
HAL Id: hal-04576057
https://hal.science/hal-04576057

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

revTPL: The Reversible Temporal Process Language
Laura Bocchi, Ivan Lanese, Claudio Antares Mezzina, Shoji Yuen

To cite this version:
Laura Bocchi, Ivan Lanese, Claudio Antares Mezzina, Shoji Yuen. revTPL: The Reversible Temporal
Process Language. Logical Methods in Computer Science, 2024, Volume 20, Issue 1, �10.46298/lmcs-
20(1:11)2024�. �hal-04576057�

https://hal.science/hal-04576057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Volume 20, Issue 1, 2024, pp. 11:1–11:35
https://lmcs.episciences.org/

Submitted Dec. 08, 2022
Published Jan. 31, 2024

revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE ∗

LAURA BOCCHI a, IVAN LANESE b, CLAUDIO ANTARES MEZZINA c, AND SHOJI YUEN d

a School of Computing, University of Kent, UK
e-mail address: L.Bocchi@kent.ac.uk

bFocus Team, University of Bologna/INRIA, Italy
e-mail address: ivan.lanese@gmail.com

cDipartimento di Scienze Pure e Applicate, Università di Urbino, Italy
e-mail address: claudio.mezzina@uniurb.it

dGraduate School of Informatics, Nagoya University, Japan
e-mail address: yuen@i.nagoya-u.ac.jp

Abstract. Reversible debuggers help programmers to find the causes of misbehaviours
in concurrent programs more quickly, by executing a program backwards from the point
where a misbehaviour was observed, and looking for the bug(s) that caused it. Reversible
debuggers can be founded on the well-studied theory of causal-consistent reversibility,
which only allows one to undo an action provided that its consequences, if any, are undone
beforehand. Causal-consistent reversibility yields more efficient debugging by reducing
the number of states to be explored when looking backwards. Till now, causal-consistent
reversibility has never considered time, which is a key aspect in real-world applications.
Here, we study the interplay between reversibility and time in concurrent systems via a
process algebra. The Temporal Process Language (TPL) by Hennessy and Regan is a
well-understood extension of CCS with discrete-time and a timeout operator. We define
revTPL, a reversible extension of TPL, and we show that it satisfies the properties expected
from a causal-consistent reversible calculus. We show that, alternatively, revTPL can be
interpreted as an extension of reversible CCS with time.

Key words and phrases: Reversible computing; timed systems; process calculi; operational semantics.
∗This paper is a revised and extended version of [BLMY22].
This work has been partially supported by the BehAPI project funded by the EU H2020 RISE under the

Marie Sklodowska-Curie action (No: 778233), by the EU HEU Marie Sklodowska-Curie action ReGraDe-CS
(No: 101106046), by EPSRC project EP/T014512/1 (STARDUST), by MIUR PRIN project NiRvAna, by
MIUR PRIN project DeKLA, by French ANR project DCore ANR-18-CE25-0007, by INdAM – GNCS 2022
project Proprietà qualitative e quantitative di sistemi reversibili and GNCS 2023 project Reversibilità In
SIstemi COncorrenti: analisi quantitative e funzionali (RISICO), code CUP E53C22001930001, and by JSPS
KAKENHI Grant Number JP21H03415. We thank the anonymous referees of this paper and of its conference
version for their helpful comments and suggestions.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-20(1:11)2024
© L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-7177-9395
https://orcid.org/0000-0003-2527-9995
https://orcid.org/0000-0003-1556-2623
https://orcid.org/0000-0003-2642-0647
http://creativecommons.org/about/licenses

11:2 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

Introduction

Recent studies [Viz20, BJCC13] show that reversible debuggers ease the debugging phase, and
help programmers to quickly find the causes of a misbehaviour. Reversible debuggers can be
built on top of a causal-consistent reversible semantics [GLM14, LNPV18, FLS21, LLS+22],
and this approach is particularly suited to deal with concurrency bugs, which are hard
to find using traditional debuggers [Gra86]. By exploiting causality information, causal-
consistent reversible debuggers allow one to undo just the steps which led (that is, are
causally related) to a visible misbehaviour, reducing the number of steps/spurious causes
and helping to understand the root cause of the misbehaviour. More precisely, one can
explore backwards the tree of causes of a visible misbehaviour, possibly spread among
different processes, looking for the bug(s) causing it. In the last years several reversible
semantics for concurrency have been developped, see, e.g., [DK04, PU07, CKV13, LMS16,
MMU19, GLMT17, LM20, BM20, MMPY20, MMP21a]. However, none of them takes into
account time1. Time-dependent behaviour is an intrinsic and important feature of real-world
concurrent systems and has many applications: from the engineering of highways [MP20], to
the manufacturing schedule [GZT20] and to the scheduling problem for real-time operating
systems [Ber05].

Time is instrumental for the functioning of embedded systems where some events are
triggered by the system clock. Embedded systems are used for both real-time and soft
real-time applications, frequently in safety-critical scenarios. Hence, before being deployed or
massively produced, they have to be heavily tested, and hence possibly debugged. Actually,
debugging occurs not only upon testing, but in almost all the stages of the life-cycle of
a software system: from the early stages of prototyping to the post-release maintenance
(e.g., updates or security patches). Concurrency is important in embedded systems [FGP12],
and concurrency bugs frequently happen in these systems as well [Koo10]. To debug such
systems, and deal with time-dependent bugs in particular, it is crucial that debuggers can
handle both concurrency and time.

In this paper, we study the interplay between time and reversibility in a process algebra
for concurrency. In the literature, there exists a variety of timed process algebras for the
analysis and specification of concurrent timed systems [NS91]. We build on the Temporal
Process Language (TPL) [HR95], a CCS-like process algebra featuring an idling prefix
(modelling a delay) and a timeout operator. The choice of TPL is due to its simplicity
and its well-understood theory. We define revTPL, a reversible extension of TPL, and we
show that it satisfies the properties expected from a causal-consistent reversible calculus.
Alternatively, revTPL can be interpreted as an extension of reversible CCS (in particular
CCSK [PU07]) with time.

A reversible semantics in a concurrent setting is frequently defined following the causal-
consistent approach [DK04, LMT14] (other approaches are also used, e.g., to model biological
systems [PUY12, PP18]). Causal-consistent reversibility states that any action can be undone,
provided that its consequences, if any, are undone beforehand. Hence, it strongly relies on a
notion of causality. To prove the reversible semantics of revTPL causal-consistent, we exploit
the theory in [LPU20], whereby causal-consistency follows from three key properties:

Loop Lemma: any action can be undone by a corresponding backward action;

1The notion of time reversibility addressed in [BM20] is not aimed at studying programming languages
with constructs to support hard or soft time constraints, but at performance evaluation via (time-reversible)
Markov chains.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:3

Square Property: concurrent actions can be executed in any order;
Parabolic Lemma: backward computations do not introduce new states.

The application of causal-consistent reversibility to timed systems is not straightforward,
since time heavily changes the causal semantics of the language. In untimed systems,
causal dependencies are either structural (e.g., via sequential composition) or determined
by synchronisations. In timed systems further dependencies between parallel processes can
be introduced by time, even when processes do not actually interact, as illustrated in the
following example.

Example 0.1 (Motivating example). Consider the following Erlang code.

1 process A () −>
2 r e c e i v e

3 X −> handleMsg ()

4 a f t e r 200 −>
5 handleTimeout ()

6 end

7 end .

8 process B (Pid) −>
9 t imer : s l e e p (500) ,

10 Pid ! Msg

11 end .

12

13 PidA=spawn (?MODULE, process A , []) ,

14 spawn (?MODULE, process B , [PidA]) .

Process A (lines 1− 7) waits for a message; if a message is received within 200 ms, then
process A calls function handleMsg(), otherwise it calls function handleTimeout(). Process B

(lines 8− 11) sleeps for 500ms and then sends a message to Pid, where Pid is a parameter
of the function executed by process B (line 8). The code in line 13 spawns an instance of
process A and uses its process identifier PidA as a parameter to spawn an instance of process
B (line 14). The two process instances are supposed to communicate, but the timeout in
process A (line 4) triggers after 200 ms, while process B will only send the message after
500 ms (lines 9− 10). In this example, the timeout rules out the execution where process A

communicates with process B, which would be possible in the untimed scenario. Namely, an
execution can become unviable because of a time dependency, without any actual interaction
between the two involved processes. ⋄

From a technical point of view, the semantics of TPL does not fit the formats for
which a causal-consistent reversible semantics can be derived automatically [PU07, LM20],
and also the generalisation of the approaches developed in the literature for untimed
models [DK04, CKV13, LMS16] is not straightforward and is the objective of this work.

The rest of the paper is structured as follows. Section 1 gives an informal overview
of TPL and reversibility. Section 2 introduces the syntax and semantics of the reversible
Temporal Process Language (revTPL). In Section 3, we relate revTPL to TPL and CCSK,
while Section 4 studies the reversibility properties of revTPL. Section 5 concludes the paper
and discusses related and future work. A formal background on CCS, TPL and CCSK (for
the readers that wish a more rigorous overview than the informal one in Section 1), as well
as longer proofs and additional technical details are collected in Appendix.

This paper is an extended and revised version of [BLMY22]. The semantics has been
revised since the one in [BLMY22] failed to capture some time dependencies when going
back and forward (cf. Example 4.19). We now also provide a better characterisation of
the causality model of revTPL (cf. Proposition 4.10 and Theorem 4.18). Further technical
improvements include the formulation of the correspondences between revTPL, TPL, CCSK

11:4 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

and CCS in terms of (bi)simulations (Theorems 3.4 and 3.8). We now also provide full
proofs of all results as well as additional explanations and examples. Finally, the whole
presentation has been carefully refined.

1. Informal Overview of TPL and Reversibility

In this section we give an informal overview of Hennessy & Regan’s TPL (Temporal Process
Language) [HR95] and introduce a few basic concepts of causal-consistent reversibility [DK04,
LPU20]. For a more rigorous introduction, the interested reader can find the syntax and
semantics of TPL in Appendix A.3 and the syntax and semantics of the reversible calculus
CCSK [PU07] in Appendix A.2. The syntax and semantics of CCS, which is at the basis of
both TPL and CCSK, is in Appendix A.1.

1.1. Overview of TPL. Process ⌊pid.P ⌋(Q) models a timeout: it can either immediately
do action pid followed by P or, in case of delay, continue as Q. In transition (1.1) the
timeout process is in parallel with co-party pid.0 that can immediately synchronise with
action pid, and hence the timeout process continues as P .

pid.0 ∥ ⌊pid.P ⌋(Q)
τ−→ 0 ∥ P (1.1)

In transition (1.2), ⌊pid.P ⌋(Q) is in parallel with process σ.pid.0 that can synchronise only
after a delay of one time unit σ (σ is called a time action). Because of the delay, the timeout
process continues as Q:

σ.pid.0 ∥ ⌊pid.P ⌋(Q)
σ−→ pid.0 ∥ Q (1.2)

The processes on the left-hand side of transition (1.2) describe the interaction structures of
the Erlang program in Example 0.1. More precisely, the timeout of 200 time units in process
A can be encoded using nested timeouts:

A(0) = Q A(n+ 1) = ⌊pid.P ⌋(A(n)) (n ∈ N)
while process B can be modelled as the sequential composition of 500 actions σ followed by
action pid, as follows:

B(0) = pid B(n+ 1) = σ.B(n) (n ∈ N)
Using the definition above, ⌊pid.P ⌋(A(200)) models a process that executes pid and continues
as P if a co-party is able to synchronise within 200 time units, otherwise executes Q. Hence,
Example 0.1 is rendered as follows:

⌊pid.P ⌋(A(200)) ∥ B(500)

The design of TPL is based on (and enjoys) three properties [HR95]: time-determinism,
patience, and maximal progress. Time-determinism means that time actions from one

state can never reach distinct states, formally: if P
σ−→ Q and P

σ−→ Q′ then Q = Q′. A
consequence of time-determinism is that choices can only be decided via communication
actions and not by time actions, for example α.P + β.Q can change state by action α or β,
but not by time action σ. Process α.P + β.Q can make an action σ, by a property called
patience, but this action would not change the state, as shown in transition (1.3).

α.P + β.Q
σ−→ α.P + β.Q (1.3)

Patience ensures that communication processes like α.P can indefinitely delay communi-
cation α with σ actions (without changing state) until a co-party is available. For example,

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:5

by patience, process α.P in (1.4) can delay the communication on α until the other process
σ.α.Q is ready to communicate:

α.P ∥ σ.α.Q σ−→ α.P ∥ α.Q τ−→ P ∥ Q (1.4)

Maximal progress states that (internal/synchronisation) τ actions cannot be delayed, formally:

if P
τ−→ Q then there is no Q′ such that P

σ−→ Q′. Namely, a delay can only be attained
either via explicit σ prefixes or because synchronisation is not possible. Basically, patience
allows for time actions when communication is not possible, and maximal progress disallows
time actions when communication is possible:

α.P
σ−→ (by patience)

α.P ∥ α.Q ̸ σ−→ because α.P ∥ α.Q τ−→ (by maximal progress)

1.2. Overview of causal-consistent reversibility. Before presenting revTPL, we discuss
the reversing technique we adopt. In the literature, two approaches to define a causal-
consistent extension of a given calculus or language have been proposed: dynamic and
static [LMM21]. The dynamic approach (as in [DK04, CKV13, LMS16]) makes explicit use
of memories to keep track of past events and causality relations, while the static approach
(originally proposed in [PU07]) is based on two ideas: making all the operators of the
language static so that no information is lost and using communication keys to keep track
of which events have been executed. In the dynamic approach, constructors of processes
disappear upon transitions (as in standard calculi).

For example, in the following CCS transition:

a.P
a−→ P

the action a disappears as an effect of the transition. The dynamic approach prescribes to
use memories to keep track of the discarded items. In static approaches, such as [PU07],
actions are syntactically maintained, and process a.P can perform the transition below

a.P
a[i]−−→ a[i].P

where P is decorated with the executed action a and a unique key i. The term a[i].P acts
like P in forward transitions, while the coloured part decorating P is used to define backward
transitions, e.g.,

a[i].P
a[i]
↪−−→ a.P

Keys are important to correctly revert synchronisations. Consider the process below. It can
take two forward synchronisations with keys i and j, respectively:

a.P1 ∥ a.P2 ∥ a.Q1 ∥ a.Q2
τ [i]−−→ τ [j]−−→ a[i].P1 ∥ a[i].P2 ∥ a[j].Q1 ∥ a[j].Q2

From the reached state, there are two possible backward actions: τ [i] and τ [j]. The keys
are used to ensure that a backward action, say τ [i], only involves parallel components that
have previously synchronised and not, for instance, a[i].P1 and a[j].Q2. When looking at
the choice operator, in the following CCS transition:

a.P + b.Q
a−→ P

11:6 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

(Processes) P = π.P | ⌊P ⌋(Q) | P +Q | P ∥ Q | P \ a | A | 0

(Configurations) X = ρ[i].X | ⌊X⌋[i−→](Y) | ⌊X⌋[i←−](Y) | X + Y |
X ∥ Y | X \ a | P

(Communication actions) α = a | a | τ
(Prefixes) π = α | σ

(Runtime prefixes) ρ = π | σ⊥

Figure 1: Syntax of revTPL

both the choice operator “+” and the discarded branch b.Q disappear as an effect of
the transition. In static approaches, the choice operator and the discarded branch are
syntactically maintained, and process a.P + b.Q can perform the transition below:

a.P + b.Q
a[i]−−→ a[i].P+b.Q

where a[i].P+b.Q acts like P in forward transitions, while the coloured part allows one to
undo a[i] and then possibly proceed forward with an action b[j].

In this paper, we adopt the static approach since it is simpler, while the dynamic
approach is more suitable to complex languages such as the π-calculus, see the discussion
in [LMM21, LP21].

2. The Reversible Temporal Process Language

In this section we define revTPL, an extension of Hennessy & Regan TPL (Temporal Process
Language) [HR95] with causal-consistent reversibility following the static approach in the
style of [PU07].

2.1. Syntax of revTPL. We denote with X the set of all the configurations generated by
the grammar in Figure 1.

Processes (P,Q, . . .) describe timed interactions following [HR95]. We let A be the set
of action names a, A the set of action conames a. We use α to range over a, a and internal
actions τ . We assume a = a. In process π.P , prefix π can be a communication action α or a
time action σ, and P is the continuation. Timeout ⌊P ⌋(Q) executes either P (if possible)
or Q (in case of timeout). P + Q, P ∥ Q, P \ a, A, and 0 are the usual choice, parallel
composition, name restriction, recursive call, and terminated process from CCS. For each

recursive call A we assume a recursive definition A
def
= P . We also assume recursion to be

guarded, hence recursive variables can only occur under prefix.
Configurations (X,Y, . . .) describe states via annotation of executed actions with keys

following the static approach. We let K be the set of all keys (k, i, j, . . .). Configurations are
processes with (possibly) some computational history (i.e., prefixes marked with keys): π[i].X
is the configuration that has already executed π, and the execution of such π is identified
by key i. Configuration ⌊X⌋[i←−](Y) is executing the main branch X whereas ⌊X⌋[i−→](Y) is

executing Y . Some TPL processes, namely patient processes like α.P illustrated earlier in
(1.4), allow time to pass without changing their own structure. This is an issue in revTPL,
since it may lead different parallel components to have a different understanding of the

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:7

passage of time, while we want time to pass at the same pace for each parallel component.
For this reason, to record that time has passed for a patient process, we use a special prefix
σ⊥[i].X. Namely, σ⊥[i].X is the configuration which has patiently registered the passage of
time along with key i. Prefix σ⊥[i] differs from σ[i] since the former is only for the current
execution (patient delays may happen but do not always have to), while the latter requires
time to pass in each possible execution (see Example 2.4). We will discuss this issue in more
detail in Section 4. We use ρ to denote either π or σ⊥.

A configuration can be thought of as a context with actions that have already been
executed, each associated to a key, containing a process P , with actions yet to execute and
hence with no keys. Notably, keys are distinct but for actions happening together: an action
and a co-action that synchronise, or the same time action traced by different processes,
e.g., by two parallel delays. A configuration P can be thought of as the initial state of a
computation, where no action has been executed yet. We call such configurations standard.
Definition 2.1 formalises this notion via function keys(X) that returns the set of keys of a
given configuration.

Definition 2.1 (Standard configuration). The set of keys of a configuration X, written
keys(X), is inductively defined as follows:

keys(P) = ∅ keys(ρ[i].X) = {i} ∪ keys(X) keys(X \ a) = keys(X)
keys(⌊Y ⌋[i−→](X)) = keys(⌊X⌋[i←−](Y)) = {i} ∪ keys(X)

keys(X + Y) = keys(X ∥ Y) = keys(X) ∪ keys(Y)

A configuration X is standard, written std(X), if keys(X) = ∅.

Basically, a standard configuration is a process. To handle the delicate interplay between
time-determinism and reversibility of time actions, it is useful to distinguish the class of
configurations that have not executed any communication action (but may have executed
time actions). We call these configurations not-acted and characterise them formally using
the predicate nact(·) below.

Definition 2.2 (Not-acted configuration). The not-acted predicate nact(·) is inductively
defined as:

nact(0) = nact(A) = nact(⌊X⌋(Y)) = nact(π.X) = tt

nact(α[i].X) = nact(⌊X⌋[i←−](Y)) = ff

nact(σ[i].X) = nact(σ⊥[i].X) = nact(X \ a) = nact(⌊Y ⌋[i−→](X)) = nact(X)

nact(X ∥ Y) = nact(X + Y) = nact(X) ∧ nact(Y)

A configuration X is not-acted (resp. acted) if nact(X) = tt (resp. nact(X) = ff).

Basic standard configurations are always not-acted (first line of Definition 2.2). Indeed,
it is not possible to reach a configuration π.X where X is acted. In the second line, a
configuration that has executed communication actions is acted. In particular, we will
see that ⌊X⌋[i←−](Y) is only reachable via a communication action. The configurations in

the third line are not-acted if their continuations are not-acted. For parallel composition
and choice, nact(·) is defined as a conjunction. For example nact(α[i].P ∥ β.Q) = ff and
nact(α[i].P + β.Q) = ff. Note that in a choice configuration X + Y , at most one between
X and Y can be acted. Whereas std(X) implies nact(X), the opposite implication does
not hold. For example, std(σ[i].0) = ff but nact(σ[i].0) = tt.

11:8 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

PAct α.P
σ[i]−−→ σ⊥[i].α.P RAct π.P

π[i]−−→ π[i].P Idle 0
σ[i]−−→ σ⊥[i].0

Act
X

π[j]−−→ X ′ j ̸= i

ρ[i].X
π[j]−−→ ρ[i].X ′

STout
X ̸ τ−→ std(X) std(Y)

⌊X⌋(Y)
σ[i]−−→ ⌊X⌋[i−→](Y)

SWait
Y

π[j]−−→ Y ′ j ̸= i

⌊X⌋[i−→](Y)
π[j]−−→ ⌊X⌋[i−→](Y ′)

Tout
X

α[i]−−→ X ′ std(Y)

⌊X⌋(Y)
α[i]−−→ ⌊X ′⌋[i←−](Y)

Wait
X

π[j]−−→ X ′ j ̸= i

⌊X⌋[i←−](Y)
π[j]−−→ ⌊X ′⌋[i←−](Y)

SynW
X

σ[i]−−→ X ′ Y
σ[i]−−→ Y ′ (X ∥ Y) ̸ τ−→

X ∥ Y σ[i]−−→ X ′ ∥ Y ′

Par
X

α[i]−−→ X ′ i ̸∈ keys(Y)

X ∥ Y α[i]−−→ X ′ ∥ Y
Syn

X
α[i]−−→ X ′ Y

α[i]−−→ Y ′

X ∥ Y τ [i]−−→ X ′ ∥ Y ′

ChoW
X

σ[i]−−→ X ′ Y
σ[i]−−→ Y ′

X + Y
σ[i]−−→ X ′ + Y ′

Cho
X

α[i]−−→ X ′ nact(Y) i /∈ keys(Y)

X + Y
α[i]−−→ X ′ + Y

Hide
X

π[i]−−→ X ′ π ̸∈ {a, a}

X \ a π[i]−−→ X ′ \ a
Const

A
def
= P P

π[i]−−→ X

A
π[i]−−→ X

The set of rules also includes symmetric versions of rules [Par] and [Cho].

Figure 2: revTPL forward LTS

2.2. Semantics of revTPL. We denote with At the set A ∪A ∪ {τ, σ} of actions and let π
to range over the set At. We define the set of all the labels L = At×K. The labels associate
each π ∈ At to a key i. The key is used to associate the forward occurrence of an action
with its corresponding reversal. Also, instances of actions occurring together (synchronising
action and co-action or the effect of time passing in different components of a process) have
the same key, otherwise keys are distinct.

Definition 2.3 (Semantics). The operational semantics of revTPL is given by two Labelled
Transition Systems (LTSs) defined on the same set of all configurations X , and the set of all
labels L: a forward LTS (X , L, −→) and a backward LTS (X , L, ↪−→). We define 7−→=−→ ∪ ↪−→,
where −→ and ↪−→ are the least transition relations induced by the rules in Figure 2 and
Figure 3, respectively.

Given a relation R, we indicate with R∗ its reflexive and transitive closure. We use

notation X ̸ τ−→ (resp. X ̸ τ↪−→) when there are no configuration X ′ and key i such that

X
τ [i]−−→ X ′ (resp. X

τ [i]
↪−−→ X ′).

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:9

We now discuss the rules of the forward semantics (Figure 2). Rule [PAct] describes
patient actions: in TPL process α.P can make a time step to itself. This kind of actions
allows a process to wait indefinitely until it can communicate (by patience [HR95]). However,
in revTPL we need to track passage of time, hence rule [PAct] adds a σ⊥[i] prefix in front of
the configuration, with a key i. Rule [RAct] executes actions α[i] or σ[i] on a prefix process.
Observe that, unlike patient time actions on α.P , a time action on σ.P corresponds to a
deliberate and planned time consuming action and, therefore, it executes the σ prefix, hence
no σ⊥ prefix needs to be added. Rule [Idle] registers passage of time on a 0 configuration by
adding a σ⊥[i] prefix to it. Rule [Act] lifts actions of the continuation X on configurations
where prefix ρ[i] has already been executed. Side condition j ̸= i ensures freshness of j is
preserved. Rules [STout] and [SWait] model timeouts. In rule [STout], if X is not able to
make τ actions then Y is executed; this rule models a timeout that triggers only if the main
configuration X is stuck. The negative premise on [Stout] can be encoded into a decidable
positive one as shown in Appendix B. In rule [Tout] instead the main configuration can
execute and the timeout does not trigger. Rule [SWait] (resp. [Wait]) models transitions
inside a timeout configuration where the Y (resp. X) branch has been previously taken. The
semantics of timeout construct becomes clearer in the larger context of parallel configurations,
when looking at rule [SynW]. Rule [SynW] models time passing for parallel configurations.
The negative premise ensures that, in case X or Y is a timeout configuration, timeout can
trigger only if no synchronisation may occur, that is if the configurations are stuck. [SynW]
requires time to pass in the same way (an action σ is taken by both components, with the
same key i) for the whole system. Rules [Par] (and symmetric) and [Syn] are as usual for
communication actions and allow parallel configurations to either proceed independently
or to synchronise. In the latter case, the keys need to coincide. Defining the semantics of
choice configuration X + Y requires special care to ensure time-determinism (recall, choices
are only decided via communication actions). Also, we need to record time actions to be
able to reverse them correctly (cfr. Loop Lemma, discussed later on in Lemma 4.1). Rule
[ChoW] describes the passage of time along a choice configuration X + Y . Since time does
not decide a choice, both branches have to execute the same time action with the same
key. Rule [Cho] allows one to take one branch, or continue executing a previously taken
branch. The choice construct is syntactically preserved, to allow for reversibility, but the
one branch that is not taken remains non-acted (i.e., nact(Y)). This ensures that choices
can be decided by a communication action only. Let us note that even in case of a decided
choice, that is a choice configuration in which one of the two branches has performed a
communication action, time actions are registered by both configurations. For example, the
configuration a.0+ σ.0 can execute the following transitions:

a.0+ σ.0
a[i]−−→ a[i].0+ σ.0

σ[j]−−→ a[i].σ⊥[j].0+ σ[j].0

After the a[i] action, even if the left branch of the choice has been selected, both branches
participate to the time action σ[j]. Rules [Hide] and [Const] are standard.

The rules of the backward semantics, in Figure 3, undo communication and time actions
executed under the forward semantics. Backward rules are symmetric to the forward ones.

Now that we have introduced both the forward and the backward rules we can clarify
the difference between σ⊥ and σ.

Example 2.4. Let us consider the patient process a.P . We can have the following derivation:

a.P
σ[i]−−→ σ⊥[i].a.P

σ[i]
↪−−→ a.P

a[j]−−→ a[j].P (2.1)

11:10 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

Pact σ⊥[i].α.P
σ[i]
↪−−→ α.P Ract π[i].P

π[i]
↪−−→ π.P Idle σ⊥[i].0

σ[i]
↪−−→ 0

Act
X

π[j]
↪−−→ X ′ j ̸= i

ρ[i].X
π[j]
↪−−→ ρ[i].X ′

STout
X ̸ τ−→ std(X) std(Y)

⌊X⌋[i−→](Y)
σ[i]
↪−−→ ⌊X⌋(Y)

SWait
Y

π[j]
↪−−→ Y ′ j ̸= i

⌊X⌋[i−→](Y)
π[j]
↪−−→ ⌊X⌋[i−→](Y ′)

Tout
X

α[i]
↪−−→ X ′ std(Y)

⌊X⌋[i←−](Y)
α[i]
↪−−→ ⌊X ′⌋(Y)

Wait
X

π[j]
↪−−→ X ′ j ̸= i

⌊X⌋[i←−](Y)
π[j]
↪−−→ ⌊X ′⌋[i←−](Y)

SynW
X

σ[i]
↪−−→ X ′ Y

σ[i]
↪−−→ Y ′ (X ∥ Y) ̸ τ↪−→

X ∥ Y
σ[i]
↪−−→ X ′ ∥ Y ′

Par
X

α[i]
↪−−→ X ′ i ̸∈ keys(Y)

X ∥ Y
α[i]
↪−−→ X ′ ∥ Y

Syn
X

α[i]
↪−−→ X ′ Y

α[i]
↪−−→ Y ′

X ∥ Y
τ [i]
↪−−→ X ′ ∥ Y ′

ChoW
X

σ[i]
↪−−→ X ′ Y

σ[i]
↪−−→ Y ′

X + Y
σ[i]
↪−−→ X ′ + Y ′

Cho
X

α[i]
↪−−→ X ′ nact(Y) i ̸∈ keys(Y)

X + Y
α[i]
↪−−→ X ′ + Y

Hide
X

π[i]
↪−−→ X ′ π ̸∈ {a, a}

X \ a
π[i]
↪−−→ X ′ \ a

Const
A

def
= P X

π[i]
↪−−→ P

X
π[i]
↪−−→ A

The set of rules also includes symmetric versions of rules [Par] and [Cho].

Figure 3: revTPL backward LTS

where a.P executes forwards in two different ways: first by letting time pass, later on by
interacting on a. Notice that for these interactions to be possible in a larger context we need
the context to have changed as well.

We can try to have a similar derivation using process σ.a.P instead, but the final
outcome is not the same:

σ.a.P
σ[i]−−→ σ[i].a.P

σ[i]
↪−−→ σ.a.P (2.2)

Indeed, at this stage σ.a.P cannot interact on a. In general, σ requires time to pass in every
possible computation, while σ⊥ does not. ⋄

Definition 2.5 (Reachable configurations). A configuration X is reachable if there exist a
process P and a derivation P 7−→∗ X.

Basically, a configuration is reachable if it can be obtained via forward and backward
actions from a standard configuration.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:11

3. Relations with TPL and reversible CCS

We can consider revTPL as a reversible extension of TPL, but also as an extension of
reversible CCS (in particular CCSK [PU07]) with time. First, if we consider the forward
semantics only, then we have a tight correspondence with TPL. To show this we define a
forgetful map which discards the history information of a configuration.

Definition 3.1 (History forgetting map). The history forgetting map ϕh : X → P is
inductively defined as follows:

ϕh(P) = P ϕh(ρ[i].X) = ϕh(X)

ϕh(⌊X⌋[i←−](Y)) = ϕh(X) ϕh(⌊X⌋[i−→](Y)) = ϕh(Y)

ϕh(X ∥ Y) = ϕh(X) ∥ ϕh(Y) ϕh(X \ a) = ϕh(X) \ a

ϕh(X + Y) =

 ϕh(X) if ¬nact(X) ∧ nact(Y)
ϕh(Y) if ¬nact(Y) ∧ nact(X)
ϕh(X) + ϕh(Y) otherwise

The definition above deletes all the information about history from a configuration
X, hence it is the identity on standard configuration P . Even more, each configuration
is mapped into a standard one. Notice that in a non-standard timeout, only the chosen
branch is taken. In TPL time cannot decide choices. This is reflected into the definition of
ϕh(X + Y), where a branch disappears only if the other one did at least a communication
action.

Notably, the restriction of ϕh to untimed configurations (namely configurations containing
neither timeouts nor σ prefixes nor σ⊥ prefixes) is a map from CCSK [PU07] to CCS.
Following the notation of Appendix A, we will indicate with→t the semantics of TPL [HR95],
reported in Appendix A.3, and with 7→k the semantics of CCSK [PU07], reported in Appendix
A.2.

Proposition 3.2 (Embedding of TPL). Let X be a reachable revTPL configuration:

(1) if X
π[i]−−→ Y then ϕh(X)

π−→t ϕ
h(Y);

(2) if ϕh(X)
π−→t Q then for any i ∈ K \ keys(X) there is Y such that X

π[i]−−→ Y with
ϕh(Y) = Q.

Proof. (1) : by induction on the derivation X
π[i]−−→ Y , with a case analysis on the last

applied rule. We detail a few sample rules.
If the move is by rule [PAct] then we have Y = σ⊥[i].α.X1, with ϕh(X) = ϕh(Y),

and in TPL we have a corresponding state-preserving move with label σ derived using
rule Act2 in Figure 12.

In the case of rule [Act], X = ρ[i].Z and Y = ρ[i].Z ′ with Z
π[j]−−→ Z ′. By inductive

hypothesis, in TPL ϕh(Z)
π−→t ϕ

h(Z ′). Since ϕh(X) = ϕh(Z) and ϕh(Y) = ϕh(Z ′) we
are done. The cases for [Const] and [Hide] are similar by induction. The cases for
[SynW] and [ChoW] follow by induction as well.

If the last applied rule is [Cho], then we have thatX = X1+X2 withX1
α[i]−−→ X ′

1 and
nact(X2). Also, Y = X ′

1+X2 with X ′
1 acted. Hence, ϕh(Y) = ϕh(X ′

1+X2) = ϕh(X ′
1).

We consider the case nact(X1), the other one is simpler. By definition, we have

that ϕh(X1 +X2) = ϕh(X1) + ϕh(X2). Since X1
α[i]−−→ X ′

1, by applying the inductive

11:12 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

hypothesis we also have that ϕh(X1)
α−→t ϕh(X ′

1). Also, since the label is not a σ

action, in TPL we can use rule Sum1 in Figure 12 that from ϕh(X1)
α−→t ϕ

h(X ′
1) allows

one to derive ϕh(X1) + ϕh(X2)
α−→ ϕh(X ′

1), as desired.

If the last applied rule is [STout] then ⌊X1⌋(X2)
σ[i]−−→ ⌊X1⌋[i−→](X2) with X1 and

X2 standard, and X1 that can not perform τ steps. By inductive hypothesis ϕh(X1)
can not perform τ steps in TPL, hence in TPL we can use rule THEN2 in Figure 12

to derive ϕh(⌊X1⌋(X2)) = ⌊X1⌋(X2)
σ−→t X2 = ϕh(⌊X1⌋[i−→](X2)) as desired.

(2) : by induction on the definition of ϕh(X) (structural induction on X). Let us first
assume X standard, hence ϕh(X) = X. Let us consider X = α.P . In TPL, α.P can
make a state preserving transition σ and the corresponding revTPL configuration can

match it: X
σ[i]−−→ σ⊥[i].X, with ϕh(σ⊥[i].X) = X. Alternatively, in TPL, α.P

α−→t P .

The thesis follows since α.P
α[i]−−→ α[i].P with ϕh(α[i].P) = P . The other cases are

similar, but using the induction hypothesis.
Let us now assume X non standard. The most interesting case is when X = X1+X2.

Let us consider X1 acted (the case where X2 is acted is symmetric). In this case
ϕh(X1 + X2) = ϕh(X1) hence the thesis follows by inductive hypothesis using rule
[ChoW] for σ actions and [Cho] for communication actions. If both X1 and X2 are
not acted, then ϕh(X1 + X2) = ϕh(X1) + ϕh(X2). We now have two cases, either

π = σ or π = α. If π = σ we have that by rule SUM3 in Figure 12 ϕh(X1)
σ−→t Z1

and ϕh(X2)
σ−→t Z2 allow one to derive ϕh(X1) + ϕh(X2)

σ−→t Z1 + Z2. By inductive

hypotheses we have that there exist X ′
1 and X ′

2 such that X1
σ[i]−−→ X ′

1 and X2
σ[i]−−→ X ′

2

with ϕh(X ′
1) = Z1 and ϕh(X ′

2) = Z2. We can then apply rule [ChoW] to derive

X1 + X2
σ[i]−−→ X ′

1 + X ′
2. Since X ′

1 and X ′
2 are still not-acted we can conclude by

noticing that ϕh(X ′
1 + X ′

2) = ϕh(X ′
1) + ϕh(X ′

2) = Z1 + Z2. The case for π = α is
similar.

We can describe the above correspondence between revTPL and TPL in a more abstract
way by adapting the notion of (strong) timed bisimulation [LY97] to relate configurations
from two calculi.

Definition 3.3 (Timed bisimulation). A binary relation R on X × P is a strong timed
bisimulation between revTPL and TPL if (X,P) ∈ R implies that

(1) if X
π[i]−−→ Y , then there exists Q such that P

π−→t Q and (Y,Q) ∈ R;
(2) if P

π−→t Q, then there exist Y and i such that X
π[i]−−→ Y and (Y,Q) ∈ R.

The largest strong timed bisimulation is called strong timed equivalence, denoted ∼.

We can now relate revTPL and TPL as follows:

Theorem 3.4. For each reachable revTPL configuration X we have that X ∼ ϕh(X).

Proof. It is sufficient to show that the relation R = {(X,P) | ϕh(X) = P} is a strong timed

bisimulation. Let us check the conditions. If X
π[i]−−→ Y then thanks to Proposition 3.2 we

have that ϕh(X)
π−→t ϕh(Y) with ϕh(Y) = Q, and we have that (Y,Q) ∈ R. If P

π−→t Q,

thanks to Proposition 3.2 we have that X
π[i]−−→ Y with ϕh(Y) = Q, and we have that

(Y,Q) ∈ R, as desired.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:13

Also, TPL is a conservative extension of CCS. This is stated in [HR95], albeit not
formally proved. Hence, we can define a forgetful map which discards all the temporal
operators of a TPL term and get a CCS one. We can obtain a stronger result and relate
revTPL with CCSK [PU07]. That is, if we consider the untimed part of revTPL what we
get is a reversible CCS which is exactly CCSK. To this end, we define a time forgetting
map ϕt. We denote with X k the set of untimed reversible configurations of revTPL, which
coincides with the set of all CCSK configurations (which is defined in Appendix A.2). The
set inclusion X k ⊂ X holds.

Definition 3.5 (Time forgetting map). The time forgetting map ϕt : X → X k is inductively
defined as follows:

ϕt(0) = 0 ϕt(A) = A
ϕt(α.P) = α.ϕt(P) ϕt(α[i].X) = α[i].ϕt(X)
ϕt(X + Y) = ϕt(X) + ϕt(Y) ϕt(X ∥ Y) = ϕt(X) ∥ ϕt(Y)
ϕt(X \ a) = ϕt(X) \ a ϕt(⌊X⌋(Y)) = ϕt(X) + ϕt(Y)
ϕt(σ.P) = ϕt(P) ϕt(σ[i].X) = ϕt(σ⊥[i].X) = ϕt(X)
ϕt(⌊X⌋[i←−](Y)) = ϕt(X) + ϕt(Y) ϕt(⌊X⌋[i−→](Y)) = ϕt(X) + ϕt(Y)

Notably, the restriction of ϕt to standard configurations is a map from TPL to CCS.
The most interesting aspect in the definition above is that the timeout operator ⌊X⌋(Y)

is rendered as a sum. This also happens for the decorated configurations ⌊X⌋[i←−](Y) and

⌊X⌋[i−→](Y). We will further discuss this design decision after Proposition 3.6. Also, since

we are relating a timed semantics with an untimed one (CCSK), the σ actions performed by
the timed semantics are not reflected in CCSK.

Proposition 3.6 (Embedding of CCSK [PU07]). Let X be a reachable revTPL configuration.
We have:

(1) if X
α[i]−−→ Y then ϕt(X)

α[i]−−→k ϕ
t(Y);

(2) if X
α[i]
↪−−→ Y then ϕt(X)

α[i]
↪−−→k ϕ

t(Y);

(3) if X
σ[i]7−−→ Y then ϕt(X) = ϕt(Y).

Proof. (1) : by induction on the derivation X
α[i]−−→ Y , with a case analysis on the last

applied rule. The proof goes along the lines of the proof of Proposition 3.2, using the
rules reported in Figures 8 and 9 in Appendix A.2.

(2) : similar to the case above, using X
α[i]
↪−−→ Y instead of X

α[i]−−→ Y .

(3) : by induction on the derivation of X
σ[i]−−→ Y (the case of backward transitions is

analogous), with a case analysis on the last applied rule. Basic cases are (i) rules
[Pact] and [Idle], creating a σ⊥, (ii) σ prefixes, and (iii) timeouts. In case (i) we

have Y = σ⊥[i].X, hence ϕt(Y) = ϕt(X). In case (ii) we have σ.P
σ[i]−−→ σ[i].P , hence

ϕt(σ.P) = P = ϕt(σ[i].P). In case (iii) we have ⌊X1⌋(X2)
σ[i]−−→ ⌊X1⌋[i−→](X2) with

ϕt(⌊X1⌋(X2)) = ϕt(X1) + ϕt(X2) = ϕt(⌊X1⌋[i−→](X2)) as desired. Inductive cases

follow by inductive hypothesis.

Notably, it is not always the case that transitions of the underlying untimed configuration
can be matched in a timed setting. Think, e.g., of the Erlang program in Example 0.1
(and its formalisation in Section 1.1), for a counterexample. Indeed, in the example, the

11:14 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

communication between the two processes A and B is allowed in the underlying untimed
model, but ruled out by incompatible timing constraints. Also, let us consider the simple
process X = ⌊a⌋(b) and its untimed version ϕt(X) = a+ b. The untimed process can execute
the right branch as follows

ϕt(X)
b[i]−−→ a+ b[i]

To match this action, X has first to perform a time action and only afterwards it can take
the b action, as follows:

X
σ[j]−−→ ⌊a⌋[j

−→
](b)

b[i]−−→ ⌊a⌋[j
−→

](b[i])

Moreover, there are also cases where actions cannot be matched, not even after time actions.
Indeed, the timeout operator ⌊P ⌋(Q) acts as a choice with left priority. For example, let
us consider the process X = ⌊(a ∥ a)⌋(b). We have that ϕt(X) can perform the b action as
follows

ϕt(X) = (a ∥ a) + b
b[i]−−→ (a ∥ a) + b[i]

but this action can never be matched by X, as revTPL maximal progress forces the internal
synchronisation over time passage. Hence we can only apply rule STout in Figure 2:

⌊(a ∥ a)⌋(b) τ [i]−−→ ⌊a[i] ∥ a[i]⌋[i←−](b)

and the resulting configuration cannot execute b.
Due to the examples above, we cannot characterise the relation between X and ϕt(X)

as a bisimulation, as for ϕh, but we can only prove that ϕt(X) simulates X. As before, we
need to modify notions of simulation for reversible configurations from the literature (e.g.,
[NMV90, LP21]) to relate configurations from two calculi, and to keep time into account.

Definition 3.7 (Back and forward simulation). A binary relation R on X × X k is a back
and forward simulation if (X,R) ∈ R implies that

(1) if X
α[i]−−→ Y , then there exists S such that R

α[i]−−→k S and (Y, S) ∈ R;

(2) if X
α[i]
↪−−→ Y , then there exists S such that R

α[i]
↪−−→k S and (Y, S) ∈ R;

(3) if X
σ[i]7−−→ Y , then (Y,R) ∈ R.

The largest back and forward simulation is denoted by ≾.

Theorem 3.8. For each reachable revTPL configuration X we have that X ≾ ϕt(X).

Proof. It is sufficient to show that the relation R = {(X,R) | ϕt(X) = R} is a back and
forward simulation. It is easy to check the conditions of Definition 3.7 using Proposition 3.6.

Figure 4 summarises our results: if we remove the timed behaviour from a revTPL

configuration we get a CCSK term, with the same behaviour apart for timed aspects, thanks
to Proposition 3.6. On the other side, if from revTPL we remove history information we
get a TPL term (matching its forward behaviour thanks to Proposition 3.2). Note that the
same forgetful maps (and properties) justify the arrows in the bottom part of the diagram,
as discussed above. This is in line with Theorem 5.21 of [PU07], showing that by removing
reversibility and history information from CCSK we get CCS. Notably the two forgetting
maps commute.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:15

revTPL
ϕt

Prop. 3.6vv

ϕh

Prop. 3.2 ''
CCSK

ϕh

Prop. 3.2 ((

TPL
ϕt

Prop. 3.6ww
CCS

Figure 4: Forgetting maps.

Proposition 3.9. For each reachable revTPL configuration X we have ϕh(ϕt(X)) =
ϕt(ϕh(X)).

Proof. By structural induction on X.

4. Reversibility in revTPL

In a fully reversible calculus any computation can be undone. This is a fundamental property
of reversibility [DK04, LPU20], called the Loop Lemma, and revTPL enjoys it. Formally:

Lemma 4.1 (Loop Lemma). If X is a reachable revTPL configuration, then X
π[i]−−→ X ′ ⇐⇒

X ′ π[i]
↪−−→ X

Proof. We have two directions. The forward one trivially holds, since for each forward rule
of Figure 2 there exists a symmetric one backwards in Figure 3. The backward case requires

more attention, and we proceed by induction on X
π[i]
↪−−→ Y , with a case analysis on the last

applied rule. We can further distinguish the cases according to whether π = σ, π = τ or
π = α. We will just consider one instance of each case, the others are similar.

π = σ: using rule [ChoW] we have that X = X1 +X2, X1
σ[i]
↪−−→ X ′

1, X2
σ[i]
↪−−→ X ′

2. Since by
reachability of X we have the reachability of X1 and X2, by inductive hypothesis we

have that X ′
1

σ[i]−−→ X1 and X ′
2

σ[i]−−→ X2, so we can apply the forward version of rule
[ChoW], as desired.

π = τ : using rule [Syn] by hypothesis we have that X = X1 ∥ X2 with X1
α[i]
↪−−→ X ′

1 and

X2
α[i]
↪−−→ X ′

2. By applying the inductive hypothesis we get X ′
1

α[i]−−→ X1 and X ′
2

α[i]−−→ X2,

and we can derive X ′
1 ∥ X ′

2

τ [i]−−→ X1 ∥ X2, as desired.

π = α: using rule [Cho] by hypothesis we have that X = X1+X2, X1
α[i]
↪−−→ X ′

1 and nact(X2).

By applying the inductive hypothesis we have that X ′
1

α[i]−−→ X ′
1 and we can derive

X ′
1 +X2

α[i]−−→ X1 +X2 as desired.

Another fundamental property of causal-consistent reversibility is the so-called causal-
consitency [DK04, LPU20], which essentially states that we store the correct amount of
causal information. In order to discuss it, we now borrow some definitions from [DK04]. We

use t, t′, s, s′ to range over transitions. In a transition t : X
π[i]7−−→ Y we call X the source of

11:16 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

the transition, and Y the target of the transition. Two transitions are said to be coinitial if
they have the same source, and cofinal if they have the same target. Given a transition t,

we indicate with t its reverse, that is if t : X
π[i]−−→ Y (resp., t : X

π[i]
↪−−→ Y) then t : Y

π[i]
↪−−→ X

(resp., t : Y
π[i]−−→ X). The notions of source, target, coinitiality, and cofinality naturally

extend to paths. We let χ, ω to range over sequences of transitions, which we call paths, and
with ϵX we indicate the empty sequence starting and ending at X. We denote as |χ| the
number of transitions in path χ. Moreover, we indicate with χ1χ2 the composition of the
two paths χ1 and χ2 when they are composable, that is when the target of χ1 coincides with
the source of χ2.

Definition 4.2 (Causal Equivalence). Let ≍ be the smallest equivalence on paths closed
under composition and satisfying:

(1) if t : X
π1[i]7−−−→ Y1 and s : X

π2[j]7−−−→ Y2 are independent, and s′ : Y1
π2[j]7−−−→ Z, t′ : Y2

π1[i]7−−−→ Z
then ts′ ≍ st′;

(2) tt ≍ ϵ and tt ≍ ϵ

Intuitively, paths are causal equivalent if they differ only for swapping independent
transitions (we will discuss independence below) and for adding do-undo or undo-redo pairs
of transitions.

Definition 4.3 (Causal Consistency (CC)). An LTS is causal consistent if for any coinitial
and cofinal paths χ and ω we have χ ≍ ω.

Intuitively, if coinitial paths are cofinal then they have the same causal information and
can reverse in the same ways: we want only causal equivalent paths to reverse in the same
ways.

4.1. Independence. We now define a notion of independence between revTPL coinitial
transitions, based on a causality preorder (inspired by [LP21]) on keys. Intuitively, inde-
pendent transitions can be executed in any order (we will formalise this as Property 4.11),
while transitions which are not independent represent a choice: either one is executed, or
the other.

Definition 4.4 (Partial order on keys). The function po(·) : X 7→ 2(K×K) is inductively
defined below. It takes a configuration X ∈ X and computes a set of ordered pairs of keys
which is the set of causal relations among the keys in X.

po(P) = ∅ po(X \ a) = po(X)
po(X ∥ Y) = po(X + Y) = po(⌊X⌋(Y)) = po(X) ∪ po(Y)
po(ρ[i].X) = po(⌊X⌋[i←−](Y)) = po(⌊Y ⌋[i−→](X)) = {i < j | j ∈ keys(X)} ∪ po(X)

The partial order ≤X on keys(X) is the reflexive and transitive closure of po(X).

Let us note that function po computes a partial order relation, namely a set of pairs
(i, j), denoted i < j to stress that they form a partial order. In particular, i < j means
that key i causes key j. This takes into account both structural causality given by the
structure of a configuration (e.g., a prefix causes its continuation) and causality raising from
synchronisation and time, since synchronising actions and time actions corresponding to the
same point in time have the same key.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:17

Example 4.5. Let us compute the partial order on keys in

⌊a⌋[i−→](b[j].P) ∥ σ⊥[i].c[k].d[w].Q ∥ σ⊥[i].c[k].R

We have:

po(⌊a⌋[i−→](b[j].P)) = {i < j} ∪ po(P) = {i < j} ∪ ∅ = {i < j}
po(σ⊥[i].c[k].d[w].Q) = {i < k} ∪ {i < w} ∪ po(c[k].d[w].Q)

= {i < k} ∪ {i < w} ∪ {k < w} ∪ po(d[w].Q)
= {i < k} ∪ {i < w} ∪ {k < w} ∪ ∅ ∪ po(Q)
= {i < k} ∪ {i < w} ∪ {k < w}

po(σ⊥[i].c[k].R) = {i < k} ∪ po(R) = {i < k}
and hence, looking at the parallel composition:

po(⌊a⌋[i−→](b[j].P) ∥ σ⊥[i].c[k].d[w].Q ∥ σ⊥[i].c[k].R) =

{i < j} ∪ {i < k} ∪ {i < w} ∪ {k < w} ∪ {i < k} = {i < j, i < k, i < w, k < w} ⋄

We also need to understand whether two forward communication transitions are in
conflict since either they involve a same prefix or they involve different branches of a choice.

Definition 4.6 (Forward communication conflict). Two forward communication transitions

t1 : X
α1[i]−−−→ Y and t2 : X

α2[j]−−−→ Z with i ̸= j are in forward communication conflict iff the
fcc(Y,Z) predicate defined below holds:

fcc(α[i].P, α[j].P) = True
fcc(P, P) = False
fcc(Y1 ∥ Y2, Z1 ∥ Z2) = fcc(Y1, Z2) ∨ fcc(Y2, Z2)
fcc(Y1 + Y2, Z1 + Z2) = (Y1 ̸= Z1 ∧ Y2 ̸= Z2) ∨ fcc(Y1, Z1) ∨ fcc(Y2, Z2)
fcc(Y1 \ a, Z1 \ a) = fcc(Y1, Z1)
fcc(ρ[i].Y1, ρ[i].Z1) = fcc(Y1, Z1)
fcc(⌊Y1⌋[i←−](Y2), ⌊Z1⌋[j←−

](Z2)) = fcc(Y1, Z1)

fcc(⌊Y1⌋[i←−](Y2), ⌊Z1⌋[i←−](Z2)) = fcc(Y1, Z1)

fcc(⌊Y1⌋[i−→](Y2), ⌊Z1⌋[i−→](Z2)) = fcc(Y2, Z2)

For simplicity, the fcc predicate above is defined only for pairs of configurations which
may arise from the same configuration. Notice that in the clause for choice, the only way
for the two branches to be pairwise different, is that Y has chosen one of them, and Z the
other. In this case the two actions are in conflict. However, in this case fcc may not be
defined on the components. To avoid this issue, we consider the ∨ operator to be a short
circuit operator.

Example 4.7. Let us consider the configuration X1 = a[i].b.P and the two transitions

• t1 : X1
b[j]−−→ a[i].b[j].P = Y1 and

• t2 : X1
b[z]−−→ a[i].b[z].P = Z1.

We have that

fcc(a[i].b[j].P, a[i].b[z].P) = fcc(b[j].P, b[z].P) = True

Let us consider the configuration X2 = ⌊a.0⌋[i−→](b[j].(a.P + b.Q)) and the two transitions

• t3 : X2
a[z]−−→ ⌊a.0⌋[i−→](b[j].(a[z].P + b.Q)) = Y2 and

11:18 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

• t4 : X2
a[w]−−−→ ⌊a.0⌋[i−→](b[j].(a.P + b[w].Q)) = Z2.

We have that

fcc
(
⌊a.0⌋[i−→](b[j].(a[z].P + b.Q)), ⌊a.0⌋[i−→](b[j].(a.P + b[w].Q))

)
=

fcc
(
b[j].(a[z].P + b.Q), b[j].(a.P + b[w].Q)

)
= fcc

(
a[z].P + b.Q, a.P + b[w].Q

)
= True

⋄
Lemma 4.8. Function fcc above is total for each Y and Z obtained via communication
actions from a common X.

Proof. We proceed by structural induction on X, with a case analysis on the rules used to
derive the two transitions.

X = π.P : the only possibility here is that the prefix is executed, with two different keys,
this case is covered by the first clause;

X = ⌊P ⌋(Q): here the only possibility is that the first component is executed, this case is
covered by the first clause for timeout;

X = X1 +X2: this case is covered by the fourth clause;
X = X1 ∥ X2: this case is covered by the third clause;
X = X1 \ a: this case is covered by the fifth clause;

X = A: constant A has a definition A
def
= P , hence the proof for P applies. Note that in this

case termination by structural induction is not granted, but termination is ensured
anyway since recursion is guarded;

X = 0: since X cannot take any communication action, this case never applies;
X = ρ[i].X1: this case is covered by the sixth clause;
X = ⌊X1⌋[i←−](X2): this case is covered by the one but last clause;

X = ⌊X1⌋[i−→](X2): this case is covered by the last clause.

We now define a notion of conflict, and independence as its negation.

Definition 4.9 (Conflict and independence). Given a reachable revTPL configuration X,

two coinititial transitions t : X
π1[i]7−−−→ Y and s : X

π2[j]7−−−→ Z are conflicting, if and only if one
of the following conditions holds:

(1) t : X
σ[i]−−→ Y and s : X

α[j]−−→ Z or vice versa;

(2) t : X
π1[i]−−−→ Y and s : X

π2[j]−−−→ Z are in forward communication conflict;

(3) t : X
π1[i]−−−→ Y and s : X

π2[j]
↪−−−→ Z with j ≤Y i or vice versa;

(4) t : X
π1[i]−−−→ Y and s : X

π2[j]−−−→ Z with i = j.

Transitions t and s are independent, written t I s, if they are not conflicting.

Note that the conflict relation is reflexive and symmetric, hence independence is irreflexive
and symmetric. The first clause of Definition 4.9 tells us that a delay cannot be swapped
with a communication action. Consider configuration ⌊b.0⌋(0):

⌊b.0⌋(0)
σ[i]

xx

b[j]

''
⌊b.0⌋[i−→](0) ⌊b[j].0⌋[j

←−
](0)

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:19

Transitions σ[i] and b[j] are in conflict: they cannot be swapped since action b is no longer
possible after action σ, and vice versa.

The second case of Definition 4.9 forbids either a same prefix or prefixes in different
branches of a same choice operator to be consumed by the two transitions. For example let
us consider the configuration a.0 ∥ a.0. The left configuration could execute an action a[i]
while the entire configuration could synchronise by doing a τ [j], as depicted below:

a.0 ∥ a.0
a[i]

xx

τ [j]

''
a[i].0 ∥ a.0 a[j].0 ∥ a[j].0

It is clear, from the example above, that the two actions cannot commute.
Another example of conflicting transitions captured by case 2 of Definition 4.9 is when

transitions consume prefixes in different branches of a same choice operator. For example,
let us consider the configuration a.0+ b.0. The left branch can do an action a[i] while the
right one an action b[j], as follows:

a.0+ b.0
a[i]

ww

b[j]

''
a[i].0+ b.0 a.0+ b[j].0

and again it is clear that these two transitions cannot commute.
The third clause of Definition 4.9 dictates that two transitions are in conflict when a

reverse step eliminates some causes of a forward step. For example, the configuration a[j].b.0
can do a forward step with label b[i] going to a[j].b[i].0 or a backward one with label a[j],
as follows:

a[j].b.0
L l

a[j]

zz

b[i]

&&
a.b.0 a[j].b[i].0

We have that po(a[j].b[i].0) = {j < i}, hence the side condition is satisfied. Undoing a[j]
disables the action on b.

The last case of Definition 4.9 forbids two transitions to pick up the same key.
Notably, backward transitions are never in conflict, yet it is never the case that a

backward time action and a backward communication action are enabled together, as shown
by the following proposition.

Proposition 4.10. Let X be a reachable revTPL configuration. Then it is never the case

that X
σ[i]
↪−−→ X ′ and X

α[j]
↪−−→ X ′′.

Proof. The proof is by structural induction on X. If X is standard there is nothing to prove.
If X is a prefix ρ[k].Y and Y is standard then only communication actions are possible if ρ
is a communication action, only time actions otherwise. If Y is not standard then the thesis
follows by inductive hypothesis, since only rule [Act] is applicable. In the case of timeout,
the thesis follows by noticing that at most on rule is applicable. In particular, for all the

11:20 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

rules the thesis follows by inductive hypothesis but for rule [STout], for which it follows
directly. The other cases follow by inductive hypothesis.

The Square Property tells that two coinitial independent transitions commute, thus
closing a diamond. Formally:

Property 4.11 (Square Property - SP). Given a reachable revTPL configuration X and

two coinititial transitions t : X
π1[i]7−−−→ Y and s : X

π2[j]7−−−→ Z with t I s there exist two cofinal

transitions t′ : Y
π2[j]7−−−→W and s′ : Z

π1[i]7−−−→W .

Proof. Deferred to Appendix C.

Since both CCSK and TPL are sub-calculi of revTPL as discussed in Section 3, then
the notions of conflict and independence above induce analogous notions on CCSK and
TPL. To the best of our knowledge, no such notion exists for TPL. Notions of conflict and
independence (dubbed concurrency) for CCSK have been recently proposed in [Aub22], but
they rely on extended labels while we define them on standard ones.

4.2. Causal consistency. We can now prove causal consistency, using the theory in [LPU20].
The theory in [LPU20] ensures that causal consistency follows from SP, already discussed,
and two other properties: BTI (Backward Transitions are Independent) and WF (Well-
Foundedness). BTI generalises the concept of backward determinism used for reversible
sequential languages [YG07]. It specifies that two backward transitions from a same
configuration are always independent.

Property 4.12 (Backward Transitions are Independent - BTI). Given a reachable revTPL

configuration X, any two distinct coinitial backward transitions t : X
π1[i]
↪−−−→ Y and s :

X
π2[j]
↪−−−→ Z are independent.

BTI property trivially holds since (as mentioned above) by looking at the definition
of conflicting and independent transitions (Definition 4.9) there are no cases in which two
backward transitions are deemed as conflicting, hence two backward transitions are always
independent.

We now show that reachable configurations have a finite past.

Property 4.13 (Well-Foundedness - WF). Let X0 be a reachable revTPL configuration.

Then there is no infinite sequence such that Xi
πi[ji]
↪−−−→ Xi+1 for all i = 0, 1,

Proof. WF follows since each backward transition removes a key. Given that the number
|keys(X)| of keys in X is finite, only a finite amount of backward steps can be taken.

The Parabolic Lemma [DK04, Lemma 11], stated below, tells us that any path is causally
equivalent to a path made by only backward steps, followed by only forward steps. In other
words, up to causal equivalence, paths can be rearranged so as to first reach the maximum
freedom of choice, going only backwards, and then continuing only forwards.

Definition 4.14 (Parabolic Lemma (PL) [DK04, Lemma 11] property). An LTS satisfies
the Parabolic Lemma iff for any path χ, there exist two forward-only paths ω, ω′ such that
χ ≍ ωω′ and |ω|+ |ω′| ≤ |χ|.

We can now prove our main results thanks to the proof schema of [LPU20].

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:21

Proposition 4.15 (cf. Proposition 3.4 [LPU20]). Suppose BTI and SP hold, then PL holds.

Proposition 4.16 (cf. Proposition 3.6 [LPU20]). Suppose WF and PL hold, then CC holds.

As a corollary of PL, reachable states are reachable via forward-only paths (cf. [LPU20]).

Corollary 4.17. A configuration X is reachable iff there exists a process P and a forward-
only path P −→∗ X.

Proof. From PL, by noticing that the backward path is empty since P cannot take backward
actions.

The general theory above can help us in proving specific properties of revTPL, as we
show below.

We have considered in this paper a global notion of time, as shown by the following
theorem.

Theorem 4.18. For each reachable revTPL configuration X, the restriction of ≤X to keys
attached to time actions is a total order.

Proof. From Corollary 4.17 we have that there exist a process P and a forward-only path
P −→∗ X. Take two arbitrary keys i and j attached to time actions. Let i be the first one

to occur in P −→∗ X, and X1
σ[i]−−→ X2 the transition introducing it (note that each step

introduces a key). Since the path is forward, key j will be attached to some configuration
which is standard in X2 (or to a σ⊥ just before a standard configuration). We show by

induction on the derivation of X1
σ[i]−−→ X2 that this implies i < j. The thesis will follow. We

have a case analysis on the last applied rule.
The cases of rules [PAct], [RAct] and [Idle] follow from the definition of po on prefix.

The cases of rules [Act], [Hide] and [Const] follow by induction. The cases for timeout are
similar, noticing that j could only be attached to the selected configuration. For parallel
composition, only rule [SynW] needs to be considered, and the thesis follows by inductive
hypothesis. Similarly, for choice only rule [ChoW] needs to be considered, and the thesis
follows by induction as well.

As shown above, time actions are never independent, and only communication actions
can be. Also, since time actions do not commute with communication actions (cf. clause 1
in Definition 4.9) then each communication action is bound to be executed between two
fixed time actions.

One may wonder whether the global notion of time described above is too strict. This
is a very good question, and indeed we plan in future work to investigate different notions of
causality for TPL, which will induce a different causal-consistent reversible extension.

We show here just that dropping the σ⊥[i] prefix, which ensures time actions are recorded
also by untimed configurations, would not solve the issue. We have pursued this approach
in [BLMY22], but it leads to violations of the Loop Lemma and the Parabolic Lemma, two
main properties in the causal-consistency theory, as shown by the following example.

Example 4.19. Let us consider the configuration X = σ.a.0 ∥ b.σ.0 and the following
execution:

X
σ[i]−−→ σ[i].a.0 ∥ b.σ.0 b[j]−−→ σ[i].a.0 ∥ b[j].σ.0 σ[k]−−→ σ[i].a.0 ∥ b[j].σ[k].0 = Z

11:22 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

Now from Z we can undo the time actions σ[i] and σ[k] as follows:

Z
σ[i]
↪−−→ σ.a.0 ∥ b[j].σ[k].0 = Z1

σ[k]
↪−−→ σ.a.0 ∥ b[j].σ.0 = Z2

Now let us focus on the last transition. According to the Loop Lemma (Lemma 4.1) we can

reach Z1 from Z2 by doing a forward time action, that is Z2
σ[k]−−→ Z1, but this is impossible

as

σ.a.0 ∥ b[j].σ.0 σ[k]−−→ σ[k].a.0 ∥ b[j].σ[k].0 ̸= Z1

Also, the Parabolic Lemma fails. Indeed if we consider the path which leads to Z1, according
to the Parabolic Lemma, we can rewrite this path as a sequence of backward transitions
followed by forward ones. If from Z1 we undo all the actions and try to reach it by using
just forward actions we fail since:

Z1 =σ.a.0 ∥ b[j].σ[k].0
σ[k]
↪−−→

b[j]
↪−−→ σ.a.0 ∥ b.0

b[j]−−→ σ.a.0 ∥ b[j].σ.0 σ[k]−−→ σ[k].a.0 ∥ b[j].σ[k].0 ̸= Z1

By using σ⊥[i] prefixes we impose a total order among time actions, as shown in
Theorem 4.18, as follows:

X
σ[i]−−→σ[i].a.0 ∥ σ⊥[i].b.σ.0

b[j]−−→ σ[i].a.0 ∥ σ⊥[i].b[j].σ.0
σ[k]−−→

σ[i].σ⊥[k].a.0 ∥ b[j].σ[k].0 = Y

Now from Y we cannot undo the time action σ[i], since now we need to undo action σ[k]
first. With this machinery in place, we enforce a strict notion of causality in TPL, but we
have been able to successfully build a causal-consistent reversible extension. ⋄

5. Conclusion, Related and Future Work

The main contribution of this paper is the study of the interplay between causal-consistent
reversibility and time. A reversible semantics for TPL cannot be automatically derived using
well-established frameworks [PU07, LM20], since some operator acts differently depending on
whether the label is a communication or a time action. For example, in TPL a choice cannot
be decided by the passage of time, making the + operator both static and dynamic, and
the approach in [PU07] not applicable. To faithfully capture patient actions in a reversible
semantics we introduced σ⊥ prefixes. Another peculiarity of TPL is the timeout operator
⌊P ⌋(Q), which can be seen as a choice operator whose left branch has priority over the right
one. Indeed, if P can do a τ action then Q can not execute and it is discarded. Although we
have been able to use the static approach to reversibility [PU07], adapting it to our setting
has been challenging for the aforementioned reasons. Notably, our results have a double
interpretation: as an extension of CCSK [PU07] with time, and as a reversible extension
of TPL [HR95]. As a side result, by focusing on the two fragments, we derive notions of
independence and conflict for CCSK and TPL.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:23

Other process algebras. As said by Baeten and Bergstra “Adding real time features can
be done in many ways and it is impossible to explore all options in a single paper” [BB91].
The literature of timed process calculi is indeed rich. Thus, we only give an outline of
the main approaches with the purpose of reflecting on the applicability of our results to
different time approaches. Besides TPL [HR95], considered in this paper, a non-exhaustive
list of alternative formalisms includes timed CSP [RR86], temporal CCS [MT90], timed
CCS [Yi91], real-time ACP [BB91], urgent LOTOS [BL92], CIPA [AM96], ATP [NS94],
TIC [QdFA93], PAFAS [CVJ02], and mCRL2 [GM14].

To simplify the discussion, we build on the categorisation in [BM23] and focus our
comparison on the following time-related design choices:

Separated vs integrated semantics: In the first case, actions are instantaneous and time
only passes in between actions; hence, functional behaviour and time are orthogonal.
In the second case, every action takes a certain amount of time to be performed and
time passes only due to action execution; hence, functional behaviour and time are
integrated.

Relative time vs absolute delays: In the first case, each delay refers to the time instant
of the previous observation. In the second case, all delays refer to the starting time of
the system’s execution.

Global clock vs local clocks: In the first case, a single clock governs the pace of time
passing in the system. In the second case, several clocks associated with the various
system parts may have different views of the pace of time. If a model allows processes
to have local clocks but time flows at the same pace for all of them (even if they hold
different values due to resets, as in the case e.g. of Timed Automata [AD94]) we still
classify the model as a global clock model.

Eager vs lazy vs maximal progress: There are several interpretations of when a com-
munication action can be executed or delayed. Eager semantics enforce actions to be
performed as soon as they become enabled, i.e., without any delay, thereby implying
that their execution is urgent. On the other hand, laziness allows the execution of
an action to be delayed even if the action is enabled. Maximal progress is eager for
internal actions and lazy otherwise: actions can be delayed only if they are waiting to
synchronise with some external partner which is not yet available. Some calculi have
primitives for both eager and lazy actions, so each action can be either lazy or eager.

Table 1 illustrates how the aforementioned timed calculi position with respect to the four
criteria above. Most of the formalisms we have reviewed combine separated semantics,
relative time, and global clock. The main difference is the urgency (or lack thereof) of
communication actions with respect to time actions. ATP [NS94], temporal CCS [MT90],
and PAFAS [CVJ02] allow actions to happen at any time within the prescribed intervals
(e.g., later than when they become ready to execute). Instead, timed CSP [RR86] and timed
CCS [Yi91] share the same approach we adopted in this paper, inherited from TPL [HR95]:
actions are normally lazy, unless they are silent in which case they are eager (maximal
progress). A more general approach is the one of urgent LOTOS [BL92], which provides
primitives for urgent actions and primitives for non-urgent actions, hence enabling one to
decide the semantics of each specific action. The remaining formalisms have integrated
semantics combined with absolute time. In mCRL [GM14], CIPA [QdFA93], and
TIC [QdFA93], the transition relation models both execution of actions and time elapsing

11:24 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

semantics time clocks actions

ATP [NS94] separated relative global lazy
temporal CCS [MT90] separated relative global lazy
PAFAS [CVJ02] separated relative global lazy
TPL [HR95] separated relative global maximal progress
timed CSP [RR86] separated relative global maximal progress
timed CCS [Yi91] separated relative global maximal progress
urgent LOTOS [BL92] separated relative global either
mCRL2 [GM14] integrated absolute global lazy
CIPA [AM96] integrated absolute local eager
TIC [QdFA93] integrated absolute local either

Table 1: Semantics can be separated or integrated; time can be relative or absolute; clocks
can be global or local; actions can be eager, lazy, either of them, or maximal
progress.

(integrated semantics).2 In all the three calculi, time is specified from the beginning of the
computation (absolute time). While mCRL relies on a global clock, CIPA and TIC allow
parallel processes to go ‘out of sync’ (local clocks). In CIPA, global time synchronisation is
only required for causally dependent actions (it has to be re-established before two processes
can communicate with each other). TIC uses an ‘age’ function to record discrepancies
between the time of parallel processes. mCRL has no silent actions, and time idling and
communication actions can happen at any time, after they become ready (lazy). In CIPA,
the timing of an action needs to exactly match its prescription so the action happens as
soon as it is ready (eager). TIC allows delays of exact amounts of time (urgent/eager) as
well as delays of times within an interval (lazy).

The application of our approach using integrated semantics and/or absolute time should
not present any particular challenge. In fact, separated and integrated semantics have been
shown to be equivalent [BCT16] (i.e., they can be encoded into each other preserving weak
barbed bisimilarity). Similarly for absolute instead of relative time thanks to the equivalence
given in [Cor00].

Extending our framework to local clocks (e.g., as in CIPA) would be interesting but
non-trivial in our integrated semantics. It may require us to record some live information
on the different time perspective of parallel processes to rule out unwanted interleavings.
An alternative could be to exploit the encoding of [BCT16] from TCCS to CIPA, and see
whether the semantics is still preserved while considering reversible behaviours.

Building from the conference version of this article [BLMY22], the work in [BM23] has
shown that our approach would apply also to a semantics with only eager actions and to a
semantics with only lazy actions. However, the applicability of our approach to a scenario
where each action can be statically set to be either lazy or eager (the ‘either’ option in the
‘action’ column of Table 1) needs to be further investigated.

Alternative timed formalisms. Timed Petri nets are a relevant tool for analysing real-
time systems. A step towards the analysis of real-time systems would be to encode revTPL

2The transition relation of mCRL does also feature an idling relation, but this does not lead to any
follow-up state and is just for final states.

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:25

into timed Petri nets [ZFH01] extended with reversibility, by building on the encoding
of reversible CCS into reversible Petri nets [MMP21b]. Also, we could think of encoding
revTPL in timed automata [ACD93] extended with reversibility. Another possibility would
be to study the extension of a monitored timed semantics for multiparty session types, as
the one of [NBY17], with reversibility [MP21].

Maximal progress of TPL (as well as revTPL) has connections with Markov chains [BH00].
For instance, in a stochastic process algebra, the process

τ.P + (λ).Q

(where λ is a rate) will not be delayed since τ is instantaneously enabled. This is similar
to maximal progress for the timeout operator. A deep comparison between deterministic
time, used by TPL, and stochastic time, used by stochastic process algebras, can be found
in [BCT16]. Further investigation on the relation between our work and [BM20], studying
reversibility in Markov chains, is left for future work. The treatment of passage of time shares
some similarities with broadcast [Mez18] as well: time actions affect parallel components in
the same way.

Future directions. We have just started our research quest towards a reversible timed
semantics. Beyond considering local notions of time, as discussed after Theorem 4.18, a
first improvement would be to add an explicit rollback operator, as in [LMSS11], that could
be triggered, e.g., in reaction to a timeout. Also, asynchronous communications (like in
Erlang) could be taken into account. TPL is a conservative timed extension of CCS. Due to
its simplicity, it has a very clear behavioural theory [HR95], including an axiomatization.
A further step could be to adapt such behavioural theory to account for reversibility, by
combining it with the one for CCSK developed in [LP21]. However, the fact that reversibility
breaks Milner’s expansion law may limit the power of the axiomatisation. Also, we could
consider studying more complex temporal operators [NS91]. In TPL time is discrete, and the
language abstracts away from how time is represented. Indeed, the idling prefix σ is meant
to await one cycle of clock. A more fine-grained treatment of time in CCS was proposed in
Timed CCS (TCCS) [Yi90, Yi91]. In TCCS it is possible to express a process, say P, which
awaits 3 time units directly by:

ϵ(3).P

Now the process above, in principle, can be rendered in TPL as the process σ.σ.σ.P by
assuming that a cycle of clock lasts one time unit. But this is only possible if we consider
TCCS with discrete time. Even if we restrict ourselves to discrete time, encoding the ϵ(·)
operator in TPL would be troublesome to treat (from a reversible point of view) as a single
step has to be matched by several ones. Also, TCCS obeys to time additivity (two actions
taking times t1 and t2 can be turned into a single action taking time t1+ t2), while TPL does
not. As shown in [BM23], time additivity poses a problem with our approach: in presence of
time additivity, the proof schema proposed in [LPU20] does not hold anymore. In particular,
because of time additivity BTI does not hold anymore and Loop Lemma has to be formalised
in a weaker form. Hence, one has to redo all the proofs. For all these reasons, it will not be
straightforward to adapt the approach in this paper to deal with TCCS.

11:26 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

Prospective applications. As discussed above, this work is a first step towards an analysis
of reversible real-time systems and it has the purpose of clarifying the relationship between
reversibility and time. Although the contribution of this work is theoretical, we envisage a
potential application to debugging of real-time Erlang code. More concretely, we would like
to extend CauDEr [LNPV18, GV21, Cau22], the only causal-consistent reversible debugger
for a (fragment of a) real programming language we are aware of. The purpose of the
extension would be to support timed Erlang programs. To this end we would first need
to extend the reversible semantics of Erlang in [LLS+22, FLS21] with a notion of time,
imported from the present work, so to support constructs such as ‘after ’ and ‘sleep’, as used,
e.g., in our Example 0.1. The ‘after ’ (i.e., timeout) construct, in particular, is very common
in the Erlang programming practice. Even if Erlang timeouts are close to TPL ones, there
are a number of challenges to be faced. First, Erlang communication is asynchronous, unlike
revTPL. Second, and more importantly, Erlang delays can be explicit in the code, as in
our Example 0.1, but they can also be generated by network delays or long computations.
Therefore, in order to enable reversible debugging of timed programs, one needs to pair the
code with a model, possibly computed in an automated way, that describes the delays that
are likely to occur in the system of interest. The development of this prospective application
goes beyond the scope of the formal setting given in the current work.

Another possible application is to bring our theory to timed Rebecca [KSS+15] which is
a timed actor based language with model checking support. This would enable us to exploit
model checking for reversible behaviours.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in dense real-time. Inf.
Comput., 104(1):2–34, 1993. doi:10.1006/inco.1993.1024.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994. doi:10.1016/0304-3975(94)90010-8.

[AM96] Luca Aceto and David Murphy. Timing and causality in process algebra. Acta Informatica,
33(4):317–350, 1996. doi:10.1007/s002360050047.

[Aub22] Clément Aubert. Concurrencies in reversible concurrent calculi. In Claudio Antares Mezzina and
Krzysztof Podlaski, editors, Reversible Computation - 14th International Conference, RC 2022,
Urbino, Italy, July 5-6, 2022, Proceedings, volume 13354 of Lecture Notes in Computer Science,
pages 146–163. Springer, 2022. doi:10.1007/978-3-031-09005-9_10.

[BB91] Jos C. M. Baeten and J. A. Bergstra. Real time process algebra. Form. Asp. Comput., 3(2):142–
188, jun 1991. doi:10.1007/BF01898401.

[BCT16] Marco Bernardo, Flavio Corradini, and Luca Tesei. Timed process calculi with deterministic or
stochastic delays: Commuting between durational and durationless actions. Theor. Comput. Sci.,
629:2–39, 2016. doi:10.1016/j.tcs.2016.02.022.

[Ber05] Ivan Cibrario Bertolotti. Real-time embedded operating systems. In Richard Zurawski, editor,
Embedded Systems Handbook. CRC Press, 2005. doi:10.1201/9781420038163.ch11.

[BH00] Ed Brinksma and Holger Hermanns. Process algebra and Markov chains. In Ed Brinksma, Holger
Hermanns, and Joost-Pieter Katoen, editors, Lectures on Formal Methods and Performance
Analysis, First EEF/Euro Summer School on Trends in Computer Science, Revised Lectures,
volume 2090 of Lecture Notes in Computer Science, pages 183–231. Springer, 2000. doi:10.1007/
3-540-44667-2_5.

[BJCC13] Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. Reversible debugging software
“quantify the time and cost saved using reversible debuggers”, 2013. URL: https://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.444.9094&rep=rep1&type=pdf.

[BL92] Tommaso Bolognesi and Ferdinando Lucidi. Lotos-like process algebras with urgent or timed
interactions. In K.R. Parker and G.A. Rose, editors, Formal Description Techniques, IV, IFIP

https://doi.org/10.1006/inco.1993.1024
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/s002360050047
https://doi.org/10.1007/978-3-031-09005-9_10
https://doi.org/10.1007/BF01898401
https://doi.org/10.1016/j.tcs.2016.02.022
https://doi.org/10.1201/9781420038163.ch11
https://doi.org/10.1007/3-540-44667-2_5
https://doi.org/10.1007/3-540-44667-2_5
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.9094&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.444.9094&rep=rep1&type=pdf

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:27

Transactions C: Communication Systems, pages 249–264. Elsevier, Amsterdam, 1992. doi:
10.1016/B978-0-444-89402-1.50027-8.

[BLMY22] Laura Bocchi, Ivan Lanese, Claudio Antares Mezzina, and Shoji Yuen. The reversible temporal
process language. In Mohammad Reza Mousavi and Anna Philippou, editors, FORTE 2022,
volume 13273 of Lecture Notes in Computer Science, pages 31–49. Springer, 2022. doi:10.1007/
978-3-031-08679-3_3.

[BM20] Marco Bernardo and Claudio Antares Mezzina. Towards bridging time and causal reversibility.
In Alexey Gotsman and Ana Sokolova, editors, Formal Techniques for Distributed Objects,
Components, and Systems, FORTE 2020, volume 12136 of Lecture Notes in Computer Science,
pages 22–38. Springer, 2020. doi:10.1007/978-3-030-50086-3_2.

[BM23] Marco Bernardo and Claudio Antares Mezzina. Causal reversibility for timed process calculi with
durationless lazy/eager actions and time additivity. In Laure Petrucci and Jeremy Sproston, edi-
tors, Formal Modeling and Analysis of Timed Systems. FORMATS 2023, volume 14138 of Lecture
Notes in Computer Science, pages 15–32. Springer, 2023. doi:10.1007/978-3-031-42626-1_2.

[Cau22] CauDEr repository. Available at https://github.com/mistupv/cauder, 2022.
[CKV13] Ioana Cristescu, Jean Krivine, and Daniele Varacca. A compositional semantics for the reversible

π-calculus. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pages
388–397. IEEE Computer Society, 2013. doi:10.1109/LICS.2013.45.

[Cor00] Flavio Corradini. Absolute versus relative time in process algebras. Inf. Comput., 156(1-2):122–
172, 2000. doi:10.1006/inco.1999.2821.

[CVJ02] Flavio Corradini, Walter Vogler, and Lars Jenner. Comparing the worst-case efficiency of
asynchronous systems with PAFAS. Acta Informatica, 38(11/12):735–792, 2002. doi:10.1007/
s00236-002-0094-3.

[DK04] Vincent Danos and Jean Krivine. Reversible communicating systems. In Philippa Gardner and
Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory, 15th International Conference,
volume 3170 of Lecture Notes in Computer Science, pages 292–307. Springer, 2004. doi:10.1007/
978-3-540-28644-8_19.

[FGP12] Julie Street Fant, Hassan Gomaa, and Robert G. Pettit IV. A comparison of executable model
based approaches for embedded systems. In He Zhang, Liming Zhu, and Ihor Kuz, editors, Second
International Workshop on Software Engineering for Embedded Systems, SEES 2012, pages 16–22.
IEEE, 2012. doi:10.1109/SEES.2012.6225484.

[FLS21] Giovanni Fabbretti, Ivan Lanese, and Jean-Bernard Stefani. Causal-consistent debugging of
distributed Erlang programs. In Shigeru Yamashita and Tetsuo Yokoyama, editors, Reversible
Computation - 13th International Conference, RC 2021, volume 12805 of Lecture Notes in
Computer Science, pages 79–95. Springer, 2021. doi:10.1007/978-3-030-79837-6_5.

[GLM14] Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina. Causal-consistent reversible debug-
ging. In Stefania Gnesi and Arend Rensink, editors, FASE 2014, volume 8411 of Lecture Notes
in Computer Science, pages 370–384. Springer, 2014. doi:10.1007/978-3-642-54804-8_26.

[GLMT17] Elena Giachino, Ivan Lanese, Claudio Antares Mezzina, and Francesco Tiezzi. Causal-consistent
rollback in a tuple-based language. J. Log. Algebraic Methods Program., 88:99–120, 2017. doi:
10.1016/j.jlamp.2016.09.003.

[GM14] Jan Friso Groote and Mohammad Reza Mousavi. Modeling and Analysis of Communicating
Systems. The MIT Press, 2014.

[Gra86] Jim Gray. Why do computers stop and what can be done about it? In Fifth Symposium on
Reliability in Distributed Software and Database Systems, SRDS 1986, Los Angeles, California,
USA, January 13-15, 1986, Proceedings, pages 3–12. IEEE Computer Society, 1986.

[GV21] Juan José González-Abril and Germán Vidal. Causal-consistent reversible debugging: Improving
CauDEr. In José F. Morales and Dominic A. Orchard, editors, Practical Aspects of Declarative
Languages - 23rd International Symposium, PADL, volume 12548 of Lecture Notes in Computer
Science, pages 145–160. Springer, 2021. doi:10.1007/978-3-030-67438-0_9.

[GZT20] Mageed Ghaleb, Hossein Zolfagharinia, and Sharareh Taghipour. Real-time production scheduling
in the industry-4.0 context: Addressing uncertainties in job arrivals and machine breakdowns.
Computers & Operations Research, 123:105031, 2020. doi:10.1016/j.cor.2020.105031.

[HR95] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf. Comput., 117(2):221–
239, 1995. doi:10.1006/inco.1995.1041.

https://doi.org/10.1016/B978-0-444-89402-1.50027-8
https://doi.org/10.1016/B978-0-444-89402-1.50027-8
https://doi.org/10.1007/978-3-031-08679-3_3
https://doi.org/10.1007/978-3-031-08679-3_3
https://doi.org/10.1007/978-3-030-50086-3_2
https://doi.org/10.1007/978-3-031-42626-1_2
https://github.com/mistupv/cauder
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1006/inco.1999.2821
https://doi.org/10.1007/s00236-002-0094-3
https://doi.org/10.1007/s00236-002-0094-3
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1109/SEES.2012.6225484
https://doi.org/10.1007/978-3-030-79837-6_5
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1016/j.jlamp.2016.09.003
https://doi.org/10.1016/j.jlamp.2016.09.003
https://doi.org/10.1007/978-3-030-67438-0_9
https://doi.org/10.1016/j.cor.2020.105031
https://doi.org/10.1006/inco.1995.1041

11:28 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

[Koo10] Philip Koopman. Better Embedded System Software. Drumnadrochit Press, 2010. URL: http:
//koopman.us/book.html.

[KSS+15] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi-Kaviani, Ramtin Khosravi, and Mohammad-
Javad Izadi. Timed rebeca schedulability and deadlock freedom analysis using bounded floating
time transition system. Sci. Comput. Program., 98:184–204, 2015. doi:10.1016/j.scico.2014.
07.005.

[LLS+22] Pietro Lami, Ivan Lanese, Jean-Bernard Stefani, Claudio Sacerdoti Coen, and Giovanni Fabbretti.
Reversibility in Erlang: Imperative constructs. In Claudio Antares Mezzina and Krzysztof
Podlaski, editors, Reversible Computation - 14th International Conference, RC 2022, Urbino,
Italy, July 5-6, 2022, Proceedings, volume 13354 of Lecture Notes in Computer Science, pages
187–203. Springer, 2022. doi:10.1007/978-3-031-09005-9_13.

[LM20] Ivan Lanese and Doriana Medic. A general approach to derive uncontrolled reversible semantics.
In Igor Konnov and Laura Kovács, editors, 31st International Conference on Concurrency Theory,
CONCUR 2020, volume 171 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.33.

[LMM21] Ivan Lanese, Doriana Medic, and Claudio Antares Mezzina. Static versus dynamic reversibility
in CCS. Acta Informatica, 58(1-2):1–34, 2021. doi:10.1007/s00236-019-00346-6.

[LMS16] Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani. Reversibility in the higher-order
π-calculus. Theor. Comput. Sci., 625:25–84, 2016. doi:10.1016/j.tcs.2016.02.019.

[LMSS11] Ivan Lanese, Claudio Antares Mezzina, Alan Schmitt, and Jean-Bernard Stefani. Controlling
reversibility in higher-order pi. In Joost-Pieter Katoen and Barbara König, editors, CONCUR
2011 - Concurrency Theory - 22nd International Conference, volume 6901 of Lecture Notes in
Computer Science, pages 297–311. Springer, 2011. doi:10.1007/978-3-642-23217-6_20.

[LMT14] Ivan Lanese, Claudio Antares Mezzina, and Francesco Tiezzi. Causal-consistent reversibility. Bull.
EATCS, 114, 2014. URL: http://bulletin.eatcs.org/index.php/beatcs/article/view/305.

[LNPV18] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. CauDEr: A causal-consistent
reversible debugger for Erlang. In John P. Gallagher and Martin Sulzmann, editors, Functional
and Logic Programming - 14th International Symposium, FLOPS 2018, Nagoya, Japan, May
9-11, 2018, Proceedings, volume 10818 of Lecture Notes in Computer Science, pages 247–263.
Springer, 2018. doi:10.1007/978-3-319-90686-7_16.

[LP21] Ivan Lanese and Iain C. C. Phillips. Forward-reverse observational equivalences in CCSK. In
Shigeru Yamashita and Tetsuo Yokoyama, editors, Reversible Computation - 13th International
Conference, RC 2021, Virtual Event, July 7-8, 2021, Proceedings, volume 12805 of Lecture Notes
in Computer Science, pages 126–143. Springer, 2021. doi:10.1007/978-3-030-79837-6_8.

[LPU20] Ivan Lanese, Iain C. C. Phillips, and Irek Ulidowski. An axiomatic approach to reversible
computation. In Jean Goubault-Larrecq and Barbara König, editors, FOSSACS 2020, volume
12077 of Lecture Notes in Computer Science, pages 442–461. Springer, 2020. doi:10.1007/
978-3-030-45231-5_23.

[LY97] Kim Guldstrand Larsen and Wang Yi. Time-abstracted bisimulation: Implicit specifications and
decidability. Inf. Comput., 134(2):75–101, 1997. doi:10.1006/inco.1997.2623.

[Mez18] Claudio Antares Mezzina. On reversibility and broadcast. In Jarkko Kari and Irek Ulidowski, edi-
tors, Reversible Computation - 10th International Conference, RC 2018, volume 11106 of Lecture
Notes in Computer Science, pages 67–83. Springer, 2018. doi:10.1007/978-3-319-99498-7_5.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer, 1980. doi:10.1007/3-540-10235-3.

[MMP21a] Hernán C. Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. A distributed operational
view of reversible prime event structures. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470623.

[MMP21b] Hernán C. Melgratti, Claudio Antares Mezzina, and G. Michele Pinna. Towards a truly concurrent
semantics for reversible CCS. In Shigeru Yamashita and Tetsuo Yokoyama, editors, Reversible
Computation - 13th International Conference, RC 2021, volume 12805 of Lecture Notes in
Computer Science, pages 109–125. Springer, 2021. doi:10.1007/978-3-030-79837-6_7.

[MMPY20] Doriana Medic, Claudio Antares Mezzina, Iain C. C. Phillips, and Nobuko Yoshida. A parametric
framework for reversible π-calculi. Inf. Comput., 275:104644, 2020. doi:10.1016/j.ic.2020.
104644.

http://koopman.us/book.html
http://koopman.us/book.html
https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1007/978-3-031-09005-9_13
https://doi.org/10.4230/LIPIcs.CONCUR.2020.33
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1016/j.tcs.2016.02.019
https://doi.org/10.1007/978-3-642-23217-6_20
http://bulletin.eatcs.org/index.php/beatcs/article/view/305
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1007/978-3-030-79837-6_8
https://doi.org/10.1007/978-3-030-45231-5_23
https://doi.org/10.1007/978-3-030-45231-5_23
https://doi.org/10.1006/inco.1997.2623
https://doi.org/10.1007/978-3-319-99498-7_5
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1007/978-3-030-79837-6_7
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1016/j.ic.2020.104644

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:29

[MMU19] Hernán C. Melgratti, Claudio Antares Mezzina, and Irek Ulidowski. Reversing P/T nets. In
Hanne Riis Nielson and Emilio Tuosto, editors, Coordination Models and Languages - 21st IFIP
WG 6.1 International Conference, COORDINATION 2019, Held as Part of the 14th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby,
Denmark, June 17-21, 2019, Proceedings, volume 11533 of Lecture Notes in Computer Science,
pages 19–36. Springer, 2019. doi:10.1007/978-3-030-22397-7_2.

[MP20] Raffaele Mauro and Andrea Pompigna. State of the art and computational aspects of time-
dependent waiting models for non-signalised intersections. Journal of Traffic and Transportation
Engineering (English Edition), 7(6):808–831, 2020. doi:10.1016/j.jtte.2019.09.007.

[MP21] Claudio Antares Mezzina and Jorge A. Pèrez. Causal consistency for reversible multiparty
protocols. Logical Methods in Computer Science, Volume 17, Issue 4, October 2021. doi:10.
46298/lmcs-17(4:1)2021.

[MT90] Faron Moller and Chris Tofts. A temporal calculus of communicating systems. In J. C. M. Baeten
and J. W. Klop, editors, CONCUR ’90 Theories of Concurrency: Unification and Extension,
pages 401–415, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg. doi:10.1007/BFb0039073.

[NBY17] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput., 29(5):877–910, 2017. doi:10.1007/s00165-017-0420-8.

[NMV90] Rocco De Nicola, Ugo Montanari, and Frits W. Vaandrager. Back and forth bisimulations. In
Jos C. M. Baeten and Jan Willem Klop, editors, CONCUR, volume 458 of Lecture Notes in
Computer Science, pages 152–165. Springer, 1990. doi:10.1007/BFb0039058.

[NS91] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process algebras. In
Kim Guldstrand Larsen and Arne Skou, editors, Computer Aided Verification, 3rd International
Workshop, CAV ’91, volume 575 of Lecture Notes in Computer Science, pages 376–398. Springer,
1991. doi:10.1007/3-540-55179-4_36.

[NS94] Xavier Nicollin and Joseph Sifakis. The algebra of timed processes, atp: Theory and application.
Information and Computation, 114(1):131–178, 1994. doi:10.1006/inco.1994.1083.

[PP18] Anna Philippou and Kyriaki Psara. Reversible computation in Petri nets. In Jarkko Kari and Irek
Ulidowski, editors, Reversible Computation - 10th International Conference, RC 2018, Leicester,
UK, September 12-14, 2018, Proceedings, volume 11106 of Lecture Notes in Computer Science,
pages 84–101. Springer, 2018. doi:10.1007/978-3-319-99498-7_6.

[PU07] Iain C. C. Phillips and Irek Ulidowski. Reversing algebraic process calculi. J. Log. Algebraic
Methods Program., 73(1-2):70–96, 2007. doi:10.1016/j.jlap.2006.11.002.

[PUY12] Iain C. C. Phillips, Irek Ulidowski, and Shoji Yuen. A reversible process calculus and the
modelling of the ERK signalling pathway. In Robert Glück and Tetsuo Yokoyama, editors,
Reversible Computation, 4th International Workshop, RC 2012, volume 7581 of Lecture Notes in
Computer Science, pages 218–232. Springer, 2012. doi:10.1007/978-3-642-36315-3_18.

[QdFA93] Juan Quemada, David de Frutos, and Arturo Azcorra. Tic: A timed calculus. Formal Aspects of
Computing, 5(3):224–252, 1993. doi:10.1007/BF01211556.

[RR86] George M. Reed and Andrew W. Roscoe. A timed model for communicating sequential pro-
cesses. In Laurent Kott, editor, Automata, Languages and Programming, pages 314–323, Berlin,
Heidelberg, 1986. Springer Berlin Heidelberg.

[Viz20] Mike Vizard. Report: Debugging efforts cost companies $61b annually, 2020. URL: https:
//devops.com/report-debugging-efforts-cost-companies-61b-annually/.

[YG07] Tetsuo Yokoyama and Robert Glück. A reversible programming language and its invertible
self-interpreter. In G. Ramalingam and Eelco Visser, editors, Proceedings of the 2007 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, pages
144–153. ACM, 2007. doi:10.1145/1244381.1244404.

[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In Jos C. M. Baeten and Jan Willem
Klop, editors, CONCUR ’90, Theories of Concurrency: Unification and Extension, Amsterdam,
The Netherlands, August 27-30, 1990, Proceedings, volume 458 of Lecture Notes in Computer
Science, pages 502–520. Springer, 1990. doi:10.1007/BFb0039080.

[Yi91] Wang Yi. CCS + time = an interleaving model for real time systems. In Javier Leach Al-
bert, Burkhard Monien, and Mario Rodŕıguez-Artalejo, editors, Automata, Languages and

https://doi.org/10.1007/978-3-030-22397-7_2
https://doi.org/10.1016/j.jtte.2019.09.007
https://doi.org/10.46298/lmcs-17(4:1)2021
https://doi.org/10.46298/lmcs-17(4:1)2021
https://doi.org/10.1007/BFb0039073
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1007/BFb0039058
https://doi.org/10.1007/3-540-55179-4_36
https://doi.org/10.1006/inco.1994.1083
https://doi.org/10.1007/978-3-319-99498-7_6
https://doi.org/10.1016/j.jlap.2006.11.002
https://doi.org/10.1007/978-3-642-36315-3_18
https://doi.org/10.1007/BF01211556
https://devops.com/report-debugging-efforts-cost-companies-61b-annually/
https://devops.com/report-debugging-efforts-cost-companies-61b-annually/
https://doi.org/10.1145/1244381.1244404
https://doi.org/10.1007/BFb0039080

11:30 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

Programming, 18th International Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991, Pro-
ceedings, volume 510 of Lecture Notes in Computer Science, pages 217–228. Springer, 1991.
doi:10.1007/3-540-54233-7_136.

[ZFH01] Armin Zimmermann, Jörn Freiheit, and Günter Hommel. Discrete time stochastic Petri nets
for the modeling and evaluation of real-time systems. In Proceedings of the 15th International
Parallel & Distributed Processing Symposium (IPDPS-01), page 100. IEEE Computer Society,
2001. doi:10.1109/IPDPS.2001.925065.

Appendix A. Background: CCS, CCSK and TPL

In this section we present the full syntax and semantics of CCS, TPL and CCSK, taken
respectively from [Mil80], [HR95] and [PU07].

A.1. CCS: Calculus of Communicating Systems. The Calculus of Communicating
Systems is a process calculus introduced by Milner [Mil80]. We let A be the set of action
names a, A the set of action conames a. We use α to range over a, a and internal actions τ .
We assume a = a. We let Aτ = A ∪A ∪ {τ}. The syntax of CCS is reported in Figure 5.
A process can be an action prefix α.P , that can perform an action α and continue as P , a
non-deterministic choice P +Q among two processes, a parallel composition P ∥ Q of two
processes, the restriction P \ a, which acts as the process P , but actions on a are forbidden,
the constant identifier A and the inactive process 0. The semantics of CCS is given by the
labelled transition system (LTS) (P,Aτ ,−→t), where P is the set of all CCS processes, Aτ is
the set of labels and −→t is the least transition relation induced by the rules in Figure 6.

A.2. CCSK: CCS with communication keys. CCS with communication keys (CCSK)
is a reversible extension of CCS obtained by applying to CCS the approach in [PU07].
The key idea of this approach is to make all the dynamic operators (such as prefix and
non-deterministic choice) static and to decorate prefixes with freshly created identifiers,
dubbed communication keys, when they are executed. The syntax of CCSK is reported in
Figure 7, where the addition with respect to the syntax of CCS (Figure 5) is enclosed in grey
boxes. With respect to CCS, in CCSK a prefix α can be decorated with a communication key
i, to indicate the fact that the prefix has been executed. As one can see, CCSK (reversible)
configurations are built on top of CCS processes.

The semantics of CCSK is given by two LTSs, the forward one (X k,Aτ ×K,−→k) and
the backward one (X k,Aτ ×K, ↪−→k), where X k is the set of CCSK configurations, K is the
set of keys and −→k and ↪−→k are the least transition relations induced by the rules in Figure 8
and Figure 9, respectively. Since CCSK is reversibile, for each forward rule there exists
a corresponding backward one. The two LTSs use two functions, std(X) and keys(X).
Intuitively, function std(X) states that a configuration X has no decorated prefixes (i.e., it
does not contain any history information hence it is a CCS process), while function keys(X)
returns the set of keys of a given configuration.

https://doi.org/10.1007/3-540-54233-7_136
https://doi.org/10.1109/IPDPS.2001.925065

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:31

(Processes) P = α.P | P +Q | P ∥ Q | P \ a | A | 0

Figure 5: Syntax of CCS

(Act) α.P
α−→t P

(Sum1)
P

α−→t P
′

P +Q
α−→t P

′ +Q
(Sum2)

Q
α−→t Q

′

P +Q
α−→t P +Q′

(Com1)
P

α−→t P
′

P ∥ Q α−→t P
′ ∥ Q

(Com2)
Q

α−→t Q
′

P ∥ Q α−→t P ∥ Q′ (Com3)
P

α−→t P
′ Q

α−→t Q
′

P ∥ Q τ−→t P
′ ∥ Q′

(Res)
P

α−→t P
′ α ̸∈ {a, a}

P \ a τ−→t P
′ \ a

(Rec)
A

def
= P P

α−→t P
′

A
α−→t P

′

Figure 6: Semantics of CCS

(Processes) P = α.P | P +Q | P ∥ Q | P \ a | A | 0

(Configurations) X = α[i].X | X + Y | X ∥ Y | X \ a | P

Figure 7: Syntax of CCSK

A.3. TPL: Timed Process Language. TPL [HR95] is an extension of CCS with time.
Its syntax is reported in Figure 10, where the novelties w.r.t. CCS are enclosed in grey boxes.
TPL adds to CCS two constructs to deal with time: the idling prefix σ.P and the timeout
operator ⌊P ⌋(Q). The process σ.P acts as P after having waited one time unit, while the
timeout ⌊P ⌋(Q) executes P (if possible) or Q (in case of a timeout). We indicate with At

the set A ∪ A ∪ {τ, σ}. The semantics of TPL is given via an LTS and two set of rules:
rules for actions (Figure 11, similar to the CCS rules with the addition of rule Then), and
rules for time (Figure 12), which regulate the behaviour of the temporal operators σ.P and
⌊P ⌋(Q) and the passage of time in the system (e.g., in a parallel composition). Hence, the
semantics of TPL is given by the LTS (Pt,At,−→t), where Pt is the set of TPL processes
and −→t is the least relation induced by the rules in Figures 11 and 12.

Appendix B. Encoding of negative premises

In this section we show that there exists an encoding of the negative premises in the rules of
Figure 2 and Figure 3 into decidable positive premises. To do so we compute all the enabled
forward prefixes (i.e., barbs) of a configuration and form all the possible pairs of prefixes on
the two sides of a parallel operator. We then check whether there exists a pair containing
both an action and the corresponding co-action. The operator γ is inductively defined as
follows:

11:32 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

(Act1)
std(X)

α.X
α[i]−−→k α[i].X

(Act2)
X

β[j]−−→k X
′ i ̸= j

α[i].X
β[j]−−→k α[i].X

′

(Sum1)
X

α[i]−−→k X
′ std(Y)

X + Y
α[i]−−→k X

′ + Y
(Sum2)

Y
α[i]−−→k Y

′ std(Y)

X + Y
α[i]−−→k X + Y ′

(Par1)
X

α[i]−−→k X
′ i ̸∈ keys(Y)

X ∥ Y [i]−→k X
′ ∥ Y

(Par2)
Y

α[i]−−→k Y
′ i ̸∈ keys(X)

X ∥ Y α[i]−−→k X ∥ Y ′

(Par3)
X

α[i]−−→k X
′ Y

α[i]−−→k Y
′

X ∥ Y τ [i]−−→k X ∥ Y ′

(Res)
X

α[i]−−→k X
′ α ̸∈ {a, a}

X \ a α[i]−−→k X
′ \ a

(Rec)
A

def
= P P

α[i]−−→k X

A
α[i]−−→k X

Figure 8: Forward LTS of CCSK

Definition B.1 (Synchronisation Operator).

γ(α.P) = {{α}} γ(ρ[i].X) = γ(X)

γ(X ∥ Y) = γ(X)⊕ γ(Y) γ(X \ a) = γ(X) \ {a}
γ(X + Y) = γ(X) ∪ γ(Y) if nact(X + Y)

γ(X + Y) = γ(X) if ¬nact(X) γ(X + Y) = γ(Y) if ¬nact(Y)

γ(⌊X⌋(Y)) = γ(X) γ(⌊X⌋[i←−](Y)) = γ(X)

γ(⌊X⌋[i−→](Y)) = γ(Y) γ(A) = γ(P) if A
def
= P

γ(0) = ∅ γ(σ.P) = ∅

where A⊕B is defined as follows:

{Ai | i ∈ I} ⊕ {Bj | j ∈ J} =
⋃

i∈I,j∈J
{Ai ∪Bj}

We can then define X ̸ τ−→ as:

X ̸ τ−→= ∀C ∈ γ(X).∀ci, cj ∈ C .ci ̸= cj

The intuition behind the γ(·) operator is that for sequential processes (i.e., processes
which have no top level ∥) it computes a set of singletons of prefixes. Such a set represents
the list of all the enabled forward prefixes, which could synchronise in a parallel composition.
This is rendered by the rule γ(X ∥ Y) = γ(X)⊕ γ(Y). In this case, via the operator ⊕, we
compute all the possible pairs of such singletons. Let us note that if we have more than one

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:33

(Act1)
std(X)

α[i].X
α[i]
↪−−→k a.X

(Act2)
X

α[i]
↪−−→k X

′ i ̸= j

α[i].X
α[i]
↪−−→k a.X

(Sum1)
X

α[i]
↪−−→k X

′ std(Y)

X + Y
α[i]
↪−−→k X

′ + Y

(Sum2)
Y

α[i]
↪−−→k Y

′ std(X)

X + Y
α[i]
↪−−→k X + Y ′

(Par1)
X

α[i]
↪−−→k X

′ i ̸∈ keys(Y)

X ∥ Y
α[i]
↪−−→k X

′ ∥ Y
(Par2)

Y
α[i]
↪−−→k Y

′ i ̸∈ keys(X)

X ∥ Y
α[i]
↪−−→k X ∥ Y ′

(Par3)
X

α[i]
↪−−→k X

′ Y
α[i]
↪−−→k Y

′

X ∥ Y
τ [i]
↪−−→k X ∥ Y ′

(Res)
X

α[i]
↪−−→k X

′ α ̸∈ {a, a}

X \ a
α[i]
↪−−→k X

′ \ a
(Rec)

A
def
= P X

α[i]
↪−−→k P

P
α[i]−−→k A

Figure 9: Backward LTS of CCSK

(Processes) P = π.P | ⌊P ⌋(Q) | P +Q | P ∥ Q | P \ a | A | 0 (π = α | σ)

Figure 10: Syntax of TPL

top level ∥, say n, we will have a set of (n + 1)-uples. Also, since we are using set-based
operators, repetitions of prefixes will be dropped.

The γ operator just collects all the available prefixes, discarding the ones already
executed, and the discarded branches. For example, let us consider the process P = a+ a
we have that γ(P) = {{a}, {a}}. Synchronisation is induced by the parallel operator ∥,
hence when the γ operator meets a parallel composition, it computes all the possible pairs
via the ⊕ operator. We then have a possible synchronisation if there is a pair of the form
{α, α}. For example, if we take the process P above and we put it in parallel with a, the
synchronisation operator will compute the following pairs

γ((a+ a) ∥ a) = γ(a+ a)⊕ γ(a) = {{a}, {a}} ⊕ {{a}} = {{a, a}, {a, a}}
We can see that there exists one synchronisation pair. Furthermore, if we consider the
process (b+ a) ∥ a ∥ b we have:

γ((b+ a) ∥ a ∥ b) = γ(b+ a)⊕ γ(a)⊕ γ(b) = {{b}, {a}} ⊕ {{a}} ⊕ {{b}} =
{{b, a}, {a, a}} ⊕ {{b}} = {{b, a, b}, {a, a, b}}

where there are two synchronisation pairs.

Lemma B.2. Given a reachable revTPL configuration X, then X ̸ τ−→ is decidable.

11:34 L. Bocchi, I. Lanese, C.A. Mezzina, and S. Yuen Vol. 20:1

(Act) α.P
α−→t P

(Sum1)
P

α−→t P
′

P +Q
α−→t P

′ +Q
(Sum2)

Q
α−→t Q

′

P +Q
α−→t P +Q′

(Then)
P

α−→t P
′

⌊P ⌋(Q)
α−→t P

′ (Com1)
P

α−→t P
′

P ∥ Q α−→t P
′ ∥ Q

(Com2)
Q

α−→t Q
′

P ∥ Q α−→t P ∥ Q′

(Com3)
P

α−→t P
′ Q

α−→t Q
′

P ∥ Q τ−→t P
′ ∥ Q′

(Res)
P

α−→t P
′ α ̸∈ {a, a}

P \ a τ−→t P
′ \ a

(Rec)
A

def
= P P

α−→t P
′

A
α−→t P

′

Figure 11: LTS of TPL: rules for actions

(Act2) α.P
σ−→t α.P (Nil) 0

σ−→t 0 (Wait) σ.P
σ−→t P

(Sum3)
P

σ−→t P
′ Q

σ−→t Q
′

P +Q
σ−→t P

′ +Q′ (Then2)
P ̸ τ−→t

⌊P ⌋(Q)
σ−→t Q

(Com4)
P

σ−→t P
′ Q

σ−→t Q
′ (P ∥ Q) ̸ τ−→t

P ∥ Q σ−→t P
′ ∥ Q′ (Res2)

P
σ−→t P

′

P \ a σ−→t P
′ \ a

(Rec2)
A

def
= P P

σ−→t P
′

A
σ−→t P

′

Figure 12: LTS of TPL: rules for time

Proof. By a simple induction on the structure of X.

Appendix C. Additional proofs of Section 4

Property 4.11 (Square Property - SP). Given a reachable revTPL configuration X and

two coinititial transitions t : X
π1[i]7−−−→ Y and s : X

π2[j]7−−−→ Z with t I s there exist two cofinal

transitions t′ : Y
π2[j]7−−−→W and s′ : Z

π1[i]7−−−→W .

Proof. The proof is by case analysis on the direction of the two transitions. We distinguish
three cases according to whether the two transitions are both forwards, both backwards, or
one forwards and the other backwards.

t and s forwards: first we look at the case where the two actions are both communication
actions. The proof is by induction on the structure of the common source configuration
X. From 0 no transition is possible hence this case can never happen. For a standard

Vol. 20:1 revTPL: THE REVERSIBLE TEMPORAL PROCESS LANGUAGE 11:35

prefix, a single transition is possible, but for the choice of the key. Two transitions with
the same key are not independent due to condition 4 in Definition 4.9, hence there is
nothing to prove. The cases of non-standard prefixes, timeout (both standard and non
standard), hiding and constants follow by inductive hypothesis. If the configuration
is a parallel composition then either we apply rule [Par] and its symmetric, or we
apply rule [Par] and rule [Syn], or two [Syn]. In the case of two applications of rule
[Par], if the same parallel component acts in both the cases, then the thesis follows

from inductive hypothesis. Otherwise we have X = X1 ∥ X2
α1[i]−−−→ Y1 ∥ X2 = Y

and X1 ∥ X2
α2[j]−−−→ X1 ∥ Z2 = Z with premises X1

α1[i]−−−→ Y1 and X2
α2[j]−−−→ Z2

(note that i ̸= j by case 4 of Definition 4.9). By applying rule [Par] again we have

Y = Y1 ∥ X2
α2[j]−−−→ Y1 ∥ Z2 and Z = X1 ∥ Z1

α1[i]−−−→ Y1 ∥ Z2, as desired. In the case of
two applications of rule [Syn] we proceed by induction on the two components. In the
case of one [Par] and one [Syn] we proceed by induction on the component which
acts in [Par].

In the case of choice, if the two transitions concern the same component then
the thesis follows by inductive hypothesis. If the two transitions concern different
components then they are not independent as they are in forward communication
conflict, according to condition 2 in Definition 4.9.

In the case π1 = σ and π2 = σ there is nothing to prove since then Y = Z and t = s
by time determinism.

Finally, note that the case π1 = α and π2 = σ is ruled out by Definition 4.9 (first
clause).

t and s backwards: the case of two communication actions is similar to the previous
one, noticing however that backward transitions are never in conflict according to
Definition 4.9. Indeed, keys ensure that each component can take part in a single
transition.

The case of two σ actions follows since time determinism holds also in the backward
direction, since time actions are required on all components, and they need to have
the same key.

The case of a σ action and a communication action follows from Proposition 4.10.
t forwards and s backwards: the case of communication actions is similar to the previous

one: actions either are in conflict by condition 3 of Definition 4.9 or they are generated
by parallel components, hence can take place also in the opposite order. Two time
transitions from the same configuration are always in conflict by condition 3 of
Definition 4.9, since time actions are recorded in each component. The case π1 = α
and π2 = σ (or vice versa) is analogous to the previous one.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	Introduction
	1. Informal Overview of TPL and Reversibility
	1.1. Overview of TPL
	1.2. Overview of causal-consistent reversibility.

	2. The Reversible Temporal Process Language
	2.1. Syntax of revTPL.
	2.2. Semantics of revTPL.

	3. Relations with TPL and reversible CCS
	4. Reversibility in revTPL
	4.1. Independence
	4.2. Causal consistency

	5. Conclusion, Related and Future Work
	References
	Appendix A. Background: CCS, CCSK and TPL
	A.1. CCS: Calculus of Communicating Systems
	A.2. CCSK: CCS with communication keys
	A.3. TPL: Timed Process Language

	Appendix B. Encoding of negative premises
	Appendix C. Additional proofs of Section 4

