N

N
N

HAL

open science

Innovate or Imitate? Behavioural technological change

Cars Hommes, Paolo Zeppini

» To cite this version:

Cars Hommes, Paolo Zeppini. Innovate or Imitate? Behavioural technological change. Journal of
Economic Dynamics and Control, 2014, 48, pp.308 - 324. 10.1016/j.jedc.2014.08.005 . hal-04575559

HAL Id: hal-04575559
https://hal.science/hal-04575559

Submitted on 15 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04575559
https://hal.archives-ouvertes.fr

ECOMNZTOR

Make Your Publications Visible.

Hommes, Cars; Zeppini, Paolo

Working Paper

A Service of

ﬂ I I I Leibniz-Informationszentrum
° Wirtschaft
o B Leibniz Information Centre
h for Economics

Innovate or imitate? Behavioural Technological

Change

Tinbergen Institute Discussion Paper, No. 13-099/11

Provided in Cooperation with:

Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: Hommes, Cars; Zeppini, Paolo (2013) : Innovate or imitate? Behavioural
Technological Change, Tinbergen Institute Discussion Paper, No. 13-099/1l, Tinbergen Institute,

Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/87291

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dirfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie durfen die Dokumente nicht fur 6ffentliche oder kommerzielle
Zwecke vervielfaltigen, 6ffentlich ausstellen, éffentlich zuganglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/87291
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

T12013-099/11

®
Tinbergen Institute Discussion Paper /m
‘

Innovate or imitate?
Behavioural Technological Change

Cars Hommes’
Paolo Zeppini?

T CeNDEF, Amsterdam School of Economics, University of Amsterdam, and Tinbergen
Institute;

2 School of Innovation Sciences, Eindhoven University of Technology.



Tinbergen Institute is the graduate school and research institute in economics of Erasmus University
Rotterdam, the University of Amsterdam and VU University Amsterdam.

More Tl discussion papers can be downloaded at http://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117

1082 MS Amsterdam

The Netherlands

Tel.: +31(0)20 525 1600

Tinbergen Institute Rotterdam
Burg. Oudlaan 50

3062 PA Rotterdam

The Netherlands

Tel.: +31(0)10 408 8900

Fax: +31(0)10 408 9031

Duisenberg school of finance is a collaboration of the Dutch financial sector and universities, with the
ambition to support innovative research and offer top quality academic education in core areas of
finance.

DSF research papers can be downloaded at: http://www.dsf.nl/

Duisenberg school of finance
Gustav Mahlerplein 117
1082 MS Amsterdam

The Netherlands

Tel.: +31(0)20 525 8579



Innovate or imitate?
Behavioural Technological Change*

Cars Hommes®"! and Paolo Zeppini®® }

& CeNDEF, Amsterdam School of Economics, University of Amsterdam
b Tinbergen Institute

¢ School of Innovation Sciences, Eindhoven University of Technology

JEL classification: C62, C73, D21, O33.

Key words: discrete choice, innovation patterns, learning curves, switching behaviour.

Abstract

We propose a behavioural model of technological change with evolutionary switch-
ing between boundedly rational costly innovators and free imitators, and study the
endogenous interplay of innovation decisions, market price dynamics and technologi-
cal progress. Innovation and imitation are strategic substitutes and exhibit negative
feedback. Endogenous technological change is the cumulative outcome of innovation
decisions. There are three scenarios: market breakdown, Schumpeterian rents and
learning curves. The latter is characterised by an increasing fraction of innovators
when demand is elastic, while inelastic demand allows technological progress with
shrinking innovation effort. Model simulations are compared to empirical data of two
industrial sectors.
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1 Introduction

In this article we investigate the dynamics of innovation and imitation as two market
strategies that affect total factor productivity in a perfectly competitive market, using a
discrete choice mechanism. Our main focus is the interplay between market and behaviours,
and its effects on innovation intensity and technological progress.

The approach proposed here is different and complementary to the Endogenous Tech-
nological Change literature (Romer, 1990; Grossman and Helpman, 1991). In particular, it
is related to the Schumpeterian Growth type of models (Aghion and Howitt, 1992, 1998).
Instead of a production function with expanding products variety, or input goods variety,
we use a market dynamics with Walrasian equilibrium of (homogeneous) demand and (het-
erogeneous) supply, with only one homogenous good but with differentiated production
technology. This way of modelling the price effect on technological change distinguishes
our model also from the recent theory on Directed Technical Change (Acemoglu, 2002,
2007).

The empirical evidence shows a substantial unexplained inter-firm and intra-sectoral
variability of innovation proxies as R& D expenditure, innovative output, patenting activity,
etc. (Dosi, 1988). This indicates that firms’ heterogeneity regarding innovation behaviour
may be important in modelling technological change. Technology is a non-rival partially
excludable good (Romer, 1990), which makes direct imitation possible. In some cases in-
tellectual property rights pose a limit to imitation. Benoit (1985) addresses non-patentable
innovations and studies the interplay of innovators and imitators in the strategic setting of
a duopoly. With our model we adopt an adaptive behavioural approach, as, for instance,
in Arthur (1989), and consider a population of firms where innovation and imitation are
two alternative strategies.

Our model of technological change is based on switching behaviour of costly innovators
and cheap imitators. The interplay of innovation and imitation plays an important role in
the dynamics of industry evolution, in particular affecting the incentives for costs reduc-
tion effort (Ceccagnoli, 2005). Imitation in a broad sense is the exploitation of external
knowledge sources. This can involve public knowledge such as published research but also
spillovers and leakages from private knowledge (Spence, 1984). Considering the taxonomy
of Malerba (1992), innovation and imitation refer to learning by searching and learning
from spillovers. In the latter there are all different kinds of information flows, from knowl-
edge leakages to pure copying activity. Modelling innovation and imitation as two different
strategies relies on Schumpeter’s hypothesis of routinisation of innovation (Schumpeter,
1942), and more generally on Simon’s view about bounded rationality of agents (Simon,
1957).

Behavioural heterogeneity and switching behaviour are empirically relevant in other



applications, as testified by survey data (Branch, 2004), market data (de Jong et al., 2009)
and laboratory experiments Hommes (2011). And although the literature on heterogenous
agents models is now quite vast, little has been tried in this direction to model technological
change. We intend to cover this gap.

We model behavioural diversity and switching behaviour using the discrete choice frame-
work of Brock and Hommes (1997). Our model addresses interacting firms that make a
choice about whether or not to invest in innovation in order to be more productive. The
idea of imitation as a cheap heuristic opposed to a costly sophisticated innovative strategy
is similar in spirit to Grossman and Stiglitz (1976)’s model of informed and uninformed
agents in a competitive asset market. In our model this idea can be expressed by saying
that it may be more efficient for some firms to exploit other firms than to invest in innova-
tion themselves. Because of these different elements, our model of innovation combines the
approach of neoclassical economics with the evolutionary-economic approach of dynamic
heterogeneous populations.

The literature on innovations diffusion has addressed the role of imitation. Two sem-
inal papers here are Mansfield (1961) and Bass (1969). Those models mainly look at the
demand side, and the focus are the timing of adoption and diffusion rates. Our evolution-
ary selection based on production cost reduction shares some elements with Iwai (1984),
where firms are described by a distribution of production costs. In our model behavioural
heterogeneity leads to a negative feedback that makes it profitable to switch strategy in
an environment where a strategy becomes dominant. This feature may be interpreted as a
minority game, and finds a parallel in models with strategic complements and substitutes
(Bulow et al., 1985). Conlisk (1980) has a negative feedback with costly optimisers and
cheap imitators. An important difference of our model is the endogenous interplay of mar-
ket and firms’ choices, without exogenous stochastic process. Another endogenous model
of interacting sophisticated and naive agents is Sethi and Franke (1995). However, this
model and Conlisk’s model are globally stable: if not for exogenous random shocks, the
economy would converge to an equilibrium where all agents use the cheap strategy. In our
model there may be a stable equilibrium with coexistence of strategies, or even cyclical or
chaotic dynamics without any exogenous shocks.

We have two aims in this paper. The first is to study how the behavioural decision
mechanism and market dynamics interact, and what are the factors that make one strategy,
innovation or imitation, prevail. The second is to address the mutual effects of behaviours
and technological change, to see how different innovation patterns endogenously depend on
market factors and behavioural regimes. In a first basic version of the model we focus on
equilibrium stability and on the main factors driving market and strategy dynamics. In
a more elaborated version of the model we focus on technological change and innovation

behavioural regimes.



The model with endogenous technological change presents three scenarios: market
breakdown, where depreciation of technology is too strong compared to knowledge cu-
mulation. This is the story of shrinking sectors. Balanced technological change, where
technological growth is just enough to offset depreciation. The price decreases but sets to
a positive limit and the technological frontier is limited. The third scenario is technological
progress, with a price falling to zero and a technological frontier that grows unboundedly.

The scenario with technological progress represents the main and final focus of this
paper. Here we show two main results. First, the key-role of demand elasticity in explaining
innovation patterns. Second, the ability of the model to reproduce learning curves. The role
of demand in technological change has been widely overlooked in the literature. Our model
shows that when the demand is elastic, technological progress leads to an ever increasing
fraction of innovators. With inelastic demand, technological progress is characterised by
less and less innovators, instead. These two different outcomes are much in line with the
patterns of innovation of Schumpeterian tradition: the Schumpeterian Mark I pattern, that
is referred to as widening, is characterised by a decreasing concentration of patenting firms,
and is obtained with elastic demand. The Schumpeterian Mark II pattern, referred to as
deepening, is the opposite, and in our model it realises with an inelastic demand. This
explanation of innovation patters complements the technological regimes explanation of
Breschi et al. (2000), and advocates the potential of a behavioural approach to endogenous
technological change.

The second result of the scenario with technological progress is a behavioural micro-
foundation of learning curves. These are a stylised fact of technological change (Hartley,
1965; Lieberman, 1984; Argote and Epple, 1990). The empirical literature on learning
curves is vast (Berndt, 1991), but on the other hand models that include this factor in their
analysis are only a few, and usually devoted to study the implications of learning curves for
pricing, market equilibrium and social welfare (Spence, 1981; Cabral and Riordan, 1994;
Petrakis et al., 1997). A common feature of these models is that learning curves are taken as
exogenous. McCabe (1996) makes learning curves endogenous in a learning models based on
a principal-agent approach. Our model constitutes an alternative endogenous explanation
of learning curves that is based on the interplay between agents decision making and market
dynamics. Simulated time series of price and production are compared to empirical data
from two different industrial sectors, the US tire industry and a global index of solar power
technology.

The chapter is organised as follows. Section 2 introduces the general framework and
presents a basic model, with a stability analysis of market dynamics. Section 3 describes
the full model with behavioural technological change, presenting the different innovation

patterns and the setting that reproduces learning curves. Section 4 concludes.



2 Costly innovators versus cheap imitators

2.1 The basic model

Consider an industry with N firms producing the same good in a perfectly competitive
market. Innovation means to reduce the production cost, while imitation means to adopt
the currently available technology. Firms are either innovators, with fraction n;, or im-
itators, with fraction 1 — n,. Choosing the strategy (innovation or imitation) sets the
production technology and the cost structure or total factor productivity (TFP) of a firm.
The quantity S"(p;) supplied in period ¢ by a firm choosing strategy h is a function of
price and depends on the cost structure of strategy h. In each period the market clears in

a Walrasian equilibrium:
D(p;) = ntStINN(pt) +(1 - nt)StIM(pt)a (1)

where h = INN stands for innovation, and h = IM for imitation. Eq. (1) results
from the aggregation of demand over consumers and supply over firms, and then dividing
by the total number of firms N.!' The supply is a convex combination of innovators’
and imitators’ production, with n; and 1 — n; the fractions of innovators and imitators,
respectively. Profits of an individual firm of type h in period t are 7 = pyq* — c"(ql'), with
qt = S(p;). We choose a quadratic cost function as in Jovanovic and MacDonald (1994):
the cost of producing quantity ¢ for a firm adopting strategy h is ¢"(q) = 2‘2—1 + C", where

C" represents the fixed costs of the strategy. This choice keeps the model as simple as

possible: maximisation of profits with respect to quantity ¢ gives a linear supply:

SN (o) =" M () = 5 (2)

The parameters sV and s/ are proportional to TFP, and consequently depend on the

production technology of the firm.? An innovator invests C'¥Y = C > 0 and increases

INN ~ ¢IM " cutting down the production cost ¢(q) (see Jovanovic and

TFP, expressed by s
MacDonald (1994)). Cost reduction is larger for larger values of output: Ac = —%As.
This means that larger firms profit more from innovation. Imitation is free (C'* = 0) and it
amounts to using the state-of-the-art technology, a sort of publicly available technological

frontier.®> This setting is similar to Iwai (1984), the difference being that here we have

INN IM
! Aggregation of supply gives S; = SInt, SIVN + Z;V:tl SIM. Subgroups of innovators (imitators)

are homogeneous i.e. S/NVV = SINN (S]{]t” = S/M) for all i (j). Hence S; = N/NNSINN  NIMGIM,
Dividing by the number of firms N one gets the right-hand side of (1).
2If we think in terms of a production function like ¢ = A@(K, L), where ¢ is a function of capital and

labour, the parameter s is positively related to the production technology factor A.
3In principle imitators have the advantage of not replicating an unsuccessful innovation. Here we

assume that innovation is always successful. One can also interpret the model in a slightly different way,



two types of firms instead of a continuous distribution. If we focus on TFP, our model
resembles the model of competition driven by R&D in Spence (1984), provided that time
is discrete and firms are homogeneous but for their choice about innovation, as in Llerena
and Oltra (2002). The competitive advantage of innovators over imitators is expressed
by specifying the production cost structure. Assume TFP’s of innovators and imitators
do not depend on time, and R&D expenditure enhances the TFP of innovators by an
exponential factor (Nelson and Winter, 1982; Dosi et al., 2005): s/VV = s¢C and s/M = s,
where b > 0 represents the benefits of the innovation investment. It follows that marginal
production costs are ¢/(q) = £ for imitators and ¢’(¢) = = for innovators. Average costs
are VN = % =24 S,ng and ™M = £ with A"VN > AIM and 4NN = A IM iy
the limit of infinite price. This is an indication that innovators benefit from a high price,

although their aggregate effect is exactly in the opposite direction, i.e. more innovators
lower the price.
Firms switch between innovation and imitation based on the evaluation of profits. For

a quadratic cost function, profits of innovation and imitation are:

1 1
m N = s = O = s = C (3)
1 1
mt = ostpl = gy

In particular A7 = 7/¥N — 7IM = ( for p = p = /2C/s(e?® — 1). We model agents’
decision using the discrete choice framework of Brock and Hommes (1997) (BH henceforth),
with an endogenous evolutionary selection between costly innovation and cheap imitation.
This framework is based on the concept of random utility (see Hommes (2006) for an

extensive survey and discussion). The fraction of innovators at time ¢ is given as:

,B’TFINN
(& t—1
ny = eﬁﬂﬁle n eﬁﬂﬁvg' (4)
If we use the difference of profits Am, = 7/VN — 7/M = 25(e*“ — 1)p? — C, we obtain the
following function n; = §(ps_1):
1

ny =

= G(pi-1)- (5)
| 4 e L3t -0r s ¢
A higher price creates incentives to innovate, because of a larger Am. The intensity of

choice (8 is inversely proportional to the variance of the utility noise, and measures the

ability of firms to choose the best strategy. In the limit § = 0 agents are myopic, and split

thinking that innovation is an uncertain event, and that innovators improve their productivity with a given

SINN is the expected value of productivity from this innovation process.

(exogenous) probability. Say that
With a large number of identical innovating agents, everything goes as if all innovating agents are given

the improved productivity STV



equally among the different types (n = 1/2). On the other hand, § = oo represents the
rational limit, where all agents choose the optimal strategy.

In this basic specification of the model we ignore technological advance and focus on
the interplay between strategy switching behaviour and market dynamics. We assume that
innovation is like buying a shortcut which results in lower production costs in one period.
A similar assumption is in Aghion et al. (2005), where profits depend only on the gap
between leading and laggard firms, and not on the absolute level of technology. Section 3

relaxes this hypothesis, and considers technological progress.

a
p_%ia
Solving the market equilibrium equation (1) with s/V = se? and s/M = s we get

b= {3[(6bc—1)nt+1]} = f(m) ©)

where fractions n; and 1 — n; depend on last period price according to (4). The function

Consider a hyperbolic demand D(p;) = with price elasticity equal to —d (d > 0).*

f(n) is decreasing because € > 1: an increase in the density of innovators drives down the

1
price. When everybody innovates the price reaches its minimum value pjyy = (se‘},c) b,

_1
On the other hand, the maximum value pj,, = (%) I+ is obtained with only imitators,® as

illustrated in Fig. 1. The more innovators, the steeper is the aggregate supply curve and

q n=1: S(p)=4p
S(p)=4np+(1-n)p
7
7
7
,/ n=0: S(p)=p
7
7
: 7
H 7
: 7
H ’
/
A
v
H
i
4
7 :
’ i
/' H D(p)=1/p
7 : H
/, H :
g H H
p*min=1/2 p*max=1 P

Figure 1: Demand and supply curves with D(p) = 1/p, sV =4 and s’ =1.

the lower is the price. The intuition behind this mechanism is that innovation is defined
as cost reduction, so that a positive mass of innovators lower the average production cost
of the industry, which translates into a lower market price.

The decision mechanism (5) and the market mechanism (6) express a negative rela-

tionship between price p and innovation n. These two opposing forces feed the dynamic

4In an earlier version of the model we have considered a linear demand (Zeppini, 2011).
®We can think of this limit as a situation with only one innovator: If N > 1 we have n ~ 0.

7



equilibrium (1). There are conditions for a stable equilibrium, where fractions and price
remain unchanged through time. The system under study is one-dimensional, and the
equilibrium can be found either using the price p; or the innovators fraction n, as state

variable. By substituting Eq. (5) into (6) we obtain a flow map for the price:

1
an i [ 1 eBlhseC-1pi—c) ) T
n=(%) { = f(pi-a). (7)

s 1 1 PlEs(E@C=Dpt_ —Cl+bC

If instead we substitute (6) into (5), we obtain a map for the fraction of innovators:

1

ng =

P = g(ni-1)- (8)
} g

T+d
_ L dFT (0C - a _
l1+e 5{25 e 1)["t—1<eb0f1>+1} ‘

In Eq. (8) the factor s does not play any role when the demand is unit elastic (d = 1).

This fact is important when we introduce endogenous technological progress (Section 3).

2.2 Steady states and stability

An equilibrium is expressed by a fixed point of function f (or g), that is a value of the

price p* such that p* = f(p*) (or n* = g(n*)).
Proposition 2.1 There is a unique steady steady state p* (or n*).

This is because the map f (or g) is monotonically decreasing (Appendix A). The stability

of p* depends on the parameters setting:
Proposition 2.2 p* (or n*) is stable in the limit w — 0 for w = a,b,C, s, [3.

The proof is given in Appendix A.

The intensity of choice 3 expresses the extent to which agents make the optimal decision
between innovation and imitation (Eq. 4). In the limit 8 = oo the price map is a step
function. Consider the price p where imitators and innovators have the same profit, p =
V/2C/[s(e’® — 1)]. Whenever p > p, it holds Ar > 0, and 3 = oo in Eq. (5) gives n; = 1.
This means that f(p) = pjyy Vo, by Eq. (6). On the contrary, for p < p, f = oo gives

f(p) = pjyr Vo, with n, = 0. Consequently, the price map (7) is a decreasing step, with a
discontinuity at p = p.

For finite values of /3 different situations may occur. The first derivative of the map (8)
at the equilibrium n* is

(e — 1)ne + 1] 551

The stability condition —1 < ¢'(n*) < 0 is satisfied in particular when there is a sufficiently

large prevalence of innovators (n* ~ 1) or imitators (n* ~ 0).

8



The qualitative change from stable equilibrium to period 2 cycle is a period-doubling
bifurcation. This may occur by changing any of the parameters a, d, b, C', s or 8. Although
an analytic computation of bifurcation values is not feasible, Prop. 2.2 summarises how the
stability of the steady state depends on parameters. Changes in the demand parameters
a and d only affect the price range defined by pjy,y and pj,,, and leave p unaffected. An
increase of a (positive demand shock) moves the demand curve outwards (Fig. 1), and
enlarges the gap pj,, — pjyy- This change is destabilizing (Zeppini, 2011). An increase
of d (price elasticity of demand) reduces the gap p5,, — piyn, and tend to be stabilizing
instead. The supply parameters s, b and C' affect both p and the range [p},;, pjyn]- Their
effect on the equilibrium is not obvious, then.

If the map is steep enough in the fixed point and |¢’(p*)| > 1, the market does not attain
a stable equilibrium. Since g is decreasing and bounded, when the equilibrium is unstable
a (stable) 2-cycle occurs. In Fig. 2 we report two examples of time series of the innovators

fraction n; (upper panels). On the left we have a case where the market converges to a

0.5 f . ' .
| 2 T
||
0.48 | 0.8 A A
0.7 I
0.46 I E YT T
‘ R I A AN
LRI os ATV
oca APV ALY L
0.42 /RIRIRIRIRIRIRIRIRIRIRIRIRIN
o 3 VA Yt
0.4 b 027\“HHHHHHHHHHHHH
. : \\JM O O |
.| 0.1 HERERRERERAR
0 5 10 15 20 25 30
t
1 1 T T T T T
. | /\f
0.6 0.6 F §
n
0.4 0.4
0.2 0.2
0 0
0 5 10 15 20 0 0.5 1 1.5 2 2.5 3 3.5 4

b

Figure 2: Upper panels: examples of time series of innovators fraction n. Left: Stable equilibrium
(B =5). Right: 2-cycle (8 = 10). Here a =d =2, b = C = s = 1. Lower panels: long run values of n.
Left: bifurcation diagram of the intensity of choice 8 (b =1, a = 2, d = 2). Right: bifurcation diagram
of the innovation benefit b (8 =5, a =4, d =0.5). Here s =C = 1.

stable equilibrium n* ~ 0.43. On the right we have a stable 2-cycle, obtained increasing
the intensity of choice from 5 =5 to g = 10.

The intuition for cyclical dynamics is as follows. Innovation drives down the price,
and at some point the profits from innovation become too low (even negative, due to the
fixed costs C'), so that imitation becomes preferable. Agents start switching to imitative
behaviour then, and the price goes up. An increasing price boosts innovators’ profits more
than imitators’, because of larger TFP. When innovators profits become largest, agents

switch back to innovation again, and the story repeats. This cyclical behaviour reflects a



“minority game” dynamics, in that innovation and imitation show strategic substitutability
(Bulow et al., 1985): a strategy adopted by the minority is more appealing. Stated differ-
ently: innovation works better in a market dominated by imitators, while imitation is more
profitable in an environment dominated by innovators. Hence, there is a negative feed-
back from strategy adoption. Such a negative feedback mechanism resembles the dynamic
counterpart of the inverted-U relationship between competition and innovation studied in
Aghion et al. (2005): a fall of the price means stronger competition and it is associated
with a surge in innovation, but at the same time it creates incentives for imitation, and
innovation slows down.

A bifurcation diagram shows the qualitative changes in the dynamics due to changes in
parameters.® The lower-left panel of Fig. 2 reports an example of bifurcation diagram of
the intensity of choice. For g ~ 7 the steady state loses stability and a stable 2-cycle occurs.
As [ gets larger, the cycle approaches values {0, 1}, meaning that almost all agents switch
between innovation and imitation. The lower-right panel of Fig. 2 reports a bifurcation
diagram of innovation return b, with a period doubling at b ~ 2.7. This diagram shows
a trade-off in b: larger innovation benefits do not necessarily mean more innovation. The
effect of b on n is positive for small values of b, but negative for large values. This is due
to a double effect of innovation on innovators’ profits: a positive direct effect comes from

INN — 5¢bC A negative indirect

the exponential factor that makes profitability larger, s
effect is from the price: the price reduction of innovation has a stronger effect on innovators
themselves, because of their larger productivity, which also means a higher price elasticity

of supply. If the price effect is prevailing, innovators become less frequent as b gets larger.”

2.3 Asynchronous updating of strategies and chaos

So far we have assumed that in each period all agents evaluate the payoff from innovation
and imitation, and switch to the optimal strategy with a probability that depends on the
intensity of choice §. This may not be realistic. Firms show a good degree of persistence
(Dosi, 1988), and the empirical evidence of persistence in firms’ propensity to innovate
or not-innovate holds across countries and industrial sectors (Cefis and Orsenigo, 2001).
It is therefore useful to introduce a hypothesis of inertia, as in evolutionary game theory
learning models (Kandori et al., 1993). In discrete choice models this is implemented

through asynchronous updating (Diks and van der Weide, 2005; Hommes et al., 2005): in

6 A bifurcation diagram is obtained as a collection of long run values of the state variable for a set of
different initial conditions and a specified range of the parameter under study. Here the transient time is

100 periods. The numerical implementation has been done with E&F Chaos (Diks et al., 2008).
"Beside period doubling bifurcations, also period halving is possible, where increasing one parameter

moves the market from 2-cycles to stable equilibrium. The joint effect of any two parameters can be

analysed with a phase diagram. A detailed analysis of different bifurcation scenarios is in Zeppini (2011).

10



each period the fraction 1 —«a (« € [0, 1]) of agents update strategy, while the rest stick to
the previous strategy. Consequently, the fraction of innovators is as follows:

INN
eﬁﬂ't—l

n = an_1 + (1 —a)—wx (10)

ﬁﬂ' ﬁﬂ.IM
eP"t—1 _|_ eP"t—1
= ang + (1 —a)g(ni1) = g(ni1),

where the function g is the map (8) of the basic model with synchronous updating (that
we obtain with a = 0). This system is still one-dimensional. The map ¢ in (10) is a
convex combination of an increasing function, n;_;, and a decreasing function, g(n;_;), and

therefore can be non-monotonic depending on the value of o (Fig. 3, upper-left panel). In
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Figure 3: The model with asynchronous updating. Upper-left: Examples of the map ¢ for different values
of the weight a. Upper-right: time series n¢ (a« = 0.6, 8 =30, a=4,d=C=2,b=1, s =0.5). Lower
panels: bifurcation diagrams of the updating weight a. Left: g = 10. Centre: 8 = 20. Right: 8 = 30
(witha=4,d=2,b=1, s=0.5,C =2).

particular, g is decreasing for a = 0, it becomes non-monotonic for intermediate values of «
and it is increasing for a close to 1. The non-monotonicity of the map g leads to complicated
dynamics when the steady state is unstable (Fig. 3, upper-right panel). Indeed, chaotic
dynamics can arise, as illustrated in the bifurcation diagrams of Fig. 3 (lower panels).
When f is relatively small (lower-left panel), either a 2-cycle or a stable equilibrium are
possible. Increasing 3, cycles of period 4 appear for mid values of « (lower-middle panel).
A larger (3 further destabilises the market introducing irregular dynamics for a« > 0.5
(lower-right panel). These examples indicate that in general, when most agents stick to

their strategy (large «), the industry converges to a stable equilibrium. When only a
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small fraction of agents update strategy (low «) instead, the market converges to a period
2-cycle. Intermediate values of the updating fraction o may present a period doubling
bifurcation route to irregular chaotic dynamics. Nevertheless, the variability of n decreases
with a larger a. This means that asynchronous updating is quantitatively stabilizing,
but qualitatively destabilizing: it dampens the amplitude of the orbit oscillations, but at
the same time chaos may occur. This global dynamics is similar to the cobweb model
with adaptive expectations of Hommes (1994), with the asynchronous updating fraction «
playing the role of the adaptive expectations weight factor. Prop. 2.3 shows the occurrence

of chaos with asynchronous strategy updating.

Proposition 2.3 Let g be the map (10). If B and C are sufficiently large, there exist

values aq, as and asz with 0 < a; < ay < ag < 1 such that the following holds true:
e (Al) g has a stable period 2 orbit for a € [0, ),
o (A2) the map g is chaotic in some interval [aa — €, s + €,
e (A3) g has a stable equilibrium for a € (ag, 1.

A proofis given in Appendix B. Asynchronous updating increases persistence of strategies.
The time series in the upper-right panel of Fig. 3 is an example where oscillations of

innovators fraction are strongly and irregularly dampened in several periods.

3 Technological change

In the previous sections we have studied the dynamics of the interplay between innovation
and imitation assuming that strategy switching and price dynamics do not interfere with
the underlying technological progress. In this section we study the mutual effects of tech-
nological progress and strategy switching, proposing a behavioural model of technological
change. The closest reference to this model is the “Schumpeterian” version of endogenous
growth theory (Aghion and Howitt, 1992, 1998). There are two main differences in our
model: first, we have behavioural heterogeneity of firms, leading to a differentiated pro-
duction cost, in place of quality ladder of technology vintages. Second, we rely on the
market dynamics of supply and demand, and not on the concept of production function

and factors prices.

3.1 The model

The fundamental assumption of this extension of the model is that innovation cumulates:

in each period the achievements of innovators contribute to a technological frontier. The
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frontier consists of all past innovations, and has the connotation of a learning curve. Imita-
tors have access to the technological frontier, while innovators expand it, obtaining a better
production technology due to their innovation investment. We introduce a cumulation rate
~ for innovations, and also a depreciation rate 6. Based on this we define the technological

frontier:
s(t) = seXizifmi=d], (11)

This technological frontier grows over time exponentially by a time-varying factor yn; — 9,
where n; is the fraction of innovators in period ¢. Imitators exploit the frontier technol-
ogy, while innovators build on it, getting a competitive advantage. Consequently the two

productivity levels are as follows:
st = s(t)etC, st = s(t). (12)

Formally nothing changes with respect to the basic model: innovators increase TFP by
the factor ¢“, after investing C' in innovation. This advantage lasts one period, because
it becomes publicly available afterwards. The difference with the basic model is that
imnovation now exhibits endogenous growth and cumulates at a rate v, resulting in an
advancing technological frontier. An agent can innovate today and imitate tomorrow,
without loosing the benefits from its previous innovation, although everybody else can
use it as well. It has to be noted that a dynamic technological frontier s(¢) makes the
technological gap As(t) = s(t)(e’® — 1) change over time. In particular, technological
progress causes As to enlarge.

The rate v measures two effects, namely cumulativeness of knowledge and spillovers
of technological innovations. The implicit assumptions here are that innovation always
cumulates and spills over at the same rates, in line with the assumption of our model that
innovation benefits b and costs C' are the same in every period.

Let’s consider synchronous updating (o = 0) for the moment. The introduction of a
technological frontier in the basic model of Section 2 amounts to substitute parameter s
with s(t) in the distribution of agents’ fractions (5) and in the market equilibrium equation

(6), which become, respectively,

1
1 4 B3O -1p2_,—C]

b= {3(25) (e — 1)ny + 1] } ' (14)

By substituting (14) into (13) we obtain a new map of the market system:

ny = Gne_s: s(t)) = ! | (15)

1 % bC a H_Ld
-B 55(1&) +1(ebC—1) FYPYP ey -C
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Similarly, we obtain a map for the price F(ps; s(t)) by substituting (13) into (14). The
technological frontier s(¢) works as a “slowly changing parameter” that spans the technology
dimension of the model. Fig. 4 illustrates how the map G evolves due to changes in s(t).

The effect of technological change strongly depends on the elasticity of demand:

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
n n

Figure 4: Graph of the map of innovators fraction with technological change G(z;s(t)). Left: inelastic
demand (here d = 0.5). Centre: unit elastic demand (d = 1). Right: elastic demand (here d = 1.5).
Other parameters are 3 =10, b=C =1, and a = 2.

Proposition 3.1 Consider the market of innovators and imitators with technological change,

represented by Eq. (15), and assume technological progress (s'(t) > 0):
1. for inelastic demand (d < 1), technological progress goes with less innovators n*,
2. for unit elastic demand (d = 1) technological progress does not affect the market,
3. for elastic demand (d > 1) technological progress goes with more innovators.

A proof is in Appendix C. When the demand is elastic, technological progress leads to
an ever increasing fraction of innovators. With inelastic demand, technological progress
is characterised by less and less innovators, instead. The intuition is based on the differ-
entiated price elasticity of supply, which is larger for innovators. A price reduction hurts
innovators more than imitators (see Section 2.2), but at the same time innovation increases
the quantity exchanged in equilibrium, which rewards innovators more than imitators.
When the demand is elastic, the second effect overcomes the first, because the marginal
increase in exchanged quantity from a price reduction is relatively larger. The opposite is
true with inelastic demand, while the two effects offset each other when the demand is unit
elastic.®

These two different conditions substantially match the patterns of innovation of Schum-
peterian tradition. the Schumpeterian Mark I pattern, widening, which is characterised
by an increasing concentration of patenting firms, is obtained with elastic demand. The

Schumpeterian Mark II pattern, deepening, in our model realises with an inelastic demand.

8The statement of Proposition 3.1 is absolute in all cases of stable equilibrium n*, while it holds on

average (over time) whenever n* is unstable and the dynamics of the system is cyclical.
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This explanation of innovation patters adds to the explanation based on technological
regimes that is proposed inBreschi et al. (2000).
The time evolution of the technological frontier s(¢) requires some analysis. Let us write

s(t) as follows:
s(t) = se~0"D VXTI ni. (16)

The rate of change of s(t) is bounded. In the long run the lower bound is —d, which is
attained when innovators disappear (n; — 0). The upper bound is v — §, at which all
agents become innovators (n, — 1).

Depending on the value of lower and upper bounds we have a number of different

scenarios, summarised by the following proposition:

Proposition 3.2 The long run dynamics of the market with technological change (15)

presents six different scenarios:
1. for vy < d: s(t) = 0, pp — o0 and ¢ = D(p;) — 0 (market breakdown).
2. fory=06: s(t) = se VX0 =) gnd we have two subcases:

(a) if > 7°(1 —ny) — oo, then s(t) — 0, py — o0, ¢ — 0 (market breakdown).

(b) if 0°(1 —n;) = X < oo, then s(t) — se™ 7 and p — p* > 0 stable or unstable

(balanced technological change).
3. for v >0 we have three subcases:

(a) if v 11 n; < 6t, then s(t) — 0, p; — 00, ¢ — 0 (market breakdown,).

(b) if S ny ~ Gt then 3% € (0,00) with s(t) — se™" and p — p* > 0 stable or

unstable (balanced technological change).

(¢) if Y221 ny > Ot then s(t) — oo, p; — 0, ¢, — oo (technological progress).

For cases 2b and 3b, the following applies:

Corollary 3.1 Balanced technological change occurs < n* = %.

Proofs are in Appendix D. Case 1 is trivial, because technical progress can never counter
depreciation. In case 2 all boils down to the convergence of the series n;. If innovators do
not take the whole market in the long run, but some imitators are always present, then
we have a net depreciation of the frontier, s(¢) — 0. Otherwise, if innovators conquer the
market fast enough, then s(t) converges to a positive value, and so does the price. Case (3)
is the most realistic, but also the most uncertain, because three scenarios are possible. If
the process of knowledge accumulation is not strong enough to compensate technological

depreciation, a market breakdown occurs (case 3a). This is the case if v is only slightly
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larger than J. If instead knowledge accumulation goes at a rate similar to dt (case 3b),
we are in a situation similar to case (2b), where depreciation and technological progress
offset each other. In case (3c) technological accumulation is stronger than depreciation,
and price and marginal cost ¢/(q) = p/s fall down to zero. This case occurs when v > 4, for
instance, and on average there are enough innovators in the history of the market. Notice
that scenario 3a can realise with a divergent series EE;} n; if ¢ is too large. On the other
hand, scenario 3c can occur even with a steadily diminishing fraction of innovators n; — 0,
if it is slow enough. What matters is the relative value of accumulated innovation compared
to the linear depreciation dt.

The scenarios with balanced technological change (2b and 3b) can present either stable
equilibrium or 2-cycles in the long run, depending on the stability of the limit value p*.
The other scenarios are less obvious. The price converges either to 0 or to oo, but the long
run value of n; depends on two unbounded quantities, s(t) and p; (Eq. 13), which are one
diverging and one converging to 0. In all cases of stable equilibrium we can simplify Prop.

3.2 in the following way:

Proposition 3.3 Assume that the model converges to a stable equilibrium, with n; — n*.

Consider the quantity v* = yn* — . Three cases are possible:

(i) v* <0, then s(t) ~ se”" =D =0, p, — 0o and ¢ — 0 (market breakdown,).
(ii) v* =0, then s(t) — se™>, p; — p* > 0 (balanced technological change).
(#ii) v* > 0, then s(t) ~ se”" =Y — oo, p; — 0 (technological progress).

Case (i) can occur in all three cases of Prop. 3.2. In particular it coincides with cases (1),
(2a) and (3a). Case (i) implies an equilibrium value of the innovators fraction n* = % <1,
and may occur in cases (2) and (3) of Prop. 3.2. Case (i7) falls in (but does not coincide
with) cases (2b) and (3b) of Prop. 3.2. Finally, case (i7i) implies v > § and implies case
(3¢) of Prop. 3.2.

Market breakdown concerns shrinking industrial sectors, where the accumulation of
knowledge does not keep the pace of depreciation. An example are the artisan productions
that enriched aristocratic residences in the past centuries. Balanced technological change
has multiple interpretations. It describes industries where real technological progress is
limited. This can be the case of consolidated industrial sectors, which have already experi-
enced a technological progress phase, and where currently innovation is like “re-novation”.
Alternatively, this scenario reproduces the so-called “Schumpeterian rents”, where a rent is
earned by the innovator in the period following innovation, before imitation occur, and fur-
ther innovation is just enough to compensate for depreciation. Notice how in this scenario

the higher the depreciation rate J relative to accumulation 7, the more innovators are in
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the market. In particular, all agents can be innovator when § = . This is an ill adapted
situation where a high number of innovators does not translate into real progress, and fails
to drive the price down to zero. Technological progress extinguishes entrepreneurial rents
with a falling price, that follows after the unlimited reduction of production costs. This is
the case of learning curves, that we address with attention in the final part of this section.

Technological progress can be sustained with a small fraction of innovators, when the
demand is inelastic (Prop. 3.1). In general, high cumulativeness and strong spillovers
(large ) reduce the comparative advantage of innovators (Eq, 11 and Eq. 12). When the
demand is inelastic this translates into more concentrated industries, because selection is
tougher (Dosi, 1988). When the demand is elastic, the opposite is true, and technological
progress characterises a market that converges to a complete dominance of innovators.
These considerations are relevant to the question whether more competition is good or
bad for innovation (Aghion et al., 2005). If one measures competition by the number
of innovating firms (the total number of firms is fixed and large, by assumption), and
innovation by price reduction, than the answer depends on the elasticity of the demand.
Our model allows to capture this mechanism thanks to the interplay between technological
dynamics and market dynamics with supply and demand.

A further message of our model is the following. The quantities n; and s(t) represent
R&D intensity and innovation in an industry, respectively (Nelson, 1988). Our model de-
scribes exactly their relationship, by mean of an endogenous interplay between decisions
ny and technological change s(¢). Such a behavioural model of technological change allows
to see how decisions translates into technological change and similarly how technological
change affects agents’ decisions. One important message from the model is that not nec-
essarily many innovators make a competitive market together with sustained technological
progress, as the scenario of balanced technological change shows. Often, a concentrated
industry with few innovators does better in terms of competition intended as a falling price,
which translates into higher consumer surplus. The relationship between innovation n and
technological progress s(t) is dictated by the elasticity of the demand, as explained by Prop.
3.1.

The model is simulated in different conditions that illustrate the scenarios described
above (Fig. 5).° In the first scenario (top panels), the market presents an oscillatory phase
before converging to the breakdown where s(¢) = 0. This is the effect of the slowly varying
frontier factor, which takes the model to a periodic orbit first, and then back again to a
stable steady state condition. In the example with balanced technological change (middle
panels), the fraction of innovators converge to % = 0.1, while the price converge to a value

near 0.6. Finally, the example of technological progress (bottom panels) presents a steadily

9Zeppini (2011) contains many simulation examples for the model with a linear demand curve.
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Figure 5: Model with technological change (inelastic demand). Top panels: example of market break-
down, with v = § = 0.02. Middle panels: example of balanced technological change, with v = 0.1 and
0 = 0.01. Bottom panels: example of technological progress, with v = 1 and 6 = 0.005 (notice a different
time scale). Here 8 =5,a=1,d=0.5,b=C=s=1.

declining price with an ever diminishing fraction of innovators, in accordance with Prop.
3.1.

The examples of Fig. 5 make use of an inelastic demand curve. In this setting, the
scenario of balanced technological change turns out to be quite robust, and arises for a vast
range of parameters settings. This is by no means the case with an elastic demand curve.
In this case the model is much more sensitive to the parameters v and 9, and presents
sudden regime shifts from a market breakdown to a technological progress scenario for
very small changes of v and ¢, making it very hard to find the right setting for a balanced
technological change scenario. Fig. 6 reports an example for elastic demand. This is a
technological progress scenario (exponentially growing frontier s(¢) and falling price p;)
that is characterised by an ever increasing fraction of innovators, as Prop. 3.1 indicates:

with elastic demand technological progress requires many innovators.

3.2 Empirical learning curves

Learning curves are usually proposed in two versions, namely a relationship between

marginal cost and output quantity (Argote and Epple, 1990), or a relationship between
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Figure 6: Model with technological change and elastic demand, technological progress scenario. Notice
the increasing fraction of innovators and compare to the lower-right panel of Fig. 5. Here § =5, a =1,
d=12,b=C=s=1,v=0.1, 5 = 0.015.

marginal cost and time like Moore’s law (Koh and Magee, 2006). The latter is the version
that we consider in this article, since the price reflects marginal costs.

Let introduce asynchronous strategy updating in the model with technological change.
The resulting model reproduces the time pattern of learning curves with an irregular market
variability. Both features are obtained through endogenous mechanisms based on agents’
decision making and market dynamics. This full model is then used to match the empirical
evidence from two examples of industrial sectors: the tyre industry and the solar module
technology.

The cumulative process of technological change (11) works in the same way as before. In
particular, the frontier s(t) slowly changes the law of motion and possibly takes it through
regions of different qualitative dynamics. Under asynchronous updating the dynamics is
enriched with irregular chaotic orbits (see Section 2.3). It may be that a chaotic orbit is
the long run outcome of a the model with technological change. It is exactly this condi-
tion that we will implement in order to reproduce the empirical time pattern of prices in
an industrial sector. The variability of market dynamics is obtained endogenously from
switching behaviour, without any exogenous noise factor.

It goes without saying that different industrial sectors require different settings of the
model. It is not the purpose of this article to perform a model calibration. Nevertheless
we can consider two examples of industrial sectors, namely the tire industry and solar
technology, and show how the model can qualitatively reproduce the empirical evidence of
market time series. The upper part of Fig. 7 refers to the tire industry. On the upper-left
panel we have the empirical time series of the price index and exchanged quantity for the
automobile tire industry in the US (Jovanovic and MacDonald, 1994). On the upper-right
panel of Fig. 7 there is a simulation of the model for the same two time series, price p; and
quantity ¢; = D(p;). The qualitative match of this example is obtained with an inelastic
demand curve in a setting of balanced technological change. Both price and quantity match
qualitatively empirical data. The fast oscillations of simulated time series can be averaged

away by just sampling selected periods. Notice that firms can not scale up production in
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Figure 7: Upper-left: empirical time series of the price index in the US automobile tire industry (Jovanovic
and MacDonald, 1994). Upper-right: simulated time series of market price and quantity. Model setting:
B=15,a=1,d=09,b=s=1,C =2, a =06, v = 0.2, § = 0.0l. Lower-left: empirical time
series of a price index and production growth for solar module technology (Alberth, 2008). Lower-right:
simulated time series of price and quantity growth rate. Model setting: 5 =15,a=1,d=1.1,b=s=1,
C=2,aa=06,7v=0.2,6 =0.01.

the model, so that an increased quantity is obtained only with higher productivity. While
production scaling could be obtained by adjusting installed capacity, the actual model can
better be compared to data on quantity per unit of production. Nevertheless, economies of
scale are often less important than learning in reducing market price (Lieberman, 1984).

The lower part of Fig. 7 addresses solar technology. The lower-left panel contains the
empirical time series of a price index for solar modules (referred to as “solar capacity unit
price”), together with annual production growth. In the lower-right panel of Fig. 7 we
report simulated time series for price and quantity growth rate (%). The match is
again good. Notice that for this second example we have changed the model settings only
in the price elasticity parameter, from d = 0.9 to d = 1.1.

The settings used to match examples of empirical time series should be compared by
In the

upper panels of Fig. 8 are simulations from the setting used for the US tire industry. In

also looking at the technological frontier s(¢) and the fraction of innovators n,.

accordance with Prop. 3.1, an increasing technological frontier is accompanied here by a
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decreasing number of innovators, due to the inelastic demand. The fraction of innovators
converges to n* = /v = 5% (Fig. 8, upper-right panel), as Corollary 3.1 requires. Only
few players are able to pursue innovation. Technological progress is limited (Fig. 8, upper-
left panel), as it happens in a consolidated sector. This is reflected in the time series of

the price, which converges to 0.05 (Fig. 8, upper-central panel). The lower panels of Fig.
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Figure 8: Upper panels: simulated time series in the setting used for the tire industry in Fig. 7. Lower

panels: simulated time series in the setting used for the Solar technology in Fig. 7

8 report simulations with the setting used for the Solar modules technology. As expected,
the elastic demand leads to an increasing concentration of innovators, in accordance with
a Schumpeter Mark II widening pattern. It would be interesting to know data on the
innovation behaviour of market participants in industrial sectors based on solar technology,
in order to check this prediction of the model. In any case, an elastic demand makes sense,
since renewable technologies are still not necessities, and their market penetration depends

to a large extent on the price.

4 Conclusion

The model proposed in this article describes the effects of behavioural heterogeneity on
technological change, with an endogenous interplay between adaptive heterogeneous firms,
which either innovate or imitate, and a technological frontier that builds on firms’ innova-
tion decisions.

The core mechanism of the model is an evolutionary selection of agents’ choices that
affects endogenously the production technology. Similarly to a minority game, one strat-
egy (innovation or imitation) is more profitable when the opponent strategy is dominant.

Innovators drive down the market price because of cost reduction, but on the other hand
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they profit more from a high price. These two opposite incentives may end up offsetting
each other in a stable equilibrium where both strategies coexist in some proportion. Alter-
natively, the model exhibits cyclical dynamics. Such a negative feedback mechanism is the
dynamic counterpart of an inverted-U relationship between competition and innovation: a
fall of price means stronger competition and it is associated with a surge in innovation, but
at the same time it creates incentives for imitation.

The basic version of the model is extended first with asynchronous updating, second
with technological change. The first is a more realistic assumption, where only a fraction
of agents switch strategy in a given period. With asynchronous updating the dynamics of
agents’ choices and market price may turn chaotic. Although qualitatively destabilizing,
asynchronous updating is quantitatively stabilizing, because it reduces the amplitude of
market oscillations and increases persistence of strategies.

Technological change is introduced with a technological frontier that builds on agents’
innovation decisions. Repeated choices between innovation and imitation shape dynami-
cally the technological environment, and technological change feeds back into agents choices.
This behavioural model of endogenous technological change presents three alternative sce-
narios: market breakdown, balanced technological change and technological progress. The
first scenario describes abandoned industrial sectors. The second and third are more rel-
evant to actual economic systems. Balanced technological change describes consolidated
industrial sectors, where progress is relatively slow and price reduction is limited. Alterna-
tively, this scenario fits so-called Schumpeterian rents, where innovating firms slow down
technological investments in order to profit from innovation before it gets imitated. A tech-
nological progress scenario is characterised by an unbounded technological frontier, with
market price falling to zero in the limit. This scenario fits better young and competitive
sectors as hi-tech industries.

The model’s scenario of technological progress is the more complex and rich one. Here
the price elasticity of demand is a key factor. An elastic demand leads to a widening pat-
tern of technological progress (Schumpeter Mark I) with increasing fraction of innovators.
An inelastic demand does the opposite, leading to a deepening pattern (Schumpeter Mark
IT), where innovation is more concentrated. This result is relevant for understanding the
relationship between competition and innovation. First, our model gives a behavioural
explanation of the mechanism linking R& D intensity (fraction of innovators) and innova-
tion outcome (the productivity technological frontier). Second, an elastic demand creates
conditions where more competition is good for technological progress, while the opposite
is true with inelastic demand.

The stylised fact of learning curves can be reproduced by the model, together with a
market variability generated endogenously by agents’ decisions, which can explain, at least

in part, observed market variability. Models simulations are compared to two examples of
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industrial sectors. the US tire industry and global solar technology. A good match of both
sets of time series is obtained by adjusting the price elasticity of demand. This evidence
shows how the model’s interplay between market conditions and agents’ behaviours is a

powerful mechanism for reproducing different patterns of technological change.

Appendix A Steady states and stability: proofs

Let us use the fraction n as state variable, and consider the map g of Eq. (8):

1
-8 1 g;ﬁ(bc_l) . a p%d_c .
1 i 25 € n(ebC —1)+1
e

This map is such that 0 < g(n) < 1 for n € [0, 1]. The first derivative is as follows:

g(n) = (17)

ST a2(ePC — 1)2
J(n) = —g(m)[1 — g(my) 2T = (18)
(€ — 1) + 1] 451

Since all parameters are positive, it holds ¢’(n) < 0. One and only one fixed point n* =

g(n*) exists, then. The same applies for the map f of Eq. (7). This proves Prop. 2.1.
The equilibrium corresponding to the fixed point n* is stable whenever at least one of

the parameters a,b, C, s, 5 is small enough, because lim,_,o ¢ (n) = 0 for w = a,b,C, s, B.

In particular, lim, .o ¢’(n*) = 0. This proves Prop. 2.2.

Appendix B Conditions for chaotic dynamics
The model with asynchronous updating is specified by the map ¢ of Eq. (10):
g(n) = ax + (1 —a)g(n), (19)

where ¢ is the map (17) of the basic model with synchronous updating. Consider property
(A3) of Prop. 2.3, first. The stability condition of the steady state n* is —1 < a +
(1 — a)g’(n*). Since ¢’ is bounded for finite values of 5, a,d, s,b, C, there will always be
a value of a close to 1 which makes the stability condition |§’| < 1 hold true. Regarding
property (A1), the lower «, the closer the map § is to the map g of the basic model with
synchronous updating. This means that in all situations where g has a stable 2-cycle, g
has the same type of dynamics whenever « is close enough to 0. Finally, to prove (A2) we
follow Hommes (1994) p. 370. The map ¢ of Eq. (19) is in the same class of functions of
Eq. (12) in Hommes (1994), because it is obtained as a convex combination of a linear map
(the diagonal) and a decreasing S-shaped map. Such functions have two critical points, ¢;

and ¢y, such that ¢’ is decreasing in [c1, co] whenever one (or more) among 5, a,d, s,b, C' is
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sufficiently large, and it is increasing outside this interval with 0 < ¢’ < 1. For intermediate
values of a the map ¢ has a 3-cycle (see Hommes (1994)) and chaotic behaviour then follows
by applying the Li-Yorke “Period 3 implies chaos” theorem (Li and Yorke, 1975). Shifting
the graph of such a map leads to bifurcations from a stable 2-cycle to chaos, and back to

stable steady state (se Fig. 3).

Appendix C Technical change and demand elasticity

Consider a technological frontier s(t) given by Eq. (11), and assume technological progress

(s'(t) > 0). If we substitute s with s(¢) in Eq. (17) we can evaluate the effect of technological

progress by differentiating the equilibrium value n* = g(n*) with respect to s. Whenever
on*

d <1, % < 0, while d > 1 gives %LS* > 0. In the special case d =1 we have - = 0.

Appendix D Proof of Proposition 3.2 and Corollary 3.1
Let us re-write the technological frontier as expressed in Eq. (16):
s(t) = se~0t-D 7T ni (20)

The highest rate of growth for the sum series is . Then s(t) — 0 whenever v < §, and
pr — oo based on Eq. (14). Consequently, ¢; = D(p;) = ﬁ — 0. This proves case (1).

If v = 9§ (case 2), the long run value of s(¢) depends on the convergence of the sum
series » °(1 — n;). A necessary condition for convergence is lim; ,on; = 1. Whenever
this condition does not hold true, s(t) — 0 (case 2a). If lim; o, n; = 1 fast enough, then
> 2(1 — n;) may converge to a positive value X, and p; — p* > 0 (Eq. 14).

When v > 9, everything depends on the rate of Zi n; relative to the linear trend dt.
If the rate of growth of the sum series is lower than %, then s(t) — 0 (case 3a). If the sum
series achieve a linear trend at a rate exactly equal to %, then we have the convergence
of s(t) and p; to positive values (case 3b). Finally, if >} n; grows faster than %, we have
s(t) — oo from Eq. (20), and p; — 0 from Eq. (14).

The special case of Cases 2b and 3b imply a steady state n* = %. In this case, the
argument of the sum series in s(t) (Eq. 20) converges to % by assumption. The argument
of the second exponential in Eq. (20)) becomes 6(t—1) in the long run, then, which exactly
offset the argument of the first exponential. On the other hand, for s(¢) to converge to a
finite value, the argument of the two joint sum series must converge to zero, which implies

5

n*= 2.
¥

24



References

Acemoglu, D. 2002. Directed technical change. Review of Economic Studies 69(4) 781-809.
Acemoglu, D. 2007. Equilibrium bias of technology. Econometrica 75(5) 1371-1409.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, P. Howitt. 2005. Competition and innova-
tion: an inverted-U relationship. Quarterly Journal of Economics 120(2) 701-728.

Aghion, P., P. Howitt. 1992. A model of growth through creative destruction. Econometrica
60(2) 323-351.

Aghion, P., P. Howitt. 1998. Endogenous Growth Theory. MIT Press, Cambridge, MA.

Alberth, S. 2008. Forecasting technology costs via the experience curve - myth or magic?
Technological Forecasting and Social Change 75 952-983.

Argote, L., D. Epple. 1990. Learning curves in manufacturing. Science 247 920-924.

Arthur, B. 1989. Competing technologies, increasing returns, and lock-in by historical

events. Economic Journal 99 116-131.

Bass, F. M. 1969. A new product growth for model consumer durables. Management
Science 15(5) 215-227.

Benoit, J. 1985. Innovation and imitation in a duopoly. Review of Economic Studies 52
99-106.

Berndt, E. R. 1991. The practice of econometrics: classic and contemporary. Ch. 3: Costs,

Learning Curves, and Scale Economies. Addison-Wesley, Reading, Massachussets.

Branch, W. A. 2004. The theory of rational heterogeneous expectations: evidence from

survey data on inflation expectations. Economic Journal 114 592—621.

Breschi, S., F. Malerba, L. Orsenigo. 2000. Technological regimes and Schumpeterian

patterns of innovation. Fconomic Journal 110 388—410.

Brock, W. A.; C. Hommes. 1997. A rational route to randomness. Econometrica 65(5)
1059-1095.

Bulow, J. L., J. D. Geanakoplos, P. D. Klemperer. 1985. Multimarket oligopoly: strategice
substitutes and strategic complements. Journal of Political Economy 93 488-511.

Cabral, L. M. B., M. H. Riordan. 1994. The learning curve, market dominance and predator
pricing. Econometrica 62(5) 1115-1140.

25



Ceccagnoli, M. 2005. Firm heterogeneity, imitation, and the incentives for cost reducing
R&D effort. Journal of Industrial Economics 53(1) 83-100.

Cefis, E., L. Orsenigo. 2001. The persistence of innovative activities: a cross-countries and

cross-sectors comparative analysis. Research Policy 30 1139-1158.

Conlisk, J. 1980. Costly optimizers versus cheap imitators. Journal of Economic Behavior
and Organization 1 275-293.

de Jong, E., W. F. C. Verschoor, R. C. J. Zwinkels. 2009. Behavioural heterogeneity and
shift contagion: evidence from the asian crisis. Journal Economic Dynamics and Control
33 1929-1944.

Diks, C., C. Hommes, V. Panchenko, R. van der Weide. 2008. E&F Chaos: a user friendly
software package for nonlinear economic dynamics. Computational Economics 32 221
244.

Diks, C., R. van der Weide. 2005. Herding, a-synchronous updating and heterogeneity in

memory in a cbs. Journal Economic Dynamics and Control 29 741-763.

Dosi, G. 1988. Sources, procedures and microeconomic effects of innovation. Journal of
Economic Literature 26 1120-1171.

Dosi, G., L. Marengo, G. Fagiolo. 2005. Learning in evolutionary environments. K. Dopfer,
ed., The Evolutionary Foundation of Economics, chap. 9. Cambridge University Press,
Cambridge, England, 255-338.

Grossman, G. M., E. Helpman. 1991. Innovation and growth in the global economy. MIT
Press, Cambridge, MA.

Grossman, S. G., J. E. Stiglitz. 1976. Information and competitive price systems. American
Economic Review Papers and Proceedings 66(2) 246-253.

Hartley, K. 1965. The learning curve and its application to the aircraft industry. Journal
of Industrial Economics 13(2) 122-128.

Hommes, C. H. 1994. Dynamics of the cobweb model with adaptive expectations and

nonlinear supply and demand. Journal of Economic Behavior and Organization 24 315
335.

Hommes, C. H. 2006. Heterogeneous agent models in economics and finance. Leigh Tes-
fatsion, Kenneth L. Judd, eds., Agent-based Computational Economics, Handbook of
Computational Economics, vol. 2, chap. 23. North-Holland, Amsterdam, 1109-1186.

26



Hommes, C. H. 2011. The heterogeneous expectations hypothesis: some evidence from the

lab. Journal Economic Dynamics and Control 35 1-24.

Hommes, C. H., H. Huang, D. Wang. 2005. A robust rational route to randomness in a

simple asset pricing model. Journal Economic Dynamics and Control 29 1043-1072.

Iwai, K. 1984. Schumpeterian dynamics, part I: an evolutionary model of innovation and

imitation. Journal of Economic Behavior and Organization 5(2) 159-190.

Jovanovic, B., G. M. MacDonald. 1994. The life cycle of a competitive industry. Journal
of Political Economy 102(2) 322-347.

Kandori, M., G. J. Mailath, R. Rob. 1993. Learning, mutation, and and long run equilibria
in games. Fconometrica 61(1) 29-56.

Koh, H., C. L. Magee. 2006. A functional approach for studying technological progress:
application to information technology. Technological Forecasting and Social Change 73
1061-1083.

Li, T. Y., J. Yorke. 1975. Period three implies chaos. American Math. Monthly 87 985-992.

Lieberman, M. B. 1984. The learning curve and pricing in the chemical processing industry.
RAND Journal of Economics 15(2) 213-228.

Llerena, P., V. Oltra. 2002. Diversity of innovative strategy as a source of technological

performance. Structural Change and Economic Dynamics 13 179-201.

Malerba, F. 1992. Learning by firms and incremental technical change. Economic Journal
102(413) 845-859.

Mansfield, E. 1961. Technical change and the rate of imitation. Econometrica 29(4) 741~
766.

McCabe, M. J. 1996. Principal, agents, and the learning curve: the case of steam-electric

power plant design and costruction. Journal of Industrial Economics 44(4) 357-375.

Nelson, R. R. 1988. Modelling the connections in the cross section between technical
progress and R&D intensity. RAND Journal of Economics 15(4) 546-554.

Nelson, R. R., S. G. Winter. 1982. An Evolutionary Theory of Economic Change. Harvard
University Press, Cambridge, MA.

Petrakis, E., E. Rasmusen, S. Roy. 1997. The learning curve in competitive industry.
RAND Journal of Economics 28(2) 248-268.

27



Romer, P. M. 1990. Endogenous technological change. Journal of Political Economy 98(5)
71-102.

Schumpeter, Joseph A. 1942. Capitalism, socialism and democracy. Harper and Row, New
York.

Sethi, R., R. Franke. 1995. Behavioural heterogeneity under evolutionary pressure: macroe-

conomic implications of costly optimization. Economic Journal 105 583-600.
Simon, H. A. 1957. Models of Man. Social and Rational. Wiley, New York.

Spence, M. A. 1981. The learning curve and competition. Bell Journal of Economics 12(1)
49-70.

Spence, M. A. 1984. Cost reduction, competition and industry performance. Econometrica
52(1) 101-121.

Zeppini, P. 2011. Behavioural Models of Technological Change (PhD Thesis), Chapter 4:

A behavioural model of endogenous technological change. Tinbergen Institute.

28



