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Nonclassical mechanical states in cavity optomechanics in the single-photon
strong-coupling regime

Jonathan L. Wise,∗ Clément Dutreix, and Fabio Pistolesi
Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France

(Dated: May 15, 2024)

Generating nonclassical states of mechanical systems is a challenge relevant for testing the foun-
dations of quantum mechanics and developing quantum technologies. Significant effort has been
made to search for such states in the stationary behaviour of cavity optomechanical systems. We
focus instead on the transient dynamics. We find that in the single-photon strong-coupling regime
the presence of an optical drive causes an initial mechanical coherent state to evolve to a nonclassical
state, with strongly negative Wigner function. An analytical treatment for weak drive reveals that
these states are quantum superpositions of coherent states. Numerical simulation shows that the
presence of Wigner negativity is robust against weak dissipation.

Introduction. Ever since the early development
of quantum mechanics and Schrödinger’s provocative
thought experiment [1] physicists have been fascinated
by the possibility of preparing macroscopic systems in
nonclassical (NC) states. For this purpose, micro- and
nanomechanical oscillators have emerged as promising
candidates. Beyond a scientific curiosity, the generation
and control of NC mechanical states will shed light on
the foundations of quantum mechanics [2] and lead to
the development of novel quantum technologies [3], such
as enhanced sensors [4] and mechanical qubits [5]. A very
successful way to achieve precise control of a mechanical
oscillator is by exploiting its ponderomotive coupling to
a laser-driven optical cavity [6, 7]. Significant advances
include ground state cooling [8, 9], squeezing [10–12] and
entanglement with either the cavity [13] or another oscil-
lator [14–16]. These remarkable achievements have been
obtained in the weak coupling limit, where the intrin-
sic nonlinear optomechanical (OM) coupling may be lin-
earised. However, taking advantage of this intrinsic non-
linearity, one can expect to generate NC, non-Gaussian
states from semiclassical, Gaussian input states.

In cavity optomechanics, theoretical effort has been
made to understand the single-photon strong-coupling
regime, where the nonlinear coupling cannot be linearised
[17–19]. Recent studies have predicted the formation of
NC mechanical states – quantum limit cycles for strong
driving [20–22] and cat states via application of a bichro-
matic laser [23]. While these studies focused on the
steady state, surprisingly little attention has been paid
to the transient dynamics. Early works on the undriven
cavity OM system showed that at discrete times the cav-
ity field may evolve from an initial coherent state into a
multi-component Schrödinger cat state [24–26]. It was
predicted that this optical nonclassicality may be pro-
jected onto the mechanical state. However, this projec-
tion involves additional steps such as conditional mea-
surements [25] and careful quantum superposition state
preparation [27–31] of the cavity.
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FIG. 1. (a) Wigner function of the mechanical oscillator after
preparing an OM system in coherent states |α = 1⟩a⊗|β = 0⟩b
and driving the cavity for half a mechanical period [parame-
ters given in Fig. 2(d)]. (b) Schematic of the typical optically
driven OM system considered.

Here we show that NC mechanical states may be gen-
erated simply by weakly driving the optical cavity, cir-
cumventing the need for careful cavity state preparation,
conditional measurements, strong driving or additional
lasers. We propose the following steps: (i) Prepare the
cavity and the oscillator in coherent states, and (ii) ap-
ply a weak laser drive to the cavity for a finite time,
leading to the formation of a highly NC mechanical state
[Fig. 1(a)]. Finally (iii) switch off the laser resulting in
a periodic dynamics where the NC state reemerges every
mechanical period. In the remainder of this Letter, we
explain the rationale behind these steps. We present an
analytical theory that accurately describes the NC states
and makes explicit the physical mechanisms behind their
development. Finally, we explore the dependence of the
nonclassicality of the states as a function of the system
parameters.

Hamiltonian description. Since we study transient
dynamics we begin by considering the unitary evolution.
The behaviour of a standard cavity OM system [Fig. 1(b)]
is described (in the frame rotating at the laser drive fre-
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quency) by the Hamiltonian [32, 33]

Ĥ = −∆â†â+Ωmb̂
†b̂+ g0â

†â
(
b̂+ b̂†

)
+ ε

(
â+ â†

)
, (1)

where â and b̂ are annihilation operators for photons and
phonons, respectively, and we set ℏ = 1. We denote
∆ = ωL − ωc the detuning between the laser frequency
ωL and the bare cavity frequency ωc, Ωm the resonance
frequency of the mechanical mode, g0 the single-photon
OM coupling strength, and ε the laser drive strength.

Applying the unitary transformation ÛLF = eg̃0â
†â(b̂†−b̂)

(known as Lang Firsov [34] or polaron [18, 35]), the
Hamiltonian becomes

ĤLF = Ĥ0 + V̂ , (2)

Ĥ0 = −∆â†â−K
(
â†â

)2
+Ωmb̂

†b̂, (2a)

V̂ = ε
[
D̂(g̃0)â

† + D̂(−g̃0)â
]
, (2b)

where g̃0 = g0/Ωm, K = g20/Ωm is the Kerr nonlinearity
strength, and we introduced the mechanical displacement

operator: D̂(β) = eβb̂
†−β∗b̂.

State initialisation. We choose as the initial state
a coherent state in the laboratory frame for both light
and mechanics: |ψ(t = 0)⟩ = |α⟩a ⊗ |β⟩b. In a sideband
resolved OM system the most natural way to achieve this
is to employ radiation pressure cooling of the mechanical
oscillator [36]. This prepares the cavity in a coherent
state as desired and the oscillator in its quantum ground
state (β = 0), which could then be displaced by direct
driving to achieve β ̸= 0. We verify this approach by
computing the stationary state of the driven-dissipative
system (numerical methods described later), finding an

average phonon number ⟨b̂†b̂⟩ = 0.01, taking for example
the parameters of Fig. 5(b) (but with ε/Ωm = 0.2 and
∆ = −Ωm). While our results are general, for the plots
in this Letter we take the initial state α = 1 and β = 0
everywhere except in Fig. 3(a).

Dynamics without optical drive. It is instructive to
start with the undriven system. The Hamiltonian (2a)
is diagonal, and so the time evolution can be obtained
exactly. In the original frame (1) the wavefunction reads

|ψ(t)⟩ =
∞∑

n=0

ane
iϕn(t)|n⟩a ⊗ |βn(t)⟩b, (3)

where an = e−|α|2/2αn/
√
n! specifies the initial cavity

coherent state, βn(t) = e−iΩmt(β + ng̃0)− ng̃0 is the me-
chanical coherent state parameter, and the phase ϕn(t) is
given in the Supplemental Material (SM). Analysing the
state Eq. (3) we see that each cavity Fock state |n⟩a has
become entangled with a distinct mechanical coherent
state |βn(t)⟩b. The latter describe oscillation trajectories
with centres x/xzpf = −ng̃0 and amplitudes |β+ng̃0|, in-
dicated pictorially in Fig. 2(a). Tracing the system den-
sity matrix ρ(t) = |ψ⟩⟨ψ| over the oscillator subsystem
reveals at discrete times a multi-component Schrödinger
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FIG. 2. Schematic visualisation of (a) the oscillator trajec-
tories for the undriven system and (b) the cavity Fock state
circulation induced by the laser drive. The oscillator Wigner
function over one mechanical period for g0/Ωm = 1.8 and
∆ = 0 in the undriven (c) and driven (d) case (ε/Ωm = 0.3),
rescaled with respect to its maximum valueWmax(t) – see SM
for absolute values. Note that xzpf and pzpf are scaled by a
factor

√
2 with respect to their standard definition.

cat state for the cavity field [25]. This is a general feature
of nonlinear oscillator Hamiltonians like Eq. (2a) [26], a
fact that has been exploited to observe the formation and
revival of transient cat states in nonlinear Kerr optical
cavities [37].
A natural question arises about the nature of the me-

chanical state when the photons are traced out. Doing
so gives the reduced density matrix for the phonons

ρb(t) =

∞∑

n=0

|an|2 |βn(t)⟩⟨βn(t)|. (4)

This describes a statistical mixture of coherent states,
i.e., a semiclassical state. The presence of a NC state for
the cavity but not the oscillator can be understood in the
Lang-Firsov frame, where Ĥ0 describes an anharmonic
cavity field, but a harmonic mechanical oscillator. Thus
an initial Gaussian state of the mechanical oscillator is
bound to remain Gaussian. The evolution of the Wigner
distribution of the state described by Eq. (4), as shown
in Fig. 2(c), is always positive. One way to obtain a non-
Gaussian state for the oscillator would be if each photon
Fock state was entangled with not just a single coherent
state [as in Eq. (3)], but with a coherent superposition of
mechanical states. In the following we show that this may
be achieved by adding a cavity drive, which introduces
an anharmonicity also for the mechanical oscillator, as
shown in V̂ [Eq. (2b)].
Dynamics with weak optical drive. Let us now con-

sider the full Hamiltonian of the driven system Eq. (2).
Figure 2(d) shows the time evolution of the Wigner distri-
bution, obtained by solving numerically the Schrödinger
equation. All plots show results in the original basis of
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Eq. (1). The distribution clearly develops negative re-
gions, a key signature of a NC non-Gaussian state.

We now provide some insight into this result. As il-
lustrated in Fig. 2(b), the drive couples the cavity Fock
state |n⟩a to the states |n ± 1⟩a. This should generate
the desired coherent superposition of mechanical states
entangled with a single photon Fock state. To show that,
we calculate the time evolution of the wavefunction at
first order in ε̃ = ε/Ωm. In the interaction picture in the
Lang-Firsov basis defined in Eq. (2) the wavefunction

obeys the Schrödinger equation i∂t|ψ̃(t)⟩ = ˆ̃V (t)|ψ̃(t)⟩,
where |ψ̃(t)⟩ = eiĤ0tÛLF|ψ(t)⟩ and ˆ̃V (t) = eiĤ0tV̂ e−iĤ0t.
This gives

|ψ̃(t)⟩ ≈ N
∞∑

n=0

|n⟩a ⊗
[
An|β̄n⟩b . . .

−iε̃
∫ Ωmt

0

dτ̃
(√

nAn−1e
iφ+

n−1(τ)|β̄+
n−1(τ)⟩b

+
√
n+ 1An+1e

iφ−
n+1(τ)|β̄−

n+1(τ)⟩b
)]
, (5)

with the prefactors An = ane
−ing̃0Imβ , the coherent state

parameters β̄±
n (τ) = β̄n ± g̃0e

iΩmτ with β̄n = β + ng̃0,
and τ̃ = Ωmτ . The normalization factor N and the time-
dependent phases φ±

n (τ) are given explicitly in the SM.
Equation (5) indicates the formation of a NC mechanical
state. Indeed, we see that each cavity state |n⟩a is now
entangled with multiple mechanical states. Tracing the
photons leads to a Wigner distribution which matches
very well the numerical result shown in Fig. 2(d) – see
SM for a direct comparison.

To elucidate further the resulting state we compute
a short time (Ωmt ≪ 1) expansion of the wavefunction
Eq. (5). Up to second order in time the wavefunction
may be written in the form

|ψ̃(t)⟩
N ≈

∞∑

n=0

|n⟩a⊗
[
B0

n|β̄n⟩b +B+
n |β̄n+1⟩b +B−

n |β̄n−1⟩b
]
,

(6)
where the coefficients B0

n ≈ An and B±
n ∼ ε̃(Ωmt)

2 (see
SM for expressions). Equation (6) shows that each pho-
ton state becomes entangled with a superposition of co-
herent states, whose origin is the drive-induced coupling
to |n ± 1⟩a. The mechanical part of the wavefunction
may no longer be described by a single coherent state,
and has been written in the form of a multi-component
cat state for each |n⟩a. In the region of validity of
Eq. (6) the Wigner distribution remains positive. How-
ever, this allows to infer the development of the superpo-
sition states that become strongly NC at later times, as
seen in Fig. 2(d).

The full expression for the wavefunction (5) simpli-
fies substantially if the initial state is the ground state:
|ψ(t = 0)⟩ = |α = 0⟩a ⊗ |β = 0⟩b. Transforming
back to the Schrödinger picture and original (1) basis
gives the expression |ψ(t)⟩ = N [|ψ0⟩ − ε̃|ψ1⟩], where

|ψ0⟩ = |0⟩a ⊗ |0⟩b and the correction term is

|ψ1⟩ = |1⟩a ⊗
∞∑

m=0

fm(t)D̂(−g̃0)|m⟩b. (7)

We defined fm(t) = (g̃m0 /
√
m!)e−g̃2

0/2
[
1− e−iE1mt

]
/Ẽ1m,

where E1m is the energy level of the first excited cavity
state in Lang-Firsov basis, Enm = −∆n − Kn2 + Ωmm,
and Ẽnm = Enm/Ωm. Constructing the system density
matrix and tracing out the photons leads to the oscillator
state being given by a weighted superposition of dis-
placed Fock states. Conveniently, the Wigner function
may be written in terms of such states [38] and we find

W = N 2
[
W0 + ε̃2W1

]
, where W0(ξ) = (2/π)e−2|ξ|2 ,

Re ξ = x/xzpf , and Im ξ = p/pzpf . The correction term
is:

W1(ξ) =
2

π

∞∑

k=0

(−1)k

∣∣∣∣∣
∞∑

m=0

fm(t)⟨ξ, k| − g̃0,m⟩
∣∣∣∣∣

2

(8)

where |ξ, k⟩ = D̂(ξ)|k⟩ is the displaced Fock state, whose
overlap may be written exactly in terms of generalized
Laguerre polynomials [39, 40]. Although the structure
of the expression is rather complex, we may use Eq. (8)
to show explicitly that the full Wigner function W may
become negative (see SM), a key signature of nonclassi-
cality.
Quantifying the nonclassicality. The states predicted

via our driving method are highly NC – the maximum
negative and positive amplitudes of the Wigner function
can be of the same order [Fig. 2(d)]. This degree of neg-
ativity reaches that of state-of-the-art predictions in the
steady state [20–23]. We further quantify the degree of
nonclassicality via the NC ratio

η =

∫

<

dx dp |W (x, p)|
/∫

>

dx dpW (x, p), (9)

where the symbol < (>) indicates the integration do-
main whereW (x, p) is negative (positive) [21]. The state
shown in Fig. 1(a) has η = 0.15. For comparison, we note
that the Fock state |1⟩ has η = 0.18 and a normalised
cat-like superposition state ∝ (|β0⟩+ |β1⟩) for the same
parameters has η = 0.22.
The dependence of η on the bare laser detuning ∆ and

OM coupling strength g0 is shown in Fig. 3 for two dif-
ferent initial states. Choosing as the initial state the
vacuum (α = 0), we observe in Fig. 3(a) a peak in
the Wigner negativity for zero detuning. Analyzing the
structure of the corresponding analytical expression (8),
this may be understood as a resonance of the transition
from the initially populated ground E00 = 0 state to
the E1m state, where the largest Franck-Condon factor is
withm = g̃20 (see SM). Similarly we expect the additional
structure present in Fig. 3(b) to be due to the |1⟩a → |2⟩a
transition. The Wigner negativity appears primarily for
negative detuning, contrary to what has been predicted
for the stationary state where nonclassicality is expected
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mainly for blue detuning [22, 41]. This intriguing differ-
ence may be explained by the fact that the transient NC
states investigated here are very different in character,
and consequently take place for different parameters.

We note that if the drive is switched off, the subsequent
evolution of the reduced density matrix of the mechani-
cal oscillator is periodic in 2π/Ωm [see Eq. (4) and SM].
This periodic revival of the NC state is reminiscent of the
cat states produced in nonlinear cavities [37], and may in
principle be leveraged when developing detection strate-
gies. The evolution of the NC ratio without dissipation
is shown by the dashed grey line of Fig. 4(a). The prac-
tical use of this periodicity depends on the effect of the
dissipation.

Dissipation. We assess the effects of both optical and
mechanical dissipation in the standard way, writing the
OM master equation [42]

dρ̂

dt
= −i[Ĥ, ρ̂]+κD[â]ρ̂+Γm(n̄th+1)D[b̂]ρ̂+Γmn̄thD[b̂†]ρ̂.

(10)
Here, we assumed the cavity is coupled to a zero tem-
perature optical bath with loss rate κ, while the me-
chanical resonator is in contact with an environment
at temperature T corresponding to mean occupation
n̄th = 1/(eℏΩm/kBT −1), with loss rate Γm. The Lindblad
dissipators are D[ô] = ôρ̂ô† −

{
ô†ô, ρ̂

}
/2, with the curly

braces denoting the anticommutator. We solve numeri-
cally [43, 44] the master equation (10) for the full dissipa-
tive system dynamics. In Fig. 4(a) we illustrate the effect
of dissipation on the full time evolution, when the drive
is switched off after t = π/Ωm. In Fig. 4(b) we show
the nonclassical ratio after driving for half a mechanical
period, as a function of drive strength and cavity dissi-
pation rate. We observe that to a certain extent one may
compensate for finite cavity dissipation by increasing the
drive strength, and an optimum value ε/Ωm ≈ 0.5 is pre-
dicted. As shown in Fig. 4(c) increasing the dissipation
rate κ or thermal bath temperature T leads to a signifi-
cant reduction of the nonclassicality achieved by driving.

Experimental observability. So far we have shown
results where g0 ≳ Ωm ≫ κ,Γm, known as the “single-

η η

Δ/ΩmΔ/Ωm

g0
Ωm

α = 0 α = 1(a) (b)

FIG. 3. Mechanical state nonclassical ratio η as a function
of system parameters after driving with ε/Ωm = 0.3 for half
a mechanical period choosing two different initial states: (a)
|α = 0⟩a ⊗ |β = 0⟩b and (b) |α = 1⟩a ⊗ |β = 0⟩b.

η

ε/Ωm

κ
Ωm

κ /Ωm

η

η

Ωmt

κ /Ωm = 0.05
κ = 0

(b) (c)

(a)

n̄th

Γm /Ωm = 10−4η = 0.01

η = 0.05

FIG. 4. (a) Evolution of η during (shaded green, ε/Ωm = 0.3)
and after (ε = 0) the drive pulse for zero dissipation (dashed
grey) and for κ/Ωm = 0.05 and n̄th = 10, Γm/Ωm = 10−4

(solid black). After driving for t = π/Ωm, we show (b) η as
a function of ε and κ (with Γm/Ωm = 10−4, n̄th = 0), and
(c) the effect of increasing cavity (solid red) and oscillator
(dashed blue) dissipation rates, when the other is vanishing.
We choose ∆ = 0 in all the plots and g0/Ωm = 1 in (b) and
g0/Ωm = 1.8 in (a) and (c). The plot (b) is an interpolation
of numerical data – see SM.

Ωmt

η

η

ε/Ωm

g0
Ωm

*
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⧫

t = 2π/Ωm

W
(x,

p)

x/xzpf

p/p
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FIG. 5. (a) η as a function of g0 and ε after driving for t =
2π/Ωm without dissipation. (b) Evolution of η while driving
for the parameters at ♦ (g0/Ωm = 0.3 and ε/Ωm = 1) for zero
dissipation (dashed grey) and with κ/Ωm = 0.01, n̄th = 10,
Γm/Ωm = 10−6 (solid black). Inset: Wigner function at t =
2π/Ωm at ∗.

photon ultrastrong-coupling regime”. However, we high-
light in Fig. 5 that this is not a necessary condition for
the generation of nonclassical mechanical states via this
method. Indeed, using a drive pulse with stronger inten-
sity and/or longer duration leads to highly nonclassical
states even in the less experimentally stringent “single-
photon strong-coupling regime”, where g0 ≫ κ,Γm but
g0 < Ωm. This puts this method on par with other NC
mechanical state generation methods [20–23] in terms of
the conditions on the optomechanical parameters.
A crucial first step has been achieved by reaching the
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regime g0 ≫ Ωm with nanowire oscillators [45], however
for this system κ ≫ g0. Other promising candidates
for realising the strong and ultrastrong-coupling regimes
are OM crystals [46–48], trampoline resonators [49], elec-
tromechanical systems [50, 51], and OM systems coupled
to qubits [52–54].

The nature of a nonclassical state may be revealed ex-
perimentally by quantum state reconstruction. This can
be done by performing quadrature measurements via to-
mography (see Ref. [55] for a review focusing on mechan-
ical systems). For cavity optomechanical systems low
noise mechanical quadrature measurements have been
made via quantum nondemolition [12, 56] and transient
amplification methods [57]. Alternatively, dispersive cou-
pling of a mechanical oscillator to a two-level system has
allowed for measurement of the full Wigner function for
Fock and superposition states via Ramsey interferometry
[58–61]. This is in direct analogy to what is done using
atoms for state reconstruction of optical cavity fields [62].

Quantum state reconstruction may also be achieved in
the strong-coupling regime by measuring the cavity pho-
ton emission spectrum [63]. The periodic reemergence of
our NC state once the drive is switched off may also allow
one to read out the state via stroboscopic measurement.
Conclusions. Cavity optomechanical systems have

been investigated extensively for the generation of non-
classical mechanical states. Remarkably, we found that in
the strong-coupling regime such a mechanical state may
emerge spontaneously by simply sending a laser pulse
to the cavity prepared in a coherent state. We showed
that this transient state is a quantum superposition of co-
herent states, which will reemerge periodically after the
drive pulse for weak dissipation.
Acknowledgments. We acknowledge support from
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K. Hornberger, S. Nimmrichter, and M. Fadel, Macro-
scopic Quantum Test with Bulk Acoustic Wave Res-
onators, Physical Review Letters 130, 133604 (2023).

[61] M. Bild, M. Fadel, Y. Yang, U. von Lüpke, P. Mar-
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We repeat here for clarity the driven optomechanical hamiltonian in the lab frame rotating at the laser drive
frequency:

Ĥ = −∆â†â+Ωmb̂
†b̂+ g0â

†â
(
b̂+ b̂†

)
+ ε

(
â+ â†

)
, (1)

where â and b̂ are the annihilation operators for the cavity field and oscillator mode, respectively, ∆ = ωL −ωc is the
laser detuning from the cavity frequency, Ωm is the mechanical mode frequency, g0 is the single photon optomechanical
coupling strength and ε is proportional to the intensity of the laser drive. In the Lang-Firsov frame, achieved by the

unitary transformation ĤLF = ÛLFĤÛ
†
LF, with ÛLF = eg̃0â

†â(b̂†−b̂) and g̃0 = g0/Ωm, the transformed hamiltonian
reads

ĤLF = Ĥ0 + V̂ , (2)

Ĥ0 = −∆â†â−K
(
â†â

)2
+Ωmb̂

†b̂, (2a)

V̂ = ε
[
D̂(g̃0)â

† + D̂(−g̃0)â
]
, (2b)

where K = g20/Ωm is the Kerr nonlinearity strength, and D̂(β) = eβb̂
†−β∗b̂ is the mechanical displacement operator.

Appendix A: Undriven case – periodicity

For the undriven system (ε = 0), we show in Eq. (4) of the main text that the dynamics of the oscillator are periodic
with period 2π/Ωm. In the main text this is shown for the specific case of initial coherent states for both cavity and
oscillator, but this result may be easily generalised to any initial state, as we show here. We take the general initial
state in the lab frame

|ξ(t = 0)⟩ =
∞∑

n,m=0

Anm|n⟩a ⊗ |m⟩b, (A1)

where the summation indices n and m run over all the Fock states of the cavity and oscillator systems, respectively.
We compute the subsequent evolution by transforming to the Lang-Firsov basis, applying the diagonal time evolution

and transforming back, i.e. |ξ(t)⟩ = Û−1
LF e

−iĤ0tÛLF|ξ(t = 0)⟩, resulting in a general expression for the wavefunction

|ξ(t)⟩ =
∞∑

n,m=0

Ãnme
iE(a)

n t|n⟩a ⊗
∞∑

p=0

Bpmne
−iΩmmt|p⟩b, (A2)

where the nonlinear cavity energy is E
(a)
n = ∆n+ Kn2. The effect of transforming to and from the Lang-Firsov has

been captured by introducing the shorthand:

Ãnm =

∞∑

q=0

Anq⟨m|beg̃0n(b̂
†−b̂)|q⟩b, (A3)

Bpmn = ⟨p|be−g̃0n(b̂
†−b̂)|m⟩b. (A4)
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Constructing the system density matrix as ρ = |ξ⟩⟨ξ| and tracing over the cavity field gives for the oscillator

ρb(t) =

∞∑

n=0

⟨n|aρ|n⟩a

=
∞∑

n=0

∞∑

m,m′=0

∞∑

p,p′=0

ÃnmÃ
∗
nm′BpmnB

∗
p′m′ne

−iΩm(m−m′)t|p⟩b⟨p′|b, (A5)

which is clearly periodic in 2π/Ωm. This result is what motivates the final step in our nonclassical state generation
method: once the system has been driven to a sufficiently nonclassical state, we propose switching off the drive. If
dissipation effects are negligible then this leads to a dynamics where the nonclassical state reemerges every period,
2π/Ωm.

Appendix B: Driven case – weak drive perturbative solution

For the driven system (ε ̸= 0) we apply perturbation theory in the interaction picture defined by Eq. (2) in the
Lang-Firsov basis. We have the Schrödinger equation

i∂t|ψ̃(t)⟩LF = ˆ̃V (t)|ψ̃(t)⟩LF, (B1)

where |ψ̃(t)⟩LF = eiĤ0tÛLF|ψ(t)⟩ and ˆ̃V (t) = eiĤ0tV̂ e−iĤ0t are the interaction picture wavefunction and perturbation

operator, respectively. Note that in the main text the subscript LF is omitted. Up to first order in ˆ̃V the time
evolution operator defined by the expression |ψ̃(t)⟩LF = Û(t)|ψ(0)⟩LF is given by

Û(t) ≈ 1− i

∫ t

0

dτ ˆ̃V (τ). (B2)

An expression for the wavefunction in the Schrödinger picture in the Lang Firsov basis may then be calculated as:

|ψ(t)⟩LF = e−iĤ0tÛ(t)|ψ(0)⟩LF
≈ N [|ψ0(t)⟩LF − iε̃|ψ1(t)⟩LF] , (B3)

where N is a normalization factor and ε̃ = ε/Ωm. We suppose an initial state in the (rotating) lab frame |ψ(t = 0)⟩ =∑
n an|n⟩a ⊗ |β⟩b, where for an initial cavity coherent state |α⟩a we have an = e−|α|2αn/

√
n!. The zeroth order term

is then merely the undriven result, given in the Lang Firsov basis as:

|ψ0(t)⟩LF = e−iĤ0t|ψ(0)⟩LF

= e−iĤ0t
∞∑

n=0

An|n⟩a ⊗ |β + ng̃0⟩b

=
∞∑

n=0

Ane
i(∆n+Kn2)t|n⟩a ⊗ |β̄ne−iΩmt⟩b, (B4)

where the factor An = ane
−ig̃0nImβ and β̄n = β + ng̃0. Returning to the lab frame yields the expression

|ψ0(t)⟩ =
∞∑

n=0

ane
iϕn(t)|n⟩a ⊗ |βn(t)⟩b, (B5)

which corresponds to Eq. (3) of the main text, and we specify here the phase omitted from the main text:

ϕn(t) = ∆nt+Kn2
(
t− sinΩmt

Ωm

)
+ g̃0nIm

[
β(e−iΩmt − 1)

]
. (B6)

The first order correction is given by the expression:

|ψ1(t)⟩LF = e−iĤ0t

∫ Ωmt

0

dτ̃ eiĤ0τ
[
D(g̃0)â

† +D(−g̃0)â
]
e−iĤ0τ |ψ(0)⟩LF, (B7)
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where τ̃ = Ωmτ and the integrand is found to be given by:

eiĤ0τ
[
D(g̃0)â

† +D(−g̃0)â
]
e−iĤ0τ |ψ(0)⟩LF

=

∞∑

n=0

An

[
eiφ

−
n (τ)

√
n|n− 1⟩a ⊗ |β̄n − g̃0e

iΩmτ ⟩b + eiφ
+
n (τ)

√
n+ 1|n+ 1⟩a ⊗ |β̄n + g̃0e

iΩmτ ⟩b
]
, (B8)

where the phases are given by:

φ±
n (τ) = ∓∆τ ∓K(2n± 1)τ ± g̃0Im

[
β̄∗
ne

iΩmτ
]
. (B9)

This is the explicit expression for the phases appearing in Eq. (5) of the main text. Relabelling the dummy indices
in the cavity state sums, we may write the total solution for the wavefunction in the interaction picture of the Lang
Firsov basis [c.f. Eq. (5) of the main text]:

|ψ̃(t)⟩LF ≈ N
∞∑

n=0

|n⟩a ⊗
[
An|β̄n⟩b − iε̃

∫ Ωmt

0

dτ̃
(√

nAn−1e
iφ+

n−1(τ)|β̄+
n−1(τ)⟩b +

√
n+ 1An+1e

iφ−
n+1(τ)|β̄−

n+1(τ)⟩b
)]

,

(B10)

where we denoted the time-dependent coherent states β̄±
n (τ) = β̄n± g̃0eiΩmτ . By expanding the exponentials as power

series one can perform the integrals analytically, however this leads to a rather heavy result given in terms of multiple
infinite sums. Here, we include this solution but first we compute the approximate short time expression shown in
Eq. (8) of the main text.

1. Short time expression in the interaction picture, Lang-Firsov basis

For Ωmt ≪ 1 the coherent state parameters are expanded as β̄±
n∓1 ≈ β̄n + γ±, where γ± = ±ig̃0τ̃ and τ̃ = Ωmτ .

Then, assuming |γ±| ≪ |β̄n| the coherent states in the integrand may be expanded via two-dimensional Taylor
expansion:

|β̄n + γ±⟩ ≈ |β̄n⟩+ γ±∂α|α⟩|α=β̄n
+ γ∗±∂α∗ |α⟩|α∗=β̄∗

n
, (B11)

where to compute the derivatives of the coherent state one may use the Baker-Campbell-Hausdorff formula to write:

|α⟩ = eαb̂
†−α∗b̂|0⟩ = e−αα∗/2eαb̂

†
e−α∗b̂|0⟩ or alternatively |α⟩ = eαα

∗/2e−α∗b̂eαb̂
† |0⟩, and hence find

∂α|α⟩ =
(
−α∗/2 + b̂†

)
|α⟩, (B12)

∂α∗ |α⟩ =
(
α/2− b̂

)
|α⟩. (B13)

Expanding also the exponential phase factors in the integrand for Ωmt ≪ 1 and collecting powers of the rescaled
integration variable τ̃ , leads to the expression:

|ψ̃(t)⟩LF ≈ N
∞∑

n=0

|n⟩a ⊗
[
An|β̄n⟩b − ε̃e−ig̃0nImβ

{
√
n

∫ Ωmt

0

dτ̃
[
1− i

(
∆̃ + 2nK̃ − ig̃0(b̂

† + b̂)
)
τ̃ +O(τ̃2)

]

+
√
n+ 1

∫ Ωmt

0

dτ̃
[
1 + i

(
∆̃ + 2nK̃ − ig̃0(b̂

† + b̂)
)
τ̃ +O(τ̃2)

]}
|β̄n⟩b

]
, (B14)

where frequencies with tildes are adimensionalised by Ωm. Performing the integration yields the result

|ψ̃(t)⟩LF ≈ N
∞∑

n=0

|n⟩a ⊗
[
Ãn|β̄n⟩b + B̃n

(
b̂† + b̂

)
|β̄n⟩b

]
, (B15)

where the coefficients are

Ãn = An − iε̃e−ig̃0nImβΩmt
[√

nan−1

(
1− i(∆̃ + 2nK̃)Ωmt/2

)
+
√
n+ 1an+1

(
1 + i(∆̃ + 2nK̃)Ωmt/2

)]
, (B16)

B̃n = ε̃g̃0e
−ig̃0nImβ (Ωmt)

2

2

[√
nan−1 −

√
n+ 1an+1

]
. (B17)
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To arrive at the expression (8) of the main text we make a further approximation in order to re-express the unusual

b̂†|β̄n⟩b term. Specifically, we notice that by definition β̄n±1 = β̄n ± g̃0, and for |g̃0/β̄n| ≪ 1 we may expand:

|β̄n±1⟩b = χ±e
−|β̄n|2/2

∞∑

m=0

β̄m
n

(
1± g̃0

β̄n

)m
b̂†

m

m!
|0⟩

≈ χ±e
−|β̄n|2/2

∞∑

m=0

β̄m
n

(
1±m

g̃0
β̄n

)
b̂†

m

m!
|0⟩

= χ±
[
|β̄n⟩b ± g̃0b̂

†|β̄n⟩b
]
, (B18)

where we defined χ± = e−g̃2
0/2∓g̃0Reβ̄n . In the expansion we require |g̃0/β̄n| ≪ 1, which can be achieved for all relevant

n simply by choosing a sufficiently large initial coherent state |β| ≫ g̃0 for the oscillator. We may invert Eq. (B18)
and write the sum:

|β̄n+1⟩b + |β̄n−1⟩b ≈ (χ+ + χ−) |β̄n⟩b + g̃0 (χ+ − χ−) b̂
†|β̄n⟩b. (B19)

Substituting for b̂†|β̄n⟩b from the above into the expression for the wavefunction Eq. (B15) gives

|ψ̃(t)⟩LF ≈ N
∞∑

n=0

|n⟩a ⊗
[
B0

n|β̄n⟩b +B+
n |β̄n+1⟩b +B−

n |β̄n−1⟩b
]
, (B20)

as in Eq. (8) of the main text, with the coefficients:

B0
n = Ãn + B̃n

[
βn − χ+ + χ−

g̃0 (χ+ − χ−)

]
, (B21)

B+
n =

B̃n

g̃0 (χ+ − χ−)
, (B22)

B−
n = B+

n . (B23)

2. Full solution in the Schrödinger picture, lab basis

Returning to the full solution Eq. (B10), it is convenient to first return to the Schrödinger picture and lab basis
before performing the integration. Going back to the Schrödinger picture and lab frame just introduces additional
phase factors and a shift for the mechanical coherent states:

|ψ(t)⟩ = e−g̃0â
†â(b̂†−b̂)e−iĤ0t|ψ̃(t)⟩LF (B24)

= N
∞∑

n=0

ei(∆n+Kn2)t|n⟩a ⊗
[
Ane

−ig̃0nIm(β̄∗
ne

iΩmt)|β̄ne−iΩmt − g̃0n⟩b

−iε̃
∫ Ωmt

0

dτ̃
(√

nAn−1e
iφ+

n−1(τ)e−ig̃0nIm[β̄+
n−1(τ)

∗eiΩmt]|β̄+
n−1(τ)e

−iΩmt − g̃0n⟩b

+
√
n+ 1An+1e

iφ−
n+1(τ)e−ig̃0nIm[β̄−

n+1(τ)
∗eiΩmt]|β̄−

n+1(τ)e
−iΩmt − g̃0n⟩b

)]
. (B25)

In order to perform the integrals, we can express the τ -dependence of the coherent states as phase factors, giving for
the overall result

|ψ(t)⟩ = N
∞∑

n=0

ei(∆n+Kn2)t|n⟩a ⊗
{
Ane

−ig̃0nIm(β̄∗
ne

iΩmt)|β̄ne−iΩmt⟩b

− iε̃
∞∑

m=0

|m⟩b√
m!

m∑

k=0

(
m
k

)
e−iΩmkt

[√
nAn−1e

ξ+n (t)
(
β̄n−1e

−iΩmt − g̃0n
)m−k

(+g̃0)
kI+

nk

+
√
n+ 1An+1e

ξ−n (t)
(
β̄n+1e

−iΩmt − g̃0n
)m−k

(−g̃0)kI−
nk

]}
, (B26)
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where we introduced the shorthand

ξ±n (t) = −ig̃0nIm[β̄∗
n∓1e

iΩmt]− 1

2

(
|β̄n∓1|2 + g̃20(n

2 + 1)− 2g̃0nRe[β̄n∓1e
−iΩmt]

)
, (B27)

and the integrals to be performed are

I±
nk =

∫ Ωmt

0

dτ̃eiC
±
nk τ̃+Q±

n eiτ̃+P±
n e−iτ̃

, (B28)

with the coefficients

C±
nk = ∓∆̃∓ K̃(2n∓ 1) + k, (B29)

Q±
n = ±g̃20ne−iΩmt, (B30)

P±
n = ∓g̃0β̄n∓1. (B31)

These integrals may be performed by expanding the exponentials as infinite power series, ultimately leading to an
explicit expression for the wavefunction. However, in practice we found it more numerically efficient to use Eq. (B25)
and approximate the integrals as sums over a discretised time interval – care was taken to ensure the discretisation
was sufficiently fine to match the exact result of the integral.

Appendix C: Comparison of analytics to numerics

We note that the numerical results were computed using QuTiP with a truncated Hilbert space of size Nc×Nm. For
the dissipationless case this meant solving the Schrödinger equation for the full system wavefunction, and including
dissipation meant solving the master equation for the system density matrix. To avoid effects related to the truncation

of the Hilbert space we computed the average value of the commutators ⟨[â, â†]⟩ and ⟨[b̂, b̂†]⟩. In practice, ensuring that
the commutators remained close to 1 for the parameter ranges explored meant taking Nc = 8−12 and Nm = 300−400.
We include here in Figs. C.1(a,b) the same results as presented in Figs. 2(c,d) of the main text, for the evolution of

the mechanical Wigner function over one period without and with the laser drive. We note that in all Wigner function
plots the quantities xzpf and pzpf are scaled by a factor of

√
2 compared to their standard definition. Contrary to the

main text, here we present the absolute value of the Wigner function for each time, with individual colorbars. In the
additional row Fig. C.1(c) we also include for comparison the Wigner function computed for the state given by our
analytical theory Eq. (B26). In both Figs. C.1 and C.3 we see that the agreement between numerics and theory is
best around the mechanical coherent state components corresponding to the cavity photon states n = 0 and n = 1.
This may be understood from the fact that the first order weak drive expansion only includes events corresponding
to adding/subtracting one photon. To test quantitatively the conditions of validity of the perturbative result for the
wavefunction, we compare to the exact numerical result. We compute the overlap |⟨ψnum.|ψan.⟩| as a function of the
drive strength and driving time in Fig. C.2.

In the main text we present the analytical expression for the Wigner function for the initial state |ψ(t = 0)⟩ = |α =

0⟩a ⊗ |β = 0⟩b, which reads W = N 2
[
W0 + ε̃2W1

]
with W0(ξ) = (2/π)e−2|ξ|2 where Reξ = x/xzpf and Imξ = p/pzpf .

The correction term is:

W1(ξ) =
2

π

∞∑

k=0

(−1)k

∣∣∣∣∣
∞∑

m=0

fm(t)⟨ξ, k| − g̃0,m⟩
∣∣∣∣∣

2

(C1)

where |ξ, k⟩ = D̂(ξ)|k⟩ is the displaced Fock state. We defined fm(t) = (g̃m0 /
√
m!)e−g̃2

0/2
[
1− e−iE1mt

]
/Ẽ1m, where

E1m is the energy level of the first excited cavity state in the Lang-Firsov frame, Enm = −∆n − Kn2 + Ωmm, and
Ẽnm = Enm/Ωm. The overlap of displaced Fock states may be written exactly as [1, 2]:

⟨ξ, k|ζ,m⟩ =





⟨ξ|ζ⟩
√

m!
k! (ζ − ξ)k−mLk−m

m (|ζ − ξ|2), k > m,

⟨ξ|ζ⟩
√

k!
m! (ξ

∗ − ζ∗)m−kLm−k
k (|ζ − ξ|2), k < m,

(C2)

where Ln
m are the generalized Laguerre polynomials. We focus on the point in phase space ξ = −g̃0 at t = π/Ωm,
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p/pzpf

x/xzpf

(a)
tΩm = 0

(b)

(c)

tΩm = π/2 tΩm = π tΩm = 3π/2 tΩm = 2π

FIG. C.1. Evolution of the mechanical oscillator Wigner function over one mechanical period. The undriven (a) and driven
(ε/Ωm = 0.3) (b) cases correspond to Figs. 2(c) and 2(d) in the main text, here with the individual colorbars given. The final
row (c) is the Wigner function calculated for the analytical weak drive result, given by Eq. (B25). The initial state is chosen to
be |ψ(t = 0)⟩ = |α = 1⟩a⊗|β = 0⟩b, coupling constant g0/Ωm = 1.8 and laser detuning ∆ = 0. Note that in the plots presented
xzpf and pzpf are scaled by a factor

√
2.

|⟨ψnum. |ψan.⟩ |

ε/Ωm

ε/Ωm

ΩmtΩmt

(a) (b) (c)

FIG. C.2. Overlap between the exact numerical solution for the driven problem with (a) the undriven solution and (b) the
first order perturbative solution Eq. (B26), as a function of drive strength and time. (c) A cut at t = π/Ωm indicating that
the perturbative result (solid line) matches the numerical result better than the undriven result (dot-dashed line). The initial
state is chosen to be |ψ(t = 0)⟩ = |α = 1⟩a ⊗ |β = 0⟩b, with drive strength ε/Ωm = 0.3 and detuning ∆ = 0 and the coupling
constant g0/Ωm = 1.8.

where the expression simplifies to

W1(−g̃0) =
2

π

∞∑

k=0

(−1)k
∣∣∣∣fk(t =

π

Ωm
)

∣∣∣∣
2

= 2π
∞∑

k=0

(−1)kPk(g̃
2
0)



sin

(
πẼ1k/2

)

(
πẼ1k/2

)



2

, (C3)

where Pk(λ) = λke−λ/
√
λ! is a Poissonian distribution and Ẽ1k = E1k/Ωm. The Poissonian distribution is maximal
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p/pzpf

x/xzpf

(a) ε/Ωm = 0.1
g0/Ωm = 1 g0/Ωm = 2 g0/Ωm = 3

ε/Ωm = 0.4 ε/Ωm = 0.3 ε/Ωm = 0.02 ε/Ωm = 0.3(b) (c) (d) (e)

FIG. C.3. Mechanical Wigner function at t = π/Ωm after driving for different values of OM coupling g0 and drive power ε,
for the initial state |ψ(t = 0)⟩ = |α = 1⟩a ⊗ |β = 0⟩b. For g0/Ωm = 1 and g0/Ωm = 3 we include examples of drive strengths
below (a, d) and above (b, e) the threshold to have negativity at the point ξ = −g̃0 (red dot), as predicted by Eq. (C4). In
(c) we have g0/Ωm = 2 (even), so in line with Eq. (C4) there is no negativity at ξ = −g0/Ωm. The top row is the numerical
result and the bottom row is the analytical result W = N 2

[
W0 + ε2W1

]
with W0 the Wigner function of the vacuum and the

correction term W1 being given in Eq. (C1).

at its mean value, k = g̃20 . The term in square brackets is the Sinc function, which is maximal when its argument

vanishes, at: k = ∆̃ + g̃20 . For ∆ = 0 the peaks of the two functions overlap, leading to W1 giving a significant
contribution. For the particular point ξ = −g̃0 this contribution may then be positive or negative, and is determined
by the parity of the integer closest to g̃20 . For other points in the ξ-plane this condition will be different, but already
this indicates the presence of negative areas, and hence explains the origin of the peak in the nonclassical ratio at
∆ = 0 observed in Fig. 3(a) of the main text. At ξ = −g̃0 for ∆ = 0, we approximate for the total Wigner function
(supposing g̃20 is an integer):

W (−g̃0) ≈ N 2

π


e−2g̃2

0 + ε̃2π2(−1)g̃
2
0

(
g̃20
)g̃2

0

g̃20 !
e−g̃2

0


 . (C4)

Taking, for example, g̃0 = 1, and asking that the total Wigner function be negative, W (−g̃0) < 0, gives the condition
on the drive ε̃ ≳ 0.2. The expression above and argument regarding negativity is in agreement with the full numerical
simulation presented in Fig. C.3.

In Fig. 3(b) of the main text we observe some structure in the parameter plane for the nonclassical ratio η for the
initial state |ψ(t = 0)⟩ = |α = 1⟩a⊗|β = 0⟩b. We include in Fig. C.4 some plots of the mechanical Wigner function at
t = π/Ωm for fixed drive and coupling strength and different values of the detuning. This indicates the near vanishing
of the Wigner negativity for positive detuning.

Appendix D: Dissipation

To account for dissipation we solve the optomechanical master equation given by Eq. (10) of the main text for the
density matrix ρ(t). To complement the plots given in Fig. 4 of the main text indicating the effect of finite dissipation
on the mechanical nonclassicality produced via our driving method, we include here in Fig. D.1 examples of the
evolution of the Wigner function over one period of driving for increasing cavity dissipation rate.

Fig. 4(a) of the main text is created by interpolation of the results of a limited number of numerical simulations.
We include here the original data in Fig. D.2.

[1] F. A. M. de Oliveira, M. S. Kim, P. L. Knight, and V. Buek, Properties of displaced number states, Physical Review A 41,
2645 (1990).

[2] A. Wunsche, Displaced Fock states and their connection to quasiprobabilities, Quantum Optics: Journal of the European
Optical Society Part B 3, 359 (1991).
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p/pzpf

x/xzpf

(a)
Δ/Ωm = − 9

(b)

Δ/Ωm = − 4 Δ/Ωm = 0 Δ/Ωm = 4 Δ/Ωm = 9

FIG. C.4. Mechanical Wigner function at t = π/Ωm for different values of laser detuning. We show the comparison between
numerics (a) and our perturbative analytics (b), showing good agreement. The initial state is chosen to be |ψ(t = 0)⟩ = |α =
1⟩a ⊗ |β = 0⟩b, drive strength ε/Ωm = 0.3 and the coupling constant g0/Ωm = 1.8

p/pzpf

x/xzpf

(a)
tΩm = 0

(b)

(c)

tΩm = π/2 tΩm = π tΩm = 3π/2 tΩm = 2π

(d)

κ /Ωm = 0.05

κ /Ωm = 0.1

κ /Ωm = 0.5

κ /Ωm = 1

FIG. D.1. Evolution of the mechanical oscillator Wigner function over one mechanical period for increasing cavity dissipation
rate, κ. The initial state is |ψ(t = 0)⟩ = |α = 1⟩a ⊗ |β = 0⟩b and other system parameters are ε/Ωm = 0.3, g0/Ωm = 1.8 and
∆ = 0, Γm/Ωm = 10−4, n̄th = 10.
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η

ε/Ωm

κ
Ωm

FIG. D.2. The nonclassical ratio η of the mechanical state after driving for half a mechanical period, as a function of the drive
strength ε and the cavity dissipation rate κ. This figure shows the original data corresponding to the interpolation presented
in Fig. 4(a) of the main text. The initial state is |ψ(t = 0)⟩ = |α = 1⟩a ⊗ |β = 0⟩b and other system parameters are g0/Ωm = 1
and ∆ = 0, Γm/Ωm = 10−4, n̄th = 0.


