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Abstract

Healthy aging is associated with a heterogeneous decline across cognitive functions,

typically observed between language comprehension and language production (LP).

Examining resting-state fMRI and neuropsychological data from 628 healthy adults

(age 18–88) from the CamCAN cohort, we performed state-of-the-art graph theoreti-

cal analysis to uncover the neural mechanisms underlying this variability. At the cog-

nitive level, our findings suggest that LP is not an isolated function but is modulated

throughout the lifespan by the extent of inter-cognitive synergy between semantic

and domain-general processes. At the cerebral level, we show that default mode net-

work (DMN) suppression coupled with fronto-parietal network (FPN) integration is

the way for the brain to compensate for the effects of dedifferentiation at a minimal

cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN

suppression in midlife could compromise the ability to manage the cost of FPN inte-

gration. This may prompt older adults to adopt a more cost-efficient compensatory

strategy that maintains global homeostasis at the expense of LP performances. Taken

together, we propose that midlife represents a critical neurocognitive juncture that

signifies the onset of LP decline, as older adults gradually lose control over semantic

representations. We summarize our findings in a novel synergistic, economical, non-

linear, emergent, cognitive aging model, integrating connectomic and cognitive

dimensions within a complex system perspective.
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Practitioner Points

• Lexical production (LP) relies on the interplay between domain-general and semantic pro-

cesses throughout life.

• Default mode network (DMN) suppression cooperates with fronto-parietal network integration

to maintain LP performance at a minimal cost.

• Midlife marks a neurocognitive shift, with reduced DMN suppression prompting a more cost-

efficient compensatory strategy that prioritizes homeostasis over LP performance.
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1 | INTRODUCTION

The crucial need to comprehend the mechanisms that uphold normal

cognitive functioning during aging arises from the significant increase

in the proportion of older individuals (United Nations, 2023). A grad-

ual decline in cognitive abilities typically accompanies aging. However,

this decline is heterogeneous across cognitive functions, and some of

them, such as language, semantic memory, and vocabulary, tend to be

preserved longer (Loaiza, 2024). Therefore, this study aims to shed

light on the neural mechanisms that underpin this variability, jointly

exploring the functional brain architecture at rest and

language-related performance. Specifically, we hypothesize that

changes in language function across the lifespan are subserved by the

reorganization of the language neurocognitive architecture within the

framework of an inter-cognitive interaction between language, long-

term memory, and executive functions.

From a cognitive standpoint, language decline under the effect of

age is not uniform (Baciu et al., 2021). Although overall language per-

formances tend to be preserved, some linguistic operations may be

impaired with age (Ramscar et al., 2014; Wlotko et al., 2010). Indeed,

while language comprehension (LC) demonstrates higher resilience to

the effects of aging (Diaz et al., 2016; Rossi & Diaz, 2016), language

production (LP), which involves lexical retrieval and generation (Baciu

et al., 2016, 2021), tends to be more significantly impaired with age

(Evrard, 2002; Ramscar et al., 2014). This is particularly obvious in tip-

of-the-tongue situations, where individuals experience knowing the

meaning of a word but struggle to recall and produce the word form

(Burke et al., 1991; Condret-Santi et al., 2013). This discrepancy

between LC and LP during aging can be attributed to the advantages

of semantic context and the accumulation of semantic knowledge

throughout the lifespan (Jongman & Federmeier, 2022;

Salthouse, 2019).

From a cerebral perspective, brain networks interact with one

another, reflecting how language adapts to socio-communicative con-

texts by drawing memories, knowledge, and beliefs from long-term

memory (Duff & Brown-Schmidt, 2012; Horton, 2007) under the con-

trol of executive functions (Corballis, 2019; Hertrich et al., 2020).

While long-term memory provides “traffic” content and coherency,

executive functioning provides top-down flexibility and coordination

to focus, plan, accomplish tasks, and control emotions. In a previous

teamwork (Roger, Banjac, et al., 2022), our team proposed a theoreti-

cal framework that conceptualizes the inter-cognitive synergy

between language, long-term memory, and executive functions at the

cognitive level language/union/memory, and suggested that func-

tional connectivity-based interactions may implement this synergy at

the neural level.

Indeed, a data-driven analysis highlighted that the language neu-

rocognitive architecture based on extrinsic brain activity (Roger,

Rodrigues De Almeida, et al., 2022) comprises four spatially nonover-

lapping subsystems, each probabilistically mapping onto known

resting-state brain networks (i.e., RSNs; Ji et al., 2019): core language

(Net1), control-executive (Net2), conceptual (Net3), and sensorimotor

(Net4). Interestingly, these findings indicate that age-related decline in

LP impacts extra-linguistic components (Net2 and Net3) beyond the

typical core language network (Hertrich et al., 2020). This suggests

that language performances in older adults could be determined by

synergistic processing (Gatica et al., 2021), that is the cooperation

between control-executive and conceptual/associative processes. In

line with (Luppi et al., 2024), we refer to synergistic processing as the

joint information that exceeds the sum of each subsystem's functional

connectivity changes. In light of the effect that the reorganization of

the language connectome has on language function, we also proposed

adopting a “cognitomic” perspective (Roger et al., 2018), emphasizing

the constraints that connectomic architecture places on cognitive per-

formances across the lifespan.

Within this perspective, graph theory (Bullmore & Bassett, 2011;

Bullmore & Sporns, 2009; Rubinov & Sporns, 2010) is appropriate to

describe the connectomic underpinnings of language. Specifically, the

brain network can be characterized in terms of integration and segre-

gation properties (Cohen & D'Esposito, 2016; Genon et al., 2018) at

different topological levels (i.e., whole-brain/system-level, modular/

subsystem-level, and region/nodal-level) (Farahani et al., 2019;

Fornito et al., 2016). Across the lifespan, cognitive efficiency is sup-

ported by a balance between integrated and modular information pro-

cessing (Bullmore & Sporns, 2012; Meunier et al., 2010; van den

Heuvel & Sporns, 2013). In other words, optimal coordination of neu-

ral activity is based on global homeostasis—the ability to adapt and

maintain stability in the face of changing conditions (see also the

notion of metastability: Naik et al., 2017; Tognoli & Kelso, 2014).

In line with our previous findings (Roger, Rodrigues De Almeida,

et al., 2022), a recent systematic review of resting-state data studies

reported that reduced local efficiency at the system level, along with

reduced segregation and enhanced integration within and between

RSNs at the subsystem level, are the connectomic fingerprints of

healthy aging with an inflection point in midlife (Deery et al., 2023).

However, a crucial challenge resides in understanding the neural

mechanisms that bridge reduced segregation with enhanced integra-

tion (Stumme et al., 2020), and how these mechanisms induce a neu-

rocognitive dynamic that reflects the changes in cognitive

performance as age advances.

Indeed, studies report contradictory findings depending on the

topological level of analysis. At a system level, age-related enhanced

integration (Battaglia et al., 2020) would be generally associated with

a dedifferentiated system that fails to alternate efficiently between

integrative and segregation states of connectivity (Chan et al., 2014;

Chan et al., 2017), thus highlighting a maladaptive process. At a sub-

system or brain network level, brain regions would undergo similar

dedifferentiation processes translating to reduced functional speciali-

zation (Goh et al., 2010; Park et al., 2004). This is primarily reflected

by reduced segregation and enhanced integration in the sensorimotor

and higher-order associative and control networks (Deery et al., 2023;

Wig, 2017). However, in contrast with the system level, enhanced

integration has been shown to be compensatory (Cabeza et al., 2018)

with direct benefits for cognitive efficiency (Bertolero et al., 2015;

Meunier et al., 2010). Specifically, increased coupling between default

mode (DMN) and fronto-parietal (FPN) networks correlated with

2 of 19 GUICHET ET AL.

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26650 by C
ochrane France, W

iley O
nline L

ibrary on [14/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



better global cognitive performance (Spreng et al., 2018; Spreng &

Turner, 2019). Moreover, it appears that the ability to deactivate

DMN regions may be a key ingredient of cognitive resilience (capacity

to mitigate the deleterious effect of dedifferentiation) across the life-

span (Deery et al., 2023; Grady et al., 2016; Singh-Manoux

et al., 2012; Varangis et al., 2019). Indeed, older adults show reduced

DMN deactivation (Spreng & Turner, 2019), potentially impacting the

interaction between semantic and control-executive processes, as

observed for LP (Baciu et al., 2021) and verbal fluency (Muller

et al., 2016; Whiteside et al., 2016).

The main objective of this study is to investigate how the age-

related reorganization of the language connectome explains the dis-

crepancy between LC and LP performances across the lifespan. By

assuming that language is a complex function working in synergy with

long-term memory and executive processes, we aimed to model the

neural mechanisms that support this inter-cognitive functioning. To

address this objective, we leveraged a population-based resting-state

fMRI dataset from the CamCAN cohort (Cam-CAN et al., 2014) and

applied graph theory analyses to evaluate the reorganization of the

language connectome in terms of integration and segregation proper-

ties at multiple topological scales of analysis.

2 | MATERIALS AND METHODS

2.1 | Participants

We included 652 healthy adults from the Cambridge Center for Age-

ing and Neuroscience project cohort (Cam-CAN et al., 2014). Further

recruitment information can be found in Taylor et al. (2017). Our anal-

ysis focused exclusively on functional fMRI brain data obtained during

a resting state period. After careful examination, we excluded 24 par-

ticipants and had a final sample size of 628 participants (age range:

18–88; 320 females; 208 males). The 24 participants were excluded

from the analysis for various reasons, including missing functional

imaging data (N = 4), incomplete volume acquisition (N = 4; however,

one of the four subjects has been retained with 74% (194/261) of the

total number of volumes), unreliable CSF mask (N = 9), and having

10% or more outlying volumes after preprocessing (M = 13.6,

SD = 3.2, N = 8). We chose eight cognitive tasks for brain-cognition

analyses to span a continuous spectrum from a high to a low degree

of synergy between language, long-term memory, and executive func-

tions (Table 1). The sample of 628 participants was further reduced to

613 due to missing cognitive data. Specifically, we excluded partici-

pants with more than three missing neuropsychological scores

(N = 15). Then, we replaced any missing score of the remaining

613 participants with the appropriate median of their age decile.

2.2 | MR acquisition

For information regarding the MR acquisition and the resting state

protocol applied in this study, please refer to Appendix S1. Further

details are provided by Cam-CAN et al. (2014), as the data were

sourced from the Cambridge Center for Ageing and Neuroscience

project cohort.

2.3 | Resting-state fMRI data analysis

2.3.1 | Data preprocessing

The rs-fMRI data underwent preprocessing using SPM12 (Welcome

Department of Imaging Neuroscience, UK, http://www.fil.ion.ucl.ac.

uk/spm/) within MATLAB R2020b (MathWorks Inc., Sherborn, MA,

USA). We employed a standard preprocessing pipeline (including

realignment, reslicing, co-registration, segmentation, normalization,

and smoothing) similar to that described in our previous work (see

Roger et al., 2020) with specific details mentioned in Appendix S1.

2.3.2 | Cerebral parcellation: The LANG
connectome atlas

The LANG connectome atlas, referred to as the LANG atlas, comprises

a collection of 131 regions of interest (ROI) derived from a panel of

13 language fMRI tasks (see Roger, Rodrigues De Almeida,

et al., 2022). Each ROI is represented by a spherical region with a

diameter of 6 mm, centered on the MNI coordinates proposed by

Power et al. (2011). To transform the LANG atlas, which is based on

extrinsic fMRI activation, into a resting-state language connectome

(rs-LANG) atlas consisting of ROIs derived from the intrinsic activity,

we labeled all LANG regions according to their primary resting-state

network (RSN) based on the Cole-Anticevic Brainwide Net Partition

TABLE 1 General presentation of the eight cognitive tasks. A
detailed description of each task is presented in Table S1 and
Appendix S1.

Cognitive task

Processes involved (from high to low

amount of inter-cognitive synergy)

Naming (Clarke

et al., 2013)

Language (phonological access and

semantic memory)

Verbal Fluency (Lezak

et al., 2012)

Language (phonological, semantic) and

executive function (EF)

Proverb comprehension

(Huppert et al., 1994)

EF (abstraction) and language

(comprehension)

Tip-of-the-tongue (R.

Brown &

McNeill, 1966)

Language (retrieval) and EF (error

monitoring)

Hotel task (Shallice &

Burgess, 1991)

EF (planning and multitasking)

Cattell task (Cattell &

Cattell, 1960)

EF (fluid intelligence)

Story recall (Tulsky

et al., 2003)

Long-term memory

Sentence

comprehension (Rodd

et al., 2010)

Language (syntactic, semantic)

GUICHET ET AL. 3 of 19

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26650 by C
ochrane France, W

iley O
nline L

ibrary on [14/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


(CAB-NP; Ji et al., 2019). We utilized a publicly available volumetric

version of the CAB-NP that was converted to standard MNI space. By

overlaying the volumetric RSN map onto the 131 regions (see Banjac

et al., 2021), we determined the number of voxels overlapping each

region and each RSN. This approach ensured accurate voxel-based

labeling of each region to their primary RSN (see Appendix S3 for

detailed results). When examining the modular organization of rs-

LANG, the RSN composition of a given subsystem was weighted by

the mean percentage of overlap between each region and their pri-

mary RSN. This improvement led to a 12% increase in mean accuracy.

2.3.3 | Resting-state LANG connectomes

Using the CONN toolbox (version 21.a; Nieto-Castanon, 2020), we

conducted an ROI-to-ROI analysis and generated a connectivity

matrix of dimensions 131 � 131 for each participant using Fisher-

transformed bivariate correlation coefficients. These connectivity

matrices were subsequently employed for network analysis. We disre-

garded negative correlations by setting them to zero, consistent with

previous studies (Chong et al., 2019; Martin, Saur, &

Hartwigsen, 2022; Martin, Williams, et al., 2022; Wang et al., 2011).

Additionally, we applied thresholding to each matrix at five sparsity

levels (10, 12, 15, 17, and 20%). This step aimed to reduce the pres-

ence of spurious connections and was based on the most likely spar-

sity levels known to produce a small-world organization (see

Appendix S2), as outlined by Achard and Bullmore (2007). Corre-

spondingly, the thresholded matrices were binarized to generate five

undirected graphs for each participant.

2.4 | Resting-state LANG network analysis

The network or graph analysis measured the information flow within

each connectome (Rubinov & Sporns, 2010). Specifically, we assessed

(i) the balance between functional integration and segregation at the

system level, (ii) the modularity at the subsystem level, and (iii) the

information transfer at the nodal level by evaluating the topological

role of each region.

2.4.1 | System-level analysis: Integration versus
segregation balance assessment

Using the Brain Connectivity Toolbox (BCT) implemented in MATLAB

2020b and available at https://www.nitrc.org/projects/bct/

(Bullmore & Sporns, 2009), we extracted three key graph metrics:

(1) global efficiency (Eglob), (2) local efficiency (Eloc), and (3) clustering

coefficient (Clustcoeff). Globally, Eglob was calculated as the inverse of

the shortest path lengths or the average of unweighted efficiencies

across all pairs of nodes (Latora & Marchiori, 2001). This metric quan-

tifies the efficiency of parallel information transmission across the

global network (Bullmore & Bassett, 2011). Locally, Eloc is similar to

Eglob but on node neighborhoods. When averaged at the system level,

it illustrates the segregation property of a network in processing infor-

mation (Latora & Marchiori, 2001). For each node, the clustering coef-

ficient (Clustcoeff) was calculated as the fraction of a node's neighbors

that are also neighbors of each other (Rubinov & Sporns, 2010), and

averaged at the system level. We visually inspected Eglob and Clustcoeff

across the five sparsity levels and determined that the optimal thresh-

old that balances integrated and modular processing was 15%

(Figure S3, Appendix S2). We further ensured that this threshold was

optimal by repeating the procedure for each age decile. Following this,

we reduced all graphs to a fixed number of edges by retaining the top

15% (2554 edges). Additionally, we verified that the reduced connec-

tomes maintained full connectivity and were sufficiently devoid of iso-

lated nodes, meaning that the largest connected component (LCC)

included at least 80% of all nodes. After thresholding at 15%, we char-

acterized the balance between functional integration and segregation

at the system level by determining the relative predominance of global

(Eglob) versus local efficiency (Eloc). A higher balance reflects a higher

predominance of integration or higher integrative/global efficiency.

System� level balance integrationvs: segregationð Þ¼ Eglob�Eloc
EglobþEloc

2.4.2 | Subsystem-level analysis: Modularity
assessment

To examine the modular organization of rs-LANG, we employed the

Louvain community detection algorithm (Blondel et al., 2008) with a

resolution parameter set to γ = 1.295, aiming to align with the RSNs

identified in the CAB-NP Atlas (Ji et al., 2019). As different runs of the

algorithm can yield varying optimal partitions, we implemented a con-

sensus clustering approach (Lancichinetti & Fortunato, 2012). This

approach involves iteratively clustering co-assignment matrices until

convergence, aggregating the frequency of node assignments to the

same module. To reduce spurious node assignments, we applied a

threshold of τ = 0.5 to the co-assignment matrices. If a node did not

consistently belong to the same module in at least 50% of the itera-

tions, its co-assignment weight was set to zero. We executed the

algorithm 1000 times for each subject and repeated the entire process

1000 times to generate a group-level consensus partition based on

the subject-level partitions. We ensured that this consensus partition

accurately represented all individuals across different ages, confirming

its suitability for statistical analysis (refer to Appendix S2 for further

information).

2.4.3 | Nodal-level analysis: Topological roles

At the nodal level, we investigated the topological reorganization of

each connectome by defining four distinct topological roles: Connec-

tor, Provincial, Satellite, and Peripheral (Bertolero et al., 2015; Gui-

merà & Amaral, 2005). Therefore, the composition of each individual's

language connectome is represented by four percentages which add

up to 100%. To assign each role to a node (i.e., a region), we employed

4 of 19 GUICHET ET AL.
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two graph metrics: (i) the within-module Z-score (WMZ; Latora &

Marchiori, 2001), which quantifies connectivity within subsystems

(short-range), and (ii) the normalized participation coefficient (PC;

Pedersen et al., 2020) which measures connectivity between subsys-

tems (long-range) while removing the bias associated with the number

of nodes in each module. Consistent with prior research (Roger, Rodri-

gues De Almeida, et al., 2022; Schedlbauer & Ekstrom, 2019), we

standardized both metrics (WMZ and zPCnorm) for each individual

and assigned a topological role to each node. In relation to the entire

set of 131 regions, a connector node displays a high proportion of

both short- and long-range connections (zPCnorm > = 0,

WMZ > = 1e-5). A provincial node displays a high proportion of

short-range connections (zPCnorm <0, WMD > = 1e-5). A satellite

node displays a high proportion of long-range connections (zPCnorm

> = 0, WMZ < 1e-5). A Peripheral node, on the other hand, is func-

tionally withdrawn from the network (zPCnorm <0, WMZ < 1e-5).

2.5 | Statistics

We conducted statistical analysis in two steps. First, at a connectomic

level, we examined the evolution of the relative proportion of topo-

logical roles across the lifespan (i.e., quantitative analysis). Subse-

quently, we modeled the neural mechanisms driving this evolution

using a probabilistic framework (i.e., qualitative analysis). This

approach allowed us to uncover the patterns and principles governing

the age-related connectivity changes in the language connectome.

Second, at a neurocognitive level, we employed canonical correlation

analysis (CCA) to examine the many-to-many relationships between

these neural mechanisms and the changes in cognitive performances

across the lifespan. We controlled for mean FC, gender, and total

intracranial volume in all models (Eikenes et al., 2023). Mean FC was

calculated by averaging the positive weights of the unthresholded

upper triangular connectivity matrix.

2.5.1 | Connectomic dynamic across the lifespan

To evaluate the age-related topological changes of the language con-

nectome, we examined how the relative proportions of four topologi-

cal roles (connector, provincial, satellite, peripheral) evolve across the

lifespan. Due to the inherent limitations of percentage-based statistics

(which sum up to 100%), namely, high correlation and dependence on

pairwise covariance—we applied a log-based transformation to the

data (Smith et al., 2016). This transformation, analogous to a log odds

transformation, removes the lower (0%) and upper (100%) boundaries

of the original metric (i.e., removing the unit-sum constraint), thus

remaining relatively easy to interpret:

Log�basedmetric¼ log
X

1�X

� �

Here, X represents the percentage-based proportion of either

connector, provincial, satellite, or peripheral nodes. To handle

undefined logarithms for zero entries, we imputed percentages using

Bayesian nonparametric multiplicative replacement with the package

zCompositions in R (Martín-Fernández, 2003; Palarea-Albaladejo &

Martín-Fernández, 2015).

Quantitative analysis

Following this transformation, the effect of age was examined using

generalized additive models (mgcv package in R; Wood, 2006, 2017)

at a system and subsystem level, using a three-knot spline to mitigate

overfitting concerns. Factor–smooth interactions were applied at a

subsystem level, and p values were corrected at the false discovery

rate (q < 0.05).

Qualitative analysis

To elucidate the neural mechanisms driving quantitative topological

changes in the language connectome, we identified the most likely

topological role that a region may occupy within younger (18–44),

middle-aged (45–55), and older (>55) individuals. We chose these age

groups to stay consistent with the quantitative results reported in

Section 3.2.1.

This involved three steps. First, we determined the frequency at

which each region is assigned each topological role for each age

group. For example, among younger adults, a region may be consid-

ered a connector node for 75% of participants but a satellite node for

the remaining 25%. Second, we took the outer product of all the

younger and middle-aged frequency values to calculate the probability

of all 16 possible trajectories between roles. For example, if a region

has a 75% probability of being a provincial node in younger adults and

30% a connector node in middle-aged adults, then the resulting

provincial-to-connector trajectory has an occurrence probability of

22.5% (0.75 � 0.3). Third, we repeated this calculation between these

16 trajectories and the frequency values and the older age group

(16 � 4 = 64 trajectories in total).

Finally, we selected the most likely trajectory of a region as the

one with the highest probability (e.g., provincial-to-connector-to-con-

nector). To account for the inter-individual variability within each age

group, we also included the trajectories whose probability fell within a

5% range from the highest one for each region. Using this approach,

we captured the most likely transitions of topological roles between

age groups for each region while also considering the variability within

each age group.

2.5.2 | Neurocognitive dynamic: CCA

To identify the many-to-many relationships between brain functional

connectivity changes and neuropsychological scores, we conducted a

CCA. CCA works by finding the linear combinations within the brain

and cognitive set of variables that maximize the correlation between

the two sets (Wang et al., 2020).

CCA setup

We organized the data into a brain-functional (X) and cognitive

(Y) matrix to set up the CCA. For X and Y, scores were z-scored.

GUICHET ET AL. 5 of 19
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Additionally, we prepended two orthogonal contrasts in the cognitive

dataset that we set between three age groups: (contrast #1) 56–

60 > 45–50 + 51–55, (contrast #2) 51–55 > 45–50. These contrasts

ensured that the model could also account for nonlinear relationships

with age reported in Section 3.2. CCA analysis produces as many

canonical functions as the number of variables within the smaller set

(i.e., 8 cognitive scores +2 age contrasts). Each canonical function is

composed of a cognitive and a brain variate comparable to latent vari-

ables (Sherry & Henson, 2005). The robustness of the results was

assessed using a 10-fold cross-validation with 1000 bootstrap

resamples.

CCA interpretation

At a cognitive level, we report CCA results using structure coefficients

(r)—the correlation between an observed variable and its correspond-

ing variate. Thus, the higher the correlation, the greater the contribu-

tion of said variable to said variate. At a neurocognitive level, given

that the neural mechanisms represent our unit of interest, we com-

puted the difference between the structure coefficients associated

with each variable of a given mechanism. Considering a reconfigura-

tion from a provincial to a connector role as an example, we sub-

tracted the provincial variable's structure coefficient from the

connector one. Importantly, we reported the cross-correlations

between the brain variables and the cognitive variates. The resulting

coefficient served as a proxy for the correlation between said mecha-

nism and said cognitive variate, providing an intuitive understanding

of how a neural mechanism affects age-related cognitive

performance.

3 | RESULTS

3.1 | Modular organization of the rs-LANG

Applying modularity analysis to the rs-LANG uncovered four main

subsystems. Figure 1 provides a visual representation of these subsys-

tems. Appendix S2 provides a detailed comparison with the task-

based modular organization of the same connectome, described by

Roger, Rodrigues De Almeida, et al. (2022).

Considering the composition, the largest subsystem, RS NET1

(40 regions), comprises 66.4% of DMN regions involved in higher-

level cognitive function and can thus be regarded as the associative

subsystem. The second largest subsystem, RS NET2 (34 regions), is

saturated by sensorimotor regions (SMN; 77.1%) along with contribu-

tions from CON regions (15.3%) and can thus be regarded as the sen-

sorimotor subsystem. The third largest subsystem, RS NET3

(32 regions), engages the cingulo-opercular network (CON; 56.4%),

which can thus be regarded as the bottom-up attentional subsystem

F IGURE 1 Illustration of the modular organization of the language connectome at rest. Each RS NET is a subsystem obtained from the
consensus clustering procedure (see Section 2.4.2). An additional three-region module (black) associated with the ventral multi-modal (VMM)
network was also identified but not considered for analysis due to its instability as a stand-alone module across the lifespan. LH (left hemisphere);
RH (right hemisphere); RS NET1 (40 regions, red), RS NET2 (34 regions, orange), RS NET3 (32 regions, yellow), RS NET4 (22 regions, blue). Default
mode network (DMN), fronto-parietal network (FPN), cingulo-opercular network (CON), and sensorimotor network (SMN). Brain visualization was
done with the package ggseg in R (Mowinckel & Vidal-Piñeiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0; Glasser et al., 2016)
and subcortical parcellation (Fischl et al., 2002). For details, please refer to Figures S1 and S2 in Appendix S2, and Appendix S3.
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(Dosenbach et al., 2024; Wallis et al., 2015). The smallest subsystem,

RS NET4 (22 regions), is saturated by FPN regions (63.1%), with non-

trivial contributions from CON regions as well (17.2%), and can thus

be regarded as the top-down control-executive subsystem. Interest-

ingly, all 11 regions of the conventional language network defined by

Ji et al. (2019) coalesce with the associative (five regions) and bottom-

up attentional subsystems (four regions) while the remaining two

regions form crucial short-range connections with the top-down

control-executive subsystem. This suggests that core language pro-

cessing at rest is functionally clustered with subsystems that support

both semantic access and top-down/bottom-up cognitive control (see

Appendix S3 for details).

3.2 | Connectomic dynamics of the language
connectome

3.2.1 | Quantitative changes

At the system level, we found that healthy aging is associated with

reduced local efficiency (t = �10.08, p < .001, η2p ¼ :15, 95% CI [.11;

Inf]) and preserved global efficiency (p= .53), which tilts the balance

between integration and segregation toward a higher integrative effi-

ciency as age increases (t=9.4, p< .001, η2p ¼ :13, 95% CI [.09; Inf])

(Figure 2a). We also found that healthy aging is associated with a

decrease in the proportion of provincial nodes (b=�0.08 95% CI

[�0.1; �0.05]; F(1, 624)=47.2; p< .001; η2p ¼ :07) and satellite nodes

(b=�0.02 95% CI [�0.03; �0.01]; F(1, 624)=4.7; p= .03; η2p ¼ :01),

which is contrasted by an increase in the proportion of connector

nodes (b=0.05 95% CI [0.03; 0.06]; F(1, 624)=27.9; p< .001;

η2p ¼ :04) and peripheral nodes (b=0.03 95% CI [0.02; 0.05]; F(1, 624)

=16.8; p< .001; η2p ¼ :03) (Figure 2b).

At the subsystem level (Figure 2c), we found two patterns of

coordinated changes between subsystems. First, we observed that a

major loss of satellite nodes in RS NET1 was coordinated with a major

loss of provincial nodes in RS NET4 (F = 22.05/28, p < .001/.001,

edf = 1/1), and conversely with more moderate losses (F = 6.07/3,

p = .015/.042, edf = 1.29/1.32). Of note, we also found a moderate

loss of provincial nodes in RS NET2 (F = 6.8, p = .009, edf = 1). Sec-

ond, we observed coordinated nonlinear changes in the proportion of

connector (u-shape) and peripheral nodes (inverted u-shape) in RS

NET1 with an inflection point at age 55 (F = 3.61/3.8, p = .02/.02,

F IGURE 2 System-level topological dynamics across the lifespan. (a) Illustrates normalized efficiencies (y-axis) as a function of age (x-axis).
Eloc = Local efficiency; Eglob = Global efficiency; Balance = dominance of global efficiency calculated as (Eglob � Eloc)/(Eglob + Eloc). (b, c)
Evolution of the relative proportion of topological roles (y-axis) with age (x-axis). For the subsystem level (Panel c), changes with a tendential
statistical significance are indicated by a star next to the label. RS NET (subsystems of the language connectome at rest); RS NET1 (associative);
RS NET2 (sensorimotor); RS NET3 (bottom-up attentional); RS NET4 (top-down control-executive). Please refer to Figure 1 for the composition
of each RS NET. Connector (high integration/high segregation); provincial (low integration/high segregation); satellite (high integration/low
segregation); peripheral (low integration/low segregation).
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edf = 1.88/1.87). Interestingly, we found the same anticorrelation

pattern in RS NET2 (F = 2.7/2.8, p = .047/.045, edf = 1.78/1.79) but

this pattern was mirrored compared to the one observed in RS NET1

and highlighted an inflection point at age 60.

Of note, several tendential associations with age suggest that

some mechanisms could be underpinned by (unmodeled) age-invariant

factors: a linear decrease of satellite nodes in RS NET2 (p = .23); a

coordinated pattern between connector (p = .08) and provincial/

peripheral nodes in RS NET3 (p = .13/.09); a linear increase and

decrease respectively in connector (p = .12) and peripheral nodes

(p = .18) in RS NET4.

In sum, analyses at the system and subsystem level revealed that

midlife is a critical period for functional brain reorganization of the

language connectome. Specifically, changes in RS NET1 are pivotal:

(i) the loss of satellite nodes in RS NET1 is coupled with the loss of

provincial nodes in RS NET4 and (ii) the amount of connector and

peripheral nodes are anticorrelated within a given subsystem, and this

anticorrelation pattern tends to be mirrored between RS NET1 and

the other subsystems (see Figure 2c).

3.2.2 | Qualitative changes

To clarify the mechanisms driving the topological changes reported

above, we conducted a probabilistic analysis. Overall, we found that

35.1% (46 regions) of the language connectome undergoes a topologi-

cal reorganization, suggesting that some regions occupy different

roles throughout life. Across subsystems, 50% of RS NET4, 50% of RS

NET2, and 34% of RS NET1 regions reconfigure, whereas regions in

RS NET3 are more inflexible (24.3%). A web app is available to explore

the reconfiguration cross sectionally: https://lpnc-lang.shinyapps.io/

seneca/. To account for inter-individual variability, we consider

17 additional trajectories (see Section 2.5.1 for details on the calcula-

tions), which amounts to 63 (46 regions that reconfigure +17)

trajectories.

In line with the previous results, healthy aging was associated

with a substantial gain of connector (53.9% of all reconfigurations;

34 regions) and peripheral nodes (19%; 12 regions). We observed that

this topological reorganization was achieved in two ways: either

(i) reallocating short-range connections within subsystems or

(ii) reallocating long-range connections between subsystems. Figure 3

depicts these two dynamics. Tables S1 and S2 in Appendix S2 summa-

rize the following results.

On the one hand, we observed a dynamic governed by the loss

and gain of new short-range connections via provincial-to-peripheral

(9.5% of all trajectories; 6 regions) and satellite-to-connector reconfi-

gurations (20.6%: 13 regions). From early to middle adulthood, we

observed that RS NET1 (right MTG; 92% FPN, right BA44; 72%

DMN) and RS NET4 (left MFG; 99% FPN) are the most likely to lose

these connections, while from middle to older adulthood, this

impacted RS NET2 (right SMA; SMN, left paracentral lobule; 74%

DMN) and RS NET1 (left insula; 72% DMN). Interestingly, we note

that the integration of these short-range connections occurs mainly

from middle to older adulthood (69.2%; 9 out 13 regions) within all

subsystems: in the left middle cingulate cortex (RS NET1; 11.1%), left

supramarginal gyrus and left postcentral area (RS NET2; 22.2%),

left superior temporal gyrus (RS NET3; 11.1%), and left precentral/

middle frontal regions in RS NET4 (22.2%). Additionally, we noticed

the key role of subcortical areas (33.3%; left/right thalamus, left puta-

men; RS NET3) which also undergo unique peripheral-to-connector

reconfigurations (left and right putamen) from middle to older adult-

hood. Given that changes in peripheral/connector proportions in RS

NET3 were only tendentially related to age in the previous section,

this suggests that integration via these subcortical regions could also

be dependent on age-invariant factors.

On the other hand, we found a dynamic governed by the loss and

gain of long-range connections via satellite-to-peripheral (9.5% of tra-

jectories; 6 regions) and provincial-to-connector reconfigurations

(30.1%: 19). While the integration is driven by FPN regions in RS NET

4 (45%) and in left frontal/precentral/postcentral regions (SMN) in RS

NET2 (55%) from early to middle adulthood, we noticed that it is

almost exclusively implemented by RS NET2 from middle to older

adulthood (SMN: SMA and pre/post-central regions). Interestingly,

this coincides with our previous observation that some FPN regions in

RS NET4, which integrate long-range connections in early adulthood,

shift to short-range connections in older adulthood (i.e., left MFG and

left precentral). Interestingly, this shift co-occurs with a similar transi-

tion in RS NET 1 in middle age (age 45–55). Indeed, while RS NET1

undergoes a “deactivation” process (i.e., satellite-to-peripheral) from

early to middle adulthood, losing long-range connections (left fusiform

area DAN/DMN; left paracentral lobule DMN; left pCC DMN; 83.3%

of all deactivations), it begins integrating connections from middle to

older adulthood.

Our results also show that short-range connections may become

increasingly more scarce as age increases, compromising both dynam-

ics of integration. Indeed, we observed that (i) regions in RS NET1 (left

IFG DMN; left aCC CON/DMN), RS NET2 (left SFG CON/SMN; right

Rolandic Op SMN/CON), and RS NET 4 (left insula FPN/CON) are

likely to lose the short-range connections integrated earlier in life

(i.e., connector-to-satellite reconfigurations), but also that (ii) the num-

ber of provincial-to-satellite reconfiguration increases, showing that

the older adult brain is less likely to maintain connector properties

especially in right superior frontal areas in RS NET1 (DMN) and left

parahippocampal lobule in RS NET2 (SMN).

In sum, our observations suggest that the shift reported in midlife

(45–55) is triggered by a reduced deactivation in RS NET1

(i.e., satellite-to-peripheral) coupled with a reduced integration of

long-range connections in RS NET4 (i.e., provincial-to-connector).

3.3 | Neurocognitive dynamics: CCA

To evaluate the neural mechanisms that support healthy cognitive

aging, we employed CCA. CCA yielded two significant canonical func-

tions, each composed of a cognitive and brain variate that maximize

the correlation between the brain and cognitive set of variables
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(Wilks' Λ = .68, Rc1 ¼ :33; Rc1
2 ¼11%, p< .001; Wilks' Λ= .76,

Rc2 ¼ :27; Rc2
2 ¼7%, p= .04). Below, we first describe the results at a

cognitive level and then at a neurocognitive level.

3.3.1 | Cognitive level

Figure 4a,c shows that Variate I was associated with a steady decline

with age (F = 388.7, p < .001, edf = 1.51; r_constrastolder > middle +

younger = �.71, r_constrastmiddle > younger = �.49). This primarily

impacted performances in language-related tasks recruiting executive

functions such as multitasking (r = .56), lexical production (LP) (.49),

fluid intelligence (i.e., Cattell = .48), verbal fluency (.48), tip-of-the-

tongue (.38) and semantic abstraction (i.e., proverb task = .34) (see

Figure 4a,b). Variate II was nonlinearly associated with age (F = 90.1,

p < .001, edf = 1.99; constrastmiddle > younger = .62), marked by a transi-

tion in midlife in line with our previous findings. Interestingly, this cor-

related with better overall semantic performances (semantic

abstraction = .43; sentence comprehension = .21), which was also

associated with better naming (.40) and marginally better verbal flu-

ency (.11). These changes were also proportional to increased fluid-

related challenges (�.32), suggesting that heightened semantic knowl-

edge in midlife could help maintain LP abilities in the face of fluid pro-

cessing decline.

LP (naming) was highly correlated with both variates (see

Figure 4c). Verbal fluency and semantic abstraction were also highly

correlated with both variates, although the former was preferentially

correlated with cognitive control (Variate I) and the latter with seman-

tic performance (Variate II). This suggests that age-related decline in

these tasks (see Table 1, Section 2.1) stems from cognitive control

and semantic cognition (i.e., semantic control).

3.3.2 | Neurocognitive level

Functional deactivation (i.e., gain in peripheral nodes) and functional

integration (i.e., gain in connector nodes) were largely anticorrelated

with Variate I. This suggests that the dynamics of integration based

F IGURE 3 Probabilistic topological model of age-related integration. Two dynamics of integration across the lifespan are proposed:
(i) “energy-costly” dynamic based on long-range connections between subsystems, highlighting the flexible DMN-FPN coupling in younger
adulthood, and (ii) “energy-efficient” dynamic based on short-range connections within subsystems, highlighting a less flexible DMN-FPN
coupling in older adulthood. RS NET (subsystems of the language connectome at rest); RS NET1 (associative); RS NET2 (sensorimotor); RS NET3
(bottom-up attentional); RS NET4 (top-down control-executive). Please refer to Figure 1 for the composition of each RS NET. Connector (high
integration/high segregation); provincial (low integration/high segregation); satellite (high integration/low segregation); peripheral (low

integration/low segregation). Default mode network (DMN), fronto-parietal network (FPN), cingulo-opercular network (CON), and sensorimotor
network (SMN). Labels under brain illustrations are the names of the regions following the labeling proposed by Glasser et al. (2016). Brain
visualization was done with the package ggseg in R (Mowinckel & Vidal-Piñeiro, 2020) and projected on a multimodal cortical (HCP_MMP1.0;
Glasser et al., 2016) and subcortical parcellation (Fischl et al., 2002).
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on the reallocation of long or short-range connections may help miti-

gate executive function deficits as age increases.

We also found that the joint trajectory of DMN deactivation and

FPN integration fit the predicted trajectory of naming performances (t

(611) = 245.15, p < .001):

i. The loss of long-range connections of RS NET1 regions

(i.e., DMN deactivation) was both anticorrelated with Variate I

(�.20) and correlated with Variate II (.12), indicating that this

mechanism is crucial for mitigating fluid processing decline with

heightened semantic representations as age increases. Consider-

ing the cognitive changes reported above, this certainly contrib-

utes to delaying the onset of difficulties in naming, verbal

fluency, and semantic abstraction. In line with this, from middle

to older adulthood (see Figure 4b,d), high correlation with Variate

II (i.e., above the median) confirms that reduced deactivation

(0.14), and correspondingly enhanced functional integration of

long-range connections in RS NET1 (�0.09), compromises the

ability to compensate fluid processing decline (�.32) with seman-

tic knowledge (i.e., reduced semantic abstraction; proverb

task = .43), with implications on naming performances (.40).

ii. The integration of long-range connections in RS NET4 (i.e., FPN

regions) had a comparable effect. Nonetheless, it was

preferentially correlated with executive function mitigation

(Variate I: �.22; Variate II: .06). Considering the cognitive

changes reported above, this mechanism may primarily enhance

verbal fluency and the cognitive control component of lexical

production (naming).

Additionally, increased peripheral-to-connector reconfigurations

in RS NET3 (0.23) were mostly associated with Variate II (.23). In line

with our probabilistic results, this mechanism peaked slightly after

midlife (see Figure 4b). This suggests that, despite reduced DMN

deactivation, integration in the bottom-up attentional system

(RS NET3), specifically in the bilateral thalamus and left putamen

(please refer to Section 3.2.2), could promote semantic abstraction in

addition to the semantic component of LP (naming).

4 | DISCUSSION

Healthy aging is associated with a heterogeneous decline across cog-

nitive functions, including language. Specifically, LP declines more rap-

idly than LC. The neural mechanisms underlying this variability still

need to be understood. In this study, we leveraged resting-state fMRI

and neuropsychological data from the population-based CamCAN

F IGURE 4 Age-related neurocognitive dynamics of language. (a, b) The age-related trajectory of the cognitive variate and the corresponding
neural mechanisms according to the results. The bar above the x-axis reports age points with a significant second-order derivative for most
trajectories, reflecting a neurocognitive transition in midlife. (c, d) The structure coefficients with the cognitive variates, the correlations (cognitive
variable-cognitive variate), or cross-correlations (brain mechanism-cognitive variate). The red star indicates that naming and DMN suppression are
highly covariant with each variate, thus showing that DMN suppression underpins naming performances during healthy aging.
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cohort (Cam-CAN et al., 2014) to investigate the functional

reorganization of the language connectome and its association with

age-related cognitive variability. Employing state-of-the-art graph the-

oretical analysis, we developed a data-driven pipeline that integrates

both cerebral and cognitive dimensions of analysis. Our findings can

be summarized at two levels: brain and cognitive.

At a brain level, we show that aging is associated with a large-

scale reorganization of the language connectome based on simulta-

neous reduced functional specialization, increased integration, and

deactivation of several subnetworks. These changes enhance the

overall efficiency of language processing while minimizing the brain's

energy expenditure. At a neurocognitive level, we show that LP can

be characterized as an inter-cognitive function influenced by the

dynamic interaction between domain-general (DG) and language-

specific (LS; i.e., semantic) processes. Furthermore, our findings unveil

that the emergence of LP decline during midlife may result from a

decreased ability to reduce DMN activity. This reduction could impact

older adults' ability to retrieve semantic representations in a goal-

directed manner, leading to difficulties suppressing irrelevant semantic

associations during LP. Accordingly, our findings can be formalized as

a novel model titled Synergistic, Economical, Nonlinear, Emergent,

Cognitive Aging (SENECA), integrating connectomic (SE) and cognitive

(CA) dimensions within a complex system perspective (NE) (Hancock

et al., 2022).

From a connectomic perspective, our results align with previous

work (Roger, Rodrigues De Almeida, et al., 2022), suggesting that lan-

guage processes at rest depend on a large network composed of asso-

ciative (RS NET1), sensorimotor (RS NET2), bottom-up attentional

(RS NET3), and top-down control-executive (RS NET4) subnetworks.

Within a lifespan perspective, we replicate previous findings showing

that reduced segregation, reflected by a reduction of provincial nodes

(Guimerà & Amaral, 2005), in control-executive, associative, and sen-

sorimotor subnetworks (M. Y. Chan et al., 2014; Grady et al., 2016;

R. Pedersen et al., 2021), can be considered a hallmark of aging, with a

critical inflection point in midlife. Thus, this study confirms that midlife

is a pivotal period for brain functional reorganization of the language

connectome (Irwin et al., 2018; Lachman, 2015; Park & Festini, 2016).

Our results shed light on the neural mechanisms underlying life-

span functional changes. Specifically, we found that as individuals age,

dedifferentiation, involving the over-recruitment of brain regions and

reduced specialization (Fornito et al., 2015; Park et al., 2004), is

consistently associated with enhanced functional integration and

functional deactivation, which may constitute a compensatory

strategy.

First, enhanced functional integration within the FPN control can

be related to improved information transfer (Bagarinao et al., 2020),

task processing flexibility (Bertolero et al., 2015; Tang et al., 2023),

and overall better cognitive performance (Deery et al., 2023; Setton

et al., 2022; Stanford et al., 2022). Through their precise adjustments

of connectivity among adjacent regions (Bertolero et al., 2018), con-

nector hubs imbue the network with integrative and flexible proper-

ties, thereby offsetting any decrease in specialization (as suggested by

Cabeza et al., 2018). Consistent with this compensation account, our

findings prove that the age-related integration of the FPN is not detri-

mental, in line with Wu and Hoffman (2023). Instead, it serves as a

beneficial mechanism, mitigating declines in executive functions dur-

ing demanding cognitive tasks, particularly bolstering performance in

multitasking, fluid intelligence, and language processing. Our study

supports the idea that recruiting additional neural resources may rep-

resent a scaffolding response, actively fostering resilience in language

processing throughout the lifespan (Park & Reuter-Lorenz, 2009;

Reuter-Lorenz & Park, 2023). This also emphasizes that network

dedifferentiation and compensatory integration are interrelated across

the lifespan (Deery et al., 2023; Stumme et al., 2020).

Second, as individuals age, the increase in functional efficiency

provided by integration appears to be closely intertwined with

deactivation—the functional withdrawal of specific brain areas, includ-

ing the left paracentral lobule, fusiform, posterior cingulate area (pCC),

insula, and right IFG of the DMN (Alves et al., 2019; Menon, 2023).

This deactivation or suppression of the DMN is a label given to the

accumulation of peripheral nodes and has been well-established as an

indicator of externally oriented attention, supporting demanding tasks

by suppressing internal distractions like mind-wandering (Anticevic

et al., 2012) and, more broadly, reducing task-irrelevant processes

(Buckner & DiNicola, 2019). Specifically, the PCC has been empha-

sized as a hub between the DMN and FPN (Leech & Sharp, 2014),

especially in tasks requiring controlled semantic access (Krieger-

Redwood et al., 2016). Similarly, the right IFG has been linked with

studies on age-related semantic fluency (Martin, Williams, et al., 2022;

Meinzer et al., 2009, 2012). Thus, DMN suppression could mitigate

age-related decline in goal-directed behavior, especially the semantic

retrieval processes necessary for LP.

Our findings indicate the synergistic relationship between DMN

suppression and FPN integration in the aging brain, reflecting a trade-

off between functional efficiency and reorganization cost (Barabási

et al., 2023; Barbey, 2018). This aligns with the brain's wiring econ-

omy principle (Achard & Bullmore, 2007; Bullmore & Sporns, 2012;

Shine & Poldrack, 2018), aiming to maximize the benefits of compen-

satory functional integration while minimizing energy expenditure

thanks to deactivation. In this context, our study proposed a probabi-

listic model to elucidate the functional mechanisms responsible for

this “economic” reorganization throughout the lifespan, as illustrated

in Figure 3.

Overall, our model shows a transition occurring in midlife within

the language connectome, that is a shift from a more “energy-inten-
sive” (costly) dynamic of compensation to a more “energy-efficient”
one. Indeed, our research indicates that younger adults are more

capable of accommodating the metabolic demands associated with

sustaining long-range neural connections (Li et al., 2023; Liang

et al., 2013; Tomasi et al., 2013). In comparison, older adults seem to

adopt a more “energy-efficient” approach, substituting the realloca-

tion of long-range connections between subsystems with short-range

connections within subsystems, thus lowering the metabolic demands

needed to achieve compensatory integration. This joins previous evi-

dence showing reduced functional connectivity of long-range connec-

tions in older adults (Sala-Llonch et al., 2014) and may offer a
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metabolic explanation for the onset of cognitive decline observed in

midlife in most cognitively demanding tasks (e.g., see Ceballos

et al., 2024 for a study on the costs of brain dynamics).

At a brain network level, this shift is driven by a reduced synergy

between DMN suppression and FPN integration as shown in

Figure 4b. Indeed, compared to older adults, we found that younger

adults capitalize on the cooperation or synergy between the DMN

and FPN to enhance cognitive efficiency (Luppi et al., 2024; Xia

et al., 2022). This is consistent with studies suggesting that the com-

munication between higher-order networks on the sensorimotor-

associative hierarchy, such as the DMN and FPN (Margulies

et al., 2016), is more efficient at handling the high metabolic demands

associated with long-range or rich club connectivity (Ceballos

et al., 2024; Roy et al., 2017). Relatedly, our results are also consistent

with the DECHA model (Spreng & Turner, 2019), proposing that

reduced DMN suppression may result in a more inflexible modulation

of the connectivity between the DMN and FPN in response to task

challenges, a fortiori mediating cognitive decline in older adults, espe-

cially in LP.

While previous studies agree that DMN suppression is a vital ele-

ment for regulating task-relevant dynamics (Leonards et al., 2023), as

reflected by an increased metabolic response during tasks (Stiernman

et al., 2021), the link between reduced DMN suppression and inflexi-

ble DMN-FPN coupling in older adults remains unclear. In this con-

text, our study may bring elements of response by suggesting that

reduced DMN suppression may raise the metabolic costs of maintain-

ing long-range connectivity in the brain and that the inflexible DMN-

FPN coupling is the consequence of older adults dealing with this

increased cost.

Supporting this, previous research showed that flexibly allocating

attentional resources from DMN to control regions, especially to the

dlPFC as observed in our study (i.e., BA45 and inferior frontal sulcus

areas), promotes fluid-related performances (Lu et al., 2022) maintain-

ing a state of “global energy homeostasis” (Ramchandran et al., 2019),

that is offsetting the cost of FPN integration as observed in our study.

Consequently, reduced DMN suppression in older adults could raise

the cost of FPN integration, momentarily disrupting this homeostasis.

In response, older adults may thus prioritize allocating attentional

resources through low-cost/short-range connections to restore the

brain's homeostatic balance, further supporting the shift from an

“energy-costly” to a more “energy-efficient” integration around

midlife. Interestingly, Ramchandran et al. (2019) also noted that

homeostasis may be secured through “local cost-efficiency trade-

offs,” thus being consistent with the discrepancy between a declining

local efficiency but a preserved global efficiency across the lifespan

(Cao et al., 2014; Song et al., 2014).

From a neurocognitive perspective, our results offer specific

insights into the brain functional dynamics that uphold inter-cognitive

functioning, specifically considering LP, verbal fluency, and semantic

abstraction. The main message is that the synergistic relationship

between DMN suppression and FPN integration, characterized by

flexible allocation of attentional resources via long-range connections,

is a compensatory strategy that upholds inter-cognitive functioning in

the aging brain. This compensatory dynamic aligns with a recent study

suggesting that a youth-like network architecture that successfully

balances integrative and segregation properties offers core resilience

within the DMN and FPN networks (Stanford et al., 2022), translating

to better semantic word-retrieval abilities (Krieger-Redwood

et al., 2016; Martin, Williams, et al., 2022).

Importantly, our results show that LP (mainly lexical generation) is

subserved by two distinct components, one DG and one LS, as pos-

ited by the LARA model (lexical access and retrieval in aging; Baciu

et al., 2021). This confirms that LP can be viewed as an inter-cognitive

function and the product of intra-(LS) and extra-(DG) linguistic pro-

cesses (Gordon et al., 2018; Roger, Banjac, et al., 2022; Roger, Rodri-

gues De Almeida, et al., 2022).

On the one hand, the DG component, underpinned by multitask-

ing, LP, and fluid-related abilities, was anti-correlated with DMN sup-

pression and FPN integration across the lifespan. At a cognitive level,

this aligns well with evidence linking the speed of retrieval and the

generation of lexical predictions to fluid processing abilities (Brothers

et al., 2017; Strijkers et al., 2011), further confirming that LP is a

demanding task. At a neurocognitive level, this shows that reduced

DMN suppression in older adults may compromise the ability to allo-

cate resources from DMN to FPN regions cost-effectively, as dis-

cussed previously.

On the other hand, the LS component, underpinned by semantic

performances and DMN suppression, peaked around midlife before

declining in late life. While this confirms that individuals tend to accu-

mulate semantic knowledge over their lives (Salthouse, 2019), this

highlights that reduced DMN suppression in older adults also nega-

tively impacts semantic abstraction performances, which is the ability

to generalize semantic knowledge for efficient prediction (Moran

et al., 2014), with implications for LP. Specifically, the increase in

semantic performances in LS was proportional to the decline in fluid

abilities. Given the constraint fluid processing places on LP, such

accrual of semantic knowledge from younger to middle adulthood

could represent a compensatory “semantic strategy” that maintains

LP performance as fluid processing declines (Baciu et al., 2021; Wu &

Hoffman, 2023).

Crucially, our results indicate that DMN suppression may capture

the interplay between DG and LS as it covaries with both compo-

nents. A reduction of this interplay could reflect how reduced DMN

suppression in older adults compromises the ability to retrieve seman-

tic knowledge in a goal-directed manner, manifesting at a cognitive

level the difficulties in managing the cost of flexibly allocating atten-

tional resources through long-range connections. Said differently,

DMN suppression could index the controlled search and retrieval of

semantic knowledge necessary for LP (i.e., DG–LS interplay)

(Krieger-Redwood et al., 2019; Martin, Saur, & Hartwigsen, 2022).

This is consistent with the notion that semantic cognition depends on

both representational and control neural systems (Hoffman &

MacPherson, 2022; Wu & Hoffman, 2023), with top-down processes

regulating access to semantic representations (i.e., the DG–LS inter-

play; see also the controlled semantic cognition framework proposed

by Ralph et al., 2017).
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As mentioned earlier, we suggested that the decrease in DMN

suppression signifies a transition from a more “energy-costly” state to

an “energy-efficient” one to maintain a global homeostatic balance

within the brain. This transition aligns well with the lower control

demands usually associated with the higher prevalence of “semanti-

cized” cognition in older adults (Spreng & Turner, 2021). This also

aligns with intriguing results revealing that older adults up until age

70 could continue to allocate (low-level) attentional resources, further

delaying LP difficulties.

Indeed, after reduced DMN suppression in midlife, additional

recruitment of the thalamus and the left putamen led to better seman-

tic abstraction and LP performance (see Figure 4b). This is in line with

studies showing that thalamic circuitry (Wolff et al., 2021; Wolff &

Vann, 2019) facilitates functional interactions between multiple corti-

cal networks (Badke D'Andrea et al., 2023; Gordon et al., 2022;

Greene et al., 2020; Hwang et al., 2017), specifically maintaining sta-

ble representations at the semantic-lexical interface (Crosson, 2021).

Importantly, both the thalamus and putamen showed high spatial con-

cordance with the CON, whose benefits for word recognition have

been emphasized in prior work (Vaden et al., 2013). This benefit could

be attributable to the distinct role FPN and CON regions play in cog-

nitive control (Sestieri et al., 2014; Wallis et al., 2015): the former

managing externally guided/top-down control, selecting sensory cues

from the environment, and the latter managing memory-guided/bot-

tom-up control, providing sufficient flexibility for comparing sensory

inputs to long-term memory traces (R. M. Brown et al., 2022). Thus, a

synergy between CON and DMN connectivity changes could contrib-

ute to the more “energy-efficient” dynamic observed in older adult-

hood (Dosenbach et al., 2024; Han et al., 2023).

4.1 | SENECA: A novel integrative and
connectomic model

To synthesize, our study extends theoretical accounts on neurocogni-

tive aging, revealing that (i) LP draws from DG and LS processes; and

(ii) the synergistic coupling between DMN suppression and FPN inte-

gration upholds inter-cognitive functioning across the lifespan while

minimizing the brain's energy expenditure.

As Livneh (2023) suggests, we combine the connectomic and cog-

nitive levels of analysis within a single integrative model: SENECA.

The SE-NE-CA model articulates a connectomic (SE) and cognitive

(CA) dimension, which embraces a complex system perspective (NE).

We borrow the name from the Seneca effect, generally found in com-

plex systems, which describes “a slow rise followed by an abrupt

decline” (Bardi, 2017), thus reflecting the dynamic of inter-cognitive

functioning across the lifespan.

Along the connectomic dimension (S-synergistic; E-economical),

we show that the synergistic relationship between DMN suppression

and FPN integration provides the efficiency and flexibility necessary

to compensate for reduced specialization while remaining

economical—preserving global energy homeostasis. Along the cogni-

tive dimension (C—cognitive; A—aging), we show that the onset of LP

difficulties in midlife stems from reduced semantic control—the ability

to exert control on accumulated semantic knowledge in a goal-

directed manner—which may translate into poorer filtering of irrele-

vant semantic associations (Badre & Wagner, 2007; Barba

et al., 2010; Jefferies, 2013).

Unifying both dimensions (N-nonlinear; E-emergent), reduced

DMN suppression compromises the ability to manage the cost of FPN

integration, prompting older adults to adopt a more “energy-efficient”
strategy that preserves homeostasis at the expense of inter-cognitive

functioning. This emphasizes that midlife is the turning point of a non-

linear and emergent neurocognitive dynamic marked by (i) a shift

toward an increasingly semantic cognition to meet executive function

decline (Spreng & Turner, 2021), and (ii) a shift toward a less synergis-

tic coupling between DMN and FPN regions (Spreng & Turner, 2019).

Importantly, SENECA aligns with a recent framework for cognition,

suggesting that integration can be considered synergistic or redundant

(Luppi et al., 2024; Mediano et al., 2022). Synergistic integration may

correspond to “integration-as-cooperation” between networks as

observed up to midlife (i.e., “energy-costly,” flexible DMN-FPN

coupling). Redundant integration may correspond to “integration-as-
oneness” within each network as observed beyond midlife

(i.e., “energy-efficient,” inflexible DMN-FPN coupling).

In terms of clinical perspective, the SENECA model provides

insights into the potential use of age-related neural mechanisms as

biomarkers in midlife for predicting late-life neurodegenerative

pathologies. Two hypotheses may be proposed: (i) Pathological word-

finding difficulties before midlife may indicate increased maintenance

cost of long-range connections, making them vulnerable to damage,

as seen in pathological aging (Crossley et al., 2014). (ii) Beyond midlife,

these difficulties may reflect challenges in securing a more “energy-
efficient” compensatory integration strategy, compromising the

brain's homeostatic balance.

4.2 | Limitations of the study

Our study has several limitations: (A) Cross-sectional data and inter-

individual variability: The neural mechanisms identified in this study

rely on probabilities derived from cross-sectional data, limiting their

ability to account for inter-individual variability, especially in older

adulthood (Stumme et al., 2020). Longitudinal studies would there-

fore be more appropriate to capture all the regions potentially

underlying each mechanism. Future research should also investigate

age-invariant mechanisms associated with high cognitive reserve for

a more graceful language processing decline as age advances

(Brosnan et al., 2023; Oosterhuis et al., 2023; Wen & Dong, 2023;

Wulff et al., 2022). Further studies should specify the factors associ-

ated with the recruitment of subcortical structures, like the bilateral

thalamus and left putamen, in late adulthood. (B) Higher-order inter-

actions: Current graph theory methods assume dyadic relationships

capture functional connectivity patterns of interest, but complex

cognitive functions, such as language processing, involve higher-

order interactions (Gazzaniga et al., 2019; Giusti et al., 2016).

GUICHET ET AL. 13 of 19

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26650 by C
ochrane France, W

iley O
nline L

ibrary on [14/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Modeling these interactions should be considered given the robust

statistical and topological evidence (Schneidman et al., 2006; Yu

et al., 2011; Gardner et al., 2021; Giusti et al., 2015). While SEN-

ECA does not explicitly address higher-order interactions, its predic-

tions align with theoretical and empirical works showing age-related

changes in synergistic interactions and their impact on cognitively

demanding tasks (Gatica et al., 2021; Luppi et al., 2022; Rosas

et al., 2022; Varley et al., 2023). (C) Density thresholding & Atlas

selection: Sophisticated techniques are needed to account for the

diversity of neuroimaging datasets and reduce intra-individual vari-

ability while preserving neurobiologically meaningful edges (Jiang

et al., 2023). Proportional thresholding may exclude weaker edges,

warranting exploration of data-driven filtering schemes like orthogo-

nal minimum spanning tree (Dimitriadis et al., 2017) in understand-

ing how older adults balance cognitive efficiency and reorganization

cost. The SENECA model of neurocognitive aging pertains to the

language connectome, but further investigation with whole-brain

atlases is crucial, considering the impact of parcellations on repro-

ducibility (Jiang et al., 2023; Ran et al., 2020).

5 | CONCLUSION

This study aimed to elucidate the brain's functional mechanisms

responsible for the variation observed in language-related tasks as

individuals age. Our findings highlight that, compared to LC, the main-

tenance of LP depends on the synergistic relationship between sup-

pression within the DMN and integration within the FPN in the

language connectome. This relationship extends to support inter-

cognitive tasks that draw upon both DG and semantic processes. Cru-

cially, we propose that midlife represents a critical neurocognitive

juncture that signifies the onset of LP decline, as older adults gradually

lose the ability to exert top-down control over semantic representa-

tions. This transition could stem from reduced DMN suppression

which compromises the ability to manage the cost of FPN integration,

prompting older adults to adopt a more cost-efficient compensatory

strategy that maintains global homeostasis at the expense of LP per-

formances. In summary, we encapsulate these findings in a novel inte-

grative and connectomic model called SENECA, which articulates

both cerebral (S—synergistic; E—economical) and cognitive (C—cogni-

tive; A—aging) dimensions within the framework of complex systems

(N—nonlinear; E—emergent).
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