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A remarkably tight relation is observed between the Newtonian gravity sourced by the baryons and the

actual gravity in galaxies of all sizes. This can be interpreted as the effect of a single, effective force law

depending on acceleration. This is, however, not the case in larger systems with much deeper potential

wells such as galaxy clusters. Here we explore the possibility of an effective force law reproducing mass

discrepancies in all extragalactic systems when depending on both acceleration and the deepness of the

potential well. We exhibit, at least at a phenomenological level, one such possible construction in the

classical gravitational potential theory. The framework, dubbed extended modified Newtonian dynamics,

is able to reproduce the observed mass discrepancies in both galaxies and galaxy clusters, and to produce

multicenter systems with offsets between the peaks of gravity and the peaks of the baryonic distribution.
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I. INTRODUCTION

The dynamics of spiral galaxies exhibit a well-
documented fine-tuned conspiracy between the surface
density of baryonic matter and the total gravitational field
jr�j [1]. Whatever the explanation for it, this obser-
vational fine-tuned relation involves an acceleration scale
a0 � cH0=2�� 10�10 m s�2 such that the effects of the
putative dark matter appear at jr�j< a0 and disappear at
jr�j> a0 in galaxies of all sizes. This is encapsulated by
the empirical formula of Milgrom [2], at the basis of the
modified Newtonian dynamics (MOND) paradigm.

Nevertheless, in the central parts of galaxy clusters,
where the observed acceleration jr�j> a0, the above
prescription underpredicts the mass discrepancy by a factor
of a few. Putting aside the obvious possibility of this
constituting a practical falsification of MOND, three other
possibilities are that (i) there are dark baryons in the central
parts of clusters, (ii) there is additional nonbaryonic dark
matter in the central parts of clusters, or (iii) Milgrom’s
formula is the limiting case of a more general empirical
relation. For extensive discussions of (i) and (ii) see, for
instance, Refs. [3–8]. Here we rather concentrate on the
possibility of case (iii).

One possibility that may explain the discrepancy in
galaxy clusters is that the effective force law needs a new
scale in addition to a0. An obvious scale distinguishing
galaxy clusters from galaxies is the deepness of the poten-
tial well j�j. For instance, Bekenstein [9] recently pro-
posed in this vein to add a velocity scale to Milgrom’s
prescription, such that the acceleration scale a0 is a func-
tion of j�j. In this paper, we explore this very general idea
and digress on its observational consequences. We start by
reviewing the MOND formalism in Sec. II, then expose its
generalization in Sec. III. Plausible variations of a0 as a

function of � and their observational consequences are
then explored in Secs. IV and V, respectively, and conclu-
sions are drawn in Sec. VI.

II. MOND

The idea of MOND is to link the observed gravitational
attraction ~g ¼ �r� to the Newtonian gravitational field
calculated from the observed distribution of visible matter
~gN ¼ �r�N by means of an interpolating function �,

�

�j ~gj
a0

�
~g � ~gN; (1)

where �ðxÞ ! x for x � 1 and �ðxÞ ! 1 for x � 1.
However, this expression is not robust since it does not
respect usual conservation laws. A consistent modification
of gravity at the classical level should come from modify-
ing the gravitational part of the Newtonian Lagrangian
density LNewton ¼ ���N � jr�Nj2=ð8�GÞ. Bekenstein
and Milgrom [10] have developed a modified gravity
framework where jr�Nj2 is replaced by a20Fðjr�j2=a20Þ
so that the modified Lagrangian density reads

LMOND � ���� a20
8�G

Fðx2Þ; (2)

where x ¼ jr�j
a0

, and F can a priori be any dimensionless

function. Varying the action with respect to� then leads to a
nonlinear generalization of the Newtonian Poisson equation

� ¼ r:
�
�ðxÞ
4�G

r�
�
; (3)

where�ðxÞ ¼ F0ðx2Þ. In order to recover the right limits for
�ðxÞ, one needs to choose FðyÞ ! y, for y � 1, and

FðyÞ ! 2
3 y

3=2, for y � 1.
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In the most popular covariant version of the theory
[11–13] the weak-field potential is � ¼ �N þ� where
� is a scalar field whose Lagrangian density is proportional
to a20Fða�2

0 h��r��r��Þ, where h�� is a combination of

the metric and of a timelike unit vector. This scalar field
Lagrangian density is thus fully similar to Eq. (2), and any
modification of the classical MOND Lagrangian could thus
immediately be translated into a modification of the rela-
tivistic version of the theory.

III. A MORE GENERAL FORCE LAW?

Equations (2) and (3) suggest that the gravitational
constant G is effectively a running function of the gradient
modulus jr�j only. In other words, the Lagrangian of the
associated scalar field� has no potential and depends only
on its kinetic term. Any direct dependency on the field �
would, however, be natural since it is more general and, as
we shall see, empirically desirable.

As noted by Bekenstein [9], an obvious distinction
between galaxies and galaxy clusters is the deepness of
the potential well. So one could imagine that the effective
transition-acceleration a0 is not a constant but is a mono-
tonically increasing function of the potential depth, e.g.,
expj�=ð1000 km s�1Þ2j � 10�10 m s�2, which boosts the
MOND effect in galaxy clusters by a factor of a few [9].
However, a side effect of Bekenstein’s exponentially vary-
ing function is that it predicts a value of a0 of the order of
1010000 m s�2 once the potential reaches the order of c2,
i.e., a neutron star or a stellar black hole would exhibit an
undesirable deep-MOND behavior (see Fig. 1). Its effect
on large scale structures can be severe, too. It thus seems
necessary to study a wider set of models for the effective
variation of a0, and select the best one from a phenome-
nological point of view.

To extend the MOND Lagrangian in this vein a very
general way is to write the following Lagrangian:

LEMOND � ���� �

8�G
Fðx2Þ; � � A0ð�Þ2; (4)

where x2 ¼ y ¼ jr�j2
� , and A0ð�Þ plays the role of a0 in the

usual MOND. This leads to the following modified Poisson
equation, generalizing the MOND equation [Eq. (3)]:

� ¼ r:
�
�ðxÞ
4�G

r�
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
T1

�
��������@��

8�G

��������F1ðx2Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
T2

; (5)

where�ðxÞ¼F0ðx2Þ, andF1ðyÞ�yF0ðyÞ�FðyÞ¼R�
0 yd�,

which is typically a positive quantity of order unity.
Interestingly, with this ‘‘extended MOND’’ (EMOND)

formalism, Gauss’ theorem (or Newton’s second theorem)
would no longer be valid in spherical symmetry. Thismeans
that masses outside a sphere can affect the local gravita-
tional field strength, and the empirical Eq. (1) no longer
holds rigorously even in spheres, due to the additional term

T2, although this term is often small as we shall see in the
next sections. So, we still have approximately the EMOND
counterpart of Milgrom’s empirical law,

�

��������� r�
A0ð�Þ

��������
�
r� � r�N: (6)

Masses outside a spherical shell can also affect the local
gravitational field strength by changing the boundary value
of� or the zero point of the potential�1, hence changing
A0 at the shell. The appearance of such an absolute zero
point is a curable artifact of our introduction of a non-
covariant A0ð�Þ2 instead of a covariant A0ð�Þ2. Our
Lagrangian in Eq. (4) can be easily redesigned for a cova-
riant scalar field, e.g., by replacing �A0ð�Þ2Fðjr�j2=
A0ð�Þ2Þ ! �A2

0ð�ÞFðA0ð�Þ�2h��r��r��Þ. The bound-
ary values of � and A0ð�Þ2 are then well defined by the

FIG. 1. Top: The A0ð�Þ in units of 10�10 m s�2 for systems of

increasing escape speed Vesc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�� 2�1

p
for several possible

functions: A0ð�Þ ¼ cH0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðj�j=ð2500Þ2Þp

[Eq. (7)] for �ðxÞ ¼
xð1þ xnÞ�1=n with n ¼ 2 (thick, solid curve), n ¼ 1; 4; . . . ;1
(thin, solid curves). Also shown are the truncated curve A0ð�Þ ¼
expð½j�=ð1000Þ2j; 2�minÞ � 10�10 m s�2 (dashed curve) and the
corresponding exponential untruncated curve (dotted curve).
Bottom: The value of �ðjr�j=A0ð�ÞÞ vs jr�j using Eq. (7)
for systems with circular velocities of 1000 km=s (galaxy clus-
ters, thickest curve) as well as 300, 200, 100, and 50 km=s (thin
curves); the latter four are in the grey zone between the tradi-
tional forms (dotted curves) �ðxÞ ¼ x=ð1þ xÞ and �ðxÞ ¼
x=ð1þ x2Þ1=2, acceptable in all galaxies.
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cosmological evolution of �1. The zero point of the
Newtonian potential �N can raise or lower �, but this
has no effect on the scale A2

0ð�Þ or the acceleration or

the light deflection power r� ¼ r�þr�N . Note that
we hereafter assume that the covariant version deflects
light in a similar fashion as general relativity, by invoking
the same vector field as in TeVeS [11] in addition to the
scalar field � [14].

IV. A REALISTIC EFFECTIVE VARIATION
OF THE ACCELERATION SCALE

Keeping the same philosophy as the a priori unknown�
function of MOND in mind, we examine plausible poten-
tial dependencies of A0ð�Þ from a phenomenological point
of view. The only phenomenological requirements would
be that (i) A0 does not have a value too large in the strong
field or cosmology regime, such that general relativity is
effectively recovered there, (ii) A0 takes roughly the usual
value of a0 in galaxies and does not vary too much from
galaxy to galaxy or inside a given galaxy, (iii) A0 is boosted
in galaxy clusters by a reasonable amount compared to the
usual value of a0 to make a real observational difference
with MOND.

Note also that isolated and nonisolated systems should
be coherently transitioned from each other. This means that
the potential� (or scalar field�) in A0 should really be the
total potential due to all the material. This is reminiscent of
the external field effect (EFE) of MOND [1], but is more
contriving since the external potentials can be non-
neglibible even when the EFE is negligible. So, the fact
that one can neglect the weak EFE acting on some objects
in MOND does not mean that one can ignore the external
potential effect (EPE) of EMOND. The cosmological value
of the scalar field in the covariant version would thus set a
cutoff to A0ð�Þ2. A crude estimate of the EPE is to consider
that most galaxies and dwarfs are actually within some
�15 Mpc of a galaxy cluster (e.g., Virgo is a rich cluster
�15 Mpc from us). Such clusters will typically contribute
some ð300 km s�1Þ2 to the potential at the boundary of
galaxies. So we can consider that the total j�j is typically
always above j�1j � 10�6c2, which will set A0 close to a
lower cutoff with little variation for small internal poten-
tials of small objects. Similarly, A0 is close to an upper
cutoff for galaxies residing inside the deep potential of a
rich cluster, consistent with the deep-MOND-like behavior
of these cluster galaxies [8].

While there are many plausible functional forms of
A0ð�Þ2 (see Fig. 1), a simple transition can be achieved
by a �-like dependency on the potential without introduc-
ing any extra function,

��A0ð�Þ2¼ðcH0Þ2�ðpÞ; p¼j�c�2jk�1 (7)

with k� 7� 10�5. Here � is the same function as which-
ever � function of MOND, except that the argument is the
potential instead of the acceleration. To be specific, we

shall use �ðxÞ ¼ x=ð1þ x2Þ1=2 hereafter unless otherwise
stated. This empirical interpolating function simulta-
neously determines A0 through Eq. (7). The covariant
version could take A0ð�Þ2 � ðcH0Þ2�ðj�=ðkc2ÞjÞ.
With this choice, all the above requirements on a possible

realistic dependency of A0 on the potential are met. (i) A2
0

varies very little for large scale structure, and is almost
equal to the observed amplitude of the cosmological con-
stant. The value of A0 is limited to cH0 � 8� 10�10 m s�2

even for black holes. (ii) Because of the EPE described
above, the value of A0 does not go to zero but levels off at

ðcH0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�1j=kc2

p � 10�10 m s�2, i.e., the classical value of
a0 (see Fig. 1) in small galaxies and in the solar system [15].
Additionally, therewill be only verymild (< 50%) variations
of A0 inside galaxies, as well as between galaxies, small
variations which might be desirable to explain some anoma-
lies in strong lensing galaxies [16–20]. In any case, this
scatter is acceptable as the MOND formula works for all
galaxies as long as a0 is within the range between 0.9 and
1:7� 10�10 m s�2 [13,21]. As illustrated in Fig. 1 (bottom
panel), the effective � function stays within the range al-
lowed by data on galaxy scales. (iii) Finally, themuch smaller
� on scales of galaxy clusters (bottom panel of Fig. 1) means
a boost of MOND effect in these (see also next section).
As for the T2 term in Eq. (5) further examinations show

thatT2 ¼ H2
0

4�Gk F2,F2 ¼ pF00ðp2Þðx2F0ðx2Þ � Fðx2ÞÞ. In the
deep-MOND regime we found F2 < 0:1 for typical forms
of �ðpÞ and �ðxÞ. So this extra density T2 has a maximum
of about 0:1k�1 � 1000 times above the cosmic critical
density. Such a low overdensity is not very significant
even at large radii in galaxies and is mild in galaxy clusters.

V. BOOST OF GRAVITYAND OFFSETS IN
GALAXY CLUSTERS

In order to illustrate how such an effective gravity law
would affect the dynamics of galaxy clusters, we concen-
trate hereafter on the above �-like dependency [Eq. (7)].
There are two basic questions to be answered: (i) How
much dark matter would be inferred from a Newton-
Einstein framework for a given distribution of baryons?
(ii) Can this effective ‘‘phantom’’ dark matter be generi-
cally offset from the baryons as observed in weak lensing
maps of the large scale structure and in objects such as the
bullet cluster [6]?
In order to answer both questions, we consider a double

peaked oblate potential: �ðR; zÞ ¼ �1 þP
i¼2
i¼1 1500

2

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2i þ 2002

q
=2500, where r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ R2

p
and r2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðz� 700 kpcÞ2 þ R2

p
. We then determine the dynamical

density distribution r2�=4�G in Newtonian interpreta-
tion, and we determine the corresponding distribution of
baryons in EMOND with Eq. (5). The result is plotted in
Fig. 2: the distribution of baryons is typically about 7 times
less massive than the dynamical mass inferred from the
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same potential in Newtonian gravity, and interestingly, this
distribution of baryons is 4-peaked, with the main baryonic
peaks clearly offset from the corresponding peaks in the
potential, or Newtonian dynamical mass peaks (see Fig. 2).

It is thus generally possible to create large phantom dark
matter peaks generically offset from the baryon distribu-
tion within the present gravitational framework. This could
be relevant to the modeling of the dark core in the train
wreck cluster [22] or to the bullet cluster [6], provided that
the covariant version deflects light in a similar fashion as
general relativity, e.g., by invoking the same vector field as
in TeVeS. We also note that the main baryonic peak seems
to be generically in the more outer parts of the system
compared to the main gravity peak, which is somewhat
more similar to the situation of the train wreck cluster than
to the bullet cluster.

VI. CONCLUSIONS

The effective gravity law explored in this paper is able
to boost gravity in galaxy clusters, eliminating the need
for additional hot dark matter in MOND, a problem that
has been known for more than 10 years [4,9]. Generally
speaking, the new framework actually needs two interpo-
lating functions and two fundamental constants defining
their transition domains. Here, we recycled the standard
� function to tailor the � ¼ A2

0 function [Eq. (7)]: the

result is a transition between two plateaus, A2
0 � ðcH0Þ2

for large scale structures and A2
0 � a20 for small galaxies.

To make the scheme [Eq. (4)] covariant and valid for
lensing is straightforward (see end of Sec. III). Future
detailed dynamical and lensing studies of galaxies and
galaxy clusters should allow one to test whether this
‘‘extended MOND’’ (EMOND) scheme can indeed pro-
vide an effective gravity law reproducing mass discrep-
ancies at all scales.
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FIG. 2 (color online). Top: The multicenter galaxy cluster the
density ratio of EMOND baryonicmass over Newtonian dynamical
mass �baryon=�dynamical ��� jr�j=A0 � 1=3 (light red, where

the gravity peaks),�1=30 (dark blue, where gravity is nearly zero).
Bottom: The long axis Z, the acceleration scale A0ð�Þ (thin, solid
curve), �dynamical � r2�=4�G (dotted curve), and �baryon � T1 �
T2 [thick, solid curve, see Eq. (5)] in 106M	 kpc�3. The ratio
T2=T1 (long, dashed curve) is shown to be small.
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