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ABSTRACT

Producing Near Net Shape parts with complex geometries using Wire-Laser Additive Manufacturing often re-
quires a mastered and optimized process. Differences between the constructed and nominal geometries of the
manufactured entities demand an in-situ defects measurement to complete the production of the entire part
successfully. A contactless measuring system is needed to evaluate geometrical deviations without requiring
complex post-processing operations. To overcome this challenge and validate a measuring tool that serves the
manufacturing purpose, a global stereocorrelation approach is used to measure defects in wire-laser additively
manufactured parts. This method relies on the cameras’ self-calibration phase that uses the part substrate’s
nominal model. Then a modal basis is defined to model and evaluate the surface dimensional and shape defects.
Hence, an analysis of the texture obtained in additive manufacturing is conducted to assess whether or not it is
sufficient for image correlation and defects measurement. Finally, natural and pattern textures are compared to
highlight their influence on the measurement results.

Keywords: Wire-Laser Additive Manufacturing, image correlation, defects measurement, modal basis, texture
analysis.

1. INTRODUCTION

A new industrial manufacturing era started with the evolution of Additive Manufacturing (AM). This process
entered high levels of industry and production. Its advantage over the subtractive techniques is producing parts
with complex internal and external features1 and repairing damaged parts.2 Wire-Laser Additive Manufacturing
(WLAM) is a branch of AM processes where a stream of metal wire is delivered to a substrate in order to intersect
with a concentrated laser energy source at a common focal point, forming a melt pool and depositing material
layer by layer. The corresponding machine includes a laser system and an automated wire feed supply unit moved
by an operated robot arm. The machine worktable can achieve rotary substratum movement, and some accessory
devices, such as gas shielding, are necessary. Additively manufactured parts present different types of defects
and deviations from the nominal design. Therefore, on a larger scale, classifications exist for Directed Energy
Deposition (DED) processes that include the wire-laser one. According to Liu et al.,3 part quality and defects
affecting DED parts can be classified into three categories: geometrical (form and dimensions), morphological
(surface texture), and microstructural anomalies. From here, and at both layers and entities level, defects in
WLAM can be seen and treated as internal and external. In the following, this paper highlights external defects,
more precisely geometrical ones where dimensional and shape deviations can be found.

Complex geometries in AM often require more than one deposition sequence. The part can be built through
many stages while changing its position and orientation between phases. From here, differences between the
produced and nominal geometries can penalize the whole ongoing and upcoming process. These defects can be
seen at the entity level as geometrical positioning and orientation deviations, or at the surface level as material
gaps on the final parts, blobs, and zits. All these risk collisions between the effector and the part, in addition
to disturbing the additive trajectories and piling up defects through the end of the process. That is why it is
necessary to measure these deviations in-situ in order to update the additive trajectories with regard to the
occurring geometrical defects. A contactless measuring system is mandatory to evaluate geometrical defects
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without requiring complex post-processing operations. It also helps to achieve in-situ measurements without
interrupting the process or removing the part from its manufacturing environment. Hence, optical signal-based
detection with its spatially resolved CCD/CMOS cameras is becoming more popular, especially with the evolution
of the image correlation technique.1 Its capability to provide full-field measurements with a direct evaluation of
the part deformation is valuable and efficient in shape measurement.4 Rebergue et al.5 and Dubreuil6 achieved
in-situ measurements during machining using Digital Image Correlation (DIC). In contrast, Dufour7 used this
technique to measure 3D displacement fields with a numerical description of the analyzed surfaces (NURBS).

Modal decomposition, based on free vibrational modes, proved its relevance for form defect analysis and was
used in different previous works, having the same objective of identifying and expressing shape deviations of thin
parts8 and medium-sized machined surfaces.4 More precisely, shape defect is decomposed of several elementary
participations, whose sum best fits the observed defects. From here, Etievant et al. developed a modal approach
for shape defect measurement based on global stereocorrelation.4 This work includes a self-calibration phase
where the measured object is used as a calibration artifact.9,10 The nominal description of the part is defined as
a triangular mesh, and a speckle pattern is projected on the machined surface to texture it. This step is followed
by global DIC measurement and defects evaluation using a predefined modal basis. This paper aims to use this
approach to measure the shape and dimensional defects of parts produced by the WLAM process. By introducing
this technique to the AM context, the surface texture became a new variable that needs to be assessed. Unlike
machined surfaces, it’s a natural pattern that may influence the image correlation analysis over a Region Of
Interest (ROI). From here, a study comparing results obtained with natural and classic projected patterns is
critical to know whether the manufactured part texture is enough to exclude any added pattern. Finally, AM
surfaces presenting remarkable defects question their use as targets in the self-calibration procedures and shift
the attention to well-defined geometries from the manufacturing environment, such as the part’s substrate.

This contribution is structured as follows: in Sec. 2, the adopted approach and its measurement principles
are presented. Then, the case study with all its phases and results are detailed in Sec. 3. The findings and
perspectives of this research work are finally summarized in Sec. 4.

2. MEASUREMENT APPROACH

In this work, the shape defects of an AM part are measured by global stereocorrelation. Therefore, calibrating the
cameras is fundamental here, especially in an AM context where the surface texture and geometrical deviations
can’t be neglected. In addition to the optical measurements, this study uses a modal approach to express the
geometric deviations. In this section, the camera model is presented alongside the self-calibration technique.
Then, the shape correction method is addressed, and analysis criteria are defined for the texture comparison.

2.1 Camera model and calibration

The pinhole camera model is the most specialized and simplest one. It describes the process of image forma-
tion within a camera to express the relationship between the 3D coordinates (X) of a point in space, and its
corresponding pixel coordinates (x) in the image plane. A total of six unknowns, 3 rotation parameters, and 3
distances are essential to define the rigid transformation between the space and camera frame. They are referred
to as extrinsic parameters. Once in the camera coordinate frame, the point projection in the image plane is
defined by the following intrinsic parameters: the focal length expressed in pixels (width and height), the skew
factor between the axis of the image plane, and the coordinates of the optical center projection. Finally, im-
age distortions are computed and taken into consideration. Therefore, the calibration of a stereoscopic system
(having at least two cameras) is summed up by determining all these parameters for each camera.

Adapting the self-calibration method leads to using the same image for the calibration and the measurement.
Hence, this approach requires a mathematical description of the analyzed surface, whether NURBS patches9 or
triangular meshes.4,10 The main objective is to determine the left and right camera calibration matrices such
that the 3D numerical model of the object is best projected on both images. First, the transformation matrices
are initially determined by manual projections. Then in the second step, an underlying minimization principle
is used. It’s based on the gray level conservation (Eq. 1) in the acquired left f l(xl) and right fr(xr) images.

f l(xl) = fr(xr) (1)



Hence, over an ROI, global minimization of the correlation residual is executed to determine the optimal
solution of the left [Pl] and right [Pr] projection matrices (Eq. 2), therefore the stereoscopic system calibration.4

This Gauss-Newton problem is linearized in Eq. 3 where the image gradient is represented by ∇f .

(
[Pl], [Pr]

)
= argmin

[Pl],[Pr]

∑
ROI

(
f l
(
[Pl](X0)

)
− fr

(
[Pr](X0)

))2

(2)

τlin =
∑
ROI

(
f l(xl)− fr(xr) + (∇f l.δxl)(xl)− (∇fr.δxr)(xr)

)2

(3)

A Canon EOS7D camera is used in this research work, and the pinhole model is adapted. The calibration is
done separately and intrinsic parameters are found using a calibration target presenting a circular pattern. Radial
and tangential distortions are calculated and removed from the taken part images using a Matlab toolbox. In
contrast, extrinsic ones are computed using the self-calibration approach adapted by Etievant et al.4 but relying
on the substrate instead of the manufactured surface. This change is due to the significant defects present on
the AM part. That’s why well-defined geometrical features from the part environment are used to ensure proper
solution convergence during optimization. Detailed steps and results of this procedure are presented in Sec. 3.

2.2 Shape measurement and correction

Once the calibration is performed, the nominal surface is deformed using a defect database obtained by modal
analysis. Hence, the estimate of the modal deformation X is computed by starting with the nominal position
vector X0 (Eq. 4) and adding to it the corresponding displacement that best expresses the present shape defect.
Λi are the modal amplitudes associated with the N modes qi.

X = X0 +

N∑
i=1

Λi.qi (4)

As shown in Eq. (5), modal amplitudes are determined to minimize the global correlation residuals over an
ROI. The problem is linearized in the same way as in Eq. (3). A Gauss-Newton algorithm is implemented where
the minimization procedure stops once the corrections to the estimated modal amplitudes are very low. This
explains the need for a higher image gradient for faster and better convergence. The modal basis is projected
according to the normal of the local surface to highlight displacements induced by shape defects.4

{Λopt} = argmin
{Λ}

∑
ROI

(
f l
(
[Pl](X)

)
− fr

(
[Pr](X)

))2

(5)

2.3 Image analysis

Image correlation is an experimental technique for measuring field displacement by matching digital photos of an
object. Hence, being in a new manufacturing context and questioning the natural surface capabilities requires
finding criteria to qualify the images before the measurements and comparing the different textures.

First, an image gradient (∇f) is a directional change in intensity that characterizes the image’s contrast. It is
defined by a 2D vector with components given by the derivatives in the horizontal Gx and vertical Gy directions.
Moreover, it’s a crucial element in the linearized optimization problems of this study. From here, an Average
Gradient (AG) is computed (Eq. 6),11 where H ×W is the size of the image (its height and width expressed in
pixels). Hence, a better AG allows better convergence of the correlation residuals. On the other hand, spatial
autocorrelation refers to the presence of a spatial variation in the mapped variable. This criterion is computed in
Eq. (7), where σ is the standard deviation (STD). The output is the normalized correlation (−1 < C < 1); a null
value is the perfect case, while C > 0 means that adjacent observations have similar data values. This criterion
compares the image with itself but with a displacement of pixels (δ) in horizontal and vertical directions. By
focusing on the surface of interest, the mapping results inform about the sensitivity to variations. Finally, the
case study in the following section lists these criteria’s numerical application.
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3. CASE STUDY

The presented study is conducted on a WLAM part to validate the use of the modal approach based on global
stereocorrelation in the measurement of geometrical defects by comparing these results with another industrial
measuring method. The considered part is a 42.7mm× 42.7mm hollow column with a height of 35mm centered
on an 80mm×80mm×20mm substrate whose nominal description is defined in a CAD model. Different surface
meshes are used during the different steps of the method. Table 1 summarizes the use of each mesh and its
visualization. The first two meshes rely on the substrate surfaces, while the third one uses the AM one.

Table 1. Description of the different used meshes.

Mesh Number Used for

#1 Estimation of initial parameters
Left extrinsic parameters Fig. 1a
Right extrinsic parameters Fig. 1b

#2 Extrinsic calibration Fig. 1c

#3 Modal basis creation / Defects measurement Fig. 1d

(a) (b) (c) (d)

Figure 1. Surfaces used for the initial parameters estimation (a,b), extrinsic calibration (c) and defects measurement (d).

3.1 Reference measurement

In order to validate the stereocorrelation measurement results, it is essential to estimate the geometrical defects
using a reference system, in the present case, a structured light scanning device (Atos Core). This optical system
efficiently measures complex shapes,4 with low uncertainty and an STD shape error of 3 µm. Once the part is
measured, a point cloud is obtained and must be processed to extract the geometrical deviations. First, the ATOS
Core measurement frame is aligned with the CAD model. The substrate nominal description is used for this
point cloud frame realignment. A non-rigid registration algorithm for form defect identification is implemented
in the second step. This method, developed by Thiébaut et al.,8 is based on a deformable Iterative Closest Point
(ICP) algorithm and a modal approach to express form defects.

A defect basis is defined using the third mesh (Fig. 1d). Since the objective is to evaluate defects along
the surface normal (z-axis), these rigid modes can be reduced to 3 to model dimensional deviations. The first
mode represents a translation along the z-axis, while the second and third are rotations around the x- and y-axes,
respectively. Geometrical deviations of the part were estimated using these 3 modes (Fig. 2a). The results showed
important dimensional defects concerning the column position (Mode #1 in Fig. 2c) and inclination (Modes
#2-3 in Fig.2c). Then, the rest of the deformable modes are defined as sinusoidal functions,8 representing shape



defects. A total basis of 25 modes is used, and modes with nearly zero z-components (normal surface direction)
have been eliminated from this basis. Figure 2b shows the geometrical defects expressed by the non-rigid body
modes of the adapted basis. This estimation is enough to measure dimensional and shape deviations while
increasing the modal basis size won’t add remarkable variations to the displacement maps. The ATOS Core
measurement and defects modeling using the 25 modes basis are used as the reference in the following.

(a) (b) (c)

Figure 2. Geometrical defects measured by 3 rigid body modes (a) and the following 22 (b); Modal amplitudes using
ATOS Core with a modal basis of 25 modes (c).

3.2 Texture analysis

In the following, three different textures of the AM surface (Fig. 3 a,b,c) are analyzed and compared using the
defined criteria in Sec. 2.3. This analysis evaluates each pattern, especially the natural AM surface and what
it can provide for the image correlation analysis. It helps also predict and understand measurement results in
Sec. 3.3. As shown in Tab. 2, the average gradient increases with a pattern projection on the natural texture,
especially the speckle one. In addition to that, a comparison of the three spatial autocorrelation maps (Fig.
3 d,e,f) shows a clear advantage of the speckle pattern projection. This result can also be seen by comparing
the computed autocorrelation Root Mean Square (RMS), where the third texture presents better results with a
value closer to zero (0.051). Self-image comparison with pixels displacements using the regular and well-defined
circular pattern leads to similar and contrasting data values, which explains the yellow-blue pattern in Fig. 2e.

Table 2. Image correlation criteria comparison for different textures.

Natural texture Circle Pattern Speckle Pattern

AG
(
1/Pixels2

)
0.055 0.071 0.093

Autocorrelation RMS 0.072 0.210 0.051

3.3 Modal stereocorrelation measurements

First, and before introducing the measurement results, camera calibration is essential here. After fixing the
Canon EOS7D intrinsic parameters, left and right pictures of the AM part are used to compute the extrinsic
ones. This manufactured column presents remarkable defects as shown in Fig. 2. That’s why the extrinsic
calibration steps are based on a powdered substrate with a projected circle pattern. In some cases, the substrate
geometry is deformed during additive manufacturing due to higher generated heat, mainly while producing solid
instead of hollow parts. In the following procedure, the shape of the substrate is considered geometrically perfect.
In the first step, the nominal 3D meshes of the substrate surfaces, highlighted in Fig. 1(a,b), are projected on
the left and right part images. Then, these meshes are manually aligned by estimating the initial extrinsic
parameters. Hence, these previous estimations map the second mesh (Fig. 1c) from its 3D frame to image one.
A self-calibration calculation based on the image correlation technique follows. Therefore, extrinsic projection
matrices are optimized to minimize correlation residuals (Eq. 2). 60 iterations were needed in order to converge
towards the final solutions with the use of a Levenberg-Marquardt regularization.



(a) (b) (c)

(d) (e) (f)

Figure 3. WLAM surface with natural texture (a), circle (b), and speckle (c) pattern projection and their corresponding
spatial autocorrelation map (d,e,f).

In the following, stereocorrelation measurements are performed using pair images presenting the three dif-
ferent textures introduced in Sec. 3.2. Therefore, after the optical measurements comes the geometrical defects
modeling. The nominal mesh is then deformed using Eq. 4 and the 25 modes basis. At the same time, optimized
modal amplitudes are computed to minimize correlation residuals (Eq. 5). The convergence of the correlation
residuals is smoother and almost 20 times faster with pattern texture, as shown in Fig. 4. A better convergence
validates the importance and influence of a better image gradient. In a second step, these results are compared
to the reference one (ATOS Core measurement). A difference map is obtained by computing the difference be-
tween the calculated displacements in each measuring method and for each texture. This map can be presented
numerically through the RMS of these displacement differences computed at the end of the optimization (Tab.
3). Moreover, having the differences STD and the defects’ maximum amplitude, a measurement relative error is
calculated. All these results show that stereocorrelation measurements are relevant and close to the reference.
Hence, the pattern projection advantage was expected, especially the speckle one. The lower error can be ex-
plained by the autocorrelation criterion. In contrast, considering the objective of these defects measurements
(updating additive trajectories), the natural texture shows promising results, since in this case, an error of 2.72%
is entirely consistent with the requirements of the process.

(a) (b) (c)

Figure 4. Correlation residuals convergence curves using natural texture (a), circle (b), and speckle (c) patterns projection.



Table 3. Stereocorrelation measurements compared to the reference ones using different textures.

Natural texture Circle Pattern Speckle Pattern
Differences with ATOS Core (RMS) 51.53µm 35.73µm 26.3µm

Measurements relative error 2.72% 2.22% 1.65%

The purpose of this comparison is to respond to the goal of this paper; determine the influence of these
patterns and highlight the promising performance of the natural one. In addition, the results explain the link
between the measurements and the criteria presented in Tab. 2, and validate the applicability of this modal
stereocorrelation approach in an AM context.

Elements and results from the third texture case are presented next. The pair of images, with speckle
pattern projection, used in the stereocorrelation defects measurements is shown in Fig. 5a. Previously, the
residuals convergence curve was presented, while Fig. 5(b,c) shows the corresponding map before and after
shape correction. These results give clear information about the residuals minimization. Therefore, low and
uniform residuals validate the sufficiency of the adapted modal basis in describing the geometrical defects. The
shape correction map is visualized separately using the rigid body modes (Fig. 6a), and the 22 that follows (Fig.
6b). Their corresponding modal amplitudes distribution is shown in Fig. 6c.

(a) (b) (c)

Figure 5. Pair of images required for the modal stereocorrelation measurement (a); Correlation residuals map (expressed
in % of dynamic range) before (b) and after (c) shape correction.

(a) 3 rigid body modes (b) 22 vibrational modes (c) Modal amplitudes

Figure 6. Stereocorrelation measurement results with speckle texture. Geometrical defects (a,b), and modal distribution
using a 25 modes defect basis (c).



4. CONCLUSION

This work applies a modal approach based on global stereocorrelation to measure dimensional and shape defects
in WLAM part. A Canon EOS7D camera is used and calibrated by determining its intrinsic and extrinsic
parameters separately. Intrinsic parameters are found using a calibration target. In contrast, a self-calibration
step computes extrinsic ones based on the part substrate instead of the measured surface itself due to its
remarkable defects. A modal basis of 25 modes is defined, and the stereocorrelation results are compared to
defects measured with a reference system (ATOS Core). A 1.65% error compared to the reference system can
validate the adapted measurement tool in this research context. It’s also important to highlight the pattern
projection influence on the measurement results. This texture presents a higher gradient, leading to faster and
better convergence of the correlation residuals optimization. In addition, the results obtained with a projected
speckle pattern are closer to those measured by the ATOS Core. In contrast, the natural AM texture presented
interesting results and sufficient pattern to achieve the measurements.

In future work, an in-situ measuring system based on image correlation (CMOS Cameras) will be placed in
the hybrid robot cell. A defect base representative of the geometric defects obtained in WLAM processes will be
defined on entities scale. From here, a technological defect database will be built either by experiments on the
process parameters and ATOS Core measurements or by a complete numerical approach. Finally, reconstruction
algorithms of a model representing the acquired part geometry with its defects will be developed to realign the
additive trajectories and optimize the manufacturing process, which is the primary goal of these upcoming works.
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