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ABSTRACT
Loop invariants are properties of a program loop that hold before

and after each iteration of the loop. They are often employed to

verify programs and ensure that algorithms consistently produce

correct results during execution. Consequently, the generation of

invariants becomes a crucial task for loops. We specifically focus on

polynomial loops, where both the loop conditions and assignments

within the loop are expressed as polynomials. Although computing

polynomial invariants for general loops is undecidable, efficient

algorithms have been developed for certain classes of loops. For

instance, when all assignments within a while loop involve linear

polynomials, the loop becomes solvable. In this work, we study the

more general case where the polynomials exhibit arbitrary degrees.

Applying tools from algebraic geometry, we present two algo-

rithms designed to generate all polynomial invariants for a while

loop, up to a specified degree. These algorithms differ based on

whether the initial values of the loop variables are given or treated

as parameters. Furthermore, we introduce various methods to ad-

dress cases where the algebraic problem exceeds the computational

capabilities of our methods. In such instances, we identify alterna-

tive approaches to generate specific polynomial invariants.

CCS CONCEPTS
• Applied computing→ Invariants; Logic and verification ;

• Computing methodologies→ Symbolic and algebraic ma-
nipulation.
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1 INTRODUCTION
Loop invariants denote properties that hold both before and af-

ter each iteration of a loop within a given program. They play a

crucial role in automating the program verification, ensuring that

algorithms consistently yield correct results prior to execution.

Notably, various recognized methods for safety verification like

the Floyd–Hoare inductive assertion technique [13] and the termi-

nation verification via standard ranking functions technique [23]

rely on loop invariants to verify correctness, ensuring complete

automation in the verification process.

In this work, we focus on polynomial loops, wherein expressions

within assignments and conditions are polynomials equations in

program variables. More precisely, a polynomial loop is of the form:

(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑎1, 𝑎2, . . . , 𝑎𝑛)
while 𝑔1 = · · · = 𝑔𝑘 = 0 do©«

𝑥1
𝑥2
.
.
.

𝑥𝑛
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𝑓2
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𝑓𝑛
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end while

where the 𝑥𝑖 ’s represent program variables with initial values 𝑎𝑖 ,

and 𝑔𝑖 ’s and 𝑓𝑖 ’s are polynomials in the program variables. Comput-

ing polynomial invariants for loops has been a subject of study over

the past two decades, see e.g. [1, 11, 16, 18, 21, 22, 32–34]. Com-

puting polynomial invariants for general loops is undecidable [17].

Therefore, particular emphasis has been placed on specific families

of loops, especially those in which the assertions are all linear or

can be reduced to linear assertions. In the realm of linear invariants,

Michael Karr introduced an algorithm pioneering the computation

of all linear invariants for loops where each assignment within the

loop is a linear function [18]. Subsequent studies, such as [28] and

[33], have demonstrated the feasibility of computing all polynomial

invariants up to a specified degree for loops featuring linear assign-

ments. Further, the problem of generating all polynomial invariants

for loops with linear assignments, are studied in [16] and [33].

Another class of loops for which invariants have been success-

fully computed is the family of solvable loops. These loops are

characterized by polynomial assignments that are either inherently

linear or can be transformed into linear forms through a change of

variables, as elaborated in [10] and [21]. Nonetheless, challenges

persist when dealing with loops featuring non-linear or unsolvable

assignments, as discussed in [34] and [1].

Before stating our main results, we introduce some terminology

from algebraic geometry. We refer to [8, 20] for further details. Let

C denote the field of complex numbers. Let 𝑆 be a set of polynomials

in C[𝑥1, . . . , 𝑥𝑛], then the algebraic variety 𝑽 (𝑆) associated to 𝑆 is

the common zero set of all polynomials in 𝑆 . Here, 𝑽 (𝑆) = 𝑽 (⟨𝑆⟩),
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where ⟨𝑆⟩ is the ideal generated by 𝑆 . Conversely, the defining ideal
of a subset 𝑋 ⊂ C𝑛 is the set of polynomials in C[𝑥1, . . . , 𝑥𝑛] that
vanish on 𝑋 . The algebraic variety associated to the ideal 𝐼 (𝑋 ) is
called the Zariski closure of𝑋 . Therefore, if𝑋 is an algebraic variety,

then 𝑽 (𝐼 (𝑋 )) = 𝑋 . Moreover, 𝑋1 ⊆ 𝑋2 implies that 𝐼 (𝑋2) ⊆ 𝐼 (𝑋1).
A map 𝐹 : C𝑛 → C𝑚 is called a polynomial map, if there exist

𝑓1, . . . , 𝑓𝑚 in C[𝑥1, . . . , 𝑥𝑛], such that 𝐹 (𝑥) = (𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) for
all 𝑥 ∈ C𝑛 . For the sake of simplicity, in what follows wewill refer to

polynomial maps and their associated polynomials interchangeably.

We now define the main object introduced in this paper.

Definition 1.1. Let 𝐹 : C𝑛 −→ C𝑛 be a polynomial map and
𝑋 ⊆ C𝑛 an algebraic variety. The invariant set of (𝐹, 𝑋 ) is defined as:

𝑆 (𝐹,𝑋 ) = {𝑥 ∈ 𝑋 | ∀𝑚 ∈ N, 𝐹 (𝑚) (𝑥) ∈ 𝑋 },
where 𝐹 (0) (𝑥) = 𝑥 and 𝐹 (𝑚) (𝑥) = 𝐹 (𝐹 (𝑚−1) (𝑥)) for any𝑚 > 1.

Our contributions. In this work, we consider the problem of

generating polynomial invariants for loops with polynomial maps

of arbitrary degrees. Our contributions are as follows:

(1) We design Algorithm 1 to compute invariant sets and use it to

decide if a given polynomial is invariant (Proposition 3.4).

(2) We design two algorithms for computing polynomial invariants

of a loop up to a fixed degree. The first one (Theorem 3.5), when

the initial value is not fixed, outputs a linear parametrization

which depends polynomially on this value. The second (Algo-

rithm 2), when the initial value is fixed, is much more efficient

and computes a basis of this set, seen as a vector space. Ex-

periments with our prototype implementation demonstrate the

practical efficiency of our algorithms, solving problems beyond

the current state of the art. Note that the algorithms can be ad-

justed to include disequalities in the guard; see Remarks 3 and 4.

(3) Finally, we apply these algorithms to other problems: we show

how to lift some polynomial invariants for the non-fixed initial

value case from the fixed one (Proposition 4.1); we consider the

case with inequalities in the loop (Proposition 4.3).

Related works. A common approach for generating polynomial

invariants entails creating a system of recurrence relations from

a loop, acquiring a closed formula for this recurrence relation,

and then computing polynomial invariants by removing the loop

counter from the obtained closed formula (as in [33]). Note that it is

straightforward to find such recursion formulas from a polynomial

invariant. However, the reverse process is only feasible under very

strong assumptions, as detailed in [1]. Specifically, one needs to

identify polynomial relations among program variables, which is a

challenging task in itself.

In [16], an algorithm is designed to compute the Zariski closure

of points generated by affine maps. Another perspective, detailed

in [1], categorizes variables into effective and defective sets, where

closed formulas can be computed for effective variables but not for

defective variables. Similarly, the methodology proposed in [21] is

specifically tailored for P-solvable loops. In [9], the method of ap-

proximating a general program by a solvable program is discussed.

This approach is incomplete, however, a monotonicity property is

proven ensuring that such an approximation can be improved as

much as required. In [27], Müller-Olm and Seidl employ ideas simi-

lar to ours in Algorithm 1, with the notable difference that, through

our geometric approach for computing the invariant set, we have

established a better stopping criterion by comparing the equality of

radical ideals rather than the ideals themselves. They also impose

algebraic conditions on the initial values and subsequently compute

polynomial invariants that need to apply to all initial values satis-

fying these constraints. Consequently, polynomial invariants that

are applicable to all but e.g. finitely many such initial values might

be overlooked. In contrast, our algorithm outlined in Theorem 3.5,

yields polynomial invariants that depend on the initial values, ad-

dressing a much broader problem, which, to our knowledge, has

not been previously tackled. Moreover, Algorithm 2, which tackles

cases with fixed initial values, is significantly faster than Algorithm

1 and its counterpart in [27]. Additionally, in Proposition 4.1, we

outline a comprehensive procedure that relies on Algorithm 2 to

identify general invariants of specific form whenever they exist,

enabling us to generate invariants produced in [1, 2].

Finally, the case of polynomial invariants represented as inequal-

ities has been considered in [7], using tools such as Putinar’s Posi-

tivstellensätz. However, this presents a different problem, involving

semi-algebraic sets 𝑋 whose image 𝐹 (𝑋 ) is a subset of 𝑋 . However,

polynomial invariants do not necessarily satisfy this property.

2 COMPUTING INVARIANT SETS
We will first establish an effective description of the invariant set

associated with a given algebraic variety and a polynomial map.

Subsequently, we will derive an algorithm based on this description

to compute such a set. We begin with a technical lemma to express

the preimage of an algebraic variety under a polynomial map.

Lemma 2.1. Given a polynomial map 𝐹 : C𝑛 −→ C𝑚 and an
algebraic variety 𝑋 ⊂ C𝑚 , the preimage 𝐹−1 (𝑋 ) is also an algebraic
variety. Moreover, if 𝑋 = 𝑽 (𝑔1, . . . , 𝑔𝑘 ) and 𝐹 = (𝑓1, . . . , 𝑓𝑚), where
𝑔1, . . . , 𝑔𝑘 ∈ C[𝑦1, . . . , 𝑦𝑚] and 𝑓1, . . . , 𝑓𝑚 ∈ C[𝑥1, . . . , 𝑥𝑛], then

𝐹−1 (𝑋 ) = 𝑽 (𝑔1 (𝑓1, . . . , 𝑓𝑚), . . . , 𝑔𝑘 (𝑓1, . . . , 𝑓𝑚)) ⊂ C𝑛 .

Proof. By definition, we have that:

𝐹−1 (𝑋 ) = {𝑥 ∈ C𝑛 | ∀ 1 ≤ 𝑖 ≤ 𝑘, 𝑔𝑖 (𝑓1 (𝑥), . . . , 𝑓𝑚 (𝑥)) = 0}.
Let ℎ𝑖 = 𝑔𝑖 (𝑓1, . . . , 𝑓𝑚) ∈ C[𝑥1, . . . , 𝑥𝑛], for all 1 ≤ 𝑖 ≤ 𝑘 , then

𝐹−1 (𝑋 ) = 𝑽 (ℎ1, . . . , ℎ𝑘 ), and 𝐹−1 (𝑋 ) is an algebraic variety. □

Before proving the main result, we need the following lemma.

Lemma 2.2. Let 𝐹 : C𝑛 −→ C𝑛 be a polynomial map and 𝑋 ⊆ C𝑛
an algebraic variety. Then, 𝐹 (𝑆 (𝐹,𝑋 ) ) is a subset of 𝑆 (𝐹,𝑋 ) .

Proof. Let 𝑥 ∈ 𝑆 (𝐹,𝑋 ) . By the definition of the invariant set,

𝐹 (𝑚) (𝑥) ⊆ 𝑋 for every𝑚. Thus, 𝐹 (𝑚) (𝐹 (𝑥)) ⊆ 𝑋 , implying that

𝐹 (𝑥) ∈ 𝑆 (𝐹,𝑋 ) for every 𝑥 ∈ 𝑆 (𝐹,𝑋 ) . Hence, 𝐹 (𝑆 (𝐹,𝑋 ) ) ⊆ 𝑆 (𝐹,𝑋 ) . □
We now give an effective method to compute invariant sets, by

means of a stopping criterion for the intersection of the iterated

preimages. In the following, (𝐹 (𝑚) )−1 will be denoted by 𝐹 (−𝑚) .

Proposition 2.3. Let 𝐹 : C𝑛 −→ C𝑛 be a polynomial map and

𝑋 ⊆ C𝑛 an algebraic variety. We define 𝑋𝑚 =
𝑚⋂
𝑖=0

𝐹−𝑖 (𝑋 ) for all

𝑚 ∈ N. Then, the following statements are true:
(𝑎) 𝑋𝑚+1 ⊆ 𝑋𝑚 for all𝑚.
(𝑏) There exists 𝑁 ∈ N such that 𝑋𝑁 = 𝑋𝑚 for all𝑚 ≥ 𝑁 .
(𝑐) If 𝑋𝑁 = 𝑋𝑁+1 for some 𝑁 , then 𝑋𝑁 = 𝑋𝑚 for all𝑚 ≥ 𝑁 .
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(𝑑) The invariant set 𝑆 (𝐹,𝑋 ) is equal to 𝑋𝑁 .

Proof. (𝑎) The following is straightforward from the definition:

𝑋𝑚+1 = 𝑋𝑚 ∩ 𝐹−(𝑚+1) (𝑋 ) ⊆ 𝑋𝑚 .

(𝑏) From (𝑎), we have the following descending chain

𝑋0 ⊇ 𝑋1 ⊇ 𝑋2 ⊇ · · · ⊇ 𝑋𝑚 ⊇ 𝑋𝑚+1 ⊇ · · · ,
which are algebraic varieties by Lemma 2.1. Thus, we have:

𝐼 (𝑋0) ⊆ 𝐼 (𝑋1) ⊆ 𝐼 (𝑋2) ⊆ · · · ⊆ 𝐼 (𝑋𝑚) ⊆ 𝐼 (𝑋𝑚+1) ⊆ · · · .
Since C[𝑥1, 𝑥2, . . . , 𝑥𝑛] is a Noetherian ring, there exists a natural

number 𝑁 such that 𝐼 (𝑋𝑁 ) = 𝐼 (𝑋𝑚) for all𝑚 ≥ 𝑁 . Therefore,

𝑋𝑁 = 𝑽 (𝐼 (𝑋𝑁 ) = 𝑽 (𝐼 (𝑋𝑚)) = 𝑋𝑚 for all𝑚 ≥ 𝑁 .

(𝑐) For such an 𝑁 , we have that

𝑋𝑁+2 = 𝑋 ∩ 𝐹−1 (𝑋𝑁+1) = 𝑋 ∩ 𝐹−1 (𝑋𝑁 ) = 𝑋𝑁+1 .

Thus, 𝑋𝑚 = 𝑋𝑚+1 for all𝑚 ≥ 𝑁 , and so 𝑋𝑁 = 𝑋𝑚 for all𝑚 ≥ 𝑁 .

(𝑑) We will first prove that 𝑆 (𝐹,𝑋 ) ⊆ 𝑋𝑚 for every𝑚, by induc-

tion on𝑚. By the invariant set’s definition, 𝑆 (𝐹,𝑋 ) is a subset of
𝑋 = 𝑋0 which proves the base case𝑚 = 0. Now let𝑚 > 0 and as-

sume 𝑆 (𝐹,𝑋 ) ⊆ 𝑋𝑚−1. By Lemma 2.2 and the induction hypothesis,

𝐹 (𝑆 (𝐹,𝑋 ) ) ⊂ 𝑆 (𝐹,𝑋 ) ⊂ 𝑋𝑚−1 .

Therefore, 𝑆 (𝐹,𝑋 ) is a subset of 𝐹
−1 (𝑋𝑚−1). Note that 𝑆 (𝐹,𝑋 ) is a

subset of𝑋 by the definition. Thus, 𝑆 (𝐹,𝑋 ) ⊂ 𝐹−1 (𝑋𝑚−1)∩𝑋 = 𝑋𝑚 .

In particular, when𝑚 = 𝑁 , we have that 𝑆 (𝐹,𝑋 ) ⊆ 𝑋𝑁 .

To prove the other inclusion, for every 𝑥 ∈ 𝑋𝑚 , note that 𝐹𝑚 (𝑥)
is contained in 𝑋 since 𝑥 ∈ 𝑋𝑚 ⊆ 𝐹−𝑚 (𝑋 ). By (𝑎) and (𝑏), 𝑋𝑁 is

contained in 𝑋𝑚 for every𝑚 ∈ 𝑁 . Thus, 𝐹𝑚 (𝑥) is contained in 𝑋

for every 𝑥 ∈ 𝑋𝑁 and every𝑚 ∈ N. Hence, 𝑋𝑁 ⊆ 𝑆 (𝐹,𝑋 ) . □

Remark 1. By Theorem 2.3(d), the invariant set 𝑆 (𝐹,𝑋 ) is an alge-

braic variety, since by construction each 𝑋𝑖 is an algebraic variety.

By Theorem 2.3(a), the ideal of 𝑋 𝑗 is a subset of the ideal of 𝑋𝑖 for

every 𝑖 ≥ 𝑗 . Hence, although computing the ideal of 𝑋𝑁 where

𝑋𝑁 = 𝑋𝑁+1 may be infeasible, leveraging computable 𝑋𝑖 ’s for

𝑖 < 𝑁 provides partial information.

We now present an algorithm for computing the invariant set

associated to an algebraic variety and a polynomial map, described

by sequences of multivariate polynomials. We restrict here to ratio-
nal coefficients as this covers the target applications, and we need

to work in a computable field for the sake of the effectiveness.

Algorithm 1 InvariantSet

Input: Two sequences 𝒈 and 𝐹 = (𝑓1, . . . , 𝑓𝑛) in Q[𝑥1, . . . , 𝑥𝑛].
Output: Polynomials whose common zero-set is 𝑆 (𝐹,𝑽 (𝒈) ) .
1: 𝑆 ← {𝒈};
2: 𝒈 ← Compose(𝒈, 𝐹 );
3: while InRadical(𝒈, 𝑆) == False do
4: 𝑆 ← 𝑆 ∪ {𝒈};
5: 𝒈 ← Compose(𝒈, 𝐹 );
6: end while
7: return 𝑆 ;

In Algorithm 1, the procedure “Compose” takes as input two
sequences of polynomials 𝒈 = (𝑔1, . . . , 𝑔𝑘 ) and 𝐹 = (𝑓1, . . . , 𝑓𝑛) in
Q[𝑥1, . . . , 𝑥𝑛] and outputs a sequence of polynomials (ℎ1, . . . , ℎ𝑘 )
in Q[𝑥1, . . . , 𝑥𝑛], such that ℎ𝑖 = 𝑔𝑖 (𝑓1, . . . , 𝑓𝑛) for all 1 ≤ 𝑖 ≤ 𝑘 .

The procedure “InRadical” takes as input a sequence 𝒈 and a

set 𝑆 both in Q[𝑥1, . . . , 𝑥𝑛] and decides if all the polynomials in 𝒈
belong to the radical of the ideal generated by 𝑆 . By [8, Chap 4, §2,

Proposition 8], the latter procedure can be performed by computing

a Gröbner basis for the ideal ofC[𝑥1, . . . , 𝑥𝑛, 𝑡], generated by 1−𝑡 ·𝒈
and 𝑆 , where 𝑡 is a new variable.

We now prove the termination and correctness of Algorithm 1.

Theorem 2.4. On input two sequences 𝒈 = (𝑔1, . . . , 𝑔𝑘 ) and 𝐹 =

(𝑓1, . . . , 𝑓𝑛) of polynomials in Q[𝑥1, . . . , 𝑥𝑛], Algorithm 1 terminates
and outputs a sequence of polynomials whose vanishing set is the
invariant set 𝑆 (𝐹,𝑽 (𝑔1,...,𝑔𝑘 ) ) .

Proof. Consider the algebraic variety 𝑉 = 𝑽 (𝒈) and the poly-

nomial map 𝐹 = (𝑓1, . . . , 𝑓𝑛) : C𝑛 −→ C𝑛 . Let 𝑆0 = 𝒈, and let 𝑆𝑚
denote the set 𝑆 after completing𝑚 ≥ 1 iterations of thewhile loop
in Algorithm 1. Similarly, let 𝒈0 = 𝒈, 𝒈1 = 𝒈(𝐹 ), and 𝒈𝑚+1 be the
sequence 𝒈 after𝑚 iterations. Let𝑚 ≥ 0, and as in Proposition 2.3,

let 𝑋𝑚 =
𝑚⋂
𝑖=1

𝐹−𝑖 (𝑋 ). By construction, 𝑆𝑚 = {𝒈0, . . . ,𝒈𝑚}, that is

𝑆𝑚 = {𝒈,𝒈(𝐹 ), . . . ,𝒈(𝐹𝑚)}, and so by Lemma 2.1,

𝑋𝑚 =

𝑚⋂
𝑖=0

𝐹−𝑖 (𝑽 (𝒈)) =
𝑚⋂
𝑖=0

𝑽 (𝒈(𝐹 𝑖 )) = 𝑽 (𝑆𝑚) .

By Proposition 2.3.(b), there exists 𝑁 ∈ N such that 𝑋𝑁 = 𝑋𝑁+1,
that is 𝑽 (𝑆𝑁 ) = 𝑽 (𝑆𝑁+1). This means that the polynomial 𝒈𝑁+1 =
𝒈(𝐹𝑁+1) vanishes on 𝑽 (𝑆𝑁 ), or equivalently by the Hilbert’s Null-

stellensatz [8, Chap 4, §1, Theorem 2], that 𝒈𝑁+1 belongs to
√︁
𝐼 (𝑆𝑁 ).

Hence, Algorithm 1 terminates after 𝑁 iterations of the while
loop and outputs 𝑆𝑁 . In particular, by Proposition 2.3.(d), 𝑆 (𝐹,𝑋 ) =
𝑋𝑁 = 𝑽 (𝑆𝑁 ), which proves the correctness of Algorithm 1. □

Remark 2. The complexity analysis of Algorithm 1 is not detailed

in this paper, as the worst-case complexity bounds given by the

literature are very pessimistic. The first main issue concerns the

number of loop iterations performed by Algorithm 1, which can

exhibit a growth behavior similar to Ackermann’s function [26,

29]. Furthermore, the radical membership test after each iteration

involves Gröbner bases computations, which can have a complexity

doubly exponential in the number of variables for some tailored

examples [24]. In practice, as discussed in, for example, [36, §21.7],

these algorithms show reasonable costs and benefit from active

research [12] and efficient implementations [5].

Despite all of this, the experimental section shows that this

algorithm can be applied in practice to loops found in the literature.

Moreover, future work includes accounting for the specific structure

of loops to enhance both practical and theoretical efficiency.

3 GENERATING POLYNOMIAL LOOP
INVARIANTS

We first fix our notation throughout this section. In the polynomial

ring C[𝑥1, . . . , 𝑥𝑛], we fix the notation x𝛼 with 𝛼 = (𝑎1, . . . , 𝑎𝑛) ∈
Z𝑛≥0 denoting themonomial 𝑥

𝑎1
1

. . . 𝑥
𝑎𝑛
𝑛 . Throughout whenwewrite

𝑓 = 𝑏1x𝛼1 + · · · +𝑏𝑚x𝛼𝑚 , we refer to the expression of 𝑓 in the basis
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of monomials, where 𝑓 consists of exactly𝑚 terms (or monomials)

𝑏𝑖x𝛼𝑖 with coefficients 𝑏𝑖 ∈ C. In our polynomial expression, we

always order the monomials such that for 𝑖 < 𝑗 :

deg(x𝛼𝑖 ) < deg(x𝛼 𝑗 ) or
(
deg(x𝛼𝑖 ) = deg(x𝛼 𝑗 ) and x𝛼𝑖 >

lex
x𝛼 𝑗

)
where deg(x𝛼𝑖 ) represents the degree of the monomial x𝛼𝑖 , and
the lexicographic order is with respect to the order of the variables

𝑥1 > 𝑥2 > · · · > 𝑥𝑛 . We also denote |𝛼𝑖 | for the size of the vector
𝛼𝑖 = (𝛼𝑖,1, . . . , 𝛼𝑖,𝑛) which is 𝛼𝑖,1 + · · · + 𝛼𝑖,𝑛 .

3.1 The general case
Definition 3.1. Let a ∈ C𝑛 , 𝒈 = (𝑔1, . . . , 𝑔𝑘 ) and 𝐹 = (𝑓1, . . . , 𝑓𝑛) be
two sequences of polynomials in C[𝑥1, . . . , 𝑥𝑛]. Consider the algebraic
variety 𝑋 = 𝑽 (𝒈) and the polynomial map 𝐹 = (𝑓1, . . . , 𝑓𝑛). Then
L(a,𝒈, 𝐹 ) (or L(a, 𝑋, 𝐹 )) denotes the polynomial loop on Page 1.
When no g is identified, we will write L(a, 0, 𝐹 ). Finally, we will
simply write L when it is clear from the context.

Proposition 3.2. Let a ∈ C𝑛 , 𝑋 be an algebraic variety and 𝐹 :

C𝑛 → C𝑛 a polynomial map. Then, the polynomial loop L(a, 𝑋, 𝐹 )
never terminates if and only if a ∈ 𝑆 (𝐹,𝑋 ) .

Proof. The statement directly follows from the definition, as

L(a, 𝑋, 𝐹 ) never terminates if, and only if, 𝐹 (𝑚) (a) ∈ 𝑋 for all

𝑚 ≥ 0, that is, if and only if a ∈ 𝑆 (𝐹,𝑋 ) . □

Example 1. Let us compute the termination condition for the

following loop L where 𝐹 = (𝑓1, 𝑓2) = (10𝑥1 − 8𝑥2, 6𝑥1 − 4𝑥2),
𝑔 = 𝑥2

1
− 𝑥1𝑥2 + 9𝑥3

1
− 24𝑥2

1
𝑥2 + 16𝑥1𝑥2

2
, and 𝑋 = 𝑽 (𝑔).

(𝑥1, 𝑥2) = (𝑎1, 𝑎2)
while 𝑔 = 0 do(

𝑥1
𝑥2

)
F←−

(
10𝑥1 − 8𝑥2
6𝑥1 − 4𝑥2

)
end while

Algorithm 1 computes the invariant set through the following steps:

• Initially, 𝑆 is set to 𝑔, and 𝑔 = Compose(𝑔, 𝐹 ) = 360𝑥3
1
−

1248𝑥2
1
𝑥2 + 40𝑥2

1
+ 1408𝑥1𝑥2

2
− 72𝑥1𝑥2 − 512𝑥3

2
+ 32𝑥2

2
.

• By computing a Gröbner basis for the ideal generated by 𝑔

and 1 − 𝑡𝑔, it is determined that InRadical(𝑔, 𝑆) = False.

• The set 𝑆 is then updated to include 𝑔, resulting in 𝑆 =

𝑆 ∪ {𝑔} = {𝑥2
1
− 𝑥1𝑥2 + 9𝑥3

1
− 24𝑥2

1
𝑥2 + 16𝑥1𝑥2

2
, 360𝑥3

1
−

1248𝑥2
1
𝑥2 + 40𝑥2

1
+ 1408𝑥1𝑥2

2
− 72𝑥1𝑥2 − 512𝑥3

2
+ 32𝑥2

2
}, and

𝑔 is recomputed as Compose(𝑔, 𝐹 ) = 7488𝑥3
1
− 26880𝑥2

1
𝑥2 +

832𝑥2
1
+ 31744𝑥1𝑥2

2
− 1600𝑥1𝑥2 − 12288𝑥3

2
+ 768𝑥2

2
.

• This time, the computation yields InRadical(𝑔, 𝑆) = True.

Thus, the output of Algorithm 1 is given by {𝑥2
1
− 𝑥1𝑥2 + 9𝑥3

1
−

24𝑥2
1
𝑥2 + 16𝑥1𝑥2

2
,60𝑥3

1
− 1248𝑥2

1
𝑥2 + 40𝑥2

1
+ 1408𝑥1𝑥2

2
− 72𝑥1𝑥2 −

512𝑥3
2
+ 32𝑥2

2
}. The radical of the ideal generated by this output is

generated by ℎ := 𝑥1 − 𝑥2 − 9𝑥2
1
+ 24𝑥1𝑥2 − 𝑥2

2
. Consequently, by

Proposition 3.2, L never terminates if and only if (𝑎1, 𝑎2) ∈ 𝑽 (ℎ).

Definition 3.3. Polynomial invariants of a loop L are polynomials
that vanish before and after every iteration of L. The set 𝐼L of all
polynomial invariants forL is an ideal, called the invariant ideal ofL.
Let 𝑑 ≥ 1, the subset 𝐼𝑑,L of all polynomial invariant for L, of total
degree ≤ 𝑑 , is called the dth truncated invariant ideal of L.

Though a truncated invariant ideal is not an ideal, it has the struc-

ture of a finite dimensional vector space. Hence, it can be uniquely

parametrized by a system of linear equations, whose coefficients

depend on the initial values. In the following, we demonstrate how

to reduce the computation of such a parametrization for a given

loop to computing an invariant set of an extended polynomial map.

We start by a criterion to determine whether a given polynomial

is invariant with respect to a given loop or not.

Proposition 3.4. Let a ∈ C𝑛 and 𝐹 = (𝑓1, . . . , 𝑓𝑛) ⊂ C[𝑥1, . . . , 𝑥𝑛].
For𝑚 =

(𝑛+𝑑
𝑑

)
, let b ∈ C𝑚 and 𝑔(x, y) := ∑

|𝛼𝑖 | ≤𝑑 𝑦𝑖x
𝛼𝑖 be a degree 𝑑

polynomial in C[𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚]. Then 𝑔(x, b) is a polynomial
invariant for L(a, 0, 𝐹 ) if, and only if, (a, b) ∈ 𝑆 (𝐹𝑚,𝑋 ) where 𝐹𝑚 =

(𝑓1, . . . , 𝑓𝑛, 𝑦1, . . . , 𝑦𝑚) and 𝑋 = 𝑽 (𝑔) ⊂ C𝑛+𝑚 .

Proof. Consider the following “mth extended” loopL((a, b), 𝑔, 𝐹𝑚):

(x, y) = (a, b)
while 𝑔(x, y) = 0 do©«

𝑥1
.
.
.

𝑥𝑛
𝑦1
.
.
.

𝑦𝑚

ª®®®®®®®®®®¬
←−

©«

𝑓1 (𝑥1, . . . , 𝑥𝑛)
.
.
.

𝑓𝑛 (𝑥1, . . . , 𝑥𝑛)
𝑦1
.
.
.

𝑦𝑚

ª®®®®®®®®®®¬
end while

Let a0 = a and for 𝑘 ≥ 1 let a𝑘 = 𝐹 (a𝑘−1). Then, (a𝑘 )𝑘∈N are the

successive values of x in L(a, 0, 𝐹 ). Let b ∈ 𝐶𝑚
and assume that

𝑔(x, b) is a polynomial invariant for L(a, 0, 𝐹 ). Let 𝑘 ≥ 0, then after

the 𝑘th iteration of the extended loopL((a, b), 𝑔, 𝐹𝑚), the value of x
is a𝑘 and the value of y is still b. Since, by assumption 𝑔(a𝑘 , b) = 0,

this loop does not stop after the 𝑘th iteration and, by induction

never terminates. The converse is immediate.

Therefore, 𝑔(x, b) is a polynomial invariant for L if and only if

the extended loop L𝑚 never terminates, which is equivalent, by

Proposition 3.2, to (a, b) ∈ 𝑆 (𝐹𝑚,𝑽 (𝑔) ) . □

The following main result follows from the above criterion.

Theorem 3.5. Let 𝐹 = (𝑓1, . . . , 𝑓𝑛) be a sequences of polynomials in
Q[𝑥1, . . . , 𝑥𝑛] and let𝑑 ≥ 1 and𝑚 =

(𝑛+𝑑
𝑑

)
. Then, there exists an algo-

rithm TruncatedInvariant which, on input (𝐹, 𝑑) computes a polyno-
mial matrix𝐴, with𝑚 columns, and coefficients inQ[𝑥1, . . . , 𝑥𝑛], such
that the dth truncated invariant ideal of L(a, 0, 𝐹 ) for any a ∈ Q𝑛 is:

𝐼𝑑,L =


∑︁
|𝛼𝑖 | ≤𝑑

𝑏𝑖x𝛼𝑖 | (𝑏1, . . . , 𝑏𝑚) ∈ ker 𝐴(a)


where ker 𝐴(a) is right-kernel of 𝐴, whose entries are evaluated at a.

Proof. Let 𝑦1, . . . , 𝑦𝑚 be new indeterminates, and define 𝑔, 𝐹𝑚
and 𝑋 as in Proposition 3.4. Then, by Proposition 2.4, on input

(𝑔, 𝐹𝑚), Algorithm 1 computes polynomialsℎ1, . . . , ℎ𝑁 inQ[𝑥1, . . . ,
𝑥𝑛, 𝑦1, . . . , 𝑦𝑛], whose common vanishing set is 𝑆 (𝐹𝑚,𝑋 ) . Moreover,

by construction of Algorithm 1 and definition of 𝐹𝑚 , we have:

ℎ 𝑗 = 𝑔 ◦ 𝐹 𝑗
𝑚 (𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚) = 𝑔

(
𝐹 𝑗 (𝑥1, . . . , 𝑥𝑛), 𝑦1, . . . , 𝑦𝑚

)
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for 0 ≤ 𝑗 ≤ 𝑁 . Thus, ℎ 𝑗 ’s are linear in the 𝑦𝑖 ’s, and there exists a

matrix𝐴with𝑚 columns and coefficients inQ[𝑥1, . . . , 𝑥𝑛] such that[
ℎ1 · · ·ℎ𝑚

]𝑡
= 𝐴 ·

[
𝑦1 · · ·𝑦𝑚

]𝑡
(1)

Let b ∈ Q𝑛 , by Proposition 3.4, 𝑔(x, b) is a polynomial invariant of

L(a, 0, 𝐹 ) if, and only if, (a, b) ∈ 𝑆 (𝐹𝑚,𝑋 ) , that is, by (1), if and only

if 𝐴(𝑎1, . . . , 𝑎𝑛) · b = 0. Since any polynomial in Q[𝑥1, . . . , 𝑥𝑛] can
be written as 𝑔(x, b), for some b ∈ Q𝑚 , we are done. □

Remark 3. We can add disequalities of form 𝑝 (𝑥) ≠ 0 in the guard

loop as in [27]. Indeed, by applying Algorithm 1 to (𝑝 ·𝑔, 𝐹𝑚) instead
of (𝑔, 𝐹𝑚) in the above proof, this implies that at each iteration,

either 𝑝 (𝑥) = 0 and the loop terminates (and so does Algorithm 1)

or we add the usual constraints given by the polynomial map.

Example 2. We consider the following loop L from [16].

(𝑥1, 𝑥2) = (𝑎1, 𝑎2)
while true do(

𝑥1
𝑥2

)
←−

(
10𝑥1 − 8𝑥2
6𝑥1 − 4𝑥2

)
end while

We proceed to compute the second truncated polynomial ideal

for L using the algorithm outlined in the proof of Theorem 3.5.

Some of the polynomial invariants for this loop have been computed

in [16] for specific initial values, and are used to verify the non-

termination of the linear loop with the assignment “2𝑥2 − 𝑥1 ≥
−2”. In our analysis, we extend this validation by computing all
polynomial invariants up to degree 2 for arbitrary initial value.

We first run Algorithm 1 on input 𝐹6 = (10𝑥1 − 8𝑥2, 6𝑥1 −
4𝑥2, 𝑦1, . . . , 𝑦6), and𝑔 = 𝑦1+𝑦2𝑥1+𝑦3𝑥2+𝑦4𝑥2

1
+𝑦5𝑥1𝑥2+𝑦6𝑥2

2
where

the 𝑦𝑖 ’s are new variables. The output is polynomials ℎ1, . . . , ℎ5 in

Q[𝑥1, 𝑥2, 𝑦1, . . . , 𝑦6] whose common zero set is 𝑆 (𝐹6,𝑋 ) ⊂ C8.
As theℎ𝑖 ’s are linear in the𝑦 𝑗 ’s, we canwrite them as the product

of the matrix
1 0 0 0 0 0

0 3𝑥1 − 4𝑥2 3𝑥1 − 4𝑥2 0 0 0

0 64𝑥2 112𝑥2 − 48𝑥1 48𝑥2
2

84𝑥2
2
− 36𝑥1𝑥2 27𝑥2

1
− 126𝑥1𝑥2 + 147𝑥2

2

0 32𝑥2 56𝑥2 − 24𝑥1 24𝑥1𝑥2 −9𝑥2
1
+ 21𝑥1𝑥2 + 12𝑥2

2
−18𝑥1𝑥2 + 42𝑥2

2

0 4𝑥2 7𝑥2 − 3𝑥1 3𝑥2
1

3𝑥1𝑥2 3𝑥2
2


by the vector whose entries are the 𝑦1, . . . , 𝑦6. This matrix is the

output of the procedure TruncatedInvariant given in Theorem 3.5.

Here, we actually show a reduced version of this matrix for clarity

reasons: we used the “trim” command from Macaulay [15], to find

smaller generators for the ideal generated by the 𝑔𝑖 ’s.

Actually, from this output we can go further by computing an

explicit basis for the corresponding vector space of 𝐼
2,L . This is done

by computing a basis for the kernel of the above matrix, depending

of the possible values for (𝑎1, 𝑎2). Performing Gaussian elimination

on this matrix, we are led to consider the following four cases:

Initial values Basis of 𝐼
2,L

𝑎1 = 𝑎2 = 0 {𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥2
1
, 𝑥2

2
}

𝑎1 = 𝑎2 ≠ 0 {𝑥1 − 𝑥2, 𝑥2
1
− 𝑥1𝑥2,−𝑥1𝑥2 + 𝑥2

2
}

𝑎1 =
4

3
𝑎2 ≠ 0 {3𝑥1 − 4𝑥2,−3𝑥2

1
+ 16𝑥1𝑥2 − 16𝑥2

2
,−3𝑥1𝑥2 + 4𝑥2

2
}

𝑎1 ≠
4

3
𝑎2, {(3𝑎1 − 4𝑎2)2𝑥1 − (3𝑎1 − 4𝑎2)2𝑥2 − 9(𝑎1 − 𝑎2)𝑥2

1

𝑎1 ≠ 𝑎2 +24(𝑎1 − 𝑎2)𝑥1𝑥2 − 16(𝑎1 − 𝑎2)𝑥2
2
}

It is remarkable that in the first three cases, the truncated in-

variant ideal does not depend on the initial value. This is because

they correspond to degenerate cases where the initial values are

not generic; that is, they lie in a proper algebraic variety of C2.
However, the last case is generic, and the output depends on the

initial values. This is the output one would obtain by running Gauss

elimination on the above polynomial matrix in the field of rational

fractions in the 𝑥𝑖 ’s. However, such a computation is not tractable

in general, as the size of the expressions increases quickly.

3.2 Loops with given initial value
While the algorithm outlined in Theorem 3.5 addresses the most

general case, in practice, it quickly becomes impractical, even for

small inputs. In this section, we focus on the particular case where

the initial values of the loops are fixed and design an adapted

algorithm that is more efficient for this scenario. We will see in

Section 4.2 that the solution to this specific problem can be used to

partially solve the general problem.

The following proposition provides a sufficient condition for a

polynomial to be an invariant, using the loop’s initial values.

Proposition 3.6. Consider a loop L(a0, 0, 𝐹 ). Let an = 𝐹 (𝑛) (a0). If
𝑚∑︁
𝑖=1

𝑦𝑖x𝛼𝑖 is a polynomial invariant, then the𝑦𝑖 ’s satisfy the equations:
𝑚∑︁
𝑖=1

𝑦𝑖a0𝛼𝑖 = · · · =
𝑚∑︁
𝑖=1

𝑦𝑖ak
𝛼𝑖 = 0.

Proposition 3.6 is a direct consequence of the following lemma.

Lemma 3.7. Let a0 ∈ C𝑛 and 𝐹 = (𝑓1, . . . , 𝑓𝑛) ⊂ C[𝑥1, . . . , 𝑥𝑛]. Let

𝑋 = 𝑽 (
𝑚∑︁
𝑖=1

𝑦𝑖x𝛼𝑖 ) ⊂ C𝑛+𝑚 .

Let 𝑋𝑘 =

𝑘⋂
𝑗=0

𝐹
− 𝑗
𝑚 (𝑋 ), 𝑆𝑘 = 𝑋𝑘 ∩ 𝑽 (x − a0), and ak = 𝐹 (𝑘 ) (a0) for

all 𝑘 ∈ N. Then, the following holds:

(𝑎) 𝑆𝑘 = 𝑽 (
𝑚∑︁
𝑖=1

𝑦𝑖a0𝛼𝑖 , . . . ,
𝑚∑︁
𝑖=1

𝑦𝑖ak
𝛼𝑖 , x − a0) .

(𝑏) 𝑆 (𝐹𝑚,𝑋 ) ∩ 𝑽 (x − a0) ⊂ 𝑆𝑘 for any 𝑘 ∈ N.

Proof. (𝑎) Since 𝐹𝑚 = (𝑓1, . . . , 𝑓𝑛, 𝑦1, . . . , 𝑦𝑚) then for 𝑗 ≥ 0,

we can note 𝐹
( 𝑗 )
𝑚 = (𝑓𝑗,1, . . . , 𝑓𝑗,𝑛, 𝑦1, . . . , 𝑦𝑚). Then, according to

Lemma 2.1, we can rewrite 𝑋𝑘 as

𝑘⋂
𝑗=0

𝐹
− 𝑗
𝑚

(
𝑽 (

𝑚∑︁
𝑖=1

𝑦𝑖x𝛼𝑖 )
)

= 𝑽

(
𝑚∑︁
𝑖=1

𝑦𝑖x𝛼𝑖 , . . . ,
𝑚∑︁
𝑖=1

𝑦𝑖 (𝐹𝑘 (x))𝛼𝑖
)
,

so that

𝑆𝑘 = 𝑽 (
𝑚∑︁
𝑖=1

𝑦𝑖x𝛼𝑖 , . . . ,
𝑚∑︁
𝑖=1

𝑦𝑖 (𝐹𝑘 (x))𝛼𝑖 , x − a0)

= 𝑽 (
𝑚∑︁
𝑖=1

𝑦𝑖a0𝛼𝑖 , . . . ,
𝑚∑︁
𝑖=1

𝑦𝑖ak
𝛼𝑖 , x − a0) .

(𝑏) By Proposition 2.3, we have the following descending chain:

𝑋0 ⊃ 𝑋1 ⊃ . . . ⊃ 𝑋𝑁 = 𝑆 (𝐹𝑚,𝑋 ) = 𝑋𝑁+1 = . . . for some 𝑁 ∈ N.
Thus, by intersecting the above chain with an algebraic variety

𝑉 = 𝑽 (𝑥1 − 𝑎0,1, . . . , 𝑥𝑛 − 𝑎0,𝑛) we get the descending chain:
𝑆0 ⊃ 𝑆1 ⊃ . . . ⊃ 𝑆𝑁 = 𝑆 (𝐹𝑚,𝑋 ) ∩𝑉 = 𝑆𝑁+1 = . . . for some 𝑁 ∈ N.
Thus, 𝑆 (𝐹𝑚,𝑋 ) ∩𝑉 is a subset of 𝑆𝑘 for any 𝑘 ∈ N. □
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Therefore, when a loop’s initial value is set, Proposition 3.6 can

provide as many𝑀 linear equations as desired, for the coefficients

of a degree 𝑑 polynomial invariant. Since the codimension of the

dth truncated ideal is bounded by

(𝑛+𝑑
𝑑

)
, the dimension of the vector

space of polynomials of degree ≤ 𝑑 in 𝑥1, . . . , 𝑥𝑛 . Hence, this latter

bound is a natural choice for 𝑀 as it corresponds to the optimal

number of equations in the case where no non-trivial invariant

exist. Indeed, these equations, accelerate the polynomial invariant

computations by providing a superset of the desired truncated

invariant ideal. In particular, a vector basis B of this solution set

serves as candidates for the basis of the truncated invariant ideal.

Following the above idea, we present an algorithm to compute

a vector basis of the dth truncated invariant ideal of a loop with a

fixed initial value. We first explain two subroutines used in this algo-

rithm: (i) The procedure VectorBasis takes linear forms as input and

computes a vector basis of the common vanishing set of these forms.

(ii) The procedure CheckPI takes as input a ∈ Q𝑛 and polynomials

𝐹 = (𝑓1, . . . , 𝑓𝑛) and 𝑔 in Q[𝑥1, . . . , 𝑥𝑛]. It outputs True if, and only,

if 𝑔 is a polynomial invariant of L(a, 0, 𝐹 ). Such a procedure can be

obtained by a direct combination of an application of Algorithm 1

to (𝑔, 𝐹 ) and the effective criterion given by Proposition 3.2.

Algorithm 2 Computing truncated invariant ideals

Input: A sequence of rational numbers a = (𝑎1, . . . , 𝑎𝑛), a natural
number 𝑑 and polynomials 𝐹 = (𝑓1, . . . , 𝑓𝑛) ∈ Q[𝑥1, . . . , 𝑥𝑛].

Output: Polynomials forming a vector space basis for the dth

truncated ideal of the loop L(a, 0, 𝐹 ).
1: 𝑔← ∑

|𝛼𝑖 | ≤𝑑
𝑦𝑖x𝛼𝑖 ;

2: 𝑀 ←
(𝑛+𝑑
𝑑

)
;

3: (𝑏1, . . . , 𝑏𝑚) ← VectorBasis
(
𝑔(a, y), 𝑔(𝐹 (a), y), . . . 𝑔(𝐹𝑀 (a), y)

)
;

4: B ←
( ∑
|𝛼𝑖 | ≤𝑑

𝑏1,𝑖x𝛼𝑖 , . . . ,
∑
|𝑖 | ≤𝑑

𝑏𝑚,𝑖x𝛼𝑖
)
;

5: 𝐶 = (ℎ1, . . . , ℎ𝑙 ) ← {ℎ ∈ B | CheckPI(a, 𝐹 , ℎ) == 𝐹𝑎𝑙𝑠𝑒};
6: if 𝐶 == ∅, then
7: return B;
8: else

9: (ℎ̃1, . . . , ℎ̃𝑘 ) ← InvariantSet(
𝑙∑
𝑗=1

𝑧 𝑗ℎ 𝑗 , (𝑓1, . . . , 𝑓𝑛, 𝑧1, . . . , 𝑧𝑙 ));

10: (𝑏′
1
, . . . , 𝑏′𝑠 ) ← VectorBasis(ℎ̃1 (a, z), . . . , ℎ̃𝑘 (a, z));

11: B1 ←
( 𝑙∑
𝑗=1

𝑏′
1,𝑖
ℎ 𝑗 , . . . ,

𝑙∑
𝑗=1

𝑏′
𝑠,𝑖
ℎ 𝑗

)
;

12: B2 ← B .𝑟𝑒𝑚𝑜𝑣𝑒 (𝐶);
13: B ← B1 .𝑒𝑥𝑡𝑒𝑛𝑑 (B2);
14: return B;
15: end if

Remark 4. As described in Remark 3, for the general case, one

can easily adapt this algorithm to handle loops with disequalities

𝑝 (𝑥) ≠ 0 in the guard by replacing 𝑔 with 𝑝 · 𝑔 at step 3.

In terms of complexity, in the worst case, Algorithm 2 does

not find any candidates at step 3 and calls Algorithm 1 on the

general loop at step 9, without exploiting the given initial values.

However, in practice, all candidates found at step 3 are invariants

(see Section 5), and Algorithm 2 terminates at step 7.

We now prove the correctness of Algorithm 2.

Theorem 3.8. On input a sequence of a = (𝑎1, . . . , 𝑎𝑛) in Q𝑛 , a
sequence of polynomials 𝐹 = (𝑓1, . . . , 𝑓𝑛) ∈ Q[𝑥1, . . . , 𝑥𝑛] and 𝑑 ∈ N,
Algorithm 2 outputs a sequence of polynomials which is a basis for
the dth truncated ideal for the loop L(a, 0, 𝐹 ).

Proof. Assume that 𝑔 =
∑
|𝛼𝑖 | ≤𝑑

𝑦𝑖x𝛼𝑖 is a polynomial invariant

for L. Let {𝑏1, . . . , 𝑏𝑚} be a basis for the solution set of 𝑔(a, y) =
𝑔(𝐹 (a), y) = · · · = 𝑔(𝐹𝑀 (a), y) = 0 where𝑀 =

(𝑛+𝑑
𝑑

)
. Then,

B = {
∑︁
|𝛼𝑖 | ≤𝑑

𝑏1,𝑖x𝛼𝑖 , . . . ,
∑︁
|𝑖 | ≤𝑑

𝑏𝑚,𝑖x𝛼𝑖 }

consists of linearly independent polynomials in C[𝑥1, . . . , 𝑥𝑛]≤𝑑 .
By Proposition 3.6, the variables y satisfy linear equations 𝑔(a, y) =
𝑔(𝐹 (a), y) = · · · = 𝑔(𝐹𝑀 (a), y) = 0. Therefore, 𝐼𝑑,L is contained

in the vector space generated by B. Let 𝐶 = {ℎ1, . . . , ℎ𝑙 } be the

set of all polynomials in B that are not polynomial invariants.

Assume that 𝐶 is not empty. Otherwise, every polynomial in B is a

polynomial invariant for L which implies that B is a basis for 𝐼𝑑,L .

By Proposition 3.4,

𝑙∑
𝑗=1

𝑧 𝑗ℎ 𝑗 is a polynomial invariant if and only if

ℎ̃1 (a, z) = · · · = ℎ̃𝑘 (a, z) = 0, where

(ℎ̃1, . . . , ℎ̃𝑘 ) = InvariantSet(
𝑙∑︁
𝑗=1

𝑧 𝑗ℎ 𝑗 , (𝑓1, . . . , 𝑓𝑛, 𝑧1, . . . , 𝑧𝑙 )) .

Since ℎ̃1 (a, z) = · · · = ℎ̃𝑘 (a, z) = 0 represents a system of linear

equations, we can find a basis B1 for a subspace 𝑉1 that is the

intersection of 𝐼𝑑,L and the vector space generated by 𝐶 , using

exactly the same method employed for computing B. Denote the
set B \𝐶 = {𝑔1, . . . , 𝑔𝑚−𝑙 } by B2.

Now, we will show that the vector space𝑉 generated by B1∪B2
is equal to 𝐼𝑑,L . Since B1 ∪ B2 ⊆ 𝐼𝑑,L , it follows that 𝑉 is a subset

of 𝐼𝑑,L . To prove the other inclusion, let 𝑔 ∈ 𝐼𝑑,L . Since 𝐼𝑑,L is con-

tained in the vector space generated byB, there exist 𝑐1, . . . , 𝑐𝑚 ∈ C

such that 𝑔 =
𝑙∑

𝑖=1
𝑐𝑖ℎ̃𝑖 +

𝑚−𝑙∑
𝑗=1

𝑐𝑙+𝑗𝑔 𝑗 . Then, 𝑔 −
𝑚−𝑙∑
𝑗=1

𝑐𝑙+𝑗𝑔 𝑗 is a polyno-

mial invariant given that 𝑔,𝑔𝑙+1, . . . , 𝑔𝑚 are all polynomial invari-

ants. Thus,

𝑙∑
𝑖=1

𝑐𝑖𝑔𝑖 is a polynomial invariant contained in the vector

space generated by 𝐶 , implying

𝑙∑
𝑖=1

𝑐𝑖𝑔𝑖 ∈ 𝑉 ′. Hence, 𝑔 ∈ 𝑉 and so,

𝐼𝑑,L ⊆ 𝑉 . Since the intersection of the vector space generated by

B1 and the vector space generated by B2 is {0}, we conclude that
B1 ∪ B2 is a basis for 𝐼𝑑,L , which completes the proof. □

Example 3 (Squares). Consider the “Squares” loop in Appendix A.

For 𝑑 = 2, 3, 4, the algorithm TruncatedInvariant given by Theo-

rem 3.5 cannot compute the 𝑑-th truncated ideal, within an hour.

However, when initial values are fixed, Algorithm 2 easily computes

them. To compute 𝐼
2,L , the input for Algorithm 2 is (−1,−1, 1), 2,

and 𝐹 . Assume that 𝑔 = 𝑦1 + 𝑦2𝑥1 + · · · + 𝑦10𝑥2
3
is a polynomial in-

variant. By Proposition 3.6, this leads to 10 linear equations, whose
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solutions give the following candidates for polynomial invariants:

B = {1 + 𝑥1 + 𝑥2 + 𝑥3, 1 + 𝑥1 + 𝑥2 + 𝑥2
3
, 2 + 3𝑥1 + 3𝑥2

+𝑥2
1
+ 2𝑥1𝑥2 + 𝑥2

2
,−2 − 𝑥1 − 3𝑥2 + 𝑥2

1
+ 2𝑥1𝑥3 − 𝑥2

2
,

2 − 3𝑥1 − 𝑥2 − 𝑥2
1
+ 𝑥2

2
+ 2𝑥2𝑥3}.

The procedure CheckPI verifies that all the polynomials in B are

invariant polynomials, and B forms a basis for 𝐼
2,L . Moreover, the

outputs of Algorithm 2 show that 𝐼
3,L represents a 13-dimensional

vector space, and 𝐼
4,L a 26-dimensional vector space.

This example has been previously explored in [1], where only

a closed formula is derived as 𝑥1 (𝑛) + 𝑥2 (𝑛) = 2
𝑛 (𝑥1 (0) + 𝑥2 (0) +

2) − (−1)𝑛/2 − 3/2. In particular, they do not find any of the above

invariants. We calculate truncated invariant ideals 𝐼𝑑,L for 𝑑 =

1, 2, 3, 4, considering a given initial value. This covers all polynomial

invariants up to degree 4 for Example 3 using Algorithm 2.

4 APPLICATIONS AND FURTHER RESULTS
In this section, we show different applications of Algorithm 2 and

their consequences to various examples from the literature.

4.1 On the (generalized) Fibonacci sequences
The following examples, discussed in [1], are significant in the

theory of trace maps, see e.g. [3, 31]. In each example, Algorithm 2

computes truncated polynomial ideals up to degree 4, establishing

that in each case, there are no polynomial invariants up to degree 2.

In Example 4, we prove that the computed polynomial invariant

of degree 4 by Algorithm 2, generates the entire invariant ideal.

Note that the polynomial invariants of the Fibonacci loop, and more

generally linear loops, are efficiently addressed by [16, 17].

Example 4 (Fibonacci sequence). The Fibonacci numbers follow

the recurrence relation: 𝐹0 = 0, 𝐹1 = 1, and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for all
𝑛 ≥ 2. We can express the Fibonacci sequence as a loop F .

(𝑥1, 𝑥2) = (0, 1)
while true do(

𝑥1
𝑥2

)
←−

(
𝑥2

𝑥1 + 𝑥2

)
end while

Algorithm 2 computes that the truncated invariant ideals 𝐼
2,F and

𝐼
3,F are zero, and 𝑔 = −1 + 𝑥4

1
+ 2𝑥3

1
𝑥2 − 𝑥2

1
𝑥2
2
− 2𝑥1𝑥3

2
+ 𝑥4

2
forms a

basis for 𝐼
4,F . Therefore, the Fibonacci numbers satisfy the equation:

𝐹 4𝑛−1 + 2𝐹
3

𝑛−1𝐹𝑛 − 𝐹
2

𝑛−1𝐹
2

𝑛 − 2𝐹𝑛−1𝐹 3𝑛 + 𝐹 4𝑛 − 1 = 0 for all 𝑛 ∈ N.
Moreover, 𝐼F is generated by 𝑔. To prove that, observe that

𝑔 = (−1 − 𝑥2
1
− 𝑥1𝑥2 + 𝑥22 ) (1 − 𝑥

2

1
− 𝑥1𝑥2 + 𝑥22 )

and (𝐹𝑛−1, 𝐹𝑛) lies on 𝑽 (1 − 𝑥2
1
− 𝑥1𝑥2 + 𝑥2

2
) for infinitely many

𝑛. Thus, for any 𝑓 ∈ 𝐼F , the system of equations 1 − 𝑥2
1
− 𝑥1𝑥2 +

𝑥2
2
= 𝑓 (𝑥1, 𝑥2) = 0 has infinitely many solutions. By [35, Page

4], 𝑓 (𝑥1, 𝑥2) is divisible by 1 − 𝑥2
1
− 𝑥1𝑥2 + 𝑥2

2
. The same applies

to −1 − 𝑥2
1
− 𝑥1𝑥2 + 𝑥2

2
. Consequently, 𝑓 (𝑥1, 𝑥2) is divisible by 𝑔,

establishing that 𝐼F is generated by 𝑔. Note that 𝑔 can be easily

derived from the square of Cassini’s identity, see e.g. [19].

For the following examples, Algorithm 2 computes a unique in-

variant in degree 3. Proposition 3.4 and Algorithm 2 demonstrate

that the identified polynomial is the sole invariant of degree 3. The

uniqueness proof is a novel contribution. Additionally, the polyno-

mials given in [2] for Fib2 and Fib3 were found to be incorrect.

Example 5. For the Fib1, Fib2 and Fib3 loops from Appendix A

Algorithm 2 computes a basis for the truncated invariant ideals as:

𝐼
1,L = 𝐼

2,L = {0}, 𝐼
3,L = {𝑔}, and 𝐼

4,L = {𝑔, 𝑥1𝑔, 𝑥2𝑔, 𝑥3𝑔},
where 𝑔 for Fib1, Fib2 and Fib3 is, respectively,

−2 + 𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
− 2𝑥1𝑥2𝑥3, 76 − 𝑥2 − 2𝑥1𝑥3 + 4𝑥2

1
𝑥2, and

7 + 𝑥1 + 𝑥2 + 𝑥3 − 𝑥2
1
+ 𝑥1𝑥2 + 𝑥1𝑥3 − 𝑥2

2
+ 𝑥2𝑥3 − 𝑥2

3
+ 𝑥1𝑥2𝑥3.

Note that a basis for 𝐼
4,L is generated by a basis for 𝐼

3,L .

4.2 Invariant lifting for generic initial values
In this section, we present a method for deriving a polynomial in-

variant for any initial value from a specific one. Given a polynomial

invariant 𝑓 for a loop L with a given initial value, our method

checks if 𝑓 − 𝑓 (𝑎) is a polynomial invariant for L for any initial

value 𝑎. Additionally, 𝑓 − ℎ(𝑎) is a polynomial invariant for L for

any initial value 𝑎 if and only if ℎ = 𝑓 .

Proposition 4.1. A polynomial invariant 𝑓 (x) = 0 for a loop L
with given initial value and a polynomial map 𝐹 can be extended to
a polynomial invariant 𝑓 (x) − 𝑓 (a) = 0 for L with any initial value
a if and only if 𝑆 (𝐹1,𝑋 ) = 𝑋 , where 𝑋 = 𝑽 (𝑓 (x) − 𝑡).

Proof. Assume that 𝑓 (x)− 𝑓 (a) = 0 is an invariant forL for any

initial value a. Thus, L1 with a guard 𝑓 (𝑥) − 𝑡 = 0 never terminates

if 𝑡 = 𝑓 (a). Hence, 𝑋 = 𝑽 (𝑡 − 𝑓 (x)) ⊂ 𝑆 (𝐹1, 𝑋 ) and 𝑆 (𝐹1,𝑋 ) ⊂ 𝑋 by

Proposition 2.3, implying that 𝑋 = 𝑽 (𝑆 (𝐹1,𝑋 ) ). To prove the other

direction, assume 𝑆 (𝐹1,𝑋 ) = 𝑋 . By the definition of the invariant set,

L1 with a guard 𝑓 (𝑥) − 𝑡 = 0 never terminates if and only if initial

value of (x, 𝑡) is contained in 𝑆 (𝐹1,𝑋 ) . Thus, L1 never terminates

if and only if 𝑡 = 𝑓 (a) for any initial value 𝑎. By Proposition 3.4,

𝑓 (𝑥) − 𝑓 (a) = 0 is an invariant for L with any initial value a. □
Example 6. Consider the loops in Example 5. We compute poly-

nomial invariants of the form 𝑓 (𝑥1, 𝑥2, 𝑥3) − 𝑓 (𝑎1, 𝑎2, 𝑎3) = 0. Algo-

rithm 1, with the input being a polynomial map 𝐹1 and the algebraic

variety 𝑋 = 𝑽 (𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
− 2𝑥1𝑥2𝑥3 − 2 − 𝑡) ⊂ C4, computes

𝑆 (𝐹1,𝑋 ) , which is equal to 𝑽 (𝑥2
1
+ 𝑥2

2
+ 𝑥2

3
− 2𝑥1𝑥2𝑥3 − 2 − 𝑡). Then,

𝑥2
1
+𝑥2

2
+𝑥2

3
−2𝑥1𝑥2𝑥3−(𝑎2

1
+𝑎2

2
+𝑎2

3
−2𝑎1𝑎2𝑎3) = 0 is a general invari-

ant for Fib1, as stated in Proposition 4.1. Similarly, we verify that

polynomial invariants of Fib2 and Fib3 can be extended to a general

polynomial invariant of the form 𝑓 (𝑥1, 𝑥2, 𝑥3) − 𝑓 (𝑎1, 𝑎2, 𝑎3) = 0.

4.3 Termination of semi-algebraic loops
Definition 4.2. Consider the basic semi-algebraic set 𝑆 of R𝑛 defined
by 𝑔1 = · · · = 𝑔𝑘 = 0 and ℎ1 > 0, . . . , ℎ𝑠 > 0 and a polynomial map
𝐹 = (𝑓1, . . . , 𝑓𝑛), where the 𝑓𝑖 ’s, the 𝑔 𝑗 ’s and the ℎ 𝑗 ’s are polynomials
in R[𝑥1, . . . , 𝑥𝑛]. Then a loop of the form:

(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑎1, 𝑎2, . . . , 𝑎𝑛)
while 𝑔1 = · · · = 𝑔𝑘 = 0 and ℎ1 > 0, . . . , ℎ𝑠 > 0 do©«

𝑥1
𝑥2
.
.
.

𝑥𝑛

ª®®®®¬
F←−

©«
𝑓1
𝑓2
.
.
.

𝑓𝑛

ª®®®®¬
end while
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is called a semi-algebraic loop on 𝑆 w.r.t. 𝐹 . We denote by S(𝒈, h)
the solution set in R𝑛 of the polynomial system defined by 𝒈 and h.

The following proposition is a direct consequence of the definitions.

Proposition 4.3. Let a ∈ R𝑛 , and 𝒈 and h be as above. Let 𝑟1, . . . , 𝑟𝑝
be polynomial invariants of L(a, 0, 𝐹 ), then the semi-algebraic loop
L(a, (𝒈, h), 𝐹 ) never terminates if 𝑽 (𝑟1, . . . , 𝑟𝑝 ) ∩ R𝑛 ⊂ S(𝒈, h).

The above inclusion corresponds to the quantified formula:

∀x ∈ R𝑛, 𝑟1 (x) = · · · = 𝑟𝑝 (x) = 0⇒
{
𝑔1 (x) = · · · = 𝑔𝑘 (x) = 0

ℎ1 (x) > 0, . . . , ℎ𝑠 (x) > 0

.

The validity of such a formula can be decided using a quantifier elim-

ination algorithm [4, Chapter 14]. Since there are no free variables

or alternating quantifiers, it corresponds to the emptiness decision

of the set of solutions of a polynomial system of equations and in-

equalities. This is efficiently tackled by specific algorithms, whose

most general version can be found in [4, Theorem 13.24]. Besides,

given the particular structure of this formula, an efficient approach

would be to follow the one of [14], which is based on a combination

of the Real Nullstellensatz [6] and Putinar’s Positivstellensatz [30].

We do not go further on these aspects as it diverges from the

paper’s focus and these directions will be explored in future works.

Instead, we showwhy the above sufficient criterion is not necessary.

Example 7. Consider the elementary semi-algebraic loop from

Appendix A. A direct study of the linear recursive sequence defined

by the successive values a0, a1, . . . of (𝑥1, 𝑥2) shows that this loop
never terminates if, and only if 𝑎1 > 0. Besides, 𝑎2𝑥1 −𝑎1𝑥2 = 0 is a

polynomial invariant of this loop, and since every a𝑗 , for 𝑗 ≥ 0must

be on this line, it generates the whole invariant ideal. However,

𝑽 (𝑎2𝑥1−𝑎1𝑥2)∩R2 is not contained inS(0, 𝑥1) as shown in Figure 1.

5 IMPLEMENTATION AND EXPERIMENTS
In this section, we present an implementation of the algorithms pre-

sented in this paper and compare its performances with Polar [25],
which is mainly based on [1] for the case of unsolvable loops.

5.1 Implementation details
A prototype implementation of our algorithm in Macaulay2 [15] for

polynomial loops with fixed initial values is publicly available.
1
The

experiments are performed on a laptop equipped with a 4.8 GHz In-

tel i7 processor, 16 GB of RAM and 25 MB L3 cache. This prototype

relies mainly on classic linear algebra routines and Gröbner bases

computations available in Macaulay2. This makes the implementa-

tion quite direct from the pseudo-code presented here. We made

slight modifications to these algorithms to speed up computations,

based on observations from experiments, which we explain below.

We first observed that most of the time, for simple loops, all the

candidate polynomials in B, computed at step 4 of Algorithm 2, are

actually polynomial invariants. Another observation, is that the

smaller the dimension of the variety 𝑋 is, the faster Algorithm 1

computes polynomials defining 𝑆 (𝐹,𝑋 ) , for some polynomial map 𝐹 .

Hence, before checking them individually, we first test all elements

of B at once. The collection of these polynomials defines a variety

of smaller dimension than each individually, resulting in a potential

speedup of up to 100 times (e.g., in Example 3).

1
https://github.com/FatemehMohammadi/Algebraic_PolyLoop_Invariants.git

Another observation is that the value

(𝑛+𝑑
𝑑

)
for 𝑀 is a rough

overestimate corresponding to the worst case scenario (when no

polynomial invariant exists). Users can adjust this parameter ac-

cording to the specific example. Notably, in most cases, if one linear

equation 𝑔(𝐹𝑘 (a), y) is a linear combination of the others, the same

applies to all subsequent equations 𝑔(𝐹 𝑙 (a), y) for 𝑘 < 𝑙 ≤
(𝑛+𝑑
𝑑

)
.

5.2 Experimental results
In Tables 1 and 2, we compare our implementation of Algorithm 2
with the software Polar, which is based on [1], for the case of

unsolvable loops. The benchmarks include those presented in [1]

(with fixed initial values), as well as unsolvable loops in the last two

rows, where Polar fails to find any polynomial invariant of degree

less than 4.

Note that, unlike Algorithm 2, Polar can handle loops with arbi-

trary initial values. However, on these benchmarks, it only produces

invariants of the form 𝑓 (x) − 𝑓 (a) = 0, where a is the initial value,
and 𝑓 ∈ Q[x]. Thanks to Proposition 3.7, this can be achieved by

our approach for a negligible additional cost, allowing us to deter-

mine whether such an invariant exists or not. A notable distinction

is that our approach is global as we compute all possible polyno-
mial invariants up to a specified degree, whereas Polar generates
only a (possibly empty) subset of them. However, Polar can handle

probabilistic loops, whereas ours is limited to deterministic ones.

In Table 1, we report quantitative data on the output of Algo-

rithm 2 for various benchmarks (listed in the rows) and for gener-

ating polynomial invariants of degree 1, 2, 3, and 4. Additionally,

the column 𝑑 denotes the number of polynomials outputted by Al-

gorithm 2, which is also the dimension of the associated truncated

invariant ideal. Finally, in the column Polar, we report the number

of polynomial invariants computed by Polar. In Table 2, we present

the timings corresponding to the executions of Algorithm 2 as re-

ported in Table 1. The timings are in seconds, and we chose a time

limit of 360 seconds. In cases where Polar reaches this time limit

(degree 4 for Yaghzhev9), we ensured that it does not terminate

after 15 minutes or reach maximum recursion depth.

We remark that in Table 1, when there exists non-zero poly-

nomial invariants, we almost always find more than Polar. For
example, in the linear case, for Squares, we find the single invariant

1+𝑥1 +𝑥2 +𝑥3 = 0 (see also Example 3). Additionally, for Yaghzev9,

we find 𝑥1 − 𝑥3 + 𝑥5 = 0, 𝑥2 − 𝑥4 + 𝑥6 = 0, and 𝑥8 − 𝑥7 − 7 = 0.

Note also that for the case of Ex 10, Polar fails to find the following

“general” invariant in terms of the initial values (𝑎1, 𝑎2, 𝑎3):
(3𝑎1−𝑎2−4𝑎3)2 (𝑥1+𝑥2)−(3𝑎1−𝑎2−4𝑎3)2 (𝑥2+𝑥3)−9(𝑎1−𝑎3) (𝑥1+
𝑥2)2 − 16(𝑎1 − 𝑎3) (𝑥2 + 𝑥3)2 + 24(𝑎1 − 𝑎3) (𝑥1 + 𝑥2) (𝑥2 + 𝑥3) = 0.

However, for the Yagzhev9 and Yagzhev11 examples (with 9 and

11 variables, respectively), Polar handles degree 3, unlike our ap-
proach. Yet, both reach the fixed time limit at degree 4. Comparing

timings in Table 2, our approach outperforms Polar for small de-

grees, but Polar demonstrates better performance for larger degrees

and variables. However, since our method is complete, this increase

in complexity is unavoidable.

In particular, even when the output is empty (i.e.𝑑 = 0 in Table 2),

or the same as Polar (the value of 𝑑 is the same in the column Po-
lar), we can conclude that no additional (and linearly independent)

polynomial invariant can be found.

https://github.com/FatemehMohammadi/Algebraic_PolyLoop_Invariants.git
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Degree 1 2 3 4

Benchmark d Polar d Polar d Polar d Polar
Fib1 0 0 0 0 1 1 4 1

Fib2 0 0 0 0 1 1 TL 1
Fib3 0 0 0 0 1 1 4 1

Nagata 1 0 5 1 13 1 26 2

Yagzhev9 3 0 TL 3 TL 3 TL TL

Yagzhev11 0 0 0 0 TL 1 TL TL

Ex 9 0 0 0 0 3 1 11 1

Ex 10 0 0 2 0 8 0 19 0

Squares (Ex 3) 1 0 5 0 13 0 26 0

TL = Timeout (360 seconds); bold: new invariants found

Table 1: Data on outputs of Algorithm 2 and Polar

Degree 1 2 3 4

Benchmark Ours Polar Ours Polar Ours Polar Ours Polar
Fib1 0.014 0.2 0.046 0.32 0.17 0.68 37.07 1.58
Fib2 0.017 0.23 0.056 0.46 12.62 1.18 TL 3.69
Fib3 0.013 0.21 0.056 0.4 0.225 1.18 7.11 3.82

Nagata 0.014 0.25 0.057 0.55 0.09 1.21 0.19 2.84

Yagzhev9 1.46 0.43 TL 5.2 TL 131.5 TL TL

Yagzhev11 0.075 0.45 61.4 6.83 TL 359 TL TL

Ex 9 0.016 0.28 0.06 0.64 0.19 2.38 0.55 11.5

Ex 10 0.014 0.51 0.058 0.7 0.16 1.21 0.45 2.3

Squares

(Ex 3)
0.0151 0.5 0.085 0.67 0.25 1.15 1.6 2.25

TL = Timeout (360 seconds);

Table 2: Timings for Algorithm 2 and Polar, in seconds

Figure 1: An illustration of a particular case of Example 7 where

(𝑎1, 𝑎2) = (2, 1). In blue are depicted the successive values a0, a1, . . .
of the variables (𝑥1, 𝑥2), in red is the real zero-set of the invariant

ideal, and in gray the set S(0, 𝑥1) defined by the condition 𝑥1 > 0.

REFERENCES
[1] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel

Moosbrugger, and Miroslav Stankovič. 2022. Solving invariant generation for

unsolvable loops. In International Static Analysis Symposium. Springer, 19–43.

[2] Daneshvar Amrollahi, Ezio Bartocci, George Kenison, Laura Kovács, Marcel

Moosbrugger, and Miroslav Stankovič. 2023. (Un) Solvable Loop Analysis. arXiv
preprint arXiv:2306.01597 (2023).

[3] Michael Baake, Uwe Grimm, and Dieter Joseph. 1993. Trace maps, invariants,

and some of their applications. International Journal of Modern Physics B 7, 06n07

(1993), 1527–1550.

[4] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. 2006. Algorithms in Real
Algebraic Geometry (2nd revised and extended 2016 ed.). Springer International

Publishing. https://doi.org/10.1007/3-540-33099-2

[5] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. 2021. Msolve: A

library for solving polynomial systems. In Proceedings of the 2021 on International
Symposium on Symbolic and Algebraic Computation. 51–58.

[6] Jan Bochnack, Michel Coste, and Marie-Françoise Roy. 1998. Real Algebraic
Geometry (1st ed.). Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 3.

Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85463-2

[7] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and Ehsan Kaf-

shdar Goharshady. 2020. Polynomial invariant generation for non-deterministic

recursive programs. In Proceedings of the 41st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 672–687.

[8] David Cox, John Little, and Donal O’Shea. 2013. Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative algebra.
Springer Science & Business Media.

[9] John Cyphert and Zachary Kincaid. 2024. Solvable Polynomial Ideals: The Ideal

Reflection for Program Analysis. Proceedings of the ACM on Programming Lan-
guages 8, POPL (2024), 724–752.

[10] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2016. Polynomial

invariants by linear algebra. InAutomated Technology for Verification and Analysis:
14th International Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016,
Proceedings 14. Springer, 479–494.

[11] Steven de Oliveira, Saddek Bensalem, and Virgile Prevosto. 2017. Synthesizing

invariants by solving solvable loops. In International Symposium on Automated
Technology for Verification and Analysis. Springer, 327–343.

[12] Christian Eder and Jean-Charles Faugère. 2017. A survey on signature-based

algorithms for computing Gröbner bases. Journal of Symbolic Computation 80

(2017), 719–784.

[13] Robert W Floyd. 1993. Assigning meanings to programs. In Program Verification:
Fundamental Issues in Computer Science. Springer, 65–81.

[14] Amir Kafshdar Goharshady, S Hitarth, FatemehMohammadi, andHarshit Jitendra

Motwani. 2023. Algebro-geometric Algorithms for Template-based Synthesis

of Polynomial Programs. Proceedings of the ACM on Programming Languages 7,
OOPSLA1 (2023), 727–756.

[15] Daniel R. Grayson and Michael E. Stillman. [n. d.]. Macaulay2, a software system

for research in algebraic geometry. Available at http://www2.macaulay2.com.

[16] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2018. Poly-

nomial invariants for affine programs. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. 530–539.

[17] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. 2023. On

strongest algebraic program invariants. J. ACM 70, 5 (2023), 1–22.

[18] Michael Karr. 1976. Affine relationships among variables of a program. Acta
Informatica 6 (1976), 133–151.

[19] Manuel Kauers and Burkhard Zimmermann. 2008. Computing the algebraic rela-

tions of C-finite sequences and multisequences. Journal of Symbolic Computation
43, 11 (2008), 787–803.

[20] G. Kempf. 1993. Algebraic Varieties. Cambridge University Press. https://doi.org/

10.1017/CBO9781107359956

[21] Laura Kovács. 2008. Reasoning algebraically about p-solvable loops. In Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Springer, 249–264.

[22] Laura Kovács. 2023. Algebra-Based Loop Analysis. In Proceedings of the 2023
International Symposium on Symbolic and Algebraic Computation. 41–42.

[23] Zohar Manna and Amir Pnueli. 2012. Temporal verification of reactive systems:
safety. Springer Science & Business Media.

[24] E. Mayr and A.Meyer. 1982. The complexity of the word problem for commutative

semi-groups and polynomial ideals. Advances in Mathematics 46 (1982), 305–329.
https://doi.org/10.1016/0001-8708(82)90035-9

[25] Marcel Moosbrugger, Miroslav Stankovic, Ezio Bartocci, and Laura Kovács. 2022.

This is the moment for probabilistic loops. Proc. ACM Program. Lang. 6, OOPSLA2
(2022), 1497–1525. https://doi.org/10.1145/3563341

[26] Guillermo Moreno Socias. 1992. Length of Polynomial Ascending Chains

and Primitive Recursiveness. MATHEMATICA SCANDINAVICA 71 (Jun. 1992),

181–205. https://doi.org/10.7146/math.scand.a-12421

[27] Markus Müller-Olm and Helmut Seidl. 2004. Computing polynomial program

invariants. Inform. Process. Lett. 91, 5 (2004), 233–244.
[28] Markus Müller-Olm and Helmut Seidl. 2004. A note on Karr’s algorithm. In

International Colloquium on Automata, Languages, and Programming. Springer,
1016–1028.

[29] Grzegorz Pastuszak. 2020. Ascending chains of ideals in the polynomial ring.

Turkish Journal of Mathematics 44, 6 (2020), 2652–2658. https://doi.org/10.3906/

mat-1904-61

[30] Mihai Putinar. 1993. Positive Polynomials on Compact Semi-algebraic Sets.

Indiana University Mathematics Journal 42, 3 (1993), 969–984. https://doi.org/

stable/24897130

[31] John AG Roberts andMichael Baake. 1994. Trace maps as 3D reversible dynamical

systems with an invariant. Journal of statistical physics 74, 3-4 (1994), 829–888.
[32] Enric Rodríguez-Carbonell and Deepak Kapur. 2004. Automatic generation of

polynomial loop invariants: Algebraic foundations. In Proceedings of the 2004
international symposium on Symbolic and algebraic computation. 266–273.

[33] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Automatic generation of

polynomial invariants of bounded degree using abstract interpretation. Science
of Computer Programming 64, 1 (2007), 54–75.

[34] Enric Rodríguez-Carbonell and Deepak Kapur. 2007. Generating all polynomial

invariants in simple loops. Journal of Symbolic Computation 42, 4 (2007), 443–476.
[35] Igor Rostislavovich Shafarevich and Miles Reid. 1994. Basic algebraic geometry.

Vol. 1. Springer.

[36] Joachim Von Zur Gathen and Jürgen Gerhard. 2013. Modern computer algebra.
Cambridge university press.

https://doi.org/10.1007/3-540-33099-2
https://doi.org/10.1007/978-3-642-85463-2
http://www2.macaulay2.com
https://doi.org/10.1017/CBO9781107359956
https://doi.org/10.1017/CBO9781107359956
https://doi.org/10.1016/0001-8708(82)90035-9
https://doi.org/10.1145/3563341
https://doi.org/10.7146/math.scand.a-12421
https://doi.org/10.3906/mat-1904-61
https://doi.org/10.3906/mat-1904-61
https://doi.org/stable/24897130
https://doi.org/stable/24897130


ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bayarmagnai, Mohammadi and Prébet

A EXAMPLES AND BENCHMARKS

𝑆𝑞𝑢𝑎𝑟𝑒𝑠

(𝑥1, 𝑥2, 𝑥3) = (−1,−1, 1)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
2𝑥1 + 𝑥2

2
+ 𝑥3

2𝑥2 − 𝑥2
2
+ 2𝑥3

1 − 𝑥3

ª®¬
end while

𝐹𝑖𝑏1

(𝑥1, 𝑥2, 𝑥3) = (2, 1, 1)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
𝑥2
𝑥3

2𝑥2𝑥3 − 𝑥1

ª®¬
end while

𝐹𝑖𝑏2

(𝑥1, 𝑥2, 𝑥3) = (3,−2, 1)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
𝑥2

2𝑥1𝑥3 − 𝑥2
4𝑥1𝑥2𝑥3 − 2𝑥2

1
− 2𝑥2

2
+ 1

ª®¬
end while

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 9

(𝑥1, 𝑥2, 𝑥3) = (3,−1, 2)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
𝑥1 + 𝑥2

3
+ 1

𝑥2 − 𝑥2
3

𝑥3 + (𝑥1 + 𝑥2)2
ª®¬

end while

𝐹𝑖𝑏3

(𝑥1, 𝑥2, 𝑥3) = (2,−1, 1)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
1 + 𝑥1 + 𝑥2 + 𝑥1𝑥2 − 𝑥3

𝑥1
𝑥2

ª®¬
end while

𝐸𝑥𝑎𝑚𝑝𝑙𝑒 10

(𝑥1, 𝑥2, 𝑥3) = (−1, 2, 1)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
10𝑥1 − 8𝑥3 + (𝑥1 + 𝑥2)2

2𝑥2 − (𝑥1 + 𝑥2)2
6𝑥1 − 4𝑥3 + (𝑥1 + 𝑥2)2

ª®¬
end while

𝑁𝑎𝑔𝑎𝑡𝑎

(𝑥1, 𝑥2, 𝑥3) = (3,−2, 5)
while true do©«

𝑥1
𝑥2
𝑥3

ª®¬←− ©«
𝑥1 − 2(𝑥1𝑥3 + 𝑥2

2
)𝑥2 − (𝑥1𝑥3 + 𝑥2

2
)2𝑥3

𝑥2 + (𝑥1𝑥3 + 𝑥2
2
)𝑥3

𝑥3

ª®¬
end while

𝑌𝑎𝑔𝑧ℎ𝑒𝑣9

(𝑥1, . . . , 𝑥9) = (2,−3, 1, 4,−1, 7,−4, 3, 2)
while true do

©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9

ª®®®®®®®®®®®®®¬
←−

©«

𝑥1 + 𝑥1𝑥7𝑥9 + 𝑥2𝑥2
9

𝑥2 − 𝑥1𝑥2
7
− 𝑥2𝑥7𝑥9

𝑥3 + 𝑥3𝑥7𝑥9 + 𝑥4𝑥2
9

𝑥4 − 𝑥3𝑥2
7
− 𝑥4𝑥7𝑥9

𝑥5 + 𝑥5𝑥7𝑥9 + 𝑥6𝑥2
9

𝑥6 − 𝑥5𝑥2
7
− 𝑥6𝑥7𝑥9

𝑥7 + (𝑥1𝑥4 − 𝑥2𝑥3)𝑥9
𝑥8 + (𝑥3𝑥6 − 𝑥4𝑥5)𝑥9(
𝑥9 + (𝑥1𝑥4 − 𝑥2𝑥3)𝑥8
−(𝑥3𝑥6 + 𝑥4𝑥5)𝑥7

)

ª®®®®®®®®®®®®®®®¬
end while

𝑌𝑎𝑔𝑧ℎ𝑒𝑣11

(𝑥1, . . . , 𝑥11) = (3,−1, 2, 1,−5,−1, 3, 4,−1, 3, 2)
while true do©«

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
𝑥11

ª®®®®®®®®®®®®®®®®®¬

←−

©«

𝑥1 − 𝑥3𝑥2
10

𝑥2 − 𝑥3𝑥2
11

𝑥3 + 𝑥1𝑥2
11
− 𝑥2𝑥2

10

𝑥4 − 𝑥6𝑥2
10

𝑥5 − 𝑥6𝑥2
11

𝑥6 + 𝑥4𝑥2
11
− 𝑥5𝑥2

10

𝑥7 − 𝑥9𝑥2
10

𝑥8 − 𝑥9𝑥2
11

𝑥9 + 𝑥7𝑥2
11
− 𝑥8𝑥2

10

𝑥10 − det(𝐴)
𝑥11 − 𝑥3

10

ª®®®®®®®®®®®®®®®®®¬
end while

where 𝐴 =
©«
𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

ª®¬
𝑆𝑒𝑚𝑖-𝑎𝑙𝑔𝑒𝑏𝑟𝑎𝑖𝑐

(𝑥1, 𝑥2) = (𝑎1, 𝑎2)
while 𝑥1 > 0 do(

𝑥1
𝑥2

)
←−

(
2𝑥1
2𝑥2

)
end while
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