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Abstract: 

This article compares the robustness of the optimal choice of technologies for two Smart Energy 
Systems architectures at district level, illustrated by a case study representative of a newly built district 
in Grenoble, France. The electricity-driven architecture relies on the national electric grid, 
decentralized photovoltaic panels and decentralized heat pumps for heat production building by 
building. The alternative architecture consists of a district heating network with multiple sources and 
equipment for centralized production of heat. Those are a gas boiler plant, a biomass-driven 
cogeneration plant, a solar thermal collector field, and a geothermal heat pumping plant (grid-driven or 
photovoltaics-driven). Electric and heat storages are considered in both architectures. The sizing and 
operation of both architectures are optimized via linear programming, through a multi-objective 
approach (total project cost versus carbon dioxide emissions). Both architectures are compared at 
nominal scenario and at sensitivity scenarios. It is concluded that the electricity-driven architecture is 
less robust, especially to uncertainties in space heating demands (+150%/-30% impact on costs) and 
in heat pump performance (+35%/-15% in costs). Meanwhile, the multi-source architecture is less 
sensitive to space heating demands (+110%/-30%) and has negligible sensitivity to the rest of 
parameters except photovoltaic panels efficiency (+14%/-7%). 

 

Keywords: District heating, Multi-energy networks, Multi-objective optimization, Model predictive 
control, Sensitivity analysis, Energy storage. 

 
Highlights: 

 

• Decentralized electricity-driven architecture versus centralized district heating. 

• Interconnected electrical, thermal and gas networks through various units. 

• Optimal sizing by linear programming simulation and model predictive control. 

• Sensitivity analysis of both architectures on performance parameters. 

• Discrepancies observed between sensitivity of both architectures. 
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1. INTRODUCTION 

 

In France and in other countries, a large share of energy consumption is dedicated to 
satisfying the thermal demand of residential buildings [1]. While this demand has long been 
covered with fossil-fuels, it has to be quickly reduced in order to face challenges related to 
climate change, as well as for energy independence. Massive electrification, i.e., substituting 
fossil fuels with power-to-heat technologies, is one possible option for performing this shift, 
especially when considering renewable electricity sources. 

Still, this transition process must take into account three major constraints. First, increasing 
the overall residential electricity consumption is not desirable. Indeed, a prospective study in 
France [2] recommends a slight decrease by 2050, while at the same time increasing the 
dependence of the residential sector on electricity. Second, the temporal mismatch between 
renewable electricity production and consumption for residential purpose (especially at yearly 
scale) must be accounted for [3]. Third, thermal renovation of the existing building stock will 
take time and may not be in phase with electrification and an increase of renewable 
production capacity. As a consequence, more realistic scenarios require not only 
electrification but also increased sector coupling, in particular between the electric and 
thermal networks, which can provide flexibility at different time scales (from instant to year) 
[4]. The interconnection of energy vectors leads to multi-energy systems, understood as 
multi-service and multi-fuel systems, and can outperform mono-energy systems both in 
techno-economic and environmental terms [5]. Within these systems, the diversity of actors 
as well as the intrinsic intermittence of renewables requires advanced strategies for energy 
management, leading to the concept of smart energy system [6]. 

 

1.1. Benefits of a multi-energy approach at district level 

At the district level, multi-energy approaches are very relevant in combination with district 
heating. The interconnection of different energy networks can bring advantages both for the 
networks and the systems interconnecting them. This is illustrated, for instance, by 
Arabkoohsar et al [7], who proposed photovoltaic-thermal-cooling with heat and cold 
storages, capable of interacting with electric, heating and cooling networks. Such system 
outperformed the reference system (photovoltaic panels with batteries and a heat pump), 
mainly thanks to the multi-vector connections. In Finland, Paiho and Reda [8] pointed out 
trigeneration (production of electricity, heating and cooling) as a key enabling technology for 
future district heating systems. Su et al [9] also identified geothermal heat or power plants, 
waste-to-energy, and biomass-based power plants as key technologies to reach Finland’s 
objective of carbon neutrality by 2035. Solar heat is also relevant for decarbonization 
purposes, although its insertion is more complex than just increasing the solar share, as 
pointed out by Mäki et al [10]. For cases like the Aalborg Municipality (Denmark), the 
evolution to 4th generation district heating (4GDH) was estimated to reduce total costs and 
primary energy consumption by 2.7% and 4.5% respectively. Other notable effects would be 
a roughly 30% improvement in heat pumps performance and at least a 2-fold increase in the 
uptake of excess heat from industrial processes [11]. Denmark faces a growing need for 
integrating non-combustion heat generation methods in district heating [12], and multi-energy 
approaches could be an answer to such need. In Sweden, diversification of sources and the 
subsequent evolution of district heating enabled an almost fossil-free energy mix years ago 
[13]. Current Swedish efforts are encouraged towards valorization of low-temperature 
recovered or recycled heat [14], among other efficiency aspects, where multi-energy 
architectures could be an enabler. Recently in Estonia, the Estonian Power and Heat 
Association (EHPA) has consolidated a methodology to assess district heating systems and 
acknowledge high efficiencies, as well as high shares of renewable energy. A quality Label is 
awarded to systems where at least 75% of heat is cogenerated, or at least 50% comes from 
renewables, or waste heat, or a combination of the three approaches [15]. In Lithuania, 



diversification of district heating is encouraged in order to reduce the strong dependence on 
biofuels on which the country rests currently [16]. In Italy, Aste et al [17] suggested a wood 
biomass boiler coupled with combined heat and power (CHP), and combined with 
groundwater heat pumps coupled with photovoltaic systems. This low-carbon multi-energy 
system would cover all the thermal needs of a district in the Milan urban area, and a large 
portion of electricity needs. Electricity purchased from the national grid would range between 
13.5% and 32% depending on the season, but electricity sold to the grid would range 
between 16.5% and 37%, therefore the district would be nearly zero-energy. 

 

1.2. Optimal design of multi-energy networks 

Based on these encouraging results, many studies have been published concerning the co-
planning [18] and co-optimization [19] of multi-energy networks. For example, Xie et al [20] 
proposed a new method for optimizing the operation of a multi-energy network comprising 
power, heat, cooling and gas loads, with multiple sources such as gas, wind or solar, and 
multiple conversion systems. Naughton et al [21] proposed an optimization approach for 
operating a multi-energy virtual power plant under uncertainty, showing that it could enhance 
the plant’s flexibility and maximize market revenues. Several works investigate a wide range 
of possible options, not only concerning the available production and storage technologies, 
but also considering various ways of interconnecting networks. On a case study in 
Switzerland, Marquant et al. [22] indicate that an optimal design of district heating networks 
can reduce cost by 14.4% compared to a reference solution that does not consider any 
network possibility. Mavromatidis and Petkov [23] compare retrofitting options with multi-
energy systems, and show that “retrofitting leads to lower emission levels, but significantly 
higher costs” while ”interconnections improve both the economic and the environmental 
system performance”. Jing et al. [24] compare a centralized and a decentralized solutions for 
a district in Shanghai, and show little difference in the obtained cost, when taking into 
account demand uncertainty. 

 

1.3. Sensitivity of optimal design results 

As concluded by Gabrielli et al [25], the optimal design of a multi-energy network is a 
complex problem that requires investigating different objective functions. Their underlined 
total annual costs and carbon dioxide (CO2) emissions as two relevant objective functions. 
Besides, they pointed out the importance of describing well the dynamics between energy 
generation, conversion and consumption. 

Si et al [26] presented a novel robust optimization problem in order to investigate the 
operational economy and reliability of an urban integrated multi-energy system. Among other 
interesting results, they found out that diversified solutions tend to be more robust and 
reliable in front of imbalances between energy supply and demand. Those solutions also 
proved to be more resilient to uncertainties, thanks to multi-energy conversion under their 
control algorithm. 

The diversity of vectors makes the optimization more promising, but at the same time more 
complex. Energy and power analyses do not suffice, and it is necessary to resort to dynamic 
studies. Given the complex architecture, model predictive control is most recommendable for 
spotting efficient management. Coccia et al [27] demonstrated this by reducing backup 
electricity consumption by -71% in a residential multi-energy network including a district 
cooling system, photovoltaic panels and air-to-water heat pumps as backup. 

Dahl et al [28] studied the sensitivity of an urban district heating system to cost variations. 
The system was coupled to an electricity system with penetration of wind technology. The 
thermal vector considered heat only boilers, combined heat and power (CHP) units, power-
to-heat technologies and heat storages. The authors concluded that the optimal choice of 



technologies was highly stable under cost variations, but the optimal capacities of CHP units 
and heat pumps were very uncertain if fossil fuels were allowed. In their perspectives, they 
recommend that future studies include solar heating, as they may alter dynamics significantly 
due to seasonality.  

You and Kim [29] carried out a global sensitivity analysis on a smart energy network driven 
100% by renewable energy sources. The sensitivity analysis was built on an optimization 
approach, with total annual costs as objective function. It also considered two scenarios, 
namely an electrified or hydrogen city. 

The current state of the art is rich in assessments of either multi-energy networks or 
decentralized, renewables-driven solutions. It also contains several studies on the sensitivity 
of urban modeling to data available on buildings ages [30], or the benefits of thermal storage 
at multiple scales in district heating [31]. The search for robust optimization of hybrid systems 
that would be suitable in multi-energy networks has been also investigated [32]. 
 

1.4. This paper 

The authors of this article think that there exists a research gap in evaluating and comparing 
the robustness of the technological choices in multi-energy district heating, in front of 
uncertainties on performance parameters. This article compares the sensitivity of two 
different systems architectures for district heating to several parameters. One architecture 
consists of heat production driven only by power, either from the network or from photovoltaic 
(PV) panels, with decentralized heat pumps. The other architecture considers district heating 
through a multi-source network including, electricity, gas and biomass, with centralized units 
for heat production. The comparison is based on technical-economic/environmental multi-
objective optimization using model predictive control and considering both electric and 
thermal storages. The study addresses the research questions below:  

• Which architecture performs better: electricity-driven or multi-source district heating? 
• What is the optimal choice of technologies for each architecture? 
• Do CO2 emissions constraints change the optimal choice of technologies for each 
architecture? 
• Which parameters are the most impactful on the project total costs? 
• Which parameters are the most impactful on the optimal choice of technologies? 
The remainder of this article is structured as follows. Section 2 presents the system 
modelled, the hypotheses, input data, optimization procedure, and configurations considered. 
Section 3 presents and discusses the main results, with a special focus on which 
configurations perform best and why the co-simulation approach with model predictive 
control was relevant. Lastly, Section 4 presents the main conclusions from this study and the 
authors’ perspectives within the project that motivated this work. 
 

2. MATERIALS AND METHOD 
 

The study consists in the multi-objective optimization (costs versus carbon emissions) of both 
the sizing and the operation of two different system architectures for district heating. The 
robustness of the optimal configuration is tested against variations in key parameters, and 
then compared between architectures. This section is structured in four parts. The first part 
describes the district under study, and the two architectures under evaluation for the heating 
network that covers its demands. The second part introduces and discusses the main 
hypotheses and input parameters. The third part presents and justifies the demand profiles 
used for residential electricity, space heating and domestic hot water (DHW) production. The 
choice of profile generator is briefly discussed, too. The fourth and final part presents 



relevant aspects about the modeling of the study case, plus the parameters (and value 
ranges) considered for sensitivity analysis. 

2.1. Case description 

The Cambridge case study (Fig. 1) is inspired on a real district in the city of Grenoble 
(France). This study case is an updated version of the one used in previous research works 
[33], [34]. The Government of this district has an ambitious target of energy performance. 
Namely, around 30% lesser consumption of fuel with respect to the French RT2012 
standard. This district benefits from two interesting thermal opportunities. One of them is a 
nearby phreatic table that can be exploited as geothermal source. The other one is a nearby 
river, the Isère, which can enable free cooling as a resource. This district and its buildings 
have been the target for numerous studies on energy efficiency and ecological transition. 
Those studies have yielded databases with abundant information on consumption and 
operation. Later, a series of research projects have refined those data and made them robust 
for other studies. 
 

 
Figure 1. Schematic representation of the “Cambridge” district (and its buildings) in the city of Grenoble, France. 

 

The study comprises 13 residential buildings, totaling 500 dwellings approximately. The 
reference architecture (Fig. 2, left) of the system for residential heating considers 
decentralized heat pumps, connected to the electric grid. An alternative architecture (Fig. 2, 
right) is currently under study in the framework of the DISTRISIM project. It would consist of 
a combination of an electrical and a thermal network, with centralized heat production 
systems and a gas-driven supply system. The study envisages also the decentralized 
production of electricity by the mean of PV panels on the rooftop of each building. The 
complexity of the case study consists in coupling the prospective thermal network with the 
existing electrical network. While interconnections between networks may take place at 
different scales (from one building to an entire continent), the district scale presents 
numerous advantages.  
 



 
Figure 2. Schematic representations of the two architectures evaluated in this study. 

Firstly, a diversity of technologies and applications, which enables decentralization of the 
electric grid by integration of renewable production systems with approaches for energy 
flexibility. Secondly, a sufficient level of spatial resolution, allowing to study the underlying 
phenomena. Thirdly, the availability of measured data, which enables validation of the 
results. Lastly, the possibility of upscaling the results, to the framework of a city, territory or a 
region. Of course, such scaling requires adaptation of the algorithms and processor 
capacities, but the general methodology remains the same. 

Thus, the case study here described is relatively realistic, because most of the data come 
from a real district that represents a modern eco-district with mixed sources. The necessary 
information for optimizing the sizing is available: location of the production and storage units, 
limitations of the network such as maximal power, temperature levels and needs for 
expansion... At the same time, this case study gives some margin for research studies, since 
variations in the hypotheses are possible. 

 

2.2. Hypotheses and input data 

This study rests on the major hypotheses below: 

• The entire interconnected system is under the control of one operator, who can 
manage it as convenient for addressing the whole district’s needs. Contexts where 
different operators manage the units would introduce intermediate constraints that fall 
out of the scope of this article. 

• The calculations do not consider limits to the space available for the implementation 
of storage units (thus, unlimited storage capacity) and solar generation units. 
However, we consider possible limits in the discussion of results. 

• Pipes diameters and cable sections are fixed (i.e. they are not optimization variables). 
• The geospatial implementation of the network is not an optimization objective, since it 

is rather a topological issue than an energetic issue. 
• The environmental analysis does not account for embodied energy and CO2 

emissions are considered only at operation time (no life-cycle analysis). 
• Startup and shutdown times are neglected for all units [35]. 

Table 1 presents input data for the model used in this study. For storage units, the efficiency 
shown in the table applies to both the charge and discharge processes. Self-discharge of 
storage units is expressed as a daily percentage of energy stored. Unless otherwise stated, 
minimal output power of all units is 0 kW. 

The effect of scale on certain parameters was accounted for. For example, photovoltaic 
panels are generally more expensive at smaller scales. Since the electricity-driven 
decentralized solution considers installing panels by buildings, and the multi-source 



centralized solution does so for the whole district, their capital expenditures (CAPEX) were 
adjusted. Thus, the CAPEX of photovoltaic panels is higher for the electricity-driven 
architecture (1050 €/kWp) than for the multi-source architecture (750 €/kWp). The same effect 
can be noticed on the CAPEX of heat storage: 40 €/kWh in the electricity-driven architecture 
versus 30 €/kWh in the multi-source architecture. The same applies for the CAPEX of the 
heat pump (1200 €/kW versus 1000 €/kW) and its operating expenses (OPEX) (6.0 %CAPEX 
versus 3.5 %CAPEX). 

Non-pressurized thermocline water tanks were assumed as thermal storage units. For these 
kinds of units, Mouret et al report heat losses of 0.5 %/day for temperature differences up to 
45 °C between the hot and cold water contained within the tank (page 161 of [36]). The value 
of 0.5 %/day applies to fully charged storages of capacities ranging from 100 m3 to 12000 m3. 
Losses increase at smaller scale, therefore a value of 3.0 %/day was set in the electricity-
driven architecture based on extrapolations from the correlations in [36] and [37]. Based on 
literature, full charging/discharging times of thermocline units can be as low as 3 hours. 
Consequently, the maximal charge/discharge powers for these units was supposed 33% of 
their maximal capacity. 
Table 1. Input parameters and values. Case A and Case B refer to electricity-driven and multi-source architecture, respectively. 

Unit Parameter Value (Case A) Value (Case B) Units Source(s) 

Economics, overall Observation period 20 20 y [38] 
 Discount rate 7 7 % [38] 
 Electricity price 0.16 0.16 €/kWh [39] 

Solar PV field CAPEX 1050 750 €/kWp [40] 
 OPEX 5 2 %CAPEX [40] 

PV converter Efficiency 95 95 % [40] 
Electric batteries Efficiency 90 90 % [40] 

 Self-discharge 0.01 0.01 %/day [40] 
 Initial SOC 50 50 % Hypothesis 
 Final SOC 50 50 % Hypothesis 
 Max. charge 33 33 %CAPACITY [31], [36] 
 Max. discharge 33 33 %CAPACITY [31], [36] 
 CAPEX 220 220 €/kWh [40] 
 OPEX 2 2 %CAPEX [40] 

Electric network Efficiency 100 100 % Hypothesis 
Thermal network Efficiency N/A 95 % [41] 

 CAPEX N/A 500 €/kWth [41] 
 OPEX N/A 7.5 %CAPEX [41] 

Solar thermal collector field CAPEX N/A 200 €/m² [40] 
 OPEX N/A 1.0 %CAPEX [40] 

Thermal storage unit Max. charge 33 33 %CAPACITY [31], [36] 
 Max. discharge 33 33 %CAPACITY [31], [36] 
 Charge/discharge eff. 100 100 % [31], [36] 
 Self-discharge 3.0 0.5 %STORED/day [31], [36], [37] 
 Initial SOC 50 50 %CAPACITY - 
 Final SOC 50 50 %CAPACITY - 
 CAPEX 40 30 €/kWhth [42] 
 OPEX 2 2 %CAPEX [40] 

Heat pump COP 3 3 kWth/kWel - 
 Inlet temperature 10 20 °C - 
 Outlet temperature 65 80 °C - 
 CAPEX 1200 1000 €/kW [40] 
 OPEX 6.0 3.5 %CAPEX [40] 

Gas boiler plant Efficiency N/A 90 % [40] 
 CAPEX N/A 500 €/kW [40] 
 OPEX N/A 4 %CAPEX [40] 
 Cost of gas N/A 0.55 €/kg CH4 [43] 
 LHV of gas N/A 13.83 kWh/kg CH4 [44] 
 CO2 content of gas N/A 3.36 kg CO2/kg CH4 [44] 

Biomass-driven cogen. plant Efficiency (thermal) N/A 60 % [40] 
 Efficiency (electrical) N/A 30 % [40] 
 Density of biomass N/A 700 kg/m3 Handbook 
 Max. biomass uptake N/A 100 kg/h Hypothesis 
 LHV of biomass N/A 4.00 kWh/kg Handbook 
 Buying price of biomass N/A 0.12 €/kg [45] 
 CAPEX N/A 800 €/kW [40] 
 OPEX N/A 4 %CAPEX [40] 

 

The biomass cogeneration unit was modelled as a non-pilotable unit that produces heat and 
electricity at the same time, with efficiencies of 60% and 30% respectively. The CAPEX of 
this unit refers to total production (i.e. heat plus electricity). For a minimally realistic 



simulation of this unit, a constraint was applied on the maximal uptake of biomass, as this 
resource is quite more limited than solar irradiation or ground source heat. A constraint of 
100 kg/h was selected. This constraint can make results interesting for countries whose 
district heating systems depend heavily on biomass. Those countries could interpret the 
results as a projection of how their energy mix could look like after reducing dependence on 
biomass. 

Biomass is generally considered as low-carbon in France. Indeed, reports from the ADEME, 
i.e. the French Agency for Ecological Transition [46] assume 0 CO2 emissions for wood-
burning biomass in DHC. This is based not only on the fact that a tree, throughout its lifetime, 
captures and neutralizes as much CO2 as its biomass releases upon combustion, but also 
considering that most regions in France have local biomass availability which reduces side 
emissions due to transport. In particular, this case study is located in a French region 
(Auvergne-Rhone-Alpes) that is highly populated with trees overall.  

The hypothesis would be different in other countries. For instance, the Danish Energy 
Agency suggests 24-30 gCO2/kWh of energy produced via biomass-driven cogeneration 
[40]. Also, competition with other potential use of biomass (agriculture, soil protection) should 
be taken into account, but this would have to be done in a complete Lifecyle Analysis which 
goes beyond the scope of this paper. 

 

2.3. Demand profiles 

The only empirical data available for this study were monthly consumptions of energy for 
each of the 13 buildings. Since the optimizations required yearly profiles at an hourly time 
step, synthetic profiles had to be constructed. The CREST demand tool, created by the 
Centre for Renewable Energy Systems Technology (UK), was selected for such purpose 
[47]. Amongst the available open-source profile generators, the CREST tool provided, for this 
study, the best trade-off between model accuracy and calculation speed. Although the tool 
has been validated for the English and Indian residential sectors, and not the French one, the 
validation procedure is quite rigorous and based on an extensive list of indicators and data 
sets [48], [49]. 

The tool allows simulating yearly demand profiles of specific electricity, space heating and 
domestic hot water production for one dwelling. It allows selecting the number of occupants, 
ranging from one to six. The tool contains its own database of domestic appliances, with their 
energy consumptions. Occupants’ behaviors are simulated stochastically, by the mean of 
first-order Markov chains at a 10 minute time step, generated from the UK 2005 Residential 
Time Use Survey (TUS) [50]. 

Simulations were launched for the total number of dwellings in the 13 buildings (ca. 500 
dwellings), with a random number of occupants at each dwelling. The individual profiles were 
aggregated on a building basis for simulating the electricity-driven architecture. Then, they 
were aggregated for the district in order to simulate the district heating architecture. The 
resulting profiles are shown in Fig. 3. The yearly profiles are shown, with 24-h samples next 
to them.  

The profile of electric needs consists of a baseline for the whole year (Fig. 3a) with 
oscillations between 50 kW and almost 600 kW. This profile does not seem affected by 
seasonality. On a daily basis, it shows a peak in the evening that is quite consistent with the 
residential sector. However, it does not show a peak in the morning, which one could expect 
from residential buildings.  

The profile of space heating needs shows clear seasonality, as in the vast majority of needs 
take place in winter. However, the demand drop of late spring and its rise of early autumn are 
rather stiff. This may be a shortcoming in the modelling. Despite that, the profile was 



considered acceptable since buildings in the Cambridge district are rather new and well-
isolated. 

The demand profile for domestic hot water production consists of a baseline, like the electric 
profile. However, it shows some seasonality, because demands increase slightly in winter. 
Still, peak instantaneous needs revolve around 300 kW for the whole year. On a daily basis, 
the tool represents well the typical peaks in the morning and evening. Nevertheless, 
consumption between 11pm and 4am is typically zero, which might be unrealistic. In France, 
boilers are sometimes programmed for slowly heating water at night, aiming at having the full 
reservoir ready by 6am. 

 

Figure 3. Yearly profiles and daily samples of electricity (a and b), heating (c and d) and domestic hot water (e and f) needs. 

 

 

 

2.4. Network architectures and sensitivity scenarios 

The study was approached through operational optimization. This method consists in 
modelling dynamically both the system and its control system, by the mean of linear 



mathematical constraints. This is nowadays the reference method, as noted by Cuisinier et al 
[51]. Figure 4 displays the architectures for the prospective system, as implemented in the 
homemade PERSEE tool [52].  This tool translates the system into a linear programming 
(LP) problem, based on well-known equations in LP (see an example in [52], or in [53] for 
MILP, i.e. Mixed-Integer Linear Programming). 

      

 

Figure 4. Modeling of the prospective system, with both architectures, on the PERSEE tool. 

 

The optimization code works with the following energy-related vectors: 

• Electricity. This vector concerns the following units in the system: the French 
national electric network, the electric needs of the buildings within the district, the 
electric output of the biomass-driven cogeneration plant, the electric input of the heat 
pumps, and the electric batteries.  

• Heat. The supply temperature of the district heating network is assumed as 80 °C. In 
the architectures considered for this study, the need for heat at that temperature is 
coverable by the gas boiler plant, or the biomass-driven cogeneration plant, or the 
solar thermal panels, or the heat pumps in certain architectures. The return 
temperature is 40 °C. In the electricity-driven architecture, as heat pumps are 
decentralized, their heat production is supposed to be a 65 °C. 

• Gas. This vector concerns the input of the gas boiler plant, and the gas network that 
ensures that input. 

• Biomass. This vector concerns the input of the biomass-driven cogeneration plant. 

• CO2 emissions. This vector, rather than serving any particular balance within the 
model, is an informative vector in order to account for total emissions. 

The optimizations consider the costs of excess heat dissipation from the solar thermal 
collectors. Those costs are determined through the correlation below: 
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With 	
��
����	���� the excess heat generated by solar thermal panels, �
�$
�%�&� being the cost of 
network electricity (a flat 0.16 €/kWel in most scenarios), and the 0.0275 a correlation factor 
between heat dissipated and electricity consumed for such dissipation (operation of 
aerothermal equipment). This correlation comes from engineering experience from the 
authors’ laboratory [54]. 

The following parametric studies were conducted in order to verify robustness of the 
technical solutions to uncertainties in the parameters below: 



• Ratio of space heating demands. 
• Coefficient Of Performance (COP) of the heat pump. 
• Performance of photovoltaic panels. 
• Performance of solar thermal collectors. 
• Heat losses of the thermal storage unit. 
• Variability in price and CO2 emissions of grid electricity (versus constant values). 
• Taxes on CO2 emissions. 

Table 2 shows the range of values considered for each parameter. The study focuses on 
parameters that exist in both architectures, for the sake of comparison. 

Table 2. Values of the constraints applied throughout the sensitivity analysis. 

Parameter Lower bound Nominal value Upper bound Units 

Space heating demands -50% See section 2.3 +200% GWh/y 
COP of the heat pump 2 (-33%) 3 4 (+33%) - 
PV panels efficiency 10 15 20 % 

ST collectors efficiency 60 70 80 % 
Charge/discharge eff. of batteries 0.85 0.9 0.95 % 

Heat storage losses (architecture A) 0.5 3.0 5.0 %/day 
Heat storage losses (architecture B) - 0.5 5.0 %/day 

Grid electricity price Variable 0.16 (Fixed) Variable €/kWhel 
Grid electricity emissions Variable 0.057 (Fixed) Variable kgCO2/kWhel 

Tax on CO2 emissions - 100 250 (+150%) €/tCO2 

 

Space heating is heavily dependent on building design, localization and thermal insulation. In 
France, the average load for space heating is around 150 kWh/m²/y [55] but in new buildings, 
it needs be as low as 50 kWh/m²/y due to the current RT2012 regulation. Thus, it is 
interesting to check the effects of different heating loads. 

Variations considered for the Coefficient Of Performance (COP) of the heat pump 
correspond to the expectable temperature lifts in both architectures. Causes for such lifts are 
different in each architecture. In the electricity-driven one, the output temperature 
requirement is constant but the inlet temperature may vary, as aerothermal heat pumps are 
supposed. In the District Heating architecture, the input temperature is constant thanks to a 
geothermal source (see subsection 2.1), but the output temperature requirements may 
fluctuate due to inertia in the district network. 

Efficiency ranges for photovoltaic panels, solar thermal collectors and electric batteries are 
plausible given the current state of the art for such technologies. The same applies to heat 
storage losses. Concerning the specific price and CO2 emissions of grid electricity, two 
scenarios were considered. The first one consists of a fixed price and fixed emissions 
throughout the year (see column “Nominal value”). The second one consists of hourly 
profiles of price and carbon emissions, whose yearly averages are the same as the fixed 
values used in the nominal scenario. As for carbon taxes, the nominal value corresponds 
approximately to the current scenario in France, while the upper bound is the value that 
some organizations advise in order to favor ecological transition. 

The reference electricity price used in the simulations is based on the data available from the 
ENTSO-E Transparence platform [56]. This data has been adjusted with a constant bias in 
order to take into account transportation and distribution costs as well as the non-residential 
final consumer subscription. This constant bias is calculated in function of the average 2013-
2018 values for France, retrieved from the Eurostat database [57]. The electricity price’s 
yearly average value is 0.0758 €/kWh. 

 

3. RESULTS AND DISCUSSION 

 



This section is structured in three parts. The first part displays and discusses the costs-
emissions Pareto front for both architectures, and the essential differences between the two. 
The second part analyzes and compares the sensitivity of both Pareto fronts to the 
parameters discussed in Table 2. The third and last section focuses on the effects of different 
space heating demands, which turned out to have not only high consequences on total cost, 
but also on the optimal choice of technologies. 

 

3.1. Comparison of architectures at nominal scenario 

Figure 5 displays, for each architecture at the nominal scenario, the project’s total cost as a 
function of the carbon emissions constraint applied on the system. Total cost refers to net 
present costs, including the CAPEX and the OPEX. Carbon emission constraint refers to the 
maximum emissions of CO2 allowed in one year. For the sake of analysis, total costs are also 
displayed by component, in the form of stacked bars. For the sake of comparison, axes on 
both graphs cover the same ranges and have the same increments, and a dashed line 
compares total costs at unconstrained scenarios. 

 

Figure 5. Costs vs Emissions Pareto front at nominal scenario. (a) Electricity-driven architecture; (b) District heating 
architecture. 

 

In the electricity-driven architecture, the right-most value on the x-axis corresponds to an 
unconstrained scenario (total emissions are 173 tCO2/y versus the constraint of 180 tCO2/y). 
For the multi-source district heating (DH) architecture, an unconstrained scenario would 
require carbon emissions limitations of 331 tCO2/y or higher (due to the possibility of using a 
cost-efficient gas boiler). The right-most scenario on the graph is thus constrained. Yet, total 
costs barely change from 180 tCO2/y to 331 tCO2/y, and the choice of technologies does not 
change at all (just their sizes do). 

Both graphs display the well-known tendency wherein costs increase as the limitation on CO2 
emissions becomes heavier, resulting in a Pareto front. At carbon-unconstrained design, the 
electricity-driven architecture relies mostly on electricity from the grid and a heat pump. The 
optimizer suggests a small investment in solar PV panels as well, which should correspond 
to the size that optimizes the self-consumption and -production indices. In the multi-source 
DH architecture, the optimal solution is an energy mix, even at unconstrained design. The 
biomass cogeneration plant operates at its maximal capacity in most of the cases, under the 
imposed limitation of 100 kg/h of biomass (read description for Table 1). 

As expected, heavier constraints on CO2 emissions trigger the use of renewable sources, i.e. 
solar panels in this study. Accordingly, carbon-intensive resources such a gas (3.36 



kgCO2/kgCH4, or 0.243 kgCO2/kWhth) or grid electricity (0.057 kgCO2/kWhel in the French 
context) are gradually left behind. However, in the district heating architecture, the irruption of 
renewables occurs only at more constraining CO2 limitations than in the electricity-driven 
architecture. This is due partly to the presence of the biomass cogeneration plant, but mostly 
because of the demand pooling effects, which maximize the coverage of demands by solar 
panels. 

Differences in the choice of technologies become more evident at constraints of 60 tCO2/y or 
lower. That is where the multi-source DH architecture starts resorting to solar thermal 
collectors. Let the readers recall that solar thermal collectors are not available in the 
electricity-driven architecture. The zero-emission scenario shows the most evident 
discrepancies. The DH architecture finds its optimum in a balance between the PV / batteries 
pairing and the ST / storage pairing. Meanwhile, the electricity-driven architecture relies 
heavily on PV panels and batteries, with a very small investment in thermal storage. The 
causes for this discrepancy are higher investment costs in thermal storage (40 €/kWh versus 
30 €/kWh) and greater heat losses (3 %/day versus 0.5 %/day) of the thermal storage at 
smaller scales in comparison to larger scales. 

The different sensitivities to carbon constraints are also noticeable. When going from 
unconstrained to zero-emission scenarios, total costs increase by 4-fold for the DH 
architecture, but by 9-fold for the electricity-driven architecture. Higher specific investment 
costs of equipment at smaller sizes are one reason for this discrepancy. The other reason is 
the fact that demand pooling allows shaving peak demands. While the DH architecture has 
centralized production units, the electricity-driven architecture has decentralized units, 
leading to higher overall investment. 

Next subsection focuses on the sensitivity of each scenario to the parameters pointed out in 
Table 2. 

 

3.2. Sensitivity to selected parameters 

Sensitivity analysis was done by changing parameter values, one parameter at a time. Table 
3 describes, for each scenario, the parameter that has been modified and its new value.  
 

Table 3. Description of the scenarios for sensitivity analysis. 

Scenario name Parameter modified Value (modified) Units 

Nominal scenario None - - 
EFF_ST -0.10 

Efficiency of solar thermal collectors 
0.60 

kWth-out/kWth-in EFF_ST +0.10 0.80 
EFF_BATT -0.05 

Charge/discharge efficiencies of electric batteries 
0.85 

kWel/kWel EFF_BATT +0.05 0.95 
EFF_PV -0.05 

Efficiency of solar photovoltaic panels 
0.10 

kWel-out/kWth-in EFF_PV +0.05 0.20 
COP_HP -1 

Coefficient Of Performance of the heat pump 
2 

kWth-out/kWel-in COP_HP +1 4 
TES_losses 5 %/day Daily energy losses of the thermal storage unit 5 %/day 

ELEC_VARIABLE 
Hourly profile of electricity price 

Variable 
(yearly mean = 0.16) €/kWhel 

Hourly profile of electricity CO2 content Variable 
(yearly mean = 0.057) kgCO2/kWhel 

CARBON_TAX +150% Taxes on CO2 emissions 250 €/tCO2 
CAPEX_BIO +200% CAPEX of biomass-driven cogeneration unit 2400 €/kWth-out 

FUELCOST_GAS +200% Cost of gas fuel 1.65 €/kgCH4 

 
Figure 6 shows, for the electricity-driven decentralized architecture, relative sensitivity of total 
costs to selected parameters, for different carbon constraints. In other words, the graph 
displays the sensitivity of the Pareto front. 

Space heating demands were the most impactful parameter in this study, only second to 
carbon constraints. Halved heating demands can reduce costs by 21% to 27%, depending 



on the position within the Pareto front. Tripled heating demands can increase costs by 100% 
to 150% (not shown in this graph, see Fig. 9). 

The COP of the heat pump was the second-most impactful parameter. A decrease in COP of 
33% (i.e. from 3 to 2) increased costs by 12% to nearly 35%. Conversely, an increase in 
COP of the same magnitude cut costs back by 5% to 15%. Note that the effects of 
efficiencies on costs are inversely proportional. 

 

 
Figure 6. Senstivity of the electricity-driven architecture to selected parameters, at different carbon constraints. Refer to Table 3 

for description of the scenarios in the legend. 

 

It is also noteworthy that the profiles of costs increases/decreases vs carbon constraint are 
not symmetrical. The reason is that the amount of electricity required to run the heat pump 
evolves non-linearly with respect to the COP. A drop in COP of -33% causes +50% electricity 
required, while an increase of +33% only allows for -25% electricity required. In other words, 
a drop in COP is more penalizing than an increase in COP is rewarding. Thus, improving the 
COP can reduce costs notably, but this has its limits. The guideline should rather be to avoid 
a low COP than to aim for a very high COP. Besides, a very high COP might have its 
drawbacks if the input heat is limited and/or paid for. For instance, waste heat purchased 
from an industrial partner somewhere in the district. 

Interestingly, peak sensitivity to this parameter does not occur at extreme points of the 
Pareto front. As explained in the previous paragraph, a drop in COP leads to an increase in 
electricity needs. The optimizer manages that increase differently, depending on the carbon 
constraint. In less constrained scenarios (≥ 120 tCO2/y), it can just buy more electricity from 
the grid. As grid electricity is relatively not expensive, costs do not greatly increase. In very 
constrained scenarios (≤ 20 tCO2/y), more solar panels need to be installed to compensate 



for the lower COP, but the investment in panels is very high anyway. In intermediate 
scenarios, the increase in panels’ size is most impactful with respect to total costs. 

Figure 7 is a summary of the sensitivity of the DH architecture to the different parameters 
considered. It is displayed in the form of relative deviations with respect to total project costs 
at nominal scenario. 

As expected, sensitivity increases at heavier carbon constraints, and some parameters are 
more influential than others are. Nevertheless, depending on the scenario and parameter 
considered, deviations may or may not be negligible. 

 

 
Figure 7. Senstivity of project total costs at different carbon constraints, for the multi-source district heating architecture. Refer 

to Table 3 for description of the scenarios in the legend. 

 

Variations of +/- 5% in the efficiency of PV panels only have noticeable effects at carbon 
constraints lower than 80 tCO2/y. This is understandable, as only constrained scenarios rely 
on solar panels. Yet, even in the most constrained scenarios, sensitivity to this parameter is 
almost negligible (5% or lesser deviations). This is a notable difference with respect to the 
electricity-driven architecture, where the effects of this same parameter were not negligible 
for most of the scenarios. As explained for the nominal case (see subsection 3.1), the cause 
is that the DH architecture enables demand pooling and therefore peak load shaving. 

The effects of the heat pump COP are mostly negligible, too. Upper and lower values of 4 
and 2 were considered (i.e. +/- 33%, respectively). Even though this margin is larger than 
that considered for the CAPEX of PV panels, the effects remain negligible. Note, however, 
that the profile of relative deviations differs from those of other parameters. It is linked to the 
usage of the heat pump. As seen in Fig. 5, the greatest investments on a heat pump (and 
thus its size) take place at constraints between 20 tCO2/y and 80 tCO2/y. Sensitivities are 



accordingly higher. At the zero-emission scenario, there is no sensitivity because there is no 
heat pump. 

Variations in the efficiency of ST collectors has negligible impact. Heat losses in the thermal 
storage have an impact only at very pessimistic scenarios. Here, up to 5 %/day and 10 
%/day were considered, while the nominal case for large scales is rather 0.5 %/day. It is thus 
concluded that this parameter does not seem to have a great impact on total costs. 

Results indicate that the CAPEX of the biomass-CHP unit has a light impact on total costs. 
Even with three times the nominal CAPEX, maximum increase on total cost is around 10%, 
and corresponds directly to multiplying the cost of the biomass-CHP unit by 3. The optimal 
choice of technologies remains unchanged, except in the unconstrained scenario, where the 
optimizer tends to reduce the size of biomass-CHP (-3%) and increase the size of a heat 
pump (+5%). Under 100 tCO2/year, the sensitivity seems lower, however this is only due to 
an overall increase in the total costs. 

Despite tripled prices for the fuel gas, the impact on total costs or on the optimal choice of 
technologies was close to negligible. Even with nominal prices (left), the optimal solution 
includes only a small investment in gas. This investment decreases gradually as the carbon 
constraint becomes heavier, and the heat pump tends to substitute the gas boiler. If gas 
prices were to be tripled, the heat pump would further replace the gas boiler. Yet, gas would 
still not be completely phased out, except in heavily constrained emission scenarios (< 40 
tCO2/year). This could probably mean that gas is the last resort used by the optimizer in 
order to tackle very specific demand peaks throughout the year. 

 

3.3. Detailed effects of space heating demands 

In this section, we consider the sensitivity to different level of space heating (SH) 
consumption, corresponding to various level of building performance. The reference case in 
the previous section is based on a SH consumption of 50 kWh/m2/y, which corresponds to 
the required level of performance for new buildings under the current (RT2012) French 
regulation. As alternatives, we consider (1) a SH consumption of 150 kWh/m2/y, which is the 
average level of performance for apartment blocks in France, (2) a SH consumption of 25 
kWh/m2/y, which is representative of very efficient buildings. Since the yearly energy 
consumption for SH, DHW and specific electricity are approximatively at the same level in 
the reference case, it means that the share of SH jumps to 60% or drops to 20% of the total 
energy consumption of the district, respectively. 

Figure 8 presents and compares the sensitivity of the total cost with respect to the SH 
consumption level. As expected, increased or decreased space heating consumption results 
in an increase or decrease in total costs, respectively. The two architectures, however, seem 
to be similarly cost-sensitive to these variations (Fig. 9). The electricity-driven architecture is 
just slightly more sensitive to increases in heating demands. 

 



 
Figure 8. Robustness of the design to uncertainties in space heating demands. Electricity-driven architecture with 
tripled (a), nominal (c) and halved (e) heating demands versus district heating architecture with tripled (b), 
nominal (d) and halved (f) heating demands. 

 



 
Figure 9. Sensitivity of both architectures to variations in space heating demands. 

 

When considering a higher SH consumption, both architectures feature increased investment 
costs in the heat pump, as well as increased electricity purchase costs. In the district heating 
case, there is also a significant increase in the share of solar thermal energy and thermal 
storage for lowest carbon constraints: this choice allows reducing the sizing of the heat pump 
and PV panels, which would become very costly when trying to address such a high SH 
demand on renewable energy only.  

When considering a lower SH consumption, both architectures feature slightly decreased 
investment costs in the heat pump, as well as electricity purchase costs. However, this 
decrease is limited, since the resulting energy consumption is dominated by DHW and 
specific electricity needs. In the District Heating architecture, it can be noted that low carbon 
emission levels (20 tCO2/y) can be obtained without significantly increasing the project costs, 
and only adding PV panels and storages to the systems.  

Although more detailed analysis would be necessary, these results suggest that transitioning 
from the current average building stock to a highly efficient building stock would be more 
flexible when considering a district heating architecture. In particular, it is possible to attain 
low emission levels even for the current build stock using solar thermal energy, which could 
be progressively replaced by PV panels and electric storages when building performance 
increase and/or carbon emission constraints become stronger. 

 

 

 

 



4. CONCLUSION AND PERSPECTIVES 

 

Systems for providing heat at a residential level are evolving towards centralized production 
of heat, the implementation of district heating, and a multi-source layout. These new 
centralized systems rely on different equipment, at a bigger scale. Therefore, one could think 
that they do not have the same uncertainties. This article analyzes the robustness of a 
centralized architecture for a district heating system, and compares it to that of a 
decentralized architecture. The decentralized architecture relies on the national electric grid, 
plus a building-by-building possible installation of PV panels, heat pumps, electric batteries 
and thermal storage. The centralized architecture considers these same technologies, but 
sized for the whole district and backed up by a district heating network. In addition, it 
considers solar thermal collectors, a gas boiler plant, a biomass-fired cogeneration plant, and 
thermocline storage as additional means of energy management. The following conclusions 
were drawn: 

• Constraints on the maximum allowed carbon dioxide emissions were the most 
influential parameter on the system design. The objective of minimizing these 
emissions comes at the price of increasing total costs exponentially. In addition, it 
requires the use of renewable sources, namely solar panels in substitution of gas and 
electricity from the grid. 

• The decentralized, electricity-driven architecture is more sensitive to carbon 
constraints than the centralized, multi-source district heating architecture. When going 
from unconstrained to zero-emission scenarios, total costs increased by more than 9-
fold for the former, versus 4-fold for the latter. 

• At scenarios with very low emissions, the district heating architecture relies more on 
thermal storage than the electricity-driven architecture. Reasons are lower equipment 
costs and lesser heat losses at larger scales, plus the possibility of seasonal storage. 
Peak load shaving thanks to mutualizing the units played a role, too. On the other 
hand, the electricity-driven architecture relies on small storage tanks to reduce DHW 
peaks. 

• The electricity-driven architecture is more sensitive than the district heating 
architecture to the COP of the heat pump. Equal variations in COP (+/- 33%) led to 
greater deviations in total costs for the former (+35% / -15%) than for the latter (< 
6%). 

• The inclusion of solar thermal collectors in addition to photovoltaic panels is relevant 
at district scale. Especially at low-emissions scenarios, the investments on ST 
collectors (+ thermal storage) and PV panels (+ electric storage) are balanced. This is 
because an optimizer can find the sizes that maximize the self-production and -
consumption indices for both technologies. This illustrates the importance of 
accounting for the operating phase when optimizing the choice of technologies and 
their sizes.  

• Carbon taxes seem to have an impact only on the total cost of the system, and not on 
its optimal architecture. Furthermore, the economic impact is rather negligible, at least 
in the French context in which grid electricity is both affordable and low-carbon. 

The authors have two main perspectives for this study case. The first one consists in model 
predictive control through multi-temporal horizons, conversely to the yearly horizon used for 
this article. Multi-horizons are necessary for achieving realistic optimizations, since perfect 
yearly predictions are not possible for energy demands, fuel prices or solar irradiation, 
among other variables. In the multi-temporal horizon approach, the farthest possible 
prediction will be 24 hours. This horizon will be updated at every time step, and consequently 



the optimal management too. This should lead to different results with respect to a yearly 
horizon. 

The second perspective is to account for the buildings’ thermal inertia for better 
optimizations. This approach requires a specific module for thermal simulation of the 
buildings. Such module will be integrated using a co-simulation approach. 
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