E1 =
(
1− 1

R0
, 0, 0

)
R0 > 1 never

Mono-pathogenic

virus 2

E2 =
(
0, 1− 1

R0
, 0

)
R0 > 1 never

Endemic (small) E− =
(
I∗−, I∗−, 0

)
Tab. 2 never

Endemic (large) E+ =
(
I∗+, I∗+, 0

)
Tab. 2 I∗+ <

√
c = I∗C

Control EC =
(√

c,
√
c, x∗

C

)
σ ≥ σC σ < σHB = 1

1−2
√
c

Note: I∗− and I∗+ are defined in Eq. (A.3). x∗
C is defined in Eq. (B.11). σC is

defined in Eq. (B.12).

note that it depends only on the relative costs c. We can distinguish the following

dynamical regimes.

(A) If control is too expensive (large value of c, Fig. 4A), the blue vertical

line is located to the right of the larger endemic equilibrium. That is, the

disease risk perceived by the growers does not outweigh the high costs

of control, and nobody engages in control (x∗ = 0). The coupled system

still exhibits bistability between the disease-free equilibrium (DFE) and the

larger endemic equilibrium. The separatrix between the basins of attraction

emanates from the smaller endemic equilibrium; with increasing control

coverage the DFE expands its basin of attraction compared to the larger

endemic equilibrium.

(B) If the relative costs are reduced such that I∗C is between I∗+ and the hump

of the orange curve (Fig. 4B), a stable control equilibrium establishes itself.

That is, disease control is now sufficiently affordable for the given disease

risk. The system remains bistable, but one of the attractors is now the con-

trol equilibrium which has lower infection levels than the larger endemic

equilibrium. Moreover, the basin of attraction to the DFE is further ex-

panded compared to that in Fig. 4A.

(C) If I∗C is between the the hump of the orange curve and I∗− (Fig. 4C), the

control equilibrium is unstable and surrounded by a limit cycle. That is, low

costs can destabilize the control equilibrium. If the costs of disease control

become more affordable, more growers adopt control such that the disease

prevalence decreases. In turn, this disincentivizes growers from employing

control with the effect of disease prevalence going up again, and the cycle

starts anew. The system is still bistable, with the other attractor being

the DFE. Note that the amplitudes of the limit cycle increase with lower
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Fig. 4. Phase portraits of the coupled model (14) for different relative control costs c. The three-
dimensional phase space is projected into the phase plane (I, x), where the infection levels I1 =

I2 = I are set equal because of identical initial infection levels I1(0) = I2(0). Blue lines mark the
zero-growth curves of x and orange lines mark the zero-growth curves of I. Full (empty) symbols
mark stable (unstable) equilibria. Black thin lines are sample trajectories. The white areas are the

basins of attraction to the disease-free equilibrium, red to the larger endemic equilibrium, blue to
the control equilibrium, and gray to the limit cycle. Parameter values: R0 = 0.7, σ = 4, b = 1, (A)

c = 0.4, (B) c = 0.2, (C) c = 0.138, (D) c = 0.1362452, (E) c = 0.135, (F) c = 0.02.
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relative costs. That is, the limit cycle approaches more and more the basin

of attraction to the DFE as c decreases (Fig. 4D).

(D) When the relative costs are further reduced such that I∗C moves further to

the left (Fig. 4D), the limit cycle has disappeared in a homoclinic bifurca-

tion (as it collides with the smaller endemic equilibrium). Now, the DFE

is the only attractor and globally asymptotically stable. That is, long-term

disease eradication is guaranteed. However, there may be transient oscilla-

tions for initial conditions in the vicinity of the unstable control equilibrium;

they trace the remnants of the disappeared limit cycle but eventually vanish

toward the DFE.

(E) If I∗C is below I∗− (Fig. 4E), there is no control equilibrium. This is because

the control has reduced the infection levels into the basin of attraction of

the DFE. The DFE is, therefore, the only attractor such that there is again

successful disease eradication.

The bifurcation diagrams in Fig. 5 show how the long-term control uptake and

infection levels change as a function of the relative costs. If the costs are too high

(approx. c > 0.31), no control will be adopted. At c ≈ 0.31, there is a transcritical

bifurcation, in which the control equilibrium establishes itself and exchanges stabil-

ity with the larger endemic equilibrium. Inexpensive control destabilizes the system:

at c ≈ 0.14, there is a Hopf bifurcation, which renders the control equilibrium un-

stable. This takes place at the local maximum of the control uptake, for details see

Appendix B.3. The limit cycle that emerges in the Hopf bifurcation exist only in a

small range of parameter values for c. The limit cycle disappears in a homoclinic

bifurcation, which occurs when the amplitudes of the limit cycle “touch” either of

the endemic equilibria. For c < 0.136, approximately, the coupled system is disease-

free as the DFE is the only attractor. Note that the control equilibrium disappears

in another transcritical bifurcation at c ≈ 0.037, but this does not change that the

DFE is globally asymptotically stable.

Overall, we observe that disease eradication will be achieved for c < 0.136,

approximately. For more expensive controls, the disease may persist depending on

the initial conditions as the coupled system is bistable in various forms. One of the

attractors is always the DFE; the alternative attractors are either the larger endemic

equilibrium, the control equilibrium, or the limit cycle. Note that the infection

levels I∗C at the control equilibrium follow a square root branch and decrease with

decreasing c. This trend also holds for the time-averaged infection levels during limit

cycle oscillations. The control uptake at equilibrium initially increases as control

becomes more affordable. However, once the Hopf bifurcation has taken place, the

time-averaged control uptake decreases with decreasing c.

Figure 6A shows a two-parameter bifurcation diagram when additionally the

infectivity enhancement σ is being varied. If σ is too small (approx. σ < 3.4),

infectivity enhancement is not sufficient to facilitate disease spread because R0 < 1

(region III). However, at σ ≈ 3.4, there is a saddle–node bifurcation where endemic
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Fig. 5. Bifurcation diagrams of the coupled model (14), when the coinfection system is bistable
in the absence of control. Solid (dashed) lines represent stable (unstable) equilibria. Green points

are the maxima and minima of stable limit cycles. The blue curves give the time averages along

limit cycles. Parameter values: R0 = 0.7, σ = 4, b = 1.

equilibria emerge and render the system bistable in the absence of control (above the

red horizontal line in Fig. 6A). The coupled system remains bistable (with different

alternative attractors), provided control costs are high. For sufficiently low costs,

however, there will be successful disease eradication. In region I, this is because the

control equilibrium disappeared in a transcritical bifurcation (leading to a phase

portrait as in Fig. 4E). In region II, this is because the limit cycle disappeared

in a homoclinic bifurcation (leading to a phase portrait as in Fig. 4D). The effect

of infectivity enhancement is that disease eradication becomes more likely with

increasing σ, as the white areas expand. Note also that increasing σ reduces the

parameter domain where the endemic equilibrium is an attractor.

4.2. Monostable epidemiological scenario

Figure 6B shows a two-parameter bifurcation diagram when R0 > 1 and there is a

unique stable endemic equilibrium in the absence of control. Increased infectivity
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Fig. 6. Dynamical regimes in the coupled model (14) in a two-parameter plot. White areas mark

disease eradication, with the DFE being the only attractor. See the main text for the difference
between regions I, II, and III. Hatched areas mark bistability. One of the attractors is always

the DFE; the other attractor can be either a limit cycle (gray), the control equilibrium (blue),

or an endemic equilibrium (red). In the monochromatic areas of (B), there is monostability with
these attractors. The red line marks a saddle–node bifurcation curve where the two endemic

equilibria coalesce and is given by (16). The blue curve marks transcritical bifurcations in which
the control equilibrium (dis-)appears; it is given by (B.12). The dashed black curve marks Hopf

bifurcations, which satisfy (B.17). The solid black curve marks homoclinic bifurcations and has

been approximated numerically. Other parameter value: b = 1.

enhancement promotes the uptake of control. It also promotes the destabilization of

the system at low control costs. Hopf bifurcations can only occur for σ > 1 and c <
1
4 , see Appendix B.3. If there is no Hopf bifurcation, control uptake monotonically

increases with decreasing c (see the bifurcation diagram in Fig. 7A, σ < 1). If there

is a Hopf bifurcation, the (equilibrium or time-averaged) control uptake shows a
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Fig. 7. Bifurcation diagrams of the coupled model (14) when R0 > 1. Parameter values: R0 =

2, b = 1, (A) σ = 0.9 and (B) σ = 10. The meaning of lines and symbols is as in Fig. 5.

unimodal relationship with c (Fig. 7B, σ > 1); for details see Appendix B.3.

Last, consider the scaled learning rate b. The mathematical analysis in Ap-

pendix 4 reveals that it affects neither the existence nor the location nor the stability

of any equilibrium point.

5. Discussion and conclusions

Game-theoretical and economic approaches to epidemiology generally predict that

control coverage driven by self-interest is generally below the group-optimal level

required for disease eradication (Fine & Clarkson, 1986; Bauch et al., 2003; Gal-

vani et al., 2007; Fu et al., 2011; Chang et al., 2020). As control measures reduce

disease prevalence they also incentivize individuals to become free-riders. Here, we

have shown that selfish grower behavior can actually result in the socially optimal

solution, namely the eradication of the disease.

There are only a few modeling studies offering solutions to the free-rider problem.

Brito et al. (1991) analyzed conditions, in the form of subsidies or taxes, under which

voluntary vaccination may be the better outcome than compulsory vaccination. Liu

et al. (2012) found that the group-optimal control coverage can be reached by selfish

individuals for diseases that become more severe with age, such as chickenpox.

Investigating the effect of imperfect vaccines, Wu et al. (2011) found that self-
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interested behavior can result in full coverage for intermediate vaccine efficacies.

However, while the disease prevalence is reduced, the disease will not be eradicated.

Our finding is, therefore, a rare exception that resolves the apparent impossibility

of disease eradication under voluntary control programs.

The mechanism that enables disease eradication by self-interested behavior is

the following. For diseases caused by coinfection, the disease may persist because of

a positive feedback process (the more coinfections, the more transmission because

of enhanced infectivity). Disease control undermines this feedback cycle that criti-

cally depends on a sufficiently large prevalence of coinfections. Essentially, control

reduces the number of coinfections and thus counteracts the reinforcing cycle of en-

hanced infections. In some other sense, the disease control (if sufficiently affordable)

transforms the basins of attraction such that the disease will be eradicated for all

initial conditions. Mathematically, this can be reflected by a transcritical bifurca-

tion, where the control equilibrium disappears (Fig. 6, region I), or by a homoclinic

bifurcation, where the limit cycle oscillations push the system below the minimum

disease prevalence required for coinfection-enhanced transmission (Fig. 6, region II).

There are ecological analogies of this mechanism. In populations subject to a

strong Allee effect, cooperation between individuals can facilitate population per-

sistence provided the population size is large enough (Courchamp et al., 2008).

Harvesting this population can push the population below its minimum viable size,

leading to population extinction (Clark, 1976; Segura et al., 2017; Hilker & Liz,

2020). Similar situations occur when a prey population is subject to both a strong

Allee effect and predation (Bazykin, 1998; van Voorn et al., 2007) or a host pop-

ulation is subject to both a strong Allee effect and parasitism (Hilker et al., 2009;

Hilker, 2010). Just like the strong Allee effect and harvesting, predation, or para-

sitism interact to form an ‘extinction vortex’, the coinfection-enhanced infectivity

and disease control can jointly result in disease eradication.

The voluntary uptake of control needed for disease eradication is not very high.

In fact, its asymptotic value will be nil. The situation is, therefore, essentially dif-

ferent from the conventional epidemiological scenarios where control uptake needs

to exceed a herd immunity threshold that continually increases with R0. The re-

quirement for disease eradication driven by self-interested behavior, however, is that

control costs are sufficiently affordable (small c) and that the disease is sustained

by coinfections (sufficiently large σ and R0 < 1).

There are many other epidemiological models that show bistability and dis-

ease persistence if R0 < 1. Examples include disease-induced mortality in vector-

borne diseases, exogenous reinfection or imperfect vaccine in tuberculosis, differ-

ential susceptibility in risk-structured models, or vaccine-derived immunity waning

at a slower rate than natural immunity. See Gumel (2012) and references therein,

and also Hamelin et al. (2017, 2023) for more recent examples. All these models

exhibit backward bifurcations and bistability, and it may be speculated whether

self-interested behavior could also lead to disease eradication if these models were

coupled with behavioral dynamics. An interesting aspect is that disease eradication
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in these epidemiological settings is often considered particularly difficult because

protective measures need to reduce R0 significantly below one.

Our model is based on a number of simplifying assumptions. One is that the

viruses are epidemiologically interchangeable, meaning that both pathogens have

the same R0. Our model also implicitly assumes that intra-pathogen competition is

greater than inter-pathogen competition. This means that pathogen 2 can always

invade a population infected by pathogen 1 and the other way around (unless σ =

−1, which is a limit case). Therefore, there is no priority effect, which would express

itself as bistability between boundary equilibria (e.g. Gao et al., 2016). Another

assumption is that only infectivity (rather than also susceptibility) is modified by

coinfection. While this may be biologically plausible, it limits the generality of our

model. Furthermore, our model assumed that hosts recover from the viruses, which,

at least in plants, happens rarely. Last, but not least, we did not explicitly model the

within- and between-field scales. Further work will be required to investigate how

the results hold or change when more refined assumptions are taken into account.

On the other hand, these assumptions allowed us to formulate a very simple

model. In fact, our coinfection model is the simplest model with multiple infections

exhibiting bistability that we know (Keeling & Rohani, 2007; Gao et al., 2016;

Allen et al., 2019; Chapwanya et al., 2021). The usefulness of our approach is that

we obtained a very simple (two-dimensional) coinfection model, into which we could

integrate behavioral dynamics. The coupled model has only four parameters. This

allowed us to obtain a fairly comprehensive understanding of the system dynamics.

It turned out that the scaled learning rate b has no effect on existence, loca-

tion, and stability of equilibria. However, it does have an effect on the speed with

which attractors are approached, and on the limit cycle oscillations. Parameter b

essentially describes the relative time scales between the behavioral and the epi-

demiological dynamics. In contrast to our results, Bauch (2005) found that the

scaled learning rate in his pertussis model did affect the Hopf bifurcation curve,

for example. In social-ecological models of shallow lake eutrophication, where the

behavioral dynamics are described by stochastic best-response equation, there is a

similar contrast. In some models, a similar time scale parameter was found to affect

the stability (Suzuki & Iwasa, 2009; Iwasa et al., 2010), whereas it was found to

have no effect, as in the current study, in Sun & Hilker (2020).

The occurrence of limit cycles (or “wave-like oscillations”) is well known from

behavioral epidemic models (Bauch, 2005; d’Onofrio et al., 2007; Poletti et al., 2009;

Bhattacharyya & Bauch, 2010; Zhang et al., 2010; Cornforth et al., 2011). What is

notable here is that the time-averaged control coverage decreases as control becomes

less expensive. This may seem counter-intuitive. However, it probably reflects the

fact that the cycle is slowed down when control and disease prevalence are low.

Moreover, there is an analogy to the “hydra effect” in ecology, where increased

predator mortality can increase mean predator population size in predator–prey

cycles (Abrams, 2009; Sieber & Hilker, 2012).

Overall, we have shown that the optimal outcome at the group level (i.e., dis-
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ease eradication) can be achieved by “rational” individuals (i.e., growers voluntarily

adopt control measures to maximize their payoff) – even in the absence of insti-

tutional design principles (Ostrom, 1990) or cooperative mechanisms (e.g., kin or

group selection or a form of reciprocity, Nowak, 2006). This occurs in a bistable

epidemiological context with reinforcing processes, and when control costs are suffi-

ciently low. Alternative stable states, regime shifts, and tipping points are prevalent

in many environmental (Scheffer et al., 2001), climate (Lenton et al., 2008), and

social systems (Nyborg et al., 2016). It therefore remains an intriguing question

whether similar resolutions of social or public good dilemma might exist in such

systems as well and offer pathways to more desirable system states.
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Appendix A. Analysis of the coinfection model

The coinfection model, i.e., Eq. (17), is repeated here for convenience:

I ′1 = R0(1 + σI2)I1(1− I1)− I1 ,

I ′2 = R0(1 + σI1)I2(1− I2)− I2 .
(A.1)

The biological domain of (I1, I2) is [0, 1]
2.

A.1. Equilibria and their existence in the biological domain

The model has at most five equilibria:

• the disease-free equilibrium, (0, 0), which always exists;

• two symmetric mono-pathogenic equilibria, (1−1/R0, 0) and (0, 1−1/R0),

which exist if and only if R0 > 1;

• two endemic equilibria in which both pathogens coexist, (I∗−, I
∗
−) and

(I∗+, I
∗
+), which we study in more detail below.

I∗− and I∗+ are the possible solutions of the following quadratic equation:

(I∗)
2
+

(
1

σ
− 1

)
I∗ +

1

σ

(
1

R0
− 1

)
.

Thus,

I∗−,+ =
1

2σ

(
σ − 1∓

√
(σ − 1)2 +

4σ

R0
(R0 − 1)

)
. (A.3)

The term under the square root is positive if and only if

R0 >
4σ

(σ + 1)2
. (A.4)
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Table 2. Summary of the existence conditions of the smaller and larger endemic equilibria as a

function of parameters σ and R0. The conditions apply equally to the endemic equilibria (I∗−, I∗−)

and (I∗+, I∗+) in the coinfection model, and to the endemic equilibria E− and E+ in the coupled
model.

−1 < σ < 0 0 < σ < 1 σ > 1

R0 > 1 smaller larger

R0 < 1 none smaller and larger, iff R0 >
4σ

(σ+1)2

If σ < 0, this condition is always satisfied. Note also that since

4σ

(σ + 1)2
≤ 1

(with equality for σ = 1), condition (A.4) is always satisfied when R0 > 1. Condi-

tion (A.4) may not be satisfied only when σ > 0 and R0 < 1.

Next, one can show that

• I∗+ ∈ [0, 1] if and only if σ > 1, or 0 < σ < 1 and R0 > 1,

• I∗− ∈ [0, 1] if and only if σ > 1 and R0 < 1, or −1 < σ < 0 and R0 > 1.

Altogether, the existence results are summarized in Tab. 2. Note that the endemic

equilibria are ordered in the sense that I∗− < I∗+ and that this applies to the infection

compartments with both virus 1 and 2. We shall refer to these equilibria as the larger

and smaller endemic equilibria.

A.2. Stability analysis

The Jacobian of model (A.1) is:

J(I1, I2) =

(
R0(1 + σI2)(1− 2I1)− 1 σR0I1(1− I1)

σR0I2(1− I2) R0(1 + σI1)(1− 2I2)− 1

)
.

A.2.1. Disease-free equilibrium

The Jacobian evaluated at the disease-free equilibrium is:

J(0, 0) =

(
R0 − 1 0

0 R0 − 1

)
.

It has the two identical eigenvalues λ1 = λ2 = R0 − 1. Therefore, the disease-free

equilibrium is locally asymptotically stable if and only if R0 < 1.
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A.2.2. Mono-pathogenic equilibria

We evaluate the Jacobian at (1−1/R0, 0), which is one of the two symmetric mono-

pathogenic equilibria:

J(1− 1/R0, 0) =

(
1−R0

(
1− 1

R0
σ
)

0 (R0 − 1)(1 + σ)

)
.

Since det(J) = −(R0 − 1)2(1 + σ) < 0, this mono-pathogenic equilibrium is an

unstable saddle point. The same holds for the other mono-pathogenic equilibrium

due to the symmetry.

A.2.3. Endemic equilibria

We first notice that the monotone dynamical system (A.1) is cooperative (compet-

itive) if and only if σ > 0 (σ < 0, respectively) (Hirsch & Smith, 2006). Since the

system is two-dimensional, and the square [0, 1]2 is invariant, the solution converges

to an equilibrium, i.e., there is no stable periodic orbit (Hirsch, 1982).

If R0 > 1, the disease-free equilibrium is unstable and the solution thus converges

to the endemic equilibrium (I∗−, I
∗
−) (if σ < 0), or (I∗+, I

∗
+) (if σ > 0) (see Tab. 2),

which is therefore globally asymptotically stable.

If R0 < 1 and σ < 1, or σ > 1 and R0 < 4σ/(σ + 1)2, there is no endemic

equilibrium (Tab. 2), and the solution converges to the disease-free equilibrium,

which is therefore globally asymptotically stable.

The remaining case is σ > 1 and 4σ/(σ + 1)2 < R0 < 1, in which two endemic

equilibria, (I∗−, I
∗
−) and (I∗+, I

∗
+), exist in the biological domain (Tab. 2). We have

J(I, I) =

(
J11 J12
J12 J11

)
,

in which

J11 = R0(1 + σI)(1− 2I)− 1 ,

J12 = σR0I(1− I) .

The eigenvalues of J are such that

det J(I, I) = (J11 − λ)2 − J2
12 = (J11 − λ+ J12)(J11 − λ− J12) .

Therefore,

λ1 = J11 − J12 ,

λ2 = J11 + J12 .
(A.11)

Since J12 > 0, λ1 < λ2.

We now treat the larger and smaller endemic equilibrium separately:
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• Larger endemic equilibrium. Using I = I∗+ as given by Eq. (A.3), we obtain:

λ+1 = −
R0(σ + 1)

(√
R0(σ+1)2−4σ

R0σ2 σ + σ − 1

)
2σ

< 0 ,

since we assume σ > 1 and R0 > 4σ/(σ + 1)2 in this case. We also obtain

λ+2 = −
σR0(σ − 1)

√
R0(σ+1)2−4σ

R0σ2 +R(σ2 + 1)− 4σ

2σ
< 0 .

This means that the larger endemic equilibrium, (I∗+, I
∗
+), is locally asymp-

totically stable when it exists.

• Smaller endemic equilibrium. Using I = I∗− as given by Eq. (A.3), and using

the fact that R0 < 1, one can easily show that:

λ−1 = −
R0(σ + 1)

(√
R0(σ+1)2−4σ

R0σ2 σ − (σ − 1)

)
2σ

< 0 .

Similarly,

λ−2 = −
σR0(σ − 1)

√
R0(σ+1)2−4σ

R0σ2 − (R0(σ + 1)2 − 4σ)

2σ
> 0 .

This means that the smaller endemic equilibrium (I∗−, I
∗
−) is an unstable

saddle point when it exists.

Since R0 < 1, the disease-free equilibrium is locally asymptotically stable. There-

fore, there is bistability between the disease-free equilibrium, (0, 0), and the larger

endemic equilibrium, (I∗+, I
∗
+). More specifically, the dynamics converge to one or

the other equilibrium depending on the initial conditions (see Fig. 8).

Appendix B. Analysis of the coupled model

In the following, we will find that there can exist up to seven equilibria (I∗1 , I
∗
2 , x

∗)

of the coupled system (14). We will investigate their local stability with the help of

the Jacobian, which reads

J (I1, I2, x) =


J11 J12 −R0I1(1− I1)(1 + σI2)

J21 J22 −R0I2(1− I2)(1 + σI1)

bI2x(1− x) bI1x(1− x) b(I1I2 − c)(1− 2x)

 ,

where

J11 = R0(1− 2I1)(1 + σI2)(1− x)− 1 ,

J22 = R0(1− 2I2)(1 + σI1)(1− x)− 1 ,

J12 = σR0I1(1− I1)(1− x) ,

J21 = σR0I2(1− I2)(1− x) .
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Fig. 8. Phase plane portrait of the coinfection model (15). Stable (unstable) equilibria are shown

as filled (empty, respectively) circles. The solid (dashed) curves are the nullclines of I1 (I2, respec-
tively). The white (red) areas are the basins of attraction to the disease-free equilibrium (larger

endemic equilibrium, respectively). Parameter values: R0 = 0.7, σ = 4.

B.1. Equilibria with simple conditions for existence and stability

Two equilibria exist unconditionally. One is E0 = (0, 0, 0), to which we shall refer

as the disease-free equilibrium (DFE). The eigenvalues of the Jacobian evaluated

at the DFE are

λ1,2 = R0 − 1 , λ3 = −bc < 0 .

The latter conveys that the DFE is locally attractive in the x-dimension of the phase

space. Overall, the DFE is a stable node if and only if R0 < 1 and an unstable saddle

point otherwise.

The other unconditionally existent equilibrium is EF = (0, 0, 1), to which we

shall refer as the full-control equilibrium. The eigenvalues are

λ1 = −1 < 0 , λ2 = −1 < 0 , λ3 = bc > 0 .

The full-control equilibrium is always an unstable saddle point.

There are two equilibria that conditionally exist depending on only R0. They

are the mono-pathogenic equilibria E1 = (1− 1
R0
, 0, 0) and E2 = (0, 1− 1

R0
, 0) with

virus 1 and 2, respectively. They both exist if and only if R0 > 1. For E1, the

eigenvalues are

λ1 = 1−R0 , λ2 = (R0 − 1) (σ + 1) , λ3 = −bc < 0 .

If E1 exists, i.e., R0 > 1, then λ2 > 0 and λ1,3 < 0. Therefore, it is always an

unstable saddle point.
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For E2, the eigenvalues are

λ1 = (R0 − 1) (σ + 1) , λ2 = 1−R0 , λ3 = −bc < 0 .

If E2 exists, i.e., R0 > 1, then λ1 > 0 and λ2,3 < 0. Therefore, it is always an

unstable saddle point.

B.2. Endemic equilibria

There are two equilibria that conditionally exist depending on only the epidemio-

logical parameters R0 and σ. They are

E− = (I∗−, I
∗
−, 0) and E+ = (I∗+, I

∗
+, 0) ,

where I∗− and I∗+ are as in Eq. (A.3) of the coinfection model. The existence condi-

tions are the same as the ones summarized in Tab. 2. We shall refer to E− and E+

also as the smaller and larger endemic equilibrium, respectively, but note that they

are pure equilibria in a game-theoretic sense because all growers adopt the same

strategy of no control.

Now let us turn to the stability analysis of the endemic equilibria in the coupled

model. First of all, we acknowledge that E− and E+ lie in the plane x = 0 and

on the diagonal given by I1 = I2. We will focus on this property and evaluate the

Jacobian at points P = {(I1, I2, x) |x = 0, I1 = I2}. Referring to I1 and I2 as I due

to their equal values at any of the two endemic equilibria, the Jacobian for points P

is:

J(P ) =

J11 J12 J13J12 J11 J13
0 0 J33


with

J11 = R0(1− 2I)(1 + σI)− 1 ,

J12 = σR0 I(1− I) ,

J13 = −R0 I(1− I)(1 + σI) ,

J33 = b
(
I2 − c

)
.

In order to determine the nontrivial eigenvalues, the characteristic polynomial needs

to be zero:

det (J(P )− λI) = 0 ,

where I denotes the identity matrix. Developing the determinant, we obtain

(J11 − λ)
2
(J33 − λ)− J2

12 (J33 − λ) = 0 ,

⇔ (J33 − λ)
(
(J11 − λ)

2 − J2
12

)
= 0 ,

⇔ J33 − λ = 0 or λ2 − 2J11λ+ J2
11 − J2

12 = 0 .
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The eigenvalues of the Jacobian at points P are thus:

λ1,2 = J11 ∓ J12, λ3 = J33 = b
(
I2 − c

)
. (B.9)

λ1 and λ2 are the same as for the endemic equilibrium in the pure coinfection model,

cf. Eq. (A.11). Therefore, the smaller endemic equilibrium in the coupled model,

E−, has λ
−
1 < 0, λ−2 > 0 and is always an unstable saddle point, independent of λ3.

The larger endemic equilibrium in the coupled model, E+, has λ
+
1,2 < 0. Hence, it

is locally asymptotically stable if and only if λ3 < 0, which is equivalent to

I∗+ <
√
c .

Since
√
c = I∗C, this means that the larger endemic equilibrium is locally asymptot-

ically stable if and only if its infection levels are smaller than those of the control

equilibrium.

Note that parameter b does not influence the local stability of the endemic

equilibria. This is because b is not included in λ1,2 and cannot change the sign

of λ3.

B.3. Control equilibrium

Finally, there can be a unique nontrivial equilibrium EC = (I∗C, I
∗
C, x

∗
C) with the

components

I∗C =
√
c ,

x∗C = 1− 1

R0 (1 + σI∗C) (1− I∗C)
= 1− 1

R0 (1 + σ
√
c) (1−

√
c)
. (B.11)

We shall refer to it as the control equilibrium. Note that it is the only “mixed”

equilibrium in a game-theoretic sense.

Its existence requires, on the one hand, I∗C ∈ [0, 1], which is equivalent to c ∈
[0, 1]. On the other hand, its existence requires x∗C ∈ [0, 1]. First, consider x∗C ≤ 1,

from which we obtain

R0

(
1 + σ

√
c
) (

1−
√
c
)
> 0

⇔ 1−
√
c > 0 ,

which is always true when I∗C exists, i.e., for c ∈ [0, 1]. Second, x∗C ≥ 0 if and only if

R0

(
1 + σ

√
c
) (

1−
√
c
)
≥ 1

⇔ σ ≥ σC :=
1−R0 (1−

√
c)

R0 (1−
√
c)
√
c
. (B.12)

Condition (B.12), together with c ∈ [0, 1], guarantees the existence of the control

equilibrium. Figure 9 shows how σC depends on c andR0. IfR0 > 1, there is a unique

value of c, below which the control equilibrium exists. If R0 < 1, and for sufficiently

large infectivity enhancement σ, there are two values of c, in between the control

equilibrium exists, i.e., the control equilibrium disappears for small enough c.
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Fig. 9. Existence and stability conditions for the control equilibrium. The control equilibrium
exists in the parameter regions above the solid curves, which are shown for different values of R0

(blue: R0 between 0.5 and 0.9 in steps of 0.1; orange: R0 between 1 and 3 in steps of 0.5). The

solid curves are σC, as given by (B.12). The dashed black line marks the Hopf bifurcation curve
and is given by σHB in (B.17), provided the control equilibrium exists. Limit cycles are possible

in the parameter domain above the curve. Numerical simulations show that the limit cycles can

disappear in homoclinic bifurcations (e.g., see Figs. 5 and 6).

Let us now investigate how parameter c influences the location of the control

equilibrium. Clearly, I∗C =
√
c increases with c in form of a parabolic branch. The

control coverage, x∗C can be strictly monotonically decreasing with c (see, e.g.,

Fig. 7A) or can be a hump-shaped function of c (see, e.g., Fig. 7B). The latter

occurs when x∗C has a local maximum. Solving the extremum condition d
dcx

∗
C = 0,

we obtain

σHB =
1

1− 2
√
c
. (B.13)

We will later see that this corresponds to a Hopf bifurcation condition.

Let us now investigate the local stability of the control equilibrium. The Jacobian

reads

J (EC) =

J11 J12 J13J12 J11 J13
J31 J31 0

 ,

where

J11 = 2R0

(
1
2 −

√
c
) (

1 + σ
√
c
)
(1− x∗C)− 1 =

−
√
c

1−
√
c
,

J12 = σR0

√
c
(
1−

√
c
)
(1− x∗C) =

σ
√
c

1 + σ
√
c
,

J13 = −R0

√
c
(
1−

√
c
) (

1 + σ
√
c
)
,

J31 = b
√
c (1− x∗C)x

∗
C .

With the help of a computer algebra system, we find one of the three eigenvalues:

λ3 =
−(1 + σ)

√
c

(1−
√
c) (1 + σ

√
c)
.
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One can show that λ3 < 0 for all c ∈ (0, 1) and σ > −1. Hence, the stability of the

control equilibrium depends only on λ1,2. They are

λ1,2 =
1

2

(
A±

√
A2 −B

)
,

where

A = 2− 1

1−
√
c
− 1

1 + σ
√
c
,

B = 8bcR0 (1− x∗C)x
∗
C

(
1−

√
c
) (

1 + σ
√
c
)
> 0 .

When substituting x∗C, it is possible to find also explicit (but cumbersome) ex-

pressions for λ1,2. However, we are mostly interested in the occurrence of a Hopf

bifurcation. We expect it to take place when λ1,2 are complex conjugate and their

real parts change signs. From the latter, we can find A
2 = 0 as a necessary condition

for a Hopf bifurcation of the control equilibrium, which gives

σHB =
1

1− 2
√
c
. (B.17)

This coincides with the expression in Eq. (B.13), i.e., if there is a Hopf bifurcation,

it takes place at the local maximum of x∗C as a function of c (for example, see the

lower panel of Fig. 7B).

Interestingly, condition (B.17) depends only on c and is independent of R0 and b.

Figure 9 shows the graph. A prerequisite for the Hopf bifurcation to occur is σHB >

−1, from which we obtain

1− 2
√
c > 0 ⇒ c <

1

4
.

Furthermore, when c < 1
4 , then σHB > 1. Taken together, Hopf bifurcations are

only possible in the parameter domain

c ∈
(
0, 14

)
and σ > 1 .

Finally, we find that parameter b does not affect the stability of the control

equilibrium. b shows up only in the discriminants of λ1,2. If the discriminants are

negative, the real parts of λ1,2 are A
2 and thus independent of b. Alternatively, if the

discriminants are non-negative, then λ1,2 are real and have the same signs, which

are also independent of b.

References

Abrams, P. A. (2009). When does greater mortality increase population size? The

long history and diverse mechanisms underlying the hydra effect. Ecology Letters,

12, 462–474.

Alcaide, C., Rabadán, M. P., Moreno-Pérez, M. G., & Gómez, P. (2020). Implica-
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L., & Althouse, B. M. (2021). A review and agenda for integrated disease models

including social and behavioural factors. Nature Human Behaviour, 5, 834–846.

Bhattacharyya, S. & Bauch, C. T. (2010). A game dynamic model for delayer

strategies in vaccinating behaviour for pediatric infectious diseases. Journal of

Theoretical Biology, 267, 276–282.

Brito, D. L., Sheshinski, E., & Intriligator, M. D. (1991). Externalities and com-

pulsary vaccinations. Journal of Public Economics, 45, 69–90.

Cascante-Vega, J., Torres-Florez, S., Cordovez, J., & Santos-Vega, M. (2022). How

disease risk awareness modulates transmission: coupling infectious disease models

with behavioural dynamics. Royal Society Open Science, 9, 210803.

Chang, S. L., Piraveenan, M., Pattison, P., & Prokopenko, M. (2020). Game theo-

retic modelling of infectious disease dynamics and intervention methods: a review.

Journal of Biological Dynamics, 14, 57–89.

Chapwanya, M., Matusse, A., & Dumont, Y. (2021). On synergistic co-infection in

crop diseases. The case of the maize lethal necrosis disease. Applied Mathematical

Modelling, 90, 912–942.

Clark, C. W. (1976). Mathematical Bioeconomics. The Optimal Management of

ACCEPTED MANUSCRIPT / CLEAN COPY

https://doi.org/10.1101/2023.11.19.567700
http://creativecommons.org/licenses/by-nc-nd/4.0/


November 18, 2023 12:43 WSPC/INSTRUCTION FILE output

28 REFERENCES

Renewable Resources. New York: Wiley.

Cornforth, D. M., Reluga, T. C., Shim, E., Bauch, C. T., Galvani, A. P., & Meyers,

L. A. (2011). Erratic flu vaccination emerges from short-sighted behavior in

contact networks. PLoS Computational Biology, 7, e1001062.

Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee Effects in Ecology and

Conservation. New York: Oxford University Press.

Cressman, R. (2003). Evolutionary Dynamics and Extensive Form Games. Cam-

bridge: MIT Press.

Cristancho Fajardo, L., Ezanno, P., & Vergu, E. (2021). Accounting for farmers’

control decisions in a model of pathogen spread through animal trade. Scientific

Reports, 11, 9581.

Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. M., & Gilligan, C. A.

(2016). Modeling when, where, and how to manage a forest epidemic, motivated

by sudden oak death in California. Proceedings of the National Academy of Sci-

ences, 113, 5640–5645.

Cunniffe, N. J., Koskella, B., Metcalf, C. J. E., Parnell, S., Gottwald, T. R., &

Gilligan, C. A. (2015). Thirteen challenges in modelling plant diseases. Epidemics,

10, 6–10.

Delabouglise, A. & Boni, M. F. (2020). Game theory of vaccination and depopu-

lation for managing livestock diseases and zoonoses on small-scale farms. Epi-

demics, 30, 100370.

d’Onofrio, A., Manfredi, P., & Salinelli, E. (2007). Vaccinating behaviour, informa-

tion, and the dynamics of SIR vaccine preventable diseases. Theoretical Popula-

tion Biology, 71, 301–317.

Eigenbrode, S. D., Bosque-Pérez, N. A., & Davis, T. S. (2018). Insect-borne plant

pathogens and their vectors: ecology, evolution, and complex interactions. Annual

Review of Entomology, 63, 169–191.

Fenichel, E. P., Castillo-Chavez, C., Ceddia, M. G., Chowell, G., Gonzalez Parra,

P. A., Hickling, G. J., Holloway, G., Horan, R., Morin, B., Perrings, C., Spring-

born, M., Velazquez, L., & Villalobos, C. (2011). Adaptive human behavior in

epidemiological models. Proceedings of the National Academy of Sciences, 108,

6306–6311.

Fine, P. E. M. (1993). Herd immunity: history, theory, practice. Epidemiologic

Reviews, 15, 265–302.

Fine, P. E. M. & Clarkson, J. A. (1986). Individual versus public priorities in the

determination of optimal vaccination policies. American Journal of Epidemiology,

124, 1012–1020.

Fu, F., Rosenbloom, D. I., Wang, L., & Nowak, M. A. (2011). Imitation dynamics

of vaccination behaviour on social networks. Proceedings of the Royal Society B:

Biological Sciences, 278, 42–49.
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Adger, W. N., Arrow, K. J., Barrett, S., Carpenter, S., Chapin, F. S., Crépin,
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