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A Spin-Optical Quantum Computing Architecture
Grégoire de Gliniasty1,2, Paul Hilaire1, Pierre-Emmanuel Emeriau1, Stephen C. Wein1,
Alexia Salavrakos1, and Shane Mansfield1

1Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France
2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

We introduce an adaptable and modu-
lar hybrid architecture designed for fault-
tolerant quantum computing. It combines
quantum emitters and linear-optical en-
tangling gates to leverage the strength of
both matter-based and photonic-based ap-
proaches. A key feature of the architec-
ture is its practicality, grounded in the
utilisation of experimentally proven op-
tical components. Our framework en-
ables the execution of any quantum er-
ror correcting code, but in particular
maintains scalability for low-density par-
ity check codes by exploiting built-in non-
local connectivity through distant optical
links. To gauge its efficiency, we eval-
uated the architecture using a physic-
ally motivated error model. It exhib-
its loss tolerance comparable to existing
all-photonic architecture but without the
need for intricate linear-optical resource-
state-generation modules that convention-
ally rely on resource-intensive multiplex-
ing. The versatility of the architecture also
offers uncharted avenues for further advan-
cing performance standards.

1 Introduction

Fault-tolerant (FT) quantum computing (QC)
allows arbitrary quantum algorithms to be per-
formed even in the presence of moderated yet
non-negligible noise, thanks to the threshold the-
orem [1–3]. However appealing this concept
might be in theory, the practical realization of
an FT quantum computer is a highly nontrivial
challenge.

A QC architecture is the association of two
main ingredients. The first is a theoretical model
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for quantum computing such as gate-based [4],
measurement-based [5], ancilla-driven [6] or adia-
batic [7] quantum computing. The second is
the organization of the hardware components
that enables the physical implementation of this
quantum computing model. Most proposals [8–
14] for the physical implementation of FTQC rely
on a modular approach. The concept of a scalable
modular FT quantum computer revolves around
a fundamental principle: while various module
types may exist, the number of module categor-
ies, their specifications, and their quality should
remain constant as the quantum computer grows
in size. To ensure scalability, it is thus essen-
tial that the noise level of each hardware module
remains independent of the quantum computer’s
size, thereby preventing it from straying out of
the fault-tolerant regime.

While it may seem self-evident, it is essential to
underscore that an FTQC architecture designed
for superconducting qubits will inherently differ
from one tailored to linear optical systems which
for instance lacks deterministic two-qubit gates.
Crucially, an efficient FTQC architecture cannot
be universally “hardware-agnostic”. It demands
thorough adaptation to the unique characterist-
ics of a particular platform and its corresponding
noise model.

In the realm of photonic implementation,
Ref. [14] proposed a modular photonic FTQC
architecture, which places specific emphasis
on the utilization of spontaneous parametric
down-conversion (SPDC) sources in combination
with linear-optical interferometers and detectors.
However, these sources operate through a her-
alded generation process characterized by low
probability, and entanglement is generated prob-
abilistically using linear-optical gates.

On the other hand, in recent years we have
witnessed the emergence of highly efficient single-
photon sources, driven by a fundamentally dis-
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tinct technology paradigm, specifically, the util-
ization of individual atoms or artificial atoms.
Although SPDC sources had previously held the
record for creating the largest photonic entangled
states, atom-based single-photon sources have
since surpassed them by generating a 14-qubit
GHZ state [15]. These sources exploit the in-
tricate interplay of light and matter, where the
spin of the quantum emitter is coupled to the
polarization of the emitted photon. Precise con-
trol over this spin enables the growth of photonic
graph states. Contrary to SPDC sources, the
quantum emitter’s spin mediates the generation
of entanglement between photons which becomes
a deterministic process. Moreover, single-photon
sources based on trapped ions [16] or artificial
atoms such as semiconductor quantum dots can
exploit the same strategy to efficiently generate
photonic graph states. The latter has already
allowed experimental demonstration of photonic
graph state generation [17–21], which it can
achieve at rates that are orders of magnitude
higher than atomic sources provided the photon
collection efficiency is increased.

While quantum-emitter-based sources can re-
place SPDC sources to implement the architec-
ture of Ref. [14] with a smaller footprint [22],
it remains uncertain whether that scheme is op-
timally suited for these particular platforms. In-
deed, these sources use a spin degree of freedom
as a “photon entangler” to produce photonic en-
tangled states [23, 24], which are potentially use-
ful for a fully-photonic FTQC [25, 26]. Yet, re-
lying solely on the quantum emitter as a source
of entangled photons might not be the optimal
strategy either, as there is potential to harness
its spin qubit to encode and process quantum in-
formation, thus maximizing its utility. What we
need is a hybrid architecture combining the best
of both worlds, by exploiting both the spin and
photonic qubits to their full potential.

In this paper, we introduce a modular and scal-
able FTQC architecture tailored for quantum-
emitter-based platforms. Our study delves into
the investigation of its performance character-
istics with a precise characterization of the
thresholds for quantum error correction in the
presence of a realistic noise model. In this
framework, the physical qubits are encoded in
the quantum emitters, while the photons are
used as ancilla qubits. We use these ancilla

photons to implement nearly-deterministic gates
between different emitters, employing a repeat-
until-success (RUS) linear-optical scheme [27,
28]. We also investigate a variant called hybrid
RUS gates to boost the tolerance with respect to
coherence time of the spin at the expense of loss
tolerance.

The paper is organized as follows. In Sec. 2, we
detail the hardware layout of our quantum com-
puting architecture. In Sec. 3, we focus on the
linear-optical RUS gate on which our architec-
ture heavily relies to generate two-qubit entan-
glement. We compare our architecture to others
in Sec. 5. We then present in Sec. 4 the perform-
ance in terms of FT thresholds of our architec-
ture, based on a physically relevant error model.
We finally discuss our results, compare them with
the literature in Sec. 5, and conclude in Sec. 6.

2 Spin-optical quantum computing ar-
chitecture

In the following, we present our proposal for
an FTQC architecture, hereafter referred to as
the spin-optical quantum computing (SPOQC)
architecture. This approach adopts a modular
design specifically tailored for quantum emitter
platforms. In this architecture, each quantum
emitter is assumed to embed a qubit degree of
freedom – its spin – and is capable of emitting
spin-entangled photonic qubits. Crucially, we do
not require direct interaction between quantum
emitters, which makes this approach also suit-
able even for isolated quantum emitters. Instead,
we use photons to mediate the two-qubit gates
between the spins of non-interacting quantum
emitters. This is achieved through linear-optical
gates, in particular RUS gates, which will be dis-
cussed in greater detail later in this paper.

2.1 Global overview of the architecture

We first provide a global overview of the SPOQC
architecture, illustrated by Fig. 1. Import-
antly, this architecture is compatible with any
quantum error correcting (QEC) code. In par-
ticular, it is compatible with quantum low-
density parity check (LDPC) codes [3, 30, 31] and
can implement codes with non-local connectiv-
ity. This important category of codes encom-
passes many well-known QEC codes, including
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Figure 1: (a) Tanner graph of a 3×3 rotated surface code with its subgraphs G(X)
T and G(Z)

T . X-edges (solid, violet)
and Z-edges (dashed, blue) belong respectively to E(X)

T , and E(Z)
T . (b) Macroscopic architecture for a rotated surface

code. Left: The previous Tanner graph represented in a planar layout. Right: The SPOQC architecture for the 3 × 3
rotated surface code. (c) Linear-optical repeat-until-success gate including spin qubits capable of emitting entangled
photons, coupled to photon routers, an interferometer and detectors. The linear-optical interferometer (produced
using the Perceval [29] framework) performs the unitary from Eq. (1). Horizontal black rectangles correspond to
50 : 50 beamsplitters, the inclined parallelogram corresponds to a −π/2 phase shifter, numbered semiovals are
photon-number-resolving detectors.

the well-established surface codes [3] but also the
recently discovered “good” LDPC codes [32, 33],
i.e. LDPC codes with constant encoding rate and
linear distance.

To enable the fault-tolerance capabilities of
a QEC code, efficient error detection is es-
sential, requiring the use of dedicated “check”
qubits. In the SPOQC architecture, each data or
check qubit corresponds to a spin qubit within a
quantum emitter, and their arrangement mirrors
the connectivity defined by the QEC code’s Tan-
ner graph. This graph serves as a useful visual
representation of the QEC code’s structure. In
this graph, each edge corresponds to optical links,
such as fibers, a linear-optical interferometer, and

photon detectors. This setup enables the execu-
tion of linear-optical gates between photons from
different quantum emitters, ultimately resulting
in the implementation of a two-qubit spin en-
tangling gate. Crucially, if a spin node in the
graph has more than one neighbor (which is usu-
ally the case), it requires an optical router to ori-
ent the photons to the correct photonic link.

For quantum LDPC codes 1, each node of the
Tanner graph has a bounded number of neigh-
bors which is critical for the scalability of the ar-
chitecture. Without this constraint, the number
of output modes of some photon routers could

1see Appendix A for a more detailed discussion on the
scalability for non-local LDPC code

3



potentially become unbounded as the size of the
QEC code increases. The architecture remains
inherently fault-tolerant as long as the FT gates
require a bounded amount of additional con-
nectivity between the physical qubits. This is
for example the case for surface code implement-
ations with lattice surgery and magic state dis-
tillation [34].

Fig. 1 summarizes the essential features of the
SPOQC architecture, taking the 3 × 3 rotated
surface code as an example. We use the Tan-
ner graph of the QEC code (Fig. 1(a)) to design
the macroscopic physical layout of the architec-
ture (Fig. 1(b)), based on simple optical modules.
The connectivity of this layout enables the indir-
ect measurement of stabilizers using check qubits.
Physically, each qubit is encoded in a quantum
emitter’s spin and the entangling gates are imple-
mented optically using the linear-optical interfer-
ometer depicted in Fig. 1(c). In the following, we
present this architecture in more detail.

2.2 Tanner graph of a quantum error correct-
ing code

An FT quantum computer relies on quantum er-
ror correction to actively detect and correct er-
rors. Quantum logic gates can be implemented
fault-tolerantly using different strategies depend-
ing on the QEC code being used, such as ma-
gic state distillation [35], lattice surgery [36], or
code switching [37]. In the following, we will
not consider the different methods to implement
FT gates but instead orient our discussion to fo-
cus on the robustness of our quantum comput-
ing architecture to errors. In accordance with
the threshold theorem [1–3], for a specific error
model, any quantum algorithm can be executed
fault-tolerantly, under the condition that the
physical errors remain below a certain threshold
value, and that the FT quantum computer is suf-
ficiently large. This threshold value depends on
the chosen methods for implementing error cor-
rection and the specific QEC code employed.

In an Jn, k, dK QEC code, n data qubits en-
code k < n logical qubits to protect them from
at least t = ⌊(d − 1)/2⌋ qubit errors (or d − 1
qubit losses). Errors are identified by measuring
stabilizer check operators which depend on the
QEC code being used.

In an Jn, k, dK stabilizer QEC code, there are
(n − k) independent stabilizer check operators,

which are multi-qubit Pauli operators acting on
the n data qubits. These specify the “inner struc-
ture” of the code that codewords (i.e. valid lo-
gical quantum states) should abide by: for any
stabilizer check operator K in a given stabilizer
QEC code, any codeword |ψ⟩L should meet the
condition K |ψ⟩L = +1 |ψ⟩L = (−1)m |ψ⟩L with
m = 0. Therefore, measuring a stabilizer check
operator should always give you an “m = 0” out-
come and obtaining an “m = 1” outcome cor-
responds to an erroneous state. The bit string
of all the stabilizer measurement outcomes is the
error syndrome that a decoder uses to (ideally)
identify the most likely error that occurred and
correct it.

More general types of codes, such as the sub-
system codes [38], the Floquet codes and the in-
stantaneous stabilizer group codes [39, 40] oper-
ate differently but are still based on the meas-
urements of stabilizer check operators. The cent-
ral QEC properties originate from these stabilizer
measurements and being able to decode them (ef-
ficiently) to identify errors. Throughout this pa-
per, we will use the d×d rotated surface code [41],
which is a Jd2, 1, dK QEC code, as an illustrative
example for our architecture.

The Tanner graph of a QEC code is a bipart-

ite graph GT = (VT , ET ), with VT = V
(d)

T ⊔ V (c)
T ,

with properties we will now describe. Vertices

in V
(d)

T correspond to physical data qubits, while

vertices in V
(c)

T , denoted check vertices, corres-
pond to stabilizer check operators (which can be
later associated to physical check qubits). The
edge set can be decomposed in three disjoint

sets ET = E
(X)
T ⊔ E

(Y )
T ⊔ E

(Z)
T . An undirected

edge (di, cj) ∈ E
(A)
T (for A ∈ {X,Y, Z}) con-

nects a check vertex cj ∈ V
(c)

T with a data vertex

di ∈ V
(d)

T in the Tanner graph whenever the asso-
ciated stabilizer check operator acts non-trivially
on the data qubit through the Pauli operator A
on the QEC code. For example, if d1, d2, d3 is the

set of neighbors of a check vertex cj ∈ V
(c)

T , with

respective edges in E
(X)
T , E

(Y )
T , E

(Z)
T , then the as-

sociated stabilizer check is Kcj = Xd1Yd2Zd3 .
Figure 1(a) represents the Tanner graph of the
d× d rotated surface code [41].

A Calderbank-Shor-Steane (CSS) code has
only X-type or Z-type stabilizer check operat-
ors; i.e. stabilizer check operators consist either
entirely of Xs and Is or of Zs and Is. There-
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fore, for any check vertex cj ∈ V
(c)

T , its incident
edge set ET (cj) = {(di, cj) ∈ ET } is either in-

cluded in E
(X)
T or in E

(Z)
T (E

(Y )
T = ∅). We can

thus divide V
(c)

T into two disjoint subsets V
(c,X)

T

and V
(c,Z)

T forX-type and Z-type stabilizer check
operators respectively. From GT we can thus ob-

tain two subgraphs, G
(X)
T = (V (d)

T ⊔V (c,X)
T , E

(X)
T )

and G
(Z)
T = (V (d)

T ⊔ V
(c,Z)

T , E
(Z)
T ), also known as

(classical) Tanner graphs. In fact these graphs
fully specify a CSS code and can also be used
to design efficient decoders [42, 43]. The low-
density parity check property of a family of code
implies that the Tanner graph of each code from
this family has a bounded degree, i.e. each ver-
tex has a maximum number of neighbors. For
example, the family of d × d rotated surface
codes is not only CSS but also LDPC, since
∀d ∈ N,∀v ∈ VT , |ET (v)| ≤ 4.

2.3 Stabilizer measurements with RUS gate

A crucial part of FTQC revolves around the ac-
curate measurements of stabilizer check operat-
ors. They are usually challenging to measure
directly since they involve multiple qubits. As
a workaround, stabilizer measurements are often
performed indirectly by leveraging check qubits.
The quantum circuit for indirectly measuring a
stabilizer check operator K with the assistance
of a check qubit “c” is illustrated in Fig. 2. In
this figure, the CZ gate representation is uncon-
ventional as they are RUS CZ gates. For the
time being, we can set aside this particular de-
tail. This quantum circuit effectively projects
onto the subspace stabilized by (−1)mKc, where
m ∈ {0, 1} is the measurement outcome of the
check qubit. This outcome is subsequently used
by the decoder to detect and correct errors in the
quantum computation process.

In the context of the SPOQC architecture, de-
terministic CZ gates are unavailable, and we sub-
stitute them with RUS CZ gates. These gates are
elaborated upon in Sec. 3. Despite their inherent
probabilistic nature, RUS CZ gates offer the ad-
vantage of being heralded gates. This means that
we can ascertain whether a gate has succeeded,
failed or been aborted, providing valuable inform-
ation for the decoder. Consequently, a failed or
aborted gate can be treated as a heralded er-
ror, which typically presents a more manageable
decoding problem because the decoder can po-

tentially harness not only the measurement out-
come m but also the heralded outcomes of each
RUS CZ gatemi corresponding to the target data
qubit involved in the RUS CZ gate with the qubit
“c” (see Fig. 2).

d1 U1 • U1

d2 U2 • U2

d3 U3 • U3

d4 U4 • U4

c : |0⟩ H • • • • H

md1md2md3md4 m

Figure 2: General quantum circuit for an indirect sta-
bilizer measurement using a check qubit “c” (illustrated
for a weight-4 stabilizer check operator). We measure
Kc = Ad1 ⊗ Ad2 ⊗ Ad3 ⊗ Ad4 by using this circuit and
by setting Ui to be H = HXZ = (X + Z)/

√
2 when

Adi
= Xdi

, by setting it to HY Z = (Y + Z)/
√

2 when
Adi

= Ydi
, and by setting it to Idi

when Adi
= Zdi

.
If the measurement outcome is m = 0 (respectively
m = 1), the system is projected onto the subspace sta-
bilized by Kc (resp. −Kc). In this circuit, each conven-
tional CZ gate is replaced by a RUS CZ gate. To indic-
ate a RUS CZ, we decorate a usual CZ with a classical
wire that indicates the heralding outcome mdi

which can
either herald a success, a failure or an abort signal.

2.4 Modules of the physical architecture

In the following, we present the physical layout of
the SPOQC architecture, which is designed with
a modular structure. We provide a description of
each of its primary modules.

Quantum emitter module. A quantum
emitter module includes a quantum emitter with
a spin qubit, and all its control components for
single-photon emission and spin control. We
will assume that we have full SU(2) control
on the spin qubit and that it can emit spin-
entangled photons through the emission gate
Eqe,ph = |0qe, 0ph⟩ ⟨0qe| + |1qe, 1ph⟩ ⟨1qe|, or equi-
valent [15, 18–20, 44]. The quantum emitter
sends photons in a privileged single direction, op-
timizing the efficient collection of photonic qubits
(for example using a fiber) [15, 45–48]. The con-
trol components within the system are operated
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through classical information processing. For in-
stance, we rely on classical information to de-
termine whether to proceed with emitting a new
spin-entangled photon and initiating a new trial.
This decision is contingent upon receiving in-
formation that heralds either the success, partial
failure, or complete failure of a RUS gate trial.

Quantum channel. The propagating photons
are transferred from one module to another
thanks to quantum channels that can be imple-
mented using optical fibers or free-space compon-
ents.

Photon router module. The photon router
module is an active component that routes
photons from a specified input to a designated
output [49–51]. In our modules, we employ a
1 × N router configuration, where photons ori-
ginating from a single mode can be routed to
any of the N output modes. N is related to the
maximum degree of the Tanner graph, which is
bounded, by design, with LDPC codes. The rout-
ing strategy depends on information transmitted
to the router via a classical channel.

RUS gate module. A RUS gate module takes
as input two photonic qubits and performs a
linear-optical transformation followed by photon
detection. It sends the detector measurement
outcome through classical channels.

2.5 Macroscopic layout of the physical archi-
tecture
In the following, we explore how we can exploit
the fault-tolerant properties of a given QEC code
using an arrangement of the preceding modules.
Based on the QEC Tanner graph and the pre-

viously introduced modules, we propose the fol-
lowing layout. The data and check qubits of
a QEC code are encoded using the spin qubits
of quantum emitters. Therefore, for each data
or check qubit, corresponding to a vertex in the
Tanner graph, we use a single quantum emitter
module. Each quantum emitter module is con-
nected to a photon router module thanks to a
quantum channel (e.g. a fiber).
The SPOQC architecture is suited for LDPC

codes because the largest number of photon
router outputs necessary to perform every sta-
bilizer measurement circuit corresponds to the

Tanner graph’s maximum degree. Yet, increas-
ing the number of outputs of each photon router
could also offer other advantages such as enabling
fault-tolerant gates [52], single-shot error correc-
tion [53], or increasing the compilation speed [54].

If there is an edge between vertices cj ∈ V
(c)

T

and di ∈ V
(d)

T , a RUS gate module should be con-
nected to one of the output ports of the photon
router modules of both the corresponding check
qubit cj and data qubit di. Note that the edge
type, X, Y , Z, can be decided by applying a
Hadamard gate H = HXZ = (X + Z)/

√
2, a Y-

Hadamard gate HY Z = (Y +Z)/
√

2 or the iden-
tity gate on qubit di just before and immediately
after the RUS CZ gate as shown in Fig. 2.

The example given in Fig. 1(b) shows this ar-
chitecture implemented for a local code – the 3×3
rotated surface code whose Tanner graph was
previously introduced in Fig. 1(a). Note, how-
ever, that contrary to other architectures, the
SPOQC architecture uses long-range optical links
and is thus not restricted to codes respecting loc-
ality constraints. This allows it to implement any
QEC code, and in particular any LDPC code.

3 Repeat-until-success linear-optical
gates

3.1 General overview

In this section, we focus on the repeat-until-
success (RUS) gates which are central to this ar-
chitecture. In its broadest sense [55, 56], a RUS
implementation of a quantum gate U relies on the
repetition of a non-deterministic quantum circuit
C involving measurements. C should be repeated
until one of the measurement outcomes corres-
ponding to the successful implementation of U is
obtained. Critically, the other measurement out-
comes should, up to some local correction, cor-
respond to the identity gate so that it can be
repeated indefinitely.

Here, however, following the original termino-
logy [27, 28], the term RUS gate will refer spe-
cifically to the CZ gate, whose non-deterministic
circuit is realized by the emission of entangled
photons passing through a linear optical circuit
before being detected.

Note that linear-optical RUS gates typically
have higher success rates for a given amount of
loss than ancilla-assisted fusion gates and boos-
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ted fusion gates [22] when compared to other
common linear-optical gates used for generat-
ing entanglement. This is why we can expect
an improved loss tolerance compared to other
implementations without sacrificing the archi-
tecture’s simplicity. RUS gates have been pro-
posed to generate graph states [57], including the
“Raussendorf-Harrington-Goyal” lattice [58, 59],
where the qubits in the graph states are the
quantum-emitter qubits. A recent protocol [60]
uses a linear-optical RUS gate to generate a |W ⟩
entangled state on d quantum emitters which can
then be used to generate photonic qudit GHZ
states near-deterministically.

Below, we provide an in-depth presentation of
these RUS gates.

3.2 Quantum emitter
In addition, we consider quantum emitters that
have a degree of freedom, such as a spin on which
we can encode a qubit, |0⟩qe = |↑⟩qe, |1⟩qe = |↓⟩qe.
Hereafter, note that while we informally refer to
this degree of freedom as a “spin”, it can rep-
resent any pair of energy-level states within the
quantum emitter. We also consider that one of
the single-photon degrees of freedom, such as its
polarization or its path, encodes a qubit. This
degree of freedom can also be entangled with the
spin state upon emission, with an emission pro-
cess described by the operator

Eqe,ph = |0⟩qe |0⟩ph ⟨0|qe + |1⟩qe |1⟩ph ⟨1|qe .

This operator permits the emission of spin-
entangled photons [24]. For example, if the
spin is initialized to |+⟩qe = |0⟩qe + |1⟩qe (omit-
ting state normalization), after the emission of
a photon, the resulting state is Eqe,ph |+⟩qe =
|0⟩qe |0⟩ph + |1⟩qe |1⟩ph.
A quantum emitter that naturally allows the

emission of spin-entangled photons through the
operator Eqe,ph is a singly-charged quantum dot
whose energy levels form a four-energy-level sys-
tem with two optical transitions as shown in
Fig. 3 [17–19]. In this system, the photonic
qubits are encoded using the polarization degree
of freedom. However, this emission process is by
no means restricted only to such a level struc-
ture and can be adapted to many other configur-
ations and most quantum emitter platforms, such
as other types of quantum dots, atoms, supercon-
ducting circuits, and color defects [15, 44, 61–66].

Figure 3: Quantum emitter level structure. The optical
transitions, represented in violet, enable the emission of
a spin-entangled photon following operator Eqe,ph.

3.3 Photonic qubits
The quantum emitter described in Fig. 3 emits
photons entangled in polarization but it is
straightforward to convert polarization-encoded
photonic qubits into path-encoded photonic
qubits, for example using a polarizing beamsplit-
ter. In path encoding, |0⟩ph = |1, 0⟩⟩ph, |1⟩ph =
|0, 1⟩⟩ph, where |i, j⟩⟩ corresponds to having i (j)
photons in the first (second) spatial mode. We
will use the path encoding for the linear-optical
interferometer description in the following.

3.4 Linear-optical interferometer
The linear-optical interferometer presented in
Fig. 1(c) implements the following unitary trans-
formation on the photonic modes (a variant of
that found in Ref. [28])

U = 1
2


1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

 . (1)

which we use to perform a (CZ) RUS gate.
The input modes 0 and 1 (respectively 2, 3) cor-
respond to the dual-rail modes of the photonic
qubits emitted by quantum emitter a (respect-
ively quantum emitter b). Four photon-number-
resolving (PNR) detectors are positioned at the
output modes of the interferometers. We denote
by (k, l) a detection pattern where detectors in
output modes k and l each detect a single photon.
Note that (k, l) is also equivalent to the detection
pattern (l, k). A detection event (k, k) corres-
ponds to the detector in output mode k detecting
two photons.

A comprehensive description of the functioning
of the RUS gate is provided in the following.
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Emission step. In each trial, every quantum
emitter sends an entangled photon through the
operation Eqe,ph into the linear-optical interfer-
ometer. The photons are detected at the out-
put modes of the interferometers. The spin gate
that has been performed depends on the detec-
tion pattern.

Successful measurement outcomes. Some
measurement outcomes such as (0, 2), i.e. a
photon detected at output mode 0 and a photon
detected at output mode 2, correspond to a spin
CZ gate up to single-qubit unitary corrections,
e.g. SaSb

† in the (0, 2) case. Here, Si =
√
Zi

is the phase gate on qubit i. When performing
these corrections, we obtain a successful spin CZ
gate and the RUS gate has succeeded at this trial.

“Repeat” measurement outcomes. Other
measurement outcomes such as (2, 2), i.e. two
photons detected at output mode 2, correspond
to an identity gate up to correction, e.g. ZaZb

for the (2, 2) case. In that case, we have not
performed the desired CZ gate but we can try
again by re-emitting photons into the interfero-
meter until we obtain a successful measurement
outcome.

Gate failure. A RUS gate fails at a given trial,
denoted as an F detection pattern, if strictly less
than two photons are detected. Such an event
can only happen in the presence of photon loss
(including imperfect efficiency of the detectors).
In that case, we lose partial information of the
spin states, and the corresponding channel cor-
responds to a spin phase erasure applied to the
two quantum emitters,

CRUS,f = CZaCZb
= CZb

CZa

where

CZi(ρ) := 1
2 (ρ+ ZiρZi) .

Indeed, it is easy to show that CZi(ρ) =
Trph(Ei,phρEi,ph

†), i.e. emitting a photon from
quantum emitter i and tracing this photon out to
denote it being lost. If we lose both photons it is
clear that we apply CRUS,f . If we lose only one
photon, the linear-optical interferometer erases
the “which-path” information of the detected
photon, so that we don’t know which quantum

emitter produced it. Therefore, in that case as
well, we should apply CRUS,f .

Detection events along with their resulting cor-
rection unitaries and spin gates are summarized
in Table 1 2.

3.5 Success rate
From Table 1, it is clear that each gate trial
has a success rate of ps = ηaηb/2, a “repeat”
rate of pr = ηaηb/2 and a failure probability of
pf = 1 − ηaηb, where ηi is the end-to-end trans-
mission efficiency (i.e. from photon emission to
detection) of a photon emitted by quantum emit-
ter i. Whenever a trial yields a repeat pattern,
we can try again. Therefore the overall RUS gate
success rate is given by:

PRUS,s(ηa, ηb, k) = ps

k−1∑
n=0

(pr)n

= ηaηb

2
1 − (ηaηb/2)k

1 − ηaηb/2
−−−−→
k→+∞

ηaηb

2 − ηaηb

(2)

where k is the maximum number of trials allowed,
since in practice a gate cannot take infinite time.
Similarly, the failure rate is

PRUS,f(ηa, ηb, k) = pf

k−1∑
n=0

(pr)n

= (1 − ηaηb)
1 − (ηaηb/2)k

1 − ηaηb/2

−−−−→
k→+∞

2 − 2ηaηb

2 − ηaηb
,

(3)

and the aborted rate (where no gate is applied)
is

PRUS,a(ηa, ηb, k) = 1 − [PRUS,s + PRUS,f ] (ηa, ηb, k)
−−−−→
k→+∞

0.
(4)

Since we maximize the gate success probab-
ility by repeating it until it succeeds or fails,
the RUS gates are quite efficient at performing
a gate between remote qubits using linear op-
tics. However, between each trial step of the

2In principle, for perfectly indistinguishable photons,
it is impossible to obtain a (0, 1) or a (2, 3) detection
outcome. However, this is possible for distinguishable
sources, and they correspond to an identity gate (up to
a ZaZb outcome for the (2, 3) detection).
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Detection (0, 2) (1, 3) (0, 3) (1, 2) (0, 0) (1, 1) (0, 1) (2, 2) (3, 3) (2, 3) F
Probability ηaηb

8
ηaηb

8
ηaηb

8
ηaηb

8
ηaηb

8
ηaηb

8 0 ηaηb
8

ηaηb
8 0 1 − ηaηb

Corrections SaSb
† Sa

†Sb Id ZaZb Id
Spin Gate CZa,b Id CRUS,f

Table 1: RUS gate detection patterns and associated transformations. The first row corresponds to the detection
pattern that has been observed, noting that the last column F corresponds to all cases for which one or both photons
have been lost. The second row is the detection event probability (for mixed input state and indistinguishable photons).
The third and fourth rows correspond to the spin corrections and the gates between spins that are performed.

gate, we need a round of communication between
the quantum emitter modules and the RUS mod-
ule. Indeed, a pair of photons should be trans-
ferred from a quantum emitter towards the de-
tectors and the classical information of the meas-
urement outcome should be transferred back to
the quantum emitter’s nodes to decide whether
we should or not proceed with a next trial. Given
a distance L0 between the quantum emitter and
the detectors, this implies a waiting time of at
least 2L0/c, with c the speed of light, between
two trials. Therefore, to avoid infinite gate time
which are not feasible in practice, we should al-
locate a maximum number k of trials. In that
case, if the gate is limited by the communication
time delays, it lasts at least 2kL0/c.

4 Numerical results
In this section, we present the numerical res-
ults that we obtained with the SPOQC architec-
ture. While this architecture can operate for any
QEC stabilizer code, we consider rotated surface
codes with a Minimum Weight Perfect Match-
ing (MWPM) decoder to facilitate the compar-
ison with other existing architectures. We use
Stim [67] and Pymatching [68, 69] for our simu-
lations.

We center our analysis on the error thresholds
and we estimate them by calculating the crossing
point of logical error curves for different code dis-
tances [25, 70]. Because we use distances up to
13, the values provided for thresholds are lower
bounds on the actual thresholds. Our analysis
centers on a physically-motivated error model
that focuses on photonic errors and spin decoher-
ence. In particular, we focus on the loss threshold
and the spin decoherence time to reveal an inter-
esting interplay between these two types of errors
that arises from the physical implementation of
an FT scheme with probabilistic RUS gates. We

also consider partial distinguishability between
the photons which causes errors in the RUS gates.
To the best of our knowledge, this is the first time
that an FT threshold has been derived for such
an intrinsically photonic error. This model allows
us to gain a comprehensive understanding of how
these specific errors affect the performance of our
architecture. Details about these error simula-
tions can be found in Appendix B.

4.1 Independent RUS gate thresholds

RUS gate failure threshold. We first start
by evaluating the threshold in terms of RUS
gate failure or abort probability pF (ηa, ηb, k) =
1 − PRUS,s(ηa, ηb, k). Abort cases for RUS gates
arise when the gate was neither a success nor
a failure while the maximum number of allowed
trials was exhausted resulting in an identity gate
applied on the spins. For simplicity when run-
ning the simulations, we treat abort cases the
same way as failure cases and apply the error
CRUS,f(ρ), which thus overestimates the amount
of noise. Given that a realistic RUS gate depends
on the maximum allowed number of trials k, this
allows it to be evaluated simultaneously for all
k. Assuming no spin decoherence T2 = +∞, and
perfectly indistinguishable photons, we find the
gate failure threshold pF,th,0 = 10.24 ± 0.04% in
Fig. 4 (a) for an implementation of the SPOQC
architecture with a rotated surface code. The
interested reader can find details about our sim-
ulation methods in Appendix C. Assuming infin-
ite decoherence time and uniform loss, we can in
principle take as many trials as needed k → ∞
and obtain a single-photon loss threshold ap-
proaching 1 − ηth = 2.75 ± 0.02%.

Spin decoherence time. A spin qubit is usu-
ally described by two figures of merit, its relax-
ation time T1 and its decoherence time T2. In
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Figure 4: Logical error rate for different distance val-
ues vs (a) the RUS gate failure probability pF , (b) the
decoherence time of the spin tRUS/T2, and (c) distin-
guishability of photons.

the following, we consider that spin decoherence
is the main source of errors of our quantum emit-
ters: T2 ≪ T1, which is usually the case for
quantum emitter platforms. We will not con-
sider the spin relaxation time as a source of er-
ror (T1 = +∞) and only focus on the decoher-
ence time T2. It is meaningful to express this
decoherence time relative to the time required
to perform a RUS gate tRUS. We should thus
obtain a threshold for the ratio tRUS/T2: below
a threshold value tth, we are in the FT regime.
Note that here again, we consider the time tRUS
for a full RUS gate so that the threshold is to
be divided by the number of trials k of the RUS
gate, as tRUS = kttrial. As shown in Fig. 4 (b),
assuming no photon losses (pF = 0) and perfectly
indistinguishable photons, we find the FT condi-
tion tRUS/T2 < tth,0 = 2.348 ± 0.009%.

Distinguishable photons. Linear-optical en-
tangling gates, such as RUS gates, heavily rely
on having indistinguishable photonic qubits, i.e.
photons that are indistinguishable in every de-
gree of freedom other than the one used for their
qubit encoding. The presence of partially dis-
tinguishable photons introduces errors while per-
forming the RUS gate – errors which could obvi-
ously hinder the computation. We let D denote
the distinguishability between photons, assuming
it to be the same for all photons from all emitters.
The error channel caused by D is approximated
by

CD,err(ρ) := (1 −D)ρ+DCZaCZb
(ρ)

and we refer interested readers to Appendix. B.2
for a detailed discussion on this result. Assum-
ing no spin errors and no photon loss, we find
that the SPOQC architecture can tolerate up
to Dth,0 = 2.220 ± 0.013% of distinguishable
photons, see Fig. 4 (c).

4.2 Multi-error RUS thresholds
In the previous section, we have assumed inde-
pendent errors: either solely loss, photon distin-
guishability, or decoherence. In practice, all er-
rors can happen simultaneously and, intuitively,
the more we have of one type of error the less we
can correct of the other types. Given a vector
of errors m⃗ = (t = tRUS/T2, pF , D), we want to
know whether it lies in the correctable region or
not.
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Figure 5: Fault-tolerant region for the SPOQC archi-
tecture in terms of tRUS/T2, RUS gate failure pF , and
distinguishability D. The points highlighted with the
light violet squares correspond to the individual error
thresholds computed previously.

Through a numerical exploration detailed in
Appendix C, we obtain the curve plotted in
Fig. 5, which exhibits the correctable region (in
light blue) for RUS gate failure, distinguishable
photons, and spin decoherence time.

4.3 Physically relevant error threshold

4.3.1 With standard RUS gates

So far, we have exhibited the correctable re-
gion parameterized by the RUS gate paramet-
ers. Note that taking a larger number of trials
k would result in a better single-photon loss tol-
erance. However, increasing k would also mean
having significantly more stringent decoherence
time requirements since the RUS gate total time
would be larger. We aim at quantifying this inter-
play for the RUS gates as described in Section 3.

To do so, we interpolate the border of the cor-
rectable area in Fig. 5 for a distinguishability
D = 0. We use this curve to estimate, given
a value of k and a single-photon loss 1 − η, what
is the maximum ratio tth = tRUS/T2 tolerated
by the architecture. From that, given a single-
photon loss probability, we obtain straightfor-
wardly the maximum trial time ttrial = tth/k al-
lowed in order to remain in the FT regime. Re-
peating this for many k values results in finding
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Figure 6: Fault-tolerant region of the SPOQC architec-
ture in terms of ttrial/T2 and single-photon loss ε as
a function of the number k of trial of the RUS gates.
The optimal curve corresponds to the maximum fault-
tolerance optimized over k. The curve k = 6 is high-
lighted in red because it demonstrates remarkable bal-
ance between photon loss and decoherence time of the
spin.

the optimal FT region of loss and spin decoher-
ence errors. The results are displayed in Fig. 6.

A first important conclusion that we can draw
from Fig. 6 is that our scheme cannot be FT for
values of k below 3. Indeed, even without loss the
RUS gate fails or aborts with at least a probabil-
ity 2−k, and for k ≤ 3, pF,th,0 ≤ 2−k. Therefore,
it is impossible to reach the maximum RUS gate
failure threshold if we do not allocate at least 4
trials per RUS gate.

A second important remark is that the optimal
number of trials k depends on both the errors and
their nature. Below the FT thresholds, systems
more sensitive to photon loss would typically re-
quire a larger number of trials k for their RUS
gates than systems more sensitive to spin deco-
herence. Also, even for small ttrial/T2, having
k ≥ 8 only marginally increases the loss toler-
ance, and the correctable area for k = 6 covers
all of the correctable areas for smaller values of
k and almost all the global FT region (a point is
in the globally FT region if and only if for some
k it is correctable) delimited by the optimal RUS
trial curve.

We obtain that the SPOQC architecture can
tolerate physical errors included in the FT area
of Fig 6. With the rotated surface code, the
SPOQC architecture tolerates up to 2.75±0.02%
photon loss and requires that a RUS gate trial
time takes at most 0.318% of the decoherence
time T2. However, it should be noted that the
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more photon loss the more trials are required to
reach the loss threshold and thus the shorter we
require each trial RUS gate to take compared to
the spin decoherence time.

4.3.2 With hybrid RUS gates

As we emphasized by Fig. 6, RUS gates offer
the best robustness against photon loss. How-
ever implementing a RUS gate can take a rel-
atively long time as it requires sending photons
one-by-one so the duration of each trial is the
time of photon emission, transfer, and detection
with additional time for classical processing and
feedforward delays. This places stringent require-
ments on the spin coherence time. We investigate
a slight relaxation of RUS gates where we allow
the emitter to send multiple photons in a single
trial. These photons will be processed by an ad-
aptive linear-optical interferometer. This is de-
tailed in Appendix D. We call these gates hybrid
RUS gates. They are parameterized by the num-
ber of maximum trials k allowed and the number
of photons n sent in each trial.

Again we investigate the interplay between
photon loss and decoherence time of the spin,
but this time for hybrid RUS gates. Results are
shown in Figure 7. As expected we observe that
at the expense of loss tolerance, we can drastic-
ally increase robustness to spin decoherence.
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Figure 7: Fault-tolerant area of the SPOQC architecture
in terms of ttrial/T2 and single-photon loss ε for boosted
fusion gates with varying number n of emitted photons
n per trial. These curves have been optimised in the
number of trials k.

Note that the limit case for hybrid RUS gates
in which we allow any number of photons and
only one trial corresponds to boosted fusion
gates [71] and that hybrid RUS gates with only

one photon and many trials correspond to the
standard RUS gates we introduced earlier.

5 Comparison with existing architec-
tures
Regarding comparison with other architectures,
we should emphasize that a quantum emitter can
have two roles, either as a carrier of quantum
information or as a photon source.

Having a non-deterministic two-qubit gate is
obviously a limitation compared to platforms
with a full set of deterministic gates. Yet, using
quantum emitters with long-range optical con-
nections enables the use of non-local links which
could help in reducing the FTQC footprint by us-
ing high-encoding-rate LDPC codes [32, 33, 72–
74]. Such codes require drastically less physical
qubits per logical qubit compared to platforms
with only local interaction. Indeed, non-local
links between qubits allow for the use of any
quantum LDPC code that could be appealing to
implement, beyond just 2D or 3D codes. For
example an impressive encoding rate of k/n →
13/72 ≈ 0.18, i.e. approximately 1 logical qubit
for every 11 physical qubits (check qubits in-
cluded) is known to be achievable [75].

Moreover, this architecture could significantly
facilitate the error correction process by exploit-
ing single-shot error correction [53] and speed
up the compilation process by implementing act-
ive volume strategies that rely on long-range in-
teractions [54]. Furthermore, an architecture
based on distant qubits could ensure a better
isolation of each qubit, avoiding correlated noise,
which is particularly detrimental for error correc-
tion [76, 77].

Recently, Ref. [78] proposed an architecture to
produce a percolated graph state from quantum
emitters using photonic probabilistic fusion gates
and then renormalizing this graph into an inter-
esting lattice. This scheme leads to a remark-
able loss-tolerance threshold (≈ 6%) and could
also be envisioned using RUS gates. However, it
also comes with the drawback of necessitating a
renormalization step, which requires significant
resource overhead and more stringent demands
on the spin qubit coherence, control, and meas-
urement performances. Indeed, errors in any
quantum emitter measured out during the renor-
malization step may propagate to the data qubits
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and should thus increase the error rate that needs
to be handled using quantum error correction.

Quantum emitters can also be embedded in
photonic architectures, for example as a resource
state generator in the fusion-based scheme of
Ref. [14] and related all-photonic schemes [79,
80]. We reach similar loss tolerance (1 − ηth,0 ≈
2.75%) to Ref. [14] when it uses the Shor(2,2) 6-
ring resource state and much better performances
compared to when it uses the non-encoded 4-star
and 6-ring resource states. Moreover, while we
achieve similar loss tolerance, the physical ar-
chitecture is much simpler since the fusion-based
architecture would require highly-reliable genera-
tion of Shor(2,2) 6-ring resource states, i.e. a 24-
qubit photonic resource state with intrinsically
small successful generation probability. Build-
ing complex resource states such as these cannot
be realized deterministically with non-interacting
quantum emitters [81]. To circumvent this issue,
a resource state generator should heavily rely on
multiplexing to ensure that a resource state is
produced with arbitrarily high success probabil-
ity. Such a resource state generator, even one
based on quantum-emitter sources of entangled
photons, could be quite resource-intensive and
would likely require complex optical setups. In
comparison, the SPOQC architecture does not
rely on multiplexing and thus requires compar-
ably much simpler optical setups.

The original proposal for quantum computing
using RUS gates [28, 57] also considered the gen-
eration of spin-based graph states, which can be
used for FTQC. For example, Ref. [59] considered
using probabilistic gates to build edges with high
probability, resulting in a fault-tolerant 3D lat-
tice. In that work, each vertex of the graph
should correspond to a spin qubit. However, in-
creasing its efficiency requires building a graph
state of many spin qubits per vertex. In this
respect, the proposal resembles the fusion-based
architecture except that the resource state gen-
erator should prepare graph states of spin qubits
instead of photons, with high success probabil-
ity. Such an architecture leads to a much larger
resource overhead since it requires multiplexing
and more complex spin and optical setups com-
pared to the relative simplicity of the SPOQC
architecture.

6 Discussions
We have presented a modular fault-tolerant
quantum computing architecture for quantum-
emitter platforms based on photonic repeat-until-
success gates. Contrary to most platforms with
only nearest neighbor qubit links, here we can
have arbitrary physical qubit connectivity since
the two-qubit gates are made using photonic
links. Therefore, this architecture is compatible
with any QEC stabilizer code as it is organized
around its Tanner graph, whose connectivity can
be arranged with photonics. Furthermore, this
architecture is compatible with the important
class of LDPC codes.

We focused on the implementation of two-
qubit gate which can be limiting in many archi-
tectures. We disregarded single qubit gate noise
as we do not expect them to be the weakest link
of the architectures [82].

Although we have presented the SPOQC archi-
tecture with quantum-dot emitters in mind [83],
it can be made compatible with many other
physical platforms [84]. In addition to atomic
[15] and trapped-ion [16, 85] systems, this in-
cludes platforms based on proven spin-photon in-
terfaces such as nitrogen-vacancy centers in dia-
mond [64, 86] and emerging emitters like rare
earth ions [87, 88] and silicon defects [89, 90].
The SPOQC architecture may also be imme-
diately applicable to many optically-active de-
fects yet to be discovered in emerging materials
like hexagonal boron-nitride [91–93]. Adapting
SPOQC to the level structure of some of these
emitters may require using a time-bin photonic
qubit encoding [86]. In future work, we will ex-
plore directions for further enhancing the per-
formance of the architecture. Adaptive strategies
can improve the loss tolerance of architectures
based on linear-optical gates [71, 94–96]. This
has recently drastically improved the tolerance to
photon loss probability of the fusion-based archi-
tecture of Ref. [14] from 2.7% to 7.5 %. We can
expect to further improve the loss tolerance per-
formance of the SPOQC architecture using sim-
ilar strategies, for example by deciding whether
or not to perform a probabilistic gate based on
previous measurement outcomes. Moreover, in
the current proposal, each RUS gate is performed
sequentially and each gate takes a fixed number k
of trials. However, these gates do not need to be
performed sequentially: we do not need to wait
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to fully complete a first RUS gate between qubits
a and b before starting making one between a
and c. Instead, we can perform them “in paral-
lel”. Besides, instead of having a fixed number
of trials per RUS gate, we can, in principle, dy-
namically allocate the trials to multiple gates and
we can envision requiring fewer trials for similar
performances: if a RUS gate succeeds, we can
dynamically allocate its remaining trials to an-
other gate. We expect this strategy to reduce
the time it takes to perform a full error correc-
tion cycle and thus be less sensitive to spin de-
coherence. These are three potential routes for
further investigations and improvements of this
architecture.
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A Discussion on the scalability of
SPOQC with non-local LDPC codes

Strictly speaking, implementing a non-local
LDPC code using this architecture cannot be
scalable since it requires quantum channels that

increase with the computer’s size, and thus in-
crease time latencies and fiber losses. Long-range
code could significantly reduce the resource over-
head [97–99], so we should still explore them. As
long as the time latencies and the fiber loss do
not become the principal source of errors, such
FTQC architecture could have a practical in-
terest.

Relaxing this requirement is sound as long as
the overhead it causes is small compared to other
sources of errors. For fiber loss, given that a
qubit module has a spatial footprint of V , and
that we can use a D-dimensional qubit arrange-
ment (D ≤ 3 for a spatial layout compatible with
our space-time), the losses scales in principle with

∝ e−N1/D(V 1/3/Latt) with N the number of qubits
in the FT quantum computer and Latt the chan-
nel attenuation length. This typical loss should
be smaller than the loss thresholds, which is all
the easier to achieve for platforms with spatial
footprint V ≪ Latt

3. For telecom photons, the
typical attenuation distance of a fiber is of the or-
der of 22 km, and we can also envision free-space
optical links if need be [54].

Time latencies can also be challenging to deal
with. However, every hardware is limited by
communication delays, and photonics offers an
advantage in executing non-local gates. In the
end it boils down to a similar analysis as the
latency scales with ∝ kN (1/D)V (1/3), and again
the typical latency time should be much smaller
than the percentage threshold of the coherence
time T2 of the spin qubits.

B Physical noise models

B.1 Realistic modeling of the relaxation and
dephasing of a quantum emitter

A quantum emitter can be seen as a quantum
memory (its spin), that can be interfaced with
photons. However, due to its interaction with
its environment, this spin qubit cannot store
quantum information for an infinitely long time.
In practice, due to its interaction with the envir-
onment, it is limited by its relaxation time and
its coherence time, respectively denoted T1 and
T2.

Let ℏω↑↓ be the energy splitting between the
lower-energy |↓⟩ spin state and the higher-energy
|↑⟩ spin state. If ℏω↑↓ is much larger than the
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temperature of the environment kBT , then the
qubit will relax to the state |↓⟩. However, in
the opposite limit ℏω↑↓ ≪ kBT , the qubit will
relax towards a completely mixed spin state. A
simple model of qubit relaxation due to a thermal
bath is described by a Lindblad master equation
dρ(t)/dt = Lρ(t) [100] where the generator is

Lρ = − i

ℏ
[H, ρ] + γ0(nth(T ) + 1)D(σ−)ρ

+ γ0nth(T )D(σ+)ρ(t) + γ⋆(T )
2 D(σz)ρ

(5)

and where H = ℏω↑↓σz/2 is the spin qubit
Hamiltonian, σz = |↑⟩ ⟨↑| − |↓⟩ ⟨↓| is the Pauli-Z
operator, σ− = |↓⟩ ⟨↑| is the spin lowering oper-

ator, σ+ = |↑⟩ ⟨↓| is the spin raising operator, γ0
is the zero-temperature relaxation rate defined
by the spin-bath coupling strength, nth(T ) =
1/(eℏω↑↓/kBT −1) is the thermal population of the
bath, and γ⋆(T ) is the spin pure dephasing rate
at temperature T . The non-Hermitian evolution
is governed by the Lindblad dissipator defined by

D(L)ρ = LρL† − 1
2L

†Lρ− 1
2ρL

†L. (6)

The noise channel Ct acting on the qubit for
a duration of time t is the general solution to
the Lindblad master equation: dCt/dt = LCt in
the frame rotating with the spin qubit preces-
sion. Since the generator L is time-independent,
the solution is given by Ct = etL, which can be
analytically solved by diagonalizing L to obtain

Ct(ρ) = 1
(γ↓ + γ↑)

[(
γ↓ + γ↑e

−t(γ↓+γ↑)
)
ρ↑↑ρρ↑↑ +

(
γ↑ + γ↓e

−t(γ↓+γ↑)
)
ρ↓↓ρρ↓↓

+γ↑
(
1 − e−t(γ↓+γ↑)

)
ρ↓↓ρρ↑↑ + γ↓

(
1 − e−t(γ↓+γ↑)

)
ρ↑↑ρρ↓↓

(γ↓ + γ↑)e−t((γ↓+γ↑)/2−γ⋆) (ρ↓↑ρρ↑↓ + ρ↑↓ρρ↓↑)
] (7)

where ρij = |i⟩ ⟨j|, γ↑ = γ0nth(T ), and γ↓ =
γ0(nth(T ) + 1). This channel is not a Pauli chan-
nel in general. However, in the limit that nth ≫ 1
(or where ℏω ≪ kBT ), we have γ↑ ≃ γ↓ = γ. In
this case, we can write

Ct(ρ) = (1−pX−pY −pZ)ρ+pXXρX+pY Y ρY+pZZρZ
(8)

where

pX = pY = 1 − e−2tγ

4

pZ = 1 − e−t(γ+γ⋆)

2 − 1 − e−2tγ

4 .

(9)

This is a Pauli error channel where the effective
relaxation time is T1 = 1/2γ, the coherence time
is T2 = 1/(γ + γ⋆), and we have that T2 ≤ 2T1.

B.2 Partial photon distinguishability
Photons emitted by two different quantum emit-
ters should interfere together on a linear-optical
interferometer. These photons should thus be
perfectly indistinguishable to lead to a unity fi-
delity RUS gate. The photon indistinguishability
is denoted byM and is equal to 1 for perfectly in-
distinguishable photons, and 0 for completely dis-

H H

H

0

1

2

3

Pa,b→0,2

Pa,b→2,0

H

0/1

2/3

0/1

2/3

Spin
qubits

 Photonic
qubits

Photon
 routers

Repeat-until-success
gate

a) 

b) 

Figure 8: (a) Linear-optical interferometer with in-
put spin quantum emitters. The paths Pa,b→0,2 and
Pa,b→2,0 are represented in white and violet dashed lines
respectively. The vertical red dashed line corresponds to
the zone before the mode swap mentioned in the main
text. (b) “Equivalent” linear-optical interferometer for
distinguishable photons.

tinguishable photons (which cannot interfere to-
gether). This quantity corresponds to the overlap
of the wavefunctions of two single photons and
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can be calculated experimentally with a Hong-
Ou-Mandel experiment [101]. We are interested
in the partial distinguishability D = 1 −M , cor-
responding to an error afflicting our system. For
simplicity, we consider that this distinguishabil-
ity afflicts identically all the photons emitted by
all the quantum emitters.

Having photon indistinguishability is detri-
mental to the RUS gate, so we want to evaluate
its impact. Physically, it forbids the erasure of
the photon “which-path” information at the core
of linear-optical gates. A path corresponds to the
trajectories of photons into the interferometers to
the detectors. For example “photons a and b, re-
spectively emitted by quantum emitters a and b,
are respectively detected in mode 0 and 2” is a
path, that we call path Pa,b→0,2, see Fig. 8(a).

We can have a second path Pa,b→2,0 “photons
a and b, respectively emitted by a and b, are re-
spectively detected in mode 2 and 0”. These two
paths are not identical, Pa,b→0,2 ̸= Pa,b→2,0, but
have the same detection pattern (0, 2). For in-
distinguishable photons, given the detection pat-
tern (0, 2), it is physically impossible to know
which path the photons have followed, hence the
name of which-path information erasure, which
can lead to interference between these paths and
linear-optical entangling gates. However, If we
have distinguishable photons, it is theoretically
possible to identify which detector has detec-
ted photon a. In this example, we could know
the photons have followed path Pa,b→0,2 or path
Pa,b→2,0 with that knowledge. While we don’t
have access to this information, this leads to the
absence of an entangling gate and a statistical
mixture of these two paths.

For distinguishable photons, if we were able
to discriminate them at the detector, we could
easily retrieve their path up to before the mode
swapping (see the dashed red line in Fig. 8(a)).
Therefore, the distinguishable case corresponds
to the linear-optical interferometer in Fig. 8(b),
which performs a photon X measurement in the
photonic qubit basis.

Repeat detection pattern For partial fail-
ure detection patterns, the effect on the spin is
similar whether or not we have distinguishable
or indistinguishable photons. Indeed, we can
identify which path each photon has followed in
a partial failure, so there is no which-path in-

formation erasure. Therefore, we should only
focus on the successful detection patterns. We
can also obtain the detection patterns (0, 1) and
(2, 3) with distinguishable photons. The Hong-
Ou-Mandel interference (on the last beamsplit-
ters of the linear-optical interferometer) forbids
these detection patterns with indistinguishable
photons. For the same reasons as before, these
patterns are well handled and do not lead to addi-
tional errors induced by distinguishable photons.

Successful detection pattern For indistin-
guishable photons, successful detection patterns
perform a CZ gate on the spin qubits up to some
correction unitary C that depends on the detec-
tion pattern. We focus on the detection pattern
(0, 2), for which C = SaSb

†, but we can apply the
same reasoning to any successful detection pat-
tern. For distinguishable photons, following path
Pa,b→0,2 (respectively Pa,b→2,0) corresponds to a
measurement of the photons in the |+a,−b⟩ state
(respectively |−a,+b⟩). This corresponds to ap-
plying a unitary Zb (respectively Za) on the spin
states. However, in practice, we don’t know that
the photons were distinguishable, and we don’t
know which path has been followed. Therefore,
we perform the correction C on a statistical mix-
ture of the two paths. Therefore, for partially
distinguishable photons, we perform the channel:

CD(ρ) = (1 −D)CZa,bρCZa,b

+ D

2 SaSb
†(ZaρZa + ZbρZb)Sa

†Sb.

We can rewrite this as the desired gate channel,
followed by the error channel:

CD(ρ) = CD,err(CZa,bρCZa,b)

with

CD,err(ρ) = (1 −D)ρ

+DCZa,bSaS
†
b(ZaρZa

2 + ZbρZb

2 )S†
aSbCZa,b.

Because, this channel is not a Pauli error chan-
nel, we simplify it by replacing the noise with a
completely dephasing channel:

CD,err(ρ) → CRUS,s(ρ) = (1−D)ρ+DCZaCZb
(ρ)

with

CZi(ρ) = 1
2(ρ+ ZiρZi).
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Indeed the channel ρ 7→ ZaρZa

2 + ZbρZb
2 acts as

ρ 7→


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44

 ,

whereas the channel ρ 7→ CZaCZb
(ρ) acts as

ρ 7→


ρ11 0 0 0
0 ρ22 0 0
0 0 ρ33 0
0 0 0 ρ44

 ,

making the density matrix diagonal, hence in-
sensitive to CZ and S gate channels. Overall,
we assume more erasure than in reality and we
overestimate the effect of distinguishability.

C Notes on the numerical simulations
C.1 Simulation details

Step 2

Step 3 Step 4

Step 1

NW
NE

SW
SE

Figure 9: Illustration of the order in which the RUS CZ
are performed. Thick edges corresponds to a CZ gate
being performed at a given step.

Here, we give some details about how we
perform the numerical simulations. We used
Stim [67] to perform efficient stabilizer simula-
tions and Pymatching [68, 69] for the minimum-
weight perfect matching decoder.
To measure the stabilizers, we use a noisy

indirect stabilizer measurement circuit as was
presented in Fig. 2. However, instead of per-
forming each stabilizer measurement one after
the other, we do them “all at once”. It avoids

the unnecessary propagation of errors. We use
the strategy proposed in [102] and illustrated in
Fig. 9. The edges connecting a check qubit are
oriented along the North West (NW, e.g. edge
(c6, d1)), North East (NE, e.g. (c6, d2)), South
East (SE, e.g. (c6, d5)) and South West (SW, e.g.
(c6, d4)) directions. We perform the CZ gates in
four steps illustrated in Fig. 9: for X-type (re-
spectively Z-type) stabilizers, we start by SW,
then NW, SE, and finally NE (respectively, SW,
SE, NW, and then NE) CZ gates. This way a
complete cycle of syndrome measurements only
takes the time of four entangling steps and does
not depend on the distance d of the rotated sur-
face code.
Instead of a theoretical CZ gate, we perform a

RUS CZ gate, which is a heralded gate and can
either succeed, fail, or abort. We consider the
abort and failure cases with the same error chan-
nel CRUS,f(ρ) in the simulations. This channel
corresponds to the failure case, while there is a
priori no phase erasure in the case of the abort
case. Therefore, this assumption leads to an error
overestimation in the aborted case. Yet, it also
simplifies the analysis as discussed in the main
manuscript, see 4.

Heralded errors. Stim did not account for
heralded errors natively when we perform the
simulations. To account for heralded gate in
Stim, we consider using an extra ancilla qubit
c. For a CZ gate between qubit a and b, we use
the ancilla qubit c, initialized in the |0⟩ state, as:

CRUS(ρab ⊗ |0⟩⟨0|c) = (1 − pF )CRUS,s(ρab) ⊗ |0⟩⟨0|c
+ pFCRUS,f (ρab) ⊗Xc |0⟩⟨0|cXc. (10)

We then measure qubit c. If it was not
flipped, the successful gate was applied. Oth-
erwise, Xc |0⟩⟨0|cXc = |1⟩⟨1|c , which means we
applied the unsuccessful gate.
Moreover, since CRUS,f (ρ) is the two-

qubit completely dephasing channels,
CRUS,fCRUS,s(ρ) = CRUS,f(ρ), therefore we
can rewrite Eq. (10) as

CRUS(ρab ⊗ |0⟩⟨0|c) = CRUS,f,err(CRUS,s(ρab) ⊗ |0⟩⟨0|c)

with

CRUS,f,pF(ρab |0⟩⟨0|c) = (1 − pF )ρab ⊗ |0⟩⟨0|c
+ pFCRUS,f(ρab) ⊗ |1⟩⟨1|c .

(11)
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This “hack” enables the construction of cir-
cuits involving heralded errors in Stim. 3.
The use of the “CORRELATED ERROR” and
“ELSE CORRELATED ERROR” commands in
stim does not mean errors to be decoded are cor-
related. This is the mechanism used to heralds
errors. Here measuring qubit c in |1⟩ heralds the
dephasing of both qubit a and b.

Decoding heralded errors. We used
Pymatching’s minimum weight perfect matching
(MWPM) decoder [68]. The latter works to-
gether with Stim [67] that determines a detector
error model, namely the error model on the
check operators measured during the simula-
tions. Pymatching builds a matching graph out
of it and applies the MWPM algorithm. This
Stim/Pymatching interfacing allows tracking
errors efficiently and automatically, even with
complex error models. However, this interfacing
does not account for heralded errors natively.
To address this issue, we update manually
the matching graph to be decoded with the
heralded errors of each run. While this method
of handling errors may not be the most efficient,
it is sufficient for our current needs and highly
versatile. It can theoretically be applied to any
type of heralded uncorrelated errors. Moreover,
it accommodates partial erasure, potentially
finding practical applications in other platforms
where similar strategies can be employed [103].

This method requires the initial error model
of the circuit without any heralded error and a
register of the heralded error models of each her-
ald. When running the circuit, the herald sig-
nal determines which heralded error models are
to be incorporated into the initial error model.
In term of matching graph, this corresponds to
updating the graph accordingly as was done in
Ref. [70]. Predicting RUS-heralded error models
is more challenging than predicting simple qubit
erasures, therefore mock circuits are simulated in
order to extract each heralded error models. One
can observe that due to the construction of the
RUS-heralded errors, the resulting error models
will be made up of uncorrelated errors. This al-
lows for a proper use of the MWPM algorithm.

3This solution was provided by Craig Gidney in https:
//quantumcomputing.stackexchange.com/questions/
26582/how-do-i-perform-an-erasure-error-in-stim

Spin dephasing. The last type of errors ac-
counted for in our simulations are spin decoher-
ence errors that lead to a continuous time error
Ct(ρ) from Eq. (8). Assuming T2 ≪ T1, and
taking T1 → ∞, this channel has the form of a
dephasing channel:

Ct(ρ) = (1 − pZ)ρ+ pZZρZ.

with pZ depending on t. We consider all the de-
coherence to occur for a time t = tRUS before
each of the four time steps discussed previously.
We can do this since the spin decoherence chan-
nel commutes with all the RUS gate channels. A
complete error correction cycle thus lasts 4tRUS if
we assume that other operations take negligible
time compared to a RUS gate.

We also consider that we can perform any
single-qubit operation and measurement with
unit fidelity. We leave the study of more com-
plete error models to future work.

C.2 Numerical results for independent errors

In all the numerical simulations, we evaluate the
error threshold by performing a fault-tolerant ini-
tialization of the logically-encoded qubit. For a
Jd2, 1, dK rotated surface code, we start with n
disentangled physical qubits in the state |0⟩⊗n

(respectively |+⟩⊗n = (|0⟩ + |1⟩)⊗n) and we want
to encode a logical |0⟩L (respectively |+⟩L) qubit
using noisy gates and qubits. We do so by per-
forming d cycles of error correction. We then
measure all the qubits in the Z (respectively X)
basis to evaluate whether or not the fault-tolerant
initialization was successful: if the measurement
gives |1⟩L (respectively |−⟩L = |0⟩L − |1⟩L), we
have a logical error.

C.3 Determination of the fault-tolerant region
of errors

We wish to explore a tri-dimensional parameter
space corresponding to the three main physically
relevant errors present in the SPOQC architec-
ture: photon loss, partial distinguishability, and
spin decoherence time. We want to extract the
border between the FT and the non-FT regimes.
This border corresponds to a surface S in this
tri-dimensional space.

We already know three points from S consec-

utive to the study of individual errors:
−→
OA =
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(pF,th,0, 0, 0), −−→
OB = (0, tth,0, 0), and

−−→
OC =

(0, 0, Dth,0).
To reduce the parameter space exploration, we

make the assumption that the border S is “not
too far” from the plane Ŝ passing by these three
points and defined by the equation x

pf,th,0
+ y

tth,0
+

z
Dth,0

= 1. We verify that this assumption is

sound later on through the simulations.

To find the correct surface S, we first start
by taking a tessellation of points on the plane Ŝ
(more precisely on the intersection of this plane

with
(
R+)3

). For each point M , we consider the
line ℓM passing through the origin O defined by

the vector
−−→
OM and want to identify the intersec-

tion point N of ℓM with the real FT-threshold
surface S. The line ℓM is parameterized by−−−→
OM ′(w) = w

−−→
OM , and we look for the value wth

corresponding to the intersection of ℓM with the
surface S. We do so by performing simulations

for combined errors corresponding to w
−−→
OM on

the error space. The error intensities all increase
with w, and we identify the FT threshold cor-
responding to the crossing points between two
curves of distance d and d + 2 as a function of
w. We use d = 11 in our simulations. This
crossing point is wth. It is the “real” cross-
ing point between ℓM and S. The assumption
that S is close to the planar surface Ŝ helps
us in using a small interval [wmin, wmax] of val-
ues close to 1 to avoid exploring the full error
space. After a first refinement, we use an inter-
val [wmin, wmax] = [0.85, 1] and ensure that the
assumption is valid by checking that wth is al-
ways found within [wmin, wmax]. To obtain the
border S in Fig. 5, we plot the threshold point
that we have found along each line ℓM of the tes-
sellation of np = 120 points.

D Variant with hybrid RUS gates

The RUS gate offers the best robustness against
photon loss, but as we can see in Fig. 6, the
need of using many trials causes stringent re-
quirements on the spin coherence time. A RUS
gate is indeed relatively long as it requires to
store quantum information on the spins for k tri-
als corresponding to the time of photon emission,
transfer, and detection and also from the classical
processing and feedforward delays.

An alternative strategy relies on boosted fu-

 Multiple photonic qubits

Success 

Failure 

Repeat

H

H

 or

H H

H

 X measurement
RUS

linear interferometer

Decides

Figure 10: Hybrid RUS gate including spin qubits cap-
able of emitting multiple entangled photons, an adaptive
interferometer and detectors. The linear-optical inter-
ferometer is adaptive and depends on previous measure-
ment outcomes. Horizontal black rectangles correspond
to 50 : 50 beamsplitter, the inclined parallelogram cor-
responds to a −π/2 phase shifter, numbered semiovals
are photon-number-resolving detectors.

sion gates [71] and is potentially much faster as
it requires only one trial step. This gate corres-
ponds to having each spin sending sequentially
n photons to an adaptive linear-optical interfer-
ometer. This scenario differs from RUS gates,
where we only emit one photon per trial. The
linear-optical interferometer depends on the pre-
vious measurement outcomes. If no previous
measurements has yielded a successful detection
pattern, it corresponds to the RUS gate. Other-
wise, it corresponds to two independent X meas-
urements on the photonic qubits. Fig. 10 illus-
trates a physical implementation of such a gate.
We can picture this as making the k = n trials of
an equivalent RUS gate “all at once”, that is, n
trials of the RUS gate is implementing by a hy-
brid RUS gates with n photons per trial, provided
that no photon is lost.

Interestingly, all the results derived in the pa-
per are valid if we replace RUS gates by hybrid
RUS gates. It means replacing the building block
based on single-photon emission with a hybrid
gate based on multiple sequential photon emis-
sions. If we consider this hybrid scheme, here-
after denoted as HRUS(k, n) for at most k tri-
als with n photons per trial, we can increase the
fault-tolerant region of our architecture.
HRUS(k, n) is successful if we obtained at least

one correct detection pattern and if all the emit-
ted photons have been successfully detected:

ps = (1 − 2−n)(ηaηb)n.

The hybrid gate has failed if at least one photon
is lost:

pf = 1 − (ηaηb)n,
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and it has been aborted otherwise:

pr = 2−n(ηaηb)n.

In that case, the total success, failure and abort
probabilities are given by

PHRUS,s(ηa, ηb, k, n) = ps

k−1∑
j=0

pj
r,

PHRUS,f(ηa, ηb, k, n) = pf

k−1∑
j=0

pj
r,

PHRUS,a(ηa, ηb, k, n) = 1 − PHRUS,s(ηa, ηb, k, n)
− PHRUS,f(ηa, ηb, k, n).

Note that a HRUS(k, 1) is identical to the stand-
ard RUS gate we have introduced in Section 3
and a HRUS(1, n) gate is equivalent to a boosted
fusion gate [71].

Compared to RUS gates, HRUS gates (with
n ≥ 2) have a lower maximum success rate in
the presence of loss than RUS gates. Yet, they
are also faster as they usually require less trials.
They should thus yield better performances when
the spin coherence time is the critical figure of
merit. In the main manuscript, we have assumed
that a single trial of RUS or HRUS gate takes
the same amount of time, which thus does not
depend on the number n of emitted photons per
trial. This assumption holds for typically small
number of photons and whenever the emission
process is fast compared to the feedforward delay
time between each trial.
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