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Abstract

In this paper, we propose a new randomized method for numerical integration
on a compact complex manifold with respect to a continuous volume form. Taking
for quadrature nodes a suitable determinantal point process, we build an unbiased
Monte Carlo estimator of the integral of any Lipschitz function, and show that the
estimator satisfies a central limit theorem, with a faster rate than under indepen-
dent sampling. In particular, seeing a complex manifold of dimension d as a real
manifold of dimension dR = 2d, the mean squared error for N quadrature nodes de-
cays as N−1−2/dR ; this is faster than previous DPP-based quadratures and reaches
the optimal worst-case rate investigated by Bakhvalov (1965) in Euclidean spaces.
The determinantal point process we use is characterized by its kernel, which is the
Bergman kernel of a holomorphic Hermitian line bundle, and we strongly build upon
the work of Berman that led to the central limit theorem in (Berman, 2018). We
provide numerical illustrations for the Riemann sphere.

Keywords— Bergman kernel, complex manifolds, determinantal point processes, Monte

Carlo integration
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1 Introduction

1.1 Numerical integration on complex manifolds

Numerical integration, also known as quadrature, is the task of approximating an integral
by a weighted sum of evaluations of the integrand. The points at which the integrand
is evaluated are called the nodes of the quadrature. One usually distinguishes between
Monte Carlo methods (MC; Robert and Casella, 2004), where the nodes are taken to
be a random configuration of points, and quasi-Monte Carlo methods (QMC; Dick and
Pilichshammer, 2010), which rely on deterministic configurations such as low-discrepancy
sequences. Both approaches come with different measures of efficiency: for deterministic
configurations, one usually wants to bound the worst-case error over a (large) class of
functions. For random configurations, it is typical to consider a single integrand and
derive a concentration inequality or a central limit theorem, and characterize their rate
of convergence as the number of nodes tends to infinity.

Both MC and QMC methods have their strong points: MC error bounds are usually
easier to intepret and estimate, while QMC convergence rates usually decrease faster than
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MC for smooth integrands. There is a growing body of literature on methods that try
to take the best of both worlds, like randomized QMC (Owen, 1997, 2008) or variants
of kernel herding (Chen et al., 2010; Liu and Wang, 2016), to cite only a few influential
papers. Similarly, Bardenet and Hardy (2020) and Mazoyer et al. (2020b) proved fast cen-
tral limit theorems for integration with particular classes of determinantal point processes
(DPPs, Macchi, 1972; Soshnikov, 2000). Together with their computational tractability,
the tunable negative dependence among the points of a DPP makes this distribution a
natural candidate for structured Monte Carlo integration; see also (Gautier et al., 2019b;
Belhadji et al., 2019, 2020; Belhadji, 2021). While previous work on Monte Carlo with
DPPs has focused on integrals over the Euclidean space, we investigate in this paper the
use of a DPP for integrating over a compact complex manifold.

Real and complex manifolds naturally arise in domains as diverse as theoretical physics
(Wells, 1979), information geometry (Amari and Nagaoka, 2000; Molitor, 2014), or even
computer vision (Turaga and Chellappa, 2008). They often represent a space of states or
parameters, and the geometric properties of the manifold reflect the inherent properties of
the underlying model. Integrating over manifolds is a key task, for instance, in Bayesian
inference when the manifold represents the considered probabilistic models. Numerical
integration on manifolds is a relatively recent topic, but the field is growing, see e.g. the
QMC methods in (Brandolini et al., 2014; Bittante et al., 2016; De Marchi and Elefante,
2018; Berman, 2024) and the MC methods in (Girolami and Calderhead, 2011; Diaconis
et al., 2013; Zappa et al., 2018; Ehler et al., 2019), to cite only a few.

In this article, we follow Bardenet and Hardy (2020) and introduce a well-chosen DPP
on a compact complex manifold, namely the DPP with kernel the Bergman kernel of
the manifold. This allows us to generalize the orthogonal polynomials-based arguments
of Bardenet and Hardy (2020), and actually improve on the rate in their central limit
theorem, to now match a lower bound dating back to Bakhvalov (1965). Our paper can
also be seen as a Monte Carlo counterpart of (Berman, 2024), where the worst-case error
of a DPP over the sphere known as the spherical ensemble is investigated, comparing
it to the QMC designs studied by Brauchart et al. (2014). Our proofs heavily rely on
the seminal papers by Berman (2014, 2018), and a third way to see our paper is as an
extension of a central limit theorem in (Berman, 2018) to an unbiased estimator of the
integral of interest. We also point to recent work by (Levi, Marzo, and Ortega-Cerdà,
2023), who derive variance estimates for linear statistics under DPPs on the sphere using
very different analytic techniques that may generalize to more manifolds.

In the rest of this introduction, we state our main result, give some context about other
methods of integration on manifolds, and give the outline of the paper.

1.2 Main result

We now define our setting and state our main result. The setting is fairly technical; the
reader not accustomed to the vocabulary of complex manifolds is referred to the more
exhaustive development in Section 2.

Let L be a holomorphic line bundle over a compact complex manifold M of dimension
d. If h is an Hermitian metric on L with local weight ϕ, we shall denote respectively by
⟨·, ·⟩ϕ and | · |ϕ the associated inner product and norm on each fiber. Given a section
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eU of L that does not vanish on an open subset U (a trivializing section), any section
s ∈ H0(M, Lk) can be represented on U by a function f : U → C as

s(x) = f(x)eU(x), ∀x ∈ U.

In particular, the local weight ϕ is characterized by eU as follows: for any two sections
s1, s2 respectively represented by f1, f2,

hx(s1(x), s2(x)) = f1(x)f2(x)hx(eU(x), eU(x)) = f1(x)f2(x)e
−ϕ(x).

Furthermore, if µ is a finite measure on M, then (ϕ, µ) is called a weighted measure. Such
a pair induces an inner product on the space H0(M, L) of holomorphic sections of L,

⟨s(1), s(2)⟩(ϕ,µ) =
∫
M
hx(s

(1)(x), s(2)(x))dµ(x). (1)

In the present article, we consider a semiclassical setting: we replace L by Lk = L⊗k and
let k → ∞. We endow Lk with the metric hk with weight kϕ, and the corresponding
weighted measure is then (kϕ, µ). The inner product space (H0(M, Lk), ⟨·, ·⟩(kϕ,µ)) is in
fact a finite-dimensional Hilbert space; we denote by Nk its dimension.
There exists a reproducing kernelB(kϕ,µ) ofH

0(M, Lk) called the Bergman kernel, which
intuitively is the integral kernel of the projection L2(M, Lk) → H0(M, Lk). If (si)1⩽i⩽Nk
is an orthonormal basis of H0(M, Lk), B(kϕ,µ) admits the following decomposition:

B(kϕ,µ)(x, y) =

Nk∑
i=1

si(x)⊗ si(y), (2)

and on the diagonal it even becomes a well-defined function M → R,

B(kϕ,µ)(x, x) =

Nk∑
i=1

hkx(si(x), si(x)), (3)

thanks to the isomorphism of fibers Lx ⊗ Lx ∼= C.
Under suitable assumptions on the metric h and the measure µ, the Bergman measures

dµkϕ(x) =
1

Nk

B(kϕ,µ)(x, x)dµ(x) (4)

converge weakly to an equilibrium measure when k tends to infinity. More precisely,
the weighted measure (ϕ, µ) is called strongly regular 1 if (i) the weight ϕ is locally C 1,1-
smooth, i.e. it is differentiable and its first partial derivatives ∂ϕ

∂zi
, ∂ϕ
∂zj

are locally Lipschitz

continuous, and (ii) the measure µ corresponds to the volume form

ωd = det(h0)

(
i

2

)d
dz1 ∧ dz1 ∧ · · · ∧ dzd ∧ dzd,

1We borrow this terminology from (Berman, 2018), although it does not seem to be standard yet.
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with respect to a continuous Hermitian metric h0 onM (possibly different from the metric
with local weight ϕ). For any k ⩾ 1, let µkϕ be the measure on M defined by

dµkϕ(x) =
1

Nk

B(kϕ,µ)(x, x)dµ(x). (5)

If the weighted measure is strongly regular, Berman (2009a) proved the weak convergence
of measures

µkϕ −→
k→∞

µeq, (6)

where µeq is the pluripotential equilibrium measure (or Monge–Ampère measure)

µeq =
1

vol(L)
(ddcϕe)

d . (7)

Here, ϕe denotes the upper semicontinuous regularization of the plurisubharmonic en-
veloppe of ϕ, and vol(L) denotes the volume of the line bundle, defined by

vol(L) = lim sup
k→∞

d!Nk

kd
, (8)

while the operator ddc in (7) is defined as follows. The Dolbeault operators ∂ and ∂ on
L give rise to the operator ∂∂, which maps (p, q)-forms to (p + 1, q + 1)-forms on M.
Consider the real operators d = ∂ + ∂ and dc = 1

4iπ
(∂ − ∂), now we obtain

ddc =
i

2π
∂∂.

In our setting, ∂∂ϕe is then a complex (1, 1)-form, and ddcϕe a real 2-form, whose dth
exterior power leads to a volume form ωϕ = (ddcϕe)

d that can be normalized to produce
the equilibrium measure µeq. Note that in the particular case where ddcϕ > 0, we have
ϕe = ϕ. All µkϕ, as well as µeq, are absolutely continuous with respect to µ, with respective
densities2

βk(x) =
1

Nk

B(kϕ,µ)(x, x) and βeq(x) =
det(ddcϕe)(x)

vol(L)
.

There is a subset ofM called the weak bulk, or simply bulk, such that the weak convergence
(6) can be replaced by a pointwise convergence βk(x) → βeq(x) for all x in the bulk. For
almost every point x outside the bulk, βk(x) → 0. In the simpler case ddcϕ > 0, the
weak bulk is the whole manifold. Note that, according to Berman (2018), we always have
ddcϕ > 0 in the weak bulk. The 2-form ddcϕ also induces a metric whose associated inner
product and norm are denoted by ⟨·, ·⟩ddcϕ and | · |ddcϕ.
Remark 1.1. Most of the ideas and results about the convergence of Bergman measures
are related to the idea of having (at least locally) a positive curvature form ddcϕ. It
might seem restrictive with respect to the choice of the manifold, but in fact one can
endow any compact complex manifold with a positive line bundle: for instance, although
the standard torus C/Z2 endowed with the metric inherited by C is flat (in the sense that

2See (Berman, 2018), Thm. 3.1 for a discussion on this assertion.
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its tangent bundle has zero curvature), one can still consider another line bundle which
has positive curvature. It is important to make a distinction between the geometry of
the underlying manifold (which is related to the geometry of its (co)tangent bundle, and
captured by the Borel measure µ) and the geometry of the line bundle.

Beside this purely deterministic construction, one can consider a family (X1, . . . , XNk)
of random variables on M, whose joint density with respect to µ⊗Nk is proportional to

| det(si(xj))|2kϕ =
∑

σ,τ∈SNk

ε(σ)ε(τ)⟨sσ(1)(x1), sτ(1)(x1)⟩kϕ · · · ⟨sσ(Nk)(xNk), sτ(Nk)(xNk)⟩kϕ,

where (si) is an orthonormal basis of H0(M, Lk) with respect to the inner product (1).
This density is symmetric with respect to the xi’s and vanishes as soon as there are
i, j such that i ̸= j and xi = xj: the family (X1, . . . , XNk) therefore defines a random
configuration, or a simple point process, and belongs to the subclass of determinantal
point processes (DPPs); see (Berman, 2018; Charles and Estienne, 2020; Lemoine, 2022)
for some generalities and relations with models of noninteracting fermions in quantum
mechanics. The Bergman kernel contains most of the required information to study
the distribution of the point process, and complex geometers provided many powerful
asymptotic results about this kernel. In particular, Berman proved the following central
limit theorem.

Theorem 1.1 (Berman, 2018, Theorem 1.5). Let L be a holomorphic line bundle over
a compact complex manifold M. Let (ϕ, µ) be a strongly regular weighted measure and
µeq be the associated Monge–Ampère measure. For any k ∈ N∗, let (X1, . . . , XNk) be a
DPP with kernel B(kϕ,µ). For any Lipschitz continuous f : M → R with compact support
included in the weak bulk,√

N
1+ 1

d
k

(
1

Nk

Nk∑
i=1

f(Xi)− E

[
1

Nk

Nk∑
i=1

f(Xi)

])
(d)−→
k→∞

N (0, 1
2
∥df∥2ddcϕ), (9)

where ∥df∥2ddcϕ is the Dirichlet norm

∥df∥2ddcϕ =
∫
M

|∇f |2ddcϕ(ddcϕ)d. (10)

Just like (Bardenet and Hardy, 2020, Theorem 2.1), this theorem is not a result on
Monte Carlo integration as it stands, since the linear statistics in the left-hand side has
no reason to converge to the target integral

∫
fdµ in any useful sense. Actually,

E

[
1

Nk

∑
i

f(Xi)

]
=

1

Nk

∫
M
f(x)B(kϕ,µ)(x, x)dµ(x)

depends on k and converges to the integral of f with respect to the equilibrium measure
µeq. The main result of the present paper is a variant of Theorem 1.1 akin to (Bardenet
and Hardy, 2020, Theorem 2.2), where we introduce the inverse of a kernel diagonal as a
weight in the linear statistic. To state our result, let the equilibrium weight be

wϕeq =
vol(L)

d! det(ddcϕ)
,

which is well-defined in the weak bulk.
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Theorem 1.2. Let L be a holomorphic line bundle over a compact complex manifold
M, (ϕ, µ) be a strongly regular weighted measure, and F be a line bundle endowed with
a continuous local weight ψ. For any k ∈ N∗ let (X1, . . . , XNk) be a DPP with kernel
B(kϕ+ψ,µ). For any Lipschitz continuous f : M → C with compact support included in the
weak bulk and such that σ2

f,ϕ :=
1
2
∥d(wϕeqf)∥2ddcϕ <∞,√

N
1+ 1

d
k

(
Nk∑
i=1

f(Xi)

B(kϕ+ψ,µ)(Xi, Xi)
−
∫
M
f(x)dµ(x)

)
(d)−→
k→∞

N
(
0, σ2

f,ϕ

)
. (11)

Unlike in Theorem 1.1, the expectation of the estimator in the left-hand side does not
depend on k, and is directly the integral of f with respect to the target measure µ. It
is also interesting to remark that the assumptions on f slightly differ between the two
theorems, because we need to ensure that the asymptotic variance is finite, which was
trivially true in Theorem 1.1. The proof of Theorem 1.2 will be given in Section 5. It
mostly follows the steps of the proof of Theorem 1.1 by Berman (2018), with different
estimates due to the dependence in k of the integrand.
Finally, let us stress the importance of the “universality” of Theorem 1.2: if a DPP

with kernel B(kϕ+ψ,µ) can produce an estimator of
∫
M f(x)dµ(x), then it can also produce

an estimator of
∫
M f(x)e−V (x)dµ(x) for many weight functions V : M → R, because the

asymptotic variance does not depend on ψ.

Corollary 1.3. Let L be a holomorphic line bundle over a compact complex manifold
M, (ϕ, µ) be a strongly regular weighted measure, and ψ : M → R be a continuous local
weight. If (X1, . . . , XNk) is a DPP with kernel B(kϕ,µ), then it is also a DPP with kernel
B(kϕ−ψ,e−ψµ), and for any Lipschitz continuous f : M → C with compact support included
in the weak bulk and such that ∥d(wϕeq)f∥2ddcϕ <∞,√

N
1+ 1

d
k

(
Nk∑
i=1

f(Xi)

B(kϕ,e−ψµ)(Xi, Xi)
−
∫
M
f(x)e−ψ(x)dµ(x)

)
(d)−→
k→∞

N
(
0, σ̂2

f,ϕ

)
. (12)

In particular, the asymptotic variance remains the same as in Theorem 1.2, even though
we use the same DPP but a different target measure. This invariance was expected
since a similar property holds for multivariate orthogonal ensembles under the so-called
Nevai condition; see (Bardenet and Hardy, 2020, Theorem 2.3 and Remark 4). However,
it remains suprising if we compare the situation to classical (independent) importance
sampling, where sampling the quadrature nodes from a distribution different from the
target µ has an impact on the asymptotic variance (Robert and Casella, 2004).

1.3 Comparison with other methods

In a previous paper, the second author and Hardy provided a method for integration over
the hypercube Id = [−1, 1]d ⊂ Rd in any dimension for a measure µ. They started by a
general CLT analogous to Theorem 1.1 based on a DPP with kernel

KN(x, y) =
N−1∑
k=0

ϕk(x)ϕk(y),
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where (ϕi) is a family of orthonormal functions in L2(µ), and they expressed the asymp-
totic variance in terms of Fourier coefficients. When f is a linear combination of monomials
xα1
1 · · ·xαnn with αi ∈ {0, 1}, this asymptotic variance coincides with the Dirichlet norm

1
2
∥df∥2

ω⊗d
eq
, where ω⊗d

eq is the equilibrium weight corresponding to ddcϕ in our setting. They

finally proved the following convergence result.

Theorem 1.4 (Bardenet and Hardy, 2020, Theorem 3). Let µ(dx) = ω(x)dx be a positive
measure absolutely continuous with respect to the Lebesgue measure, with density ω(x) =∏d

i=1 ωi(xi), such that supp(µ) ⊂ Id and ω is C 1 and positive on (−1, 1)d. Assume further
that for any ε > 0,

1

N
sup

x∈[−1+ε,1−ε]d
|∇KN(x, x)| <∞.

If (X1, . . . , XN) is the multivariate orthonormal ensemble with respect to µ, that is, the
DPP with kernel KN , then for every f ∈ C 1(Id,R) supported in [−1+ε, 1−ε]d for a fixed
ε > 0, we have the following central limit theorem:√

N1+ 1
d

(
N∑
i=1

f(Xi)

KN(Xi, Xi)
−
∫
Id
f(x)dµ(x)

)
law−→

N→∞
N (0, σ2

f ),

where σ2
f is an asymptotic variance that depends on f and ω.

Although Theorem 1.2 seems to simply generalize this result (and that was what we
first expected), it happens not to be the case. Indeed, in (Bardenet and Hardy, 2020)
the authors considered real d-dimensional spaces. if M is a complex manifold of complex
dimension dC, it is in particular a real manifold of dimension dR = 2dC, therefore the
speed of convergence that appears in Theorem 1.2 is

1√
N

1+ 1
dC

=
1√
N

1+ 2
dR

,

which is actually better than the speed obtained in (Bardenet and Hardy, 2020). It is in
fact the same order as the worst-case mean square error of any randomized integration
algorithm on Rd for C 1 functions, according to a result by Bakhvalov (1965), see also
(Novak, 2016, Theorem 3). Note that a key assumption of Theorem 1.4 is the positivity
of the density ω on (−1, 1)d, which is similar to the property ddcϕ > 0 satisfied in the
weak bulk in Theorem 1.2.

Quasi-Monte Carlo methods on a compact real Riemannian manifold M of dimension
d, endowed with a Riemannian measure vol, have been studied by Brandolini et al. (2014).
The authors provide upper bounds of quadrature errors in the following setting: assume
that M = U1 ∪ · · · ∪ UN is a partition of M in disjoint subsets. For any 1 ⩽ i ⩽ N , set
wi = vol(Ui).

Theorem 1.5 (Brandolini et al., 2014). For every d/2 < α < d/2 + 1 there exists a
constant c > 0 and points zi ∈ Ui, 1 ⩽ i ⩽ N , such that∣∣∣∣∣

N∑
i=1

wif(zi)−
∫
M
f(x)dx

∣∣∣∣∣ ⩽ c max
1⩽i⩽N

{diameter(Ui)
α}∥f∥Wα,2(M).
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They improved this result by controlling the difference between any probability measure
on M and the uniform measure dx, so that their method works for any probability
measure, provided that the integrand is regular enough. An important difference between
our approach and theirs is the fact that their bound relies on the maximum diameter of
the subsets appearing in the partition of M, whereas ours relies on the volume of the line
bundle over M.

At the intersection of Monte Carlo methods and QMC guarantees, in the case of
the sphere S2, there is a result due to Berman (2024) that we now explain. Let X =
(x1, . . . , xNk) be a Nk-point configuration on S2. The worst-case error for the Monte
Carlo method with respect to the smoothness parameter s ∈ (1,∞) is defined by

wce(X, s) = sup
f :∥f∥Hs(S2)⩽1

∣∣∣∣∣
∫
S2
f(x)dvolS2(x)−

Nk∑
i=1

f(xi)

Bk(xi, xi)

∣∣∣∣∣ , (13)

where ∥f∥Hs(S2) is the norm of the Sobolev space Hs(S2). Recalling3 that Bk(x, x) = k+1
for all x ∈ S, we remark that if X is the DPP with kernel the Bergman kernel on S2 (the
so-called spherical ensemble) and dµ̂k is its empirical measure, then

Nk∑
i=1

f(xi)

Bk(xi, xi)
=

∫
S2
f(x)dµ̂k(x).

We also notice that dµϕeq = dvolS2 , therefore the statements of Theorems 1.1 and 1.2 are
equivalent, and in this case Berman already estimated the worst-case error.

Theorem 1.6 (Berman, 2024, Theorem 1.1). Let X = (x1, . . . , xN) be the spherical
ensemble with N particles. For any s ∈ (1, 2], there exists a constant C(s) such that for

any R ∈ [log(N)−
1
2 , N log(N)−

1
2 ],

PN
(
wce(X, s) ⩽ R

s
2
log(N)

s
4

N
s
2

)
⩾ 1− 1

NR2/C(s) − C(s)
. (14)

Finally, a string of works have investigated Markov chain Monte Carlo (MCMC) on
manifolds embedded in Euclidean spaces, for integration with respect to the Hausdorff
measure; see e.g. the seminal (Diaconis et al., 2013) and (Zappa et al., 2018), as well
as references in the latter paper. Although not explicitly mentioned, with the right
assumptions, we expect a central limit theorem to hold for these chains, but with the usual
rate of the inverse of the square root of the number of integrand evaluations. Convergence
will thus be slower than our DPP-based method, when measured in number of integrand
evaluations. Let us also emphasize that our method is a paradigm shift in the sense of
requiring only minimal geometric information on the underlying space.

1.4 Outline of the article

The rest of the paper is organized as follows. In Section 2, we introduce the necessary
background in complex geometry, culminating with the Bergman kernel. In Section 3, we

3Alternately, we prove the claim in Section 6.
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introduce the DPPs that we will be using as quadrature nodes, which we call Bergman
ensembles. Section 4 contains kernel estimates that are necessary in the proof of Theorem
1.2, to which Section 5 is dedicated. We specify all notions in the case of the Riemann
sphere in Section 6, and we give experimental illustrations of Theorem 1.2 in that case,
where the reference process can be easily sampled using random matrix models. Finally,
we discuss limitations of the method, as well as current and future work, in Section 7.

2 Complex manifolds and Bergman kernels

In this section, we recall enough notions on complex manifolds and Hermitian line bundles
to define the Bergman kernel, which is the main geometric object involved in our model.
A reader accustomed to the vocabulary of smooth (real) manifolds (Lee, 2013) should
quickly see the modifications, essentially adding holomorphicity requirements. Everything
in section is standard; we refer to (Huybrechts, 2005) for complex manifolds and line
bundles, and (Ma and Marinescu, 2007) for Bergman kernels. In the specific context of
determinantal point processes, the reader may also refer to (Lemoine, 2022). We provide
a few examples at the end of the section, but the special case of the Riemann sphere will
be treated in more detail, and numerically illustrated, in Section 6.

2.1 Basic definitions

We start with the notion of complex manifold.

Definition 2.1. A complex manifold of dimension d is a topological space M endowed
with a family (Ui, φi)i∈I of open subsets Ui ⊂ M and homeomorphisms φi : Ui → φi(Ui) ⊂
Cd such that, if Ui ∩ Uj ̸= ∅,

φi ◦ φ−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj)

is a biholomorphism4 between open subsets of Cd. The open subsets Ui are called charts,
and the maps φi local coordinates.

The fundamental idea of complex manifolds is that the compatibility of charts and
coordinates, which is illustrated in Figure 1, enables the use of the usual tools of complex
analysis on Cd. For instance, a function f : M → C is holomorphic (resp. C s) if for any
i ∈ I the function f ◦ φ−1

i : φi(Ui) → C is holomorphic (resp. C s).

Definition 2.2. Let M be a complex manifold. A holomorphic vector bundle of rank r
over M is a complex manifold E endowed with a holomorphic surjective map π : E → M
such that, for any x ∈ M, the fiber Ex = π−1(x) is an r-dimensional vector space over
C. A holomorphic vector bundle of rank r is locally trivial if there exist an open covering
(Vj)j∈J of M and biholomorphic maps ψj : π

−1(Vj) → Vj × Cr such that the diagram

π−1(Vj) Vj × Cr

Vj

ψj

π pr1

4That is, a holomorphic bijection whose inverse is also holomorphic.
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Ui

Uj

ϕi ϕj

M

ϕj ◦ ϕ−1
iϕi(Ui) ϕj(Uj)

Figure 1: The interaction between two charts and local coordinates.

commutes, and such that the restriction of ψj to Ex is a C-linear map for all x ∈ M. The
maps ψj are called trivialization functions.

Vector bundles are usually denoted as E → M. A graphical depiction of a vector
bundle of rank 1 (a so-called line bundle) is given in Figure 2. In words, in a locally
trivial vector bundle, on each Vj, π is akin to the canonical projection of Vj ×Cr onto Vj.
Finally, we define sections, for which we can talk of holomorphicity.

x1
x2

x3

x4

Ex1

Ex2

Ex3
Ex4

M

Figure 2: A vector bundle of rank 1 over a complex manifold, made of copies of the
complex plane over each point of M.

Definition 2.3. Let E be a holomorphic vector bundle over a complex manifold M. A
local section of E is a continuous map s : U → E, for U ⊂ M open, such that π ◦s = IdM
on U . A local section defined on M is called a global section.

Heuristically, taking a section of the vector bundle is equivalent to taking a continuous
family of vectors indexed by an open subset of M, that is, a vector field on M. We denote
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by C s(M, E) (resp. H0(M, E)) the space of C s (resp. holomorphic) sections of E, for
any 0 ⩽ s ⩽ ∞.

2.2 Operations on vector bundles

As a holomorphic vector bundle E over a complex manifold M induces a complex vector
space on each fiber, one can leverage this linear algebraic structure in two ways: to perform
algebraic transformations (direct sum, tensor product, wedge product) or to enrich the
line bundle. The idea is that any such operation can be done on a fiber, in a way which
is explicit whenever one works in a local trivialization.

Hermitian metrics. If we endow E with a family of Hermitian inner products hx :
Ex×Ex → C, the vector bundle is said to be Hermitian, and h is called a Hermitian metric.
The regularity (e.g. continuous, differentiable, smooth) of the metric, by convention, will
be the regularity of the map x 7→ hx. This regularity can be made more explicit by using
the notion of local weight: let U ⊂ M be an open subset where E can be trivialized.
There exists a section eU : U → E such that eU(x) ̸= 0 for all x ∈ U , called local frame,
such that for all s ∈ H0(M, E), there exists f : U → C that satisfies

s(x) = f(x)eU(x), ∀x ∈ U.

In this case, the Hermitian metric h reads

hx(s1(x), s2(x)) = f1(x)f2(x)hx(eU(x), eU(x)) = f1(x)f2(x)e
−ϕ(x),

where ϕ : U → R is defined by ϕ(x) = − log hx(eU(x), eU(x)) and is called the local weight
of h. The regularity of the metric h is then equivalent to the regularity of the weight ϕ
as a function on (an open subset of) the complex manifold M. We will often identify the
metric h with its local weight for the sake of simplicity.

Pullback bundle. If E → M2 is a vector bundle with projection π and f : M1 → M2

is a holomorphic function, then we define the pullback bundle f ∗E → M1 as

f ∗E = {(m, v) ∈ M× E : f(m) = π(v)} ⊂ M× E,

with projection π̃(m, v) = m.
Dual bundle. If E → M is a vector bundle, one can define its dual bundle E∗ → M

as the vector bundle whose fibers are the dual fibers of E: (E∗)x = (Ex)
∗. If E is endowed

with a Hermitian metric h, we shall denote E its dual. For any section s1 of E, there is
a unique5 section s1 of E such that

(s1(x), s2(x)) = hx(s2(x), s1(x)), ∀s2 ∈ H0(M, E),∀x ∈ M, (15)

where parentheses in the left-hand side denote the duality pairing.
Tensor products of bundles. If E1 → M and E2 → M are two vector bundles over

the same manifold, their tensor product is the vector bundle E1 ⊗ E2 → M whose fibers
are defined by tensor products of the fibers of E1 and E2.

5This is a well-known consequence of the Riesz representation theorem.
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In a similar fashion, if E1 → M1 and E2 → M2 are two vector bundles over two
separate manifolds, their external tensor product is the vector bundle

E1 ⊠ E2 = pr∗1E1 ⊗ pr∗2E2 → M1 ×M2,

where we denoted by pr1 : M1 × M2 → M1 and pr2 : M1 × M2 → M2 the standard
projections. It must be distinguished from the previously defined tensor product of two
bundles over the same manifold M.

2.3 Differential forms and integration on complex manifolds

Any complex manifold M of dimension d is also a smooth real manifold of dimension 2d,
i.e. it can be locally modelled on R2d by the natural identification C ∼= R2. The tangent
bundle TM of M is the smooth vector bundle6 of rank 2d such that for any x ∈ M,
the fibre TxM is the tangent space of M at x. There is a morphism of line bundles
J : TM → TM such that J2 = −IdTM, defined on each fibre by Jx : TxM → TxM,
which satisfies the Cauchy–Riemann equations on open subsets U ⊂ M

dfx(Jxv) = i× dfx(v), ∀v ∈ TxM, ∀f ∈ O(U), ∀x ∈ U.

The cotangent bundle T ∗M = HomR(TM,C) splits into HomC(TM,C)⊕HomC(TM,C)
of C-linear and C-antilinear maps, where TM is endowed with the complex structure
induced by the morphism J . We denote respectively by T ∗(1,0)M and T ∗(0,1)M the sub-
spaces of this decomposition. If (z1, . . . , zd) is a local holomorphic coordinate system
in an open subset U ⊂ M (for instance, in the atlas (Ui, φi), it means that we note
φi(x) = (z1, . . . , zd) ∈ Cd for any x ∈ Ui), and if we set zj = xj + iyj, then (xj, yj) is
a local smooth coordinate system of M as a real manifold, and (dz1, . . . , dzd) is a local
frame of T ∗(1,0)M, where dzj = dxj + idyj. Analogously, (dz1, . . . , dzd) is a local frame of
T ∗(0,1)M, where dzj = dxj − idyj.

Definition 2.4. The bundle of (p, q)-forms on a complex manifold M is the vector
bundle Λp,q(T ∗M) = Λp(T ∗(1,0)M)⊗ Λq(T ∗(0,1)M). We denote by Ωp,q(M) the subspace
of smooth (p, q)-forms on M.

Any (p, q)-form ω on M can be expressed as follows in local coordinates:

ω(x) =
∑

1⩽i1<···<ip⩽d
1⩽j1<···<jq⩽d

ui1,...,ip,j1,...,jq(x)dzi1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq , (16)

and in particular any (0, 0)-form is simply a function f : M → C. There are two
differential operators of interest, called the Dolbeault operators :

∂ :

{
Ω(p,q)(M) → Ω(p+1,q)(M)

f(x)ω(x) 7→
∑

i
∂f(x)
∂zi

dzi ∧ ω(x)
, ∂ :

{
Ω(p,q)(M) → Ω(p+1,q)(M)

f(x)ω(x) 7→
∑

i
∂f(x)
∂zi

dzi ∧ ω(x)
,

6Replace holomorphic by smooth and 1-dimensional complex vector space by 2d-dimensional real
vector space in Definition 2.1.
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and they can be turned into operators d = ∂ + ∂ and dc = 1
4iπ

(∂ − ∂), where d coincides
with the exterior derivative.

A volume form onM is a volume form in the differential sense, therefore a nonvanishing
section of Λ2d(T ∗M) ≃ Λd,d(T ∗M), and it can be written locally on U ⊂ M as

ω(x) = u(x)dz1 ∧ · · · ∧ dzd ∧ dz1 ∧ · · · ∧ dzd,

where u : M → C is a function that does not vanish. The volume form is continuous
(resp. smooth, holomorphic) if and only if u is continuous (resp. smooth, holomorphic).

Any volume form on M can be identified to a Borel measure dµ on M by setting∫
U
dµ =

∫
U
ω for any Borel set U ⊂ M.

2.4 Line bundles and Bergman kernel

In the sequel, we will consider vector bundles of rank 1, also called line bundles. We shall
usually denote L such a line bundle, rather than E.

Definition 2.5. Let L be a holomorphic line bundle over M, endowed with an Hermitian
metric h. Let µ be a continuous volume form on M and ϕ be the local weight correspond-
ing to h. The Bergman kernel B(ϕ,µ) of L with respect to the weighted measure (ϕ, µ) is
the Schwartz kernel (cf. (Le Floch, 2018, Chapter 6) for a detailed introduction of such
kernels) of the orthogonal projection

P(ϕ,µ) : L
2(M, L) −→ H0(M, L)

with respect to µ.

Namely, it is a section of L⊠ L→ M×M, and it can be written as

B(ϕ,µ)(x, y) =
N∑
i=1

si(x)⊗ si(y), ∀x, y ∈ M, (17)

where (si) is an orthornormal basis of H0(M, L) for the inner product ⟨·, ·⟩(ϕ,µ). By
construction, B(ϕ,µ) is the reproducing kernel of the Hilbert space (H0(M, L), ⟨·, ·⟩(ϕ,µ)),
which means that∫

M
B(ϕ,µ)(x, y) · s(y)dµ(y) = s(x), ∀s ∈ H0(M, L), ∀x ∈ M. (18)

The dot in (18) represents the contraction between the Bergman kernel and the section
s induced by (15), so that the left-hand side of (18) is the decomposition of s onto the
orthogonal basis (si); see (Le Floch, 2018, Lemma 6.3.2) for more details.

As we shall see later, the correlation functions of our point processes will be expressed
as determinants of the Bergman kernel. Let us stress that such a determinant is not
obvious to define: for instance, formally,∣∣∣∣Bϕ(x, x) Bϕ(x, y)

Bϕ(y, x) Bϕ(y, y)

∣∣∣∣ = Bϕ(x, x)⊗Bϕ(y, y)−Bϕ(x, y)⊗Bϕ(y, x), ∀x, y ∈ M, (19)
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but this equality does not really make sense because we are adding elements of two
different vector spaces: one is a section of Lx⊗Lx⊗Ly ⊗Ly and the other is a section of
Lx⊗Ly⊗Ly⊗Lx. We circumvent this difficulty by using contractions on tensor products
of each fiber and its dual, thanks to the following isomorphism of vector spaces, for any
finite-dimensional vector space E:{

Lx ⊗ E ⊗ Lx
∼−→ E

ux ⊗ w ⊗ vx 7−→ hx(ux, vx)w
.

In particular, the Bergman kernel on the diagonal can be identified with a function M →
C by

Bϕ(x, x) =
N∑
i=1

hx(si(x), si(x)), ∀x ∈ M,

and Equation (19) becomes∣∣∣∣Bϕ(x, x) Bϕ(x, y)
Bϕ(y, x) Bϕ(y, y)

∣∣∣∣ = Bϕ(x, x)Bϕ(y, y)−Bϕ(x, y) ·Bϕ(y, x), ∀x, y ∈ M.

Note the · in the right-hand side, which is a contraction in the sense of (15). It leads to
the following definition of the determinant of the Bergman kernel, cf. (Lemoine, 2022).

Definition 2.6. The determinant det(Bϕ(xi, xj))1⩽i,j⩽n is defined by

det(Bϕ(xi, xj))1⩽i,j⩽n =
∑
σ∈Sn

ε(σ)
N∑

i1,...,in=1

n∏
j=1

hxj(sij(xj), siσ−1(j)
(xj)). (20)

We finish this section with a result that will be instrumental later, the so-called extremal
property of the Bergman kernel:

Bϕ(x, x) = sup{|s(x)|2ϕ : s ∈ H0(M, L), ∥s∥2(ϕ,µ) ⩽ 1}. (21)

It is a direct consequence of the reproducing property (18) of the kernel.

2.5 Examples

Let us give a few examples without proofs, which are all standard and can be found for
instance in (Le Floch, 2018).

The plane. The complex plane C is obviously a complex manifold, but it is not
compact. However, most of the aforementioned constructions still hold, and are intuitive.
We endow the real plane R2 with the standard symplectic form ω = dx∧dy, and identify
it with C by setting z = x+iy√

2
, so that ω = idz ∧ dz. We can consider the trivial line

bundle L = R2 × C → R2, endowed with its standard Hermitian metric

hx,y(z, w) = zw, ∀(x, y) ∈ R2, ∀z, w ∈ C.
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A global nonvanishing section of L is given by

ψ :

{
C → C
z 7→ e−

|z|2
2 .

As C is not compact, the space H0(M,Lk) is infinite-dimensional, and it is not even a
subspace of L2(C, Lk). However, if we replace it by

Hk = H0(C, Lk) ∩ L2(C, Lk),

we obtain the so-called Bargmann spaces, which are Hilbert spaces for all k ⩾ 1. They
have the following explicit description:

Hk = {fψk : f : C → C is holomorphic,

∫
C
f(z)e−k|z|

2

dz ∧ dz < +∞}.

This Hilbert spaces is generated by the functions (znψk)n⩾0, and one can check that
they form an orthonormal family of Hk, hence an orthogonal basis. A straightforward
computation of their norm yields the orthonormal basis (sk,n)n⩾0 with

sk,n(z) =

√
kn+1

2πn!
znψk(z), ∀z ∈ C, ∀n ⩾ 0.

The Bergman kernel is

Bk(z, w) =
∑
n⩾0

sk,n(z)sk,n(w) =
k

2π

∑
n⩾0

1

n!
(kzw)n ψk(z)ψk(w) =

k

2π
ekzw−

k
2
|z|2− k

2
|w|.

In this context, Bk is rather called the Christoffel–Darboux kernel, and the orthonormal
family (sk,n) is related to the Hermite polynomials. If we fix k = 1, the kernel is related
to the infinite Ginibre ensemble in random matrix theory (Hough et al., 2009).

Projective spaces. For any d ⩾ 1, the complex projective space CPd is defined as the
quotient Cd+1 \ {0}/C∗ for the action

λ · (z0, . . . , zd) = (λz0, . . . , λzd), ∀λ ∈ C∗, ∀(z0, . . . , zd) ∈ Cd+1 \ {0}.

We denote by [Z0 : · · · : Zd] the equivalence class of (Z0, . . . , Zd) in CPd, known as the
homogeneous coordinates. We also denote by π the projection Cd+1 \ {0} → CPd induced
by the action of C∗. The structure of complex manifold is for instance given by the atlas
(Ui, φi)0⩽i⩽d, with

Ui = {[Z0 : · · · : Zd] ∈ CPd, Zi ̸= 0},

φi : [Z0 : · · · : Zd] 7→

(
Z0

Zi
, . . . ,

Ẑi
Zi
, . . . ,

Zd
Zi

)
= (z1, . . . , zd) ∈ Cd \ {0},

where the hat indicates that the term is omitted.
Consider the set

O(−1) = {([u], λu), u ∈ Cd+1 \ {0}, λ ∈ C},
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together with the projection π : O(1) → CPd given by π([u], v) = [u]. It defines a holo-
morphic line bundle, called the tautological line bundle. The fibers over CPd are exactly
the lines generated by the homogeneous coordinates. It is endowed with a Hermitian
metric induced by the one from Cd+1:

h[u](v, w) =
d+1∑
i=1

viwi, ∀[u] ∈ CPd, ∀v, w ∈ Cd+1.

The complex projective spaces can be somehow related to the unit spheres S2d+1 ⊂
R2d+2 by the following construction: the action of C∗ on Cd+1 \ {0} ≃ R2d+2 can be
decomposed into two successive actions of R∗

+ and S1, thanks to the polar decomposition of
nonzero complex numbers. Let us denote by π1 : Cd+1 → S2d+1 and π2 : S2d+1 → S2d+1/S1

the corresponding projections. The following diagram commutes:

Cd+1 \ {0} S2d+1

CPd S2d+1/S1.

π1

π π2

≃

The bottom arrow is indeed a bijection. The Fubini–Study metric on CPd is the Hermitian
metric on CPd ≃ S2d+1/S1 induced by the round metric (which is a Riemannian metric)
on S2d+1. In the case d = 1, there is an additional relationship CP1 ≃ S2 that we will
develop in Section 6.

3 Bergman ensembles

3.1 Definitions

Let M be a compact complex manifold of dimension d endowed with a Borel probability
measure µ, L be a holomorphic line bundle over M with Hermitian metric h, represented
by a local weight function ϕ. Set N = dimH0(M, L), and denote by Pϕ the probability
measure on MN defined by

dPϕ(x1, . . . , xN) =
1

ZN(ϕ)
| det(si(xj))|2ϕdµ⊗N(x1, . . . , xN), (22)

where (si) is an orthonormal basis of (H0(M, L), ⟨·, ·⟩(ϕ,µ)), and ZN(ϕ) is a normalization
constant called partition function. Using the generalized Cauchy–Binet identity (Johans-
son, 2006, Proposition 2.10), the partition function satisfies ZN(ϕ) = N ! for any weight ϕ.
We will denote by Eϕ the expectation with respect to Pϕ, i.e., for any bounded measurable
F : MN → C,

Eϕ[F (X1, . . . , XN)] =

∫
MN

FdPϕ.

Recall that a (simple) point process onM is a random configuration onM, or equivalently
the counting measure of this configuration. In particular, given a family (X1, . . . , XN)
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of almost-surely distinct random variables on M, the random measure
∑N

i=1 δXi defines
almost-surely a simple point process. The n-point correlation function ρn : Mn → R
of such point process, when it exists, is characterized by the following property: for any
bounded measurable function f : Mn → R,

Eϕ

[ ∑
i1 ̸=···̸=in

f(Xi1 , . . . , Xin)

]
=

∫
Mn

f(x1, . . . , xn)ρn(x1, . . . , xn)dµ
⊗N(x1, . . . , xn).

Definition 3.1. The Bergman ensemble for the weighted measure (ϕ, µ) is the simple
point process

∑N
i=1 δXi , where (X1, . . . , XN) is a family of random variables on M with

distribution Pϕ.

It was proved in (Lemoine, 2022) that such ensemble is a determinantal point process
with kernel B(ϕ,µ), which means by definition that

ρn(x1, . . . , xN) = det(B(ϕ,µ)(xi, xj)), ∀n ⩾ 1, ∀x1, . . . , xn ∈ M, (23)

where the determinant of the Bergman kernel is given in Definition 2.6. Although this
construction holds for any Hermitian line bundle, we shall focus on the case where L is
replaced by Lk ⊗ F , for large k, with corresponding weight kϕ+ ϕF .

3.2 Convergence of the Bergman measures

The first macroscopic estimation of the Bergman ensemble for the weighted measure
(kϕ, µ) for large k is given by the asymptotics of the Bergman measures dβk(x) =
1
Nk
B(kϕ,µ)(x, x)dµ(x). Indeed, as

Ekϕ

[
1

Nk

Nk∑
i=1

f(Xi)

]
=

∫
M
f(x)dβk(x),

the weak convergence in expectation of the empirical measures of the DPP is equivalent
to the weak convergence of the Bergman measures. In the case of a compact complex
manifold M endowed with a positive Hermitian line bundle L, the Bergman measures
converge pointwise (hence weakly) to an equilibrium measure µeq because of the diagonal
expansion of the Bergman kernel. In the more general case studied by Berman (2018)
that we consider here, the (weak or pointwise) convergence of Bergman measures is not
automatic.

If Ω ⊂ Cd is an open set, a function f : Ω → [−∞,+∞] is called plurisubharmonic
(psh) if it is upper semicontinuous, and if for all z ∈ Ω and ξ ∈ Cd such that |ξ| < d(z,Ωc),

f(z) ⩽
1

2π

∫ 2π

0

f(z + eiθξ)dθ. (24)

Given a complex manifold M of dimension d, a function f : M → [−∞,+∞] is called
plurisubharmonic if for any chart (U,φ), f ◦ φ−1 : φ−1(U) → [−∞,+∞] is plurisubhar-
monic. A function f ∈ C 1,1(M) is plurisubharmonic if and only if ∂∂f is a nonnegative
(1, 1)-form, namely the coefficients of the decomposition of ∂∂f in (16) are nonnegative
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for all x ∈ M. Equivalently, it means that ddcf is a nonnegative 2-form. Now, let us go
back to the Hermitian line bundle L → M endowed with a local weight ϕ. If ϕ is only
continuous, one can define its plurisubharmonic envelope ϕe : M → [−∞,+∞] by

ϕe(x) = sup{ψ(x) : ψ continuous and psh s.t. ψ ⩽ ϕ}.

Definition 3.2. The weak bulk is the largest open subset of M where the following
equality holds pointwise:

det(ddcϕe) = det(ddcϕ).

See (Berman, 2018, Theorem 3.1) for a description of the weak bulk and its properties.
A noticeable fact is that it is contained in the set {x ∈ M : ddcϕ(x) > 0}.
The Bergman measure βk has density 1

Nk
B(kϕ,µ) with respect to dµ; we will actually

control the convergence of the inverse of this density, for a reason that will appear later.
Let wϕeq = vol(L)

d! det(ddcϕ)
be the equilibrium weight. The following lemma is an analog of a

classical result about the Christoffel–Darboux kernel for orthogonal polynomials on the
unit circle (Simon, 2011, Theorem 2.15.1) and on the real segment [−1, 1] (Simon, 2011,
Theorem 3.11.1).

Lemma 3.1. Let M be a compact complex manifold of dimension d endowed with a
continuous volume form ω, and µ be the Borel measure on M corresponding to ω. Let L
be a holomorphic line bundle over M endowed with an Hermitian metric h corresponding
to a local weight ϕ such that (ϕ, µ) is strongly regular. For all x in the weak bulk,

Nk

B(kϕ,µ)(x, x)
= wϕeq +O(k−1), (25)

where the remainder is uniformly bounded in x ∈ M.

Proof. The result will follow from two separate estimates that we pull together from the
literature: one for Nk = dimH0(M, Lk) and one for B(kϕ+ϕk,µ) on the diagonal. Both
are quite standard but we expose them for readers who are less familiar with complex
geometry.

We define the space of Lk-valued (p, q)-forms as

Ωp,q(Lk) = C ∞(Ωp,q(M)⊗ Lk).

The Dolbeault operator ∂ extends to an operator ∂Lk : Ωp,q(Lk) → Ωp,q+1(Lk), and we
define for all q ⩾ 0 the vector space

Hq(M,Lk) = ker(∂Lk : Ω
0,q(Lk) → Ω0,q+1(Lk))/∂Lk(Ω

0,q−1(Lk).

Note that for q = 0, it coincides with the space of holomorphic sections H0(M,Lk) which
is at the center of the present paper. The dimensions of these spaces are involved in the
definition of the Euler characteristic of the line bundle:

χ(M, Lk) :=
d∑
q=0

(−1)q dimHq(M, Lk).
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The Kodaira–Serre vanishing theorem (Ma and Marinescu, 2007, Theorem 1.5.6) states
that dimHq(M, Lk) = 0 for all q > 0 and k large enough, leaving

χ(M, Lk) = dimH0(M, Lk) = Nk.

We can then apply the Hirzebruch–Riemann–Roch formula (see (Demailly, 1985) for in-
stance), and there is a polynomial Pd−1 ∈ Q[X] of degree at most d− 1 such that

χ(M, Lk) =
vol(L)

d!
kd + Pd−1(k) = Nk. (26)

On the diagonal, the Bergman kernel admits the following expansion (Berman, 2009a,
Theorem 4.14): for any x in the weak bulk,

B(kϕ,µ)(x, x) = det(ddcϕ)kd +O(kd−1), (27)

where the big O only depends on k and is uniform in x. Equation (25) results trivially
from (26) and (27).

3.3 Laplace transform of linear statistics

DPPs are known to have tractable Laplace transforms of linear statistics, and Berman
(2018) has used this Laplace transform to obtain central limit theorems for dPϕ. For any
nonnegative and measurable ψ : M → R, define the log Laplace transform of the linear
statistics

∑
i ψ(Xi) as

Kψ
ϕ (t) = logEϕ

[
e−t

∑N
i=1 ψ(Xi)

]
.

The first result used by Berman is the following, relating the derivatives of Kψ
ϕ and the

expectation and variance of the linear statistics.

Proposition 3.2 (Berman, 2018). The log Laplace transform Kψ
ϕ is at least twice deriv-

able with respect to t, and satisfies

d

dt
Kψ
ϕ (t) = −Eϕ+tψ

[
N∑
i=1

ψ(Xi)

]
= −

∫
M
ψ(x)B(ϕ+tψ,µ)(x, x)dµ(x), (28)

d2

dt2
Kψ
ϕ (t) = Varϕ+tψ

[
N∑
i=1

ψ(Xi)

]
=

1

2

∫
M2

(ψ(x)− ψ(y))2|B(ϕ+tψ,µ)(x, y)|2ϕ+tψdµ⊗2(x, y). (29)

The second one is a control of the asymptotics of the integral in the expression of the
variance in Proposition 3.2, when ϕ is replaced by kϕ and k → ∞.
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Theorem 3.3 (Berman, 2018, Theorem 5.8). Let M be a compact complex manifold
of dimension d endowed with a Borel measure µ associated with a continuous volume
form, L be a big line bundle over M endowed with a C 1,1 metric ϕ, F be a line bundle
endowed with a continuous metric with weight ϕF , and Bkϕ+ϕF be the Bergman kernel of
H0(M, Lk ⊗ F ). If f is a Lipschitz function with compact support included in the bulk,
then

lim
k→∞

1

2

∫∫
M2

k1−d|Bkϕ+ϕF (x, y)|2(f(x)− f(y))2dµ⊗2(x, y) = ∥df∥2ddcϕ. (30)

Let f : M → C be a Lipschitz continuous function with compact support included in
the weak bulk, and set

fk : x 7→ Nk

B(kϕ,µ)(x, x)
f(x).

Our proof of Theorem 1.2 will follow the steps of Theorem 1.1 by replacing f with fk.
In particular, we will prove a generalization of Theorem 3.3 taking into account the
dependence on k in both f and ϕF . See Theorem 4.7 for the precise statement. As we
will see, almost all arguments from Berman (2018) will remain unchanged.

4 Bergman kernel estimates

Before we dive into the proofs of our main Theorem, let us state a few technical estimates
of the Bergman kernel. They generalize slightly some results by Berman (2018), yet their
proofs are almost identical. They are based on local properties of the kernel, meaning
that they are proved by using adequate sets of coordinates.

Definition 4.1. Local coordinates z1, . . . , zd are called normal if the (1, 1)-form ω that
induces the continuous volume form ωd associated with the measure µ has the following
expression when |z| → 0:

ω(z) =
i

2

d∑
i,j=1

h
(0)
ij (z)dzj ∧ dzj, h

(0)
ij (z) = δij +O(|z|2). (31)

A local trivialization eU with weight ϕ = −∂∂ log |eU |ϕ is normal if the weight ϕ has the
following expression when |z| → 0:

ϕ(z) =
d∑
j=1

λj|zj|2 +O(|z|3). (32)

See Griffiths and Harris (1994) or Berman (2009b) for an explanation of why such
coordinates exist. In this setting, we have an explicit expression of the curvature ddcϕ in
the centered coordinate:

ddcϕ(0) =
i

2π

d∑
j=1

λjdzj ∧ dzj,

so that

ωϕ = (ddcϕ)d =
detλ

πd
ωd,
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where we denote by λ = diag(λ1, . . . , λd) the diagonal matrix of eigenvalues of the curva-
ture of ϕ. Given a family (ϕk) of local weights on F that converges uniformly to a weight
ϕF , we will study the convergence of the Bergman kernel B(kϕ+ϕk,µ) at two different scales:
near the diagonal, and far from the diagonal. All results are actually variants of results by
Berman (2018), which were stated for B(kϕ+ϕF ,µ), and their proofs are extremely similar,
but we shall recall them for the sake of completeness. They will rely on (31), as well on
the the following estimate.

Lemma 4.1. Let M be a compact complex manifold of dimension d endowed with a
continuous volume form ωd, and µ be the Borel measure on M corresponding to ωd. Let L
be a holomorphic line bundle over M endowed with an Hermitian metric h corresponding
to a local weight ϕ such that (ϕ, µ) is strongly regular. For all x in the weak bulk, in a
normal trivialization and a normal coordinate system z centered at x,

kϕ(z) + ϕk(z) = k

(∑
i

λi|zi|2+ O(|z|3)
|z|→0

)
. (33)

Proof. One can choose the trivialization such that ϕF (0) = 0, and in this case the uniform
convergence of (ϕk) and the continuity of ϕF yield

ϕk(z) = ϕF (z) + ok→∞(1) = o|z|→0(|z|) + ok→∞(1),

so that kϕ(z) + ϕk(z) and kϕ(z) have the same asymptotic expression for |z| → 0 and
k → ∞ (which actually does not depend on ϕF ).

In particular, we have the following rescaled uniform convergence for |z| ⩽ R, with
R > 0 fixed:

kϕ

(
z√
k

)
+ ϕk

(
z√
k

)
−
∑
i

λi|zi|2 =
1√
k
O(|z|3). (34)

4.1 Scaling limit near the diagonal

Theorem 4.2. Let L be a big line bundle with a weight ϕ which is locally C 1,1, and F be
another line bundle endowed with a continuous local weight ϕF . Let (ϕk)k be a sequence
of continuous local weights on F that converges uniformly to ϕF . Assume that µ is a
continuous volume form on M. Let x be a fixed point in the weak bulk and take normal
local coordinates z centered at x and a normal trivialization of L⊗ F . Then

k−dB(kϕ+ϕk,µ)

(
z√
k
,
w√
k

)
−→
k→∞

detλ

πd
e⟨λz,w⟩ (35)

in the C ∞-topology on compact subsets of Cd × Cd.

In order to prove this Theorem, we will need two inequalities that generalize well-known
estimates in the case of B(kϕ+ϕF ,µ).
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Lemma 4.3 (Holomorphic Morse inequality). Let x ∈ M be a point such that the second
order derivatives of ϕ exist, and let z be a normal local coordinate system centered at x.
Then

lim sup
k

k−dB(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)
⩽

det(λ)

πd
. (36)

Proof. Let ε > 0 be fixed. Using the local normal coordinate system z and a nor-
mal trivialization eU in a local neighborhood of x, given an orthonormal basis (si) of
H0(M, Lk ⊗ F ), there are holomorphic functions (fi) such that for all i∣∣∣∣si( z√

k

)∣∣∣∣2
kϕ+ϕk

=

∣∣∣∣fi( z√
k

)∣∣∣∣2 e−kϕ( z√
k

)
−ϕk

(
z√
k

)
,

therefore

B(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)
=
∑
i

∣∣∣∣fi( z√
k

)∣∣∣∣2 e−kϕ( z√
k

)
−ϕk

(
z√
k

)
.

Analogously, we have

B(kϕ+ϕk,µ)(0, 0) =
∑
i

|fi(0)|2e−kϕ(0)−ϕk(0) =
∑
i

|fi(0)|2.

For all 1 ⩽ i ⩽ Nk there are integers ni such that for all k ⩾ ni,∣∣∣∣fi( zi√
k

)∣∣∣∣2 ⩽ |fi(0)|2(1 + ε).

For k large enough, we also have∣∣∣∣kϕ( z√
k

)
+ ϕk

(
z√
k

)∣∣∣∣ ⩽ ε,

therefore, for k large enough,

B(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)
⩽
∑
i

|fi(0)|2(1 + ε)eε = B(kϕ+ϕk,µ)(0, 0)(1 + ε)eε.

Using the extremal property of the Bergman kernel, for any fixed R > 0,

k−dB(kϕ+ϕk,µ)(0, 0) = sup
s∈H0(M,Lk⊗F )

|s(0)|2kϕ+ϕk
kd
∫
M |s(x)|2kϕ+ϕkdµ(x)

⩽ sup
s∈H0(M,Lk⊗F )

|s(0)|2kϕ+ϕk
kd
∫
|z|⩽ R√

k

|s(z)|2kϕ+ϕkdµ(z)
.

We can replace z by z√
k
in the integral, giving

kd
∫
|z|⩽ R√

k

|s(z)|2kϕ+ϕkdµ(z) =
∫
|z|⩽R

∣∣∣∣f ( z√
k

)∣∣∣∣ e−kϕ( z√
k

)
−ϕk

(
z√
k

)
dµ(z),
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where f is a holomorphic function such that locally s(z) = f(z)eU(z). From (34) we
deduce that

sup
|z|⩽R

∣∣∣∣∣kϕ
(

z√
k

)
+ ϕk

(
z√
k

)
−
∑
i

λi|zi|2
∣∣∣∣∣ −→k→∞

0,

and by continuity of f we get

lim
k→∞

∫
|z|⩽R

∣∣∣∣f ( z√
k

)∣∣∣∣ e−kϕ( z√
k

)
−ϕk

(
z√
k

)
dµ(z) =

∫
|z|⩽R

e−
∑
i λi|zi|2

∏
i

i

2
dzi ∧ dzi.

So far, we have obtained that, for ε > 0 fixed, for k large enough,

k−dB(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)
⩽ sup

s∈H0(M,Lk⊗F )

|s(0)|2kϕ+ϕk(1 + ε)eε

kd
∫
|z|⩽ R√

k

|s(z)|2kϕ+ϕkdµ(z)
.

Taking the limsup over k and then letting R → ∞ yields

lim sup
k

kdB(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)
⩽

(1 + ε)eε∫
Cd e

−
∑
i λi|zi|2

∏
i
i
2
dzi ∧ dzi

=
det(λ)

πd
(1 + ε)eε.

As it holds for any ε > 0, letting ε→ 0 yields the lemma.

Lemma 4.4. Let x ∈ M be a point in the weak bulk, and z be a normal local coordinate
system centered at x. Then

lim inf
k

1

kd

∣∣∣∣B(kϕ+ϕk,µ)

(
z√
k
,
z√
k

)∣∣∣∣
kϕ+ϕk

⩾
det(λ)

πd
. (37)

Proof. Step 1: construction of a smooth extremal section. Let x ∈ M be in the
weak bulk. We will prove that there exists a smooth section σk of L

k⊗F such that for z0
fixed and for (ϕk) a sequence of weights on F such that ϕk(0) = 0 for all k and ϕk → ϕF
uniformly,

(i) lim
k→∞

|σk|2kϕ
(
z0√
k

)
kd∥σk∥2kϕ+ϕk

= det
ω
(ddcϕ)(x), (ii) ∥∂σk∥2kϕ+ϕk ⩽ Ce−k/C . (38)

In order to do so, we take a smooth function χ which is constant and equal to 1 on
{z : |z| ⩽ δ/2} and supported in {z : |z| ⩽ δ} for a given δ that we will fix later. Let√
λ = diag(

√
λ1, . . . ,

√
λd) be the squared root of the matrix λ, and set for any z such

that |z| ⩽ λ

σk(z) = χ(z)e
− k

2

(∣∣∣√λ(z− z0√
k
)
∣∣∣2−|

√
λz|2

)
eU(z) = χ(z)e

k
(
⟨
√
λz,

√
λ
z0√
k
⟩− 1

2k
|
√
λz0|2

)
eU(z),

where eU is a local frame such that |eU(z)|2kϕ = e−kϕ(z). We extend σk to the value 0 for
|z| > δ, which indeed defines a smooth section. We claim that σk satisfies (38). Indeed,

|σk|2kϕ
(
z0√
k

)
= χ

(
z0√
k

)2

e|
√
λz0|2e

−kϕ
(
z0√
k

)
,
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and for k large enough we have |z0/
√
k| ⩽ δ/2, so that (32) yields

lim
k→∞

|σk|2kϕ
(
z0√
k

)
= 1.

Likewise, let us compute the denominator of (i) in (38). Using the fact that the support
of σk is included in {|z| ⩽ δ},

∥σk∥2(kϕ+ϕk,µ) =
∫
M

|σk|2kϕ+ϕk(x)ωd(x)

=

∫
|z|⩽δ

χ(z)2e
k

(∣∣∣√λ(z− z0√
k
)
∣∣∣2−|

√
λz|2

)
e−kϕ(z)−ϕk(z) deth(0)(z)

∧
i

i

2
dzi ∧ dzi.

We split the domain of integration into two regions:

Ak = {|z| ⩽ R/
√
k}, Bk = {R/

√
k ⩽ |z| ⩽ δ},

and we perform a change of variables ζ =
√
kz. First,

∥σk∥2(kϕ+ϕk,µ),Ak = k−d
∫
|ζ|⩽R

χ

(
ζ√
k

)2

e|
√
λ(ζ−z0)|2e

k|
√
λζ|2−kϕ

(
ζ√
k

)
−ϕk

(
ζ√
k

)
deth(0)

(
ζ√
k

)∧
i

i

2
dζi∧dζ i

and a dominated convergence combined with (34) yields

lim
k→∞

kd∥σk∥2(kϕ+ϕk,µ),Ak =
∫
|ζ|⩽R

e|
√
λ(ζ−z0)|2

(
i

2

)d
dζ1 ∧ dζ1 ∧ · · · ∧ dζd ∧ dζd.

The RHS converges then to (2π)d(detλ)−1 as R → ∞. Using similar arguments we see
that kd∥σk∥2(kϕ+ϕk,µ),Bk converges, as k → ∞, to the tail of a multidimensional Gaussian

integral, and letting R → ∞ make it finally vanish. We have proved (38) (i).
Now, let us prove the point (ii). We have for any z

∂σk(z) =
(
∂χ(z)

)
e
− k

2

(∣∣∣√λ(z− z0√
k
)
∣∣∣2−|

√
λz|2

)
eU(z)

because the exponential part is holomorphic. In partiular, it means that ∂σk(z) = 0 for
all |z| ⩽ δ/2, and we get

∥∂σk∥2(kϕ+ϕk,µ) =
∫
δ/2⩽|z|⩽δ

|∂σk|2kϕ+ϕk(z) deth
(0)(z)

∧
i

i

2
dzi ∧ dzi

=

∫
δ/2⩽|z|⩽δ

(
∂χ(z)

)2
e−k|

√
λ(z− z0

k
)|2+k|

√
λz|2−kϕ(z)−ϕk(z) deth(0)(z)

∧
i

i

2
dzi ∧ dzi.

By (33) we know that there exists a constant C1 > 0 such that∣∣∣k|√λz|2 − kϕ(z)− ϕk(z)
∣∣∣ ⩽ C1k|z|3,
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so that if we take δ small enough we get, for |z| ⩽ δ,∣∣∣k|√λz|2 − kϕ(z)− ϕk(z)
∣∣∣ ⩽ k

4
inf
i
λi|z|2 ⩽

k

4
|
√
λz|2.

For k large enough, we also have

|
√
λ(z − z0

k
)|2 ⩾ 1

4
|
√
λz|2.

Let us combine these estimates and set C2 = sup|z|⩽δ
(
∂χ(z) deth(0)(z)

)2
, yielding

∥∂σk∥2(kϕ+ϕk,µ) ⩽ C2

∫
δ/2⩽|z|⩽δ

e−
k
2
|
√
λz|2
∧
i

i

2
dzi ∧ dzi.

Equation (38) (ii) follows.
Step 2: perturbation to a holomorphic extremal section. We equip Lk ⊗ F

with a strictly positively curved modification ψk of the weight kϕ + ϕk (see Lemma 2.5
in (Berman, 2009a)). Let gk = ∂σk. According to the Hörmander–Kodaira estimate (see
Theorem 4.1 in (Berman, 2018)), there exists for all k a smooth section uk with values in
L⊗KM, where KM is the canonical bundle of M, such that

∂uk = gk, ∥uk∥(ψk,µ) ⩽ C∥gk∥(ψk,µ).

We conclude by setting αk = σk−uk, which is indeed holomorphic, and satisfies (38).

Proof of Theorem 4.2. It follows more or less directly from Lemmas 4.3 and 4.4. The proof
of (Berman, 2018, Theorem 1.1) can also be adapted verbatim using our estimates.

4.2 Off-diagonal decay

The following result is adapted from (Berman, 2018, Theorem 5.7), and has more or less
the same proof.

Theorem 4.5. Let L be a big line bundle with a C 1,1
loc weight ϕ and F be another line

bundle endowed with a continuous local weight ϕF . Assume that µ is the Borel measure
associated to a continuous volume form on M, and that (ϕk)k is a sequence of weights on
F that converge uniformly to ϕF . Let E be a compact subset of the interior of the bulk.
There is a constant C such that for any k, any x ∈ E and y ∈ M,

k−2d|Bkϕ+ϕk(x, y)|2 ⩽ Ce−
√
kd(x,y)
C , (39)

where d(x, y) is the distance with respect to a smooth metric on M.
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4.3 Convergence to the equilibrium weight

A sequence (fk) of functions on M with values in R is said to converge uniformly to
f : M → R with speed uk, where (uk) is an increasing sequence of positive real numbers
with limit ∞, if there exists C > 0 such that

sup
x∈M

|fk(x)− f(x)| ⩽ C

uk
. (40)

If (vk) is another sequence of positive real numbers with limit ∞ such that uk > vk for
all k, then we also say that fk converges uniformly to f faster than vk. Note that she
speed of convergence is not unique: if (uk) and (vk) are two sequences of positive numbers
such that uk ⩽ vk and if fk converge to f uniformly with speed uk, then a fortiori it also
converges with speed vk. The following proposition is a trivial consequence of Lemma 3.1.

Proposition 4.6. Let M be a compact complex manifold of dimension d endowed with
a Borel measure µ associated with a continuous volume form, L be a line bundle over
M endowed with a C 1,1 weight ϕ such that (ϕ, µ) is strongly regular, F be a line bundle
endowed with a continuous weight ϕk, and Bkϕ+ϕk be the Bergman kernel of H0(M, Lk ⊗
F ). Assume that the sequence (ϕk) converges uniformly to a continuous weight ϕF . Let
f : M → C be a Lipschitz function with compact support included in the weak bulk. If
we set fk : x 7→ Nk

B(kϕ,µ)(x,x)
f(x) for any k, then all fk are Lipschitz and they converge

uniformly to feq = wϕeqf with speed 1
k
.

We are now able to state and prove a variant of Theorem 3.3.

Theorem 4.7. Let M be a compact complex manifold of dimension d endowed with a
Borel measure µ associated with a continuous volume form, L be a line bundle over M
endowed with a C 1,1 weight ϕ such that (ϕ, µ) is strongly regular, F be a line bundle
endowed with a continuous weight ϕk, and Bkϕ+ϕk be the Bergman kernel of H0(M, Lk ⊗
F ). Let (fk) be a sequence of Lipschitz functions with compact support included in the
weak bulk. Assume that:

(i) the sequence (ϕk) converges uniformly to a continuous weight ϕF ;

(ii) the sequence (fk) converges uniformly to a Lipschitz continuous function f faster
than 1√

k
.

Then,

lim
k→∞

1

2

∫∫
M2

k1−d|Bkϕ+ϕk(x, y)|2(fk(x)− fk(y))
2dµ⊗2(x, y) = ∥df∥2ddcϕ. (41)

Proof. We follow closely the proof of Theorem 5.8 in (Berman, 2018), because most of
the arguments still apply. Let d be the distance on M induced by any continous metric.
For fixed k ⩾ 1 and R > 0, we split the integral in (41) into three parts Ak,R, Bk,R, Ck,R,

corresponding to integrating respectively over d(x, y) ⩾ 1, k−
1
2R ⩽ d(x, y) ⩽ 1 and 0 ⩽

d(x, y) ⩽ k−
1
2R. The idea is to let k → ∞ then R → ∞. The first two contributions vanish
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in the large k limit thanks to the off-diagonal decay of the Bergman kernel (Theorem 4.5);
we will then focus on the third one.

The key point is to prove that for x in the bulk and z ∈ Cd a normal coordinate, as
well as normal trivializations of L and F , all centered at x,

sup
|z|<R

∣∣∣∣√k(fk ( z√
k

)
− fk(0)

)
−∇f(0) · z

∣∣∣∣ −→ 0. (42)

We have, for any |z| < R,

√
k

(
fk

(
z√
k

)
− fk(0)

)
−∇f(0) · z =

√
k

(
fk

(
z√
k

)
− f

(
z√
k

))
−
√
k(fk(0)− fk(0))

+
√
k

(
f

(
z√
k

)
− f(0)

)
−∇f(0) · z

First, as f is differentiable at 0, we have∣∣∣∣√k(f ( z√
k

)
− f(0)

)
−∇f(0) · z

∣∣∣∣ = |z|ε
(

1√
k

)
−→
k→∞

0.

Then, using the uniform convergence faster than 1√
k
, we get that for all ε > 0, there exists

k0 such that for all k ⩾ k0, for all z ∈ Cd,

√
k|fk(z)− f(z)| ⩽ ε.

It is in particular true if z = 0, and if one replaces z by z√
k
because of the uniformity. We

conclude by the triangle inequality that (42) is satisfied. Once we get this estimate, the
rest of the proof is identical to the proof of Theorem 3.3.

5 Proof of the main results

We are now in position to prove the main results of this paper.

Proof of Theorem 1.2. We want to prove that if (X1, . . . , XNk) is distributed according
Pkϕ+ψ, √

N
1+ 1

d
k

(∑
i

1

Nk

fk(Xi)−
∫
M
f(x)dµ(x)

)
⇒ N (0, σ2).

It is equivalent to consider the convergence of the rescaled random variables

Ξk = N
1−d
2d
k

(∑
i

fk(Xi)−Nk

∫
f(x)dµ(x)

)
. (43)

We set uk : x 7→ N
1−d
2d
k

[
fk(x)−

∫
f(y)dµ(y)

]
, so that Ξk =

∑
i uk(Xi) is a linear statistic

of the point process.
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We set, for any t ∈ C,

Fk(t) = − logEkϕ+ψ+tuk,ϕ,d
[
e−t

∑
i uk,ϕ,d(Xi)

]
= − logEkϕ+ψ+tuk,ϕ,d

[
etN

1−d
2d

k

∑
i fk(Xi)

]
+N

1−d
2d
k Nk

∫
M
f(x)dµ(x).

It clearly defines a holomorphic function on C, and it is uniformly bounded on any
compact subset of C. Our goal is to demonstrate that Fk(iξ) converges to the Fourier
transform of the right Gaussian, for all ξ ∈ R; the proof will be decomposed into three
steps.

Step 1: convergence on R. Let t ∈ R. According to Proposition 3.2, we have

d

dt
Fk(t) = Ekϕ+ψ+tuk [Ξk] = N

1−d
2d
k Ekϕ+ψ+tuk

[∑
i

fk(Xi)

]
−N

1−d
2d
k Nk

∫
M
f(x)dµ(x),

and in particular it vanishes at t = 0 because

Ekϕ+ψ

[∑
i

fk(Xi)

]
= NkEkϕ

[∑
i

f(Xi)

B(kϕ,µ)(Xi, Xi)

]
= Nk

∫
M
f(x)dµ(x).

We also have

d2Fk(t)

dt2
= Varkϕ+ψ+tuk [Ξk]

= N
1−d
d

k

1

2

∫∫
M2

(fk(x)− fk(y))
2|B(kϕ+ψ+tuk,µ)(x, y)|

2
kϕ+ψ+tuk

dµ⊗2(x, y)

On the one hand, we know by Proposition 4.6 that the sequence (fk) converges uniformly
to fϕeq, which is Lipschitz continuous. On the other hand, we also have the uniform

convergence of (uk). If d = 1, then N
1−d
d

k = 1 and the uniform limit is fϕeq, otherwise the
uniform limit is 0. In any case, we can apply Theorem 4.7 and get

lim
k→∞

d2Fk(t)

dt2
= ∥dfϕeq∥2ddcϕ, ∀t ⩾ 0.

Now, we can rewrite Fk as

Fk(t) = Fk(0) +

∫ t

0

dFk(s)

dt
ds =

∫ t

0

(
dFk(0)

dt
+

∫ s

0

d2Fk(u)

dt2
du

)
ds.

Since Fk(0) =
dFk(0)

dt
= 0, this simplifies to

Fk(t) =

∫ t

0

∫ s

0

d2Fk(u)

dt2
duds, (44)

and dominated convergence (induced by the uniform convergence and integration on com-
pact sets) yields

lim
k→∞

Fk(t) = −
∫ t

0

∫ s

0

∥dfϕeq∥2duds = −t
2

2
∥dfeq∥2.
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Step 2: analytic continuation. As stated earlier in the proof, we know that (Fk)
is locally uniformly bounded, so that Montel’s theorem states that the family (Fk)k⩾0 is
normal. Thus, from any subsequence of the family (Fk) we can extract a subsubsequence
that converges uniformly to some holomorphic function F∞ on any compact of C; it is
in particular the case for the sequence (Fk). At that point, F∞ might depend on the
subsequence; however we know that all these limits coincide on R, according to Step 1.
From the analytic extension Theorem, we obtain that these limits also coincide on C,
hence we have the uniform convergence Fk → F∞ on all compacts subsets of C, where
F∞(t) = − t2

2
∥dfeq∥2.

Step 3: restriction to iR. If we restrict the previous convergence to the imaginary
line iR, we obtain

lim
k→∞

Ekϕ+ψ+tuk
[
eiξ

∑
i uk(Xi)

]
= exp

(
−ξ

2

2
∥dfeq∥2

)
,

and this holds for all compact subsets of iR. We recognize, in the right-hand side, the
characteristic function of a Gaussian distribution, and the convergence (43) follows.

Proof of Corollary 1.3. Let (X1, . . . , XN) be a DPP with kernel B(kϕ+ψ,µ). Its distribution
is given by

1

Nk!
| det(si(xj))|2kϕ+ψdµ⊗Nk(x1, . . . , xNk) =

1

Nk!
| det(si(xj))|2kϕe−2

∑
i ψ(xi)dµ⊗Nk(x1, . . . , xNk).

Here, (si) is an orthonormal basis of H0(M,Lk) for the inner product ⟨·, ·⟩(kϕ+ψ,µ), which
is equal to the inner product ⟨·, ·⟩(kϕ,e−2ψµ): for any sections s1, s2,

⟨s1, s2⟩(kϕ+ψ,µ) =
∫
M
⟨s1(x), s2(x)⟩kϕ+ψdµ(x)

=

∫
M
⟨s1(x), s2(x)⟩kϕe−2ψ(x)dµ(x)

= ⟨s1, s2⟩(kϕ,e−2ψµ).

Let V : M → R be a fixed continuous local weight. The result follows then from a direct
application of Theorem 1.2 for the weighted measure (kϕ, e−2ψµ) where ψ : M → R is
defined by ψ(x) = 1

2
V (x).

6 Application to the Riemann sphere

We shall illustrate our result to the simplest possible model, where computations can be
made explicit and simulations are affordable.

6.1 Complex structure and Bergman kernel

Consider the unit sphere S2 ⊂ R3; we will simultaneously see it as a submanifold of R3

and as a complex manifold of dimension 1. As a submanifold, it is defined by S2 = F−1(0),
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where F : R3 → R, (x, y, z) 7→ x2 + y2 + z2 − 1. It can be endowed with the atlas (U0, U1)
such that U0 is the sphere without the North pole (0, 0, 1) and U1 the sphere without the
South pole (0, 0,−1). The corresponding charts are given by stereographic projections:

φ0 :

{
S2 \ {(0, 0, 1)} −→ C

(x, y, z) 7−→ x+iy
1−z

, φ1 :

{
S2 \ {(0, 0,−1)} −→ C

(x, y, z) 7−→ x+iy
1+z

.

We denote by ζ the local complex coordinate given by those charts. Note that φ0 (resp.
φ1) is centered in the South pole (resp. the North pole). We will usually stick to U0 but
everything is similar in U1. If we take Z ∈ φ0(U0 ∩ U1), then

φ1 ◦ φ0(ζ) =
ζ

|ζ|2
,

which is holomorphic on C∗ = φ0(U0∩U1), and it is an involution, hence a biholomorphism.
It follows that S2 is a complex manifold of dimension 1, i.e. a Riemann surface. Note
that, as F−1(0), it is a closed subset of R3, and it is obviously bounded, therefore it is
compact. We endow this manifold with the following volume form in the local chart U0:

ω(ζ) =
idζ ∧ dζ

2π(1 + |ζ|2)2
. (45)

A quick computation shows that ∫
C
ω = 1, (46)

therefore it corresponds to a probability measure that we will denote by dvolS2 . We will
denote by dm(ζ) = i

2
dζ ∧ dζ the Lebesgue measure on C, so that

dvolS2(ζ) =
dm(ζ)

π(1 + |ζ|2)2
.

Let us consider the line bundle7 L defined as follows: for any point P = (x, y, z) ∈ S2,
the fiber LP is the line in R3 generated by P . We have the open covering (U0, U1) of S

2,
and the associated trivialization functions are

ψ0 : (P, λP ) ∈ π−1(U0) 7→ (P, λ)

and
ψ1 : (P, λP ) ∈ π−1(U1) 7→ (P, λ).

The transition function γ10 is then the identity. Let us restrict again to U0: a section of
LU0 is a function f : U0 → C that maps P to λ = f(P ), that is, a choice of a coordinate
λ in the complex line LP = CP . The restriction to U0 of a holomorphic section of L is
then a holomorphic function f : U0 → C, that we can identify to a holomorphic function
f0 : C → C via the stereographic projection f0 = f ◦ φ−1

0 . Let us endow Lk with the
metric hk given in the local coordinate ζ on U0 by

hk(s1(ζ), s2(ζ)) = f1(ζ)f2(ζ)e
−kϕ(ζ),

7It is actually equivalent to the tautological line bundle of the complex projective plane CP1.
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with a weight ϕ(ζ) = log(1 + |ζ|2) that has positive curvature:

ddcϕ(ζ) =
i

2π
∂∂ϕ(ζ) = ω(ζ).

The inner product ⟨·, ·⟩ := ⟨·, ·⟩(kϕ,dvolS2 ) is then given by

⟨s1, s2⟩ =
∫
C
f1(ζ)f2(ζ)

dm(ζ)

π(1 + |ζ|2)2+k
. (47)

An orthonormal basis of H0(S2, Lk), ⟨·, ·⟩(kϕ,dvolS2 ) is given by (sℓ)0⩽ℓ⩽k, where the sec-
tions sℓ are the spherical harmonics, given in complex stereographic coordinates in U0

by

sℓ(ζ) =
√
k + 1

√(
k

ℓ

)
ζℓ, ∀0 ⩽ ℓ ⩽ k.

In particular, we find that H0(S2, Lk) has dimension Nk = k + 1. The Bergman kernel
can be written in local coordinates

B(kϕ,dvolS2 )
(ζ, ξ) = (k + 1)e−

k
2
(ϕ(ζ)+ϕ(ξ))

k∑
ℓ=0

(
k

ℓ

)
(ζξ)ℓ = (k + 1)

(1 + ζξ)k

(1 + |ζ|2) k2 (1 + |ξ|2) k2
.

In particular, the Bergman kernel is constant on the diagonal:

B(kϕ,dvolS2 )
(ζ, ζ) = k + 1, ∀ζ ∈ C.

6.2 The spherical ensemble

Now we can describe the DPP whose kernel is Bk: it is the point process associated
to the (k + 1)-tuple of random variables on S2 whose joint distribution is given, in the
stereographic coordinate ζ on U0, by

1

(k + 1)!
| det(si−1(ζj))1⩽i,j⩽k+1|2

k+1∏
i=1

dm(ζi)

(1 + |ζi|2)k+2
.

Krishnapur (2006) proved that the spherical ensemble, defined as the distribution of the
eigenvalues of AB−1 where A and B are independent standard Gaussian complex matrices,
has joint distribution

1

ZN

∏
i<j

|ζi − ζj|2
N∏
i=1

dm(ζi)

(1 + |ζi|2)N+1
.

We see that in the case of N = Nk = k + 1, we obtain the DPP on the sphere associated
to the normalized volume form dvolS2 and the metric h with Kähler potential ϕ(ζ) =
log(1 + |ζ|2), which has a curvature everywhere positive (in particular, it means that
the bulk is the whole sphere). If we denote by (X1, . . . , Xk+1) the spherical ensemble,
Theorem 1.2 states that for any Lipschitz function f : S2 → R, the integral∫

S2
f(x)dvolS2(x) =

∫
C
f ◦ φ−1

0 (ζ)
dm(ζ)

π(1 + |ζ|2)2
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can be approximated by
k+1∑
i=1

f ◦ φ−1
0 (Xi)

Bk(Xi, Xi)
.

6.3 Numerical experiments

We shall now proceed to a comparison of our Monte Carlo method, which reduces to using
the empirical measure of the spherical ensemble as a Monte Carlo estimator, with a few
other estimators. We consider a standard Monte Carlo estimator with a i.i.d. uniform
sample, a Monte Carlo estimator based on a DPP in [−1, 1]2 mapped to the sphere, and
a randomized Quasi Monte Carlo estimator. The latter two are now introduced in more
detail, before showing the experimental results.

6.3.1 Legendre DPP

The Jacobi measure of parameters α1, β1, . . . , αd, βd > −1 is the measure on (−1, 1)d given
by

dµα,β(x1, . . . , xd) =
d∏
j=1

(1− xj)
αj(1 + xj)

βjdxj.

The corresponding orthonormal polynomials are the so-called multivariate Jacobi polyno-
mials ; see e.g. (Dunkl and Xu, 2014). It has been shown by Bardenet and Hardy (2020)
that, using a suitable ordering (pk) of these multivariate Jacobi polynomials, the projec-
tion determinantal point process with kernel

∑N
k=1 pk(x)pk(y) satisfies the assumptions of

Theorem 1.4. An interesting fact is that the integration on S2 with respect to the uniform
measure boils down to an integration on (−1, 1)2 with respect to the uniform measure,
which is actually the Jacobi measure of parameters (0, 0), as explained in the following
proposition.

Proposition 6.1. For any f : S2 → R measurable and bounded,∫
S2
f(x, y, z)dvolS2(x, y, z) =

1

4

∫
(−1,1)2

f ◦ Φ(x, y)dxdy, (48)

where Φ : [−1, 1]2 → S2 is the function defined by

Φ(x, y) = (
√
1− x2 cos(π(y + 1)),

√
1− x2 sin(π(y + 1)), x).

Proof. Let Φ1 : [0, 2π]× [0, π] → S2 be the change of variable from spherical to Cartesian
coordinates in the sphere, namely

Φ1(θ, ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ).

It is a diffeomorphism from (0, 2π)× (0, π) onto its image, whose complement is negligible
in S2 with respect to dvolS2 . Moreover,

Φ∗
1dvolS2(θ, ϕ) =

1

4π
sinϕdθdϕ.



6 APPLICATION TO THE RIEMANN SPHERE 34

Hence, for any bounded measurable function f : S2 → R,∫
S2
f(x, y, z)dvolS2(x, y, z) =

∫
Φ1((0,2π)×(0,π)

f(x, y, z)dvolS2(x, y, z)

=

∫
(0,2π)×(0,π)

f ◦ Φ1(θ, ϕ) sinϕ
dθdϕ

4π
.

We also introduce the diffeomorphism

Φ2 :

{
(0, 2π)× (0, π) → (−1, 1)2

(θ, ϕ) 7→ (cosϕ, θ
π
− 1).

The result follows from the fact that Φ = Φ1 ◦ Φ−1
2 .

We conclude with a remark that in our case, where d = 2 and α = β = 0, the
multivariate Jacobi polynomials specialize to the Legendre polynomials. To sample the
corresponding DPP, we use the classical algorithm by Hough et al. (2006), in the specific
implementation of the Python library DPPy (Gautier et al., 2019a) for multivariate Jacobi
ensembles.

6.3.2 Randomized spiral points

Following Rakhmanov et al. (1994) or Brauchart et al. (2014), given a fixed parameter
C > 0 and a fixed sample size N , the generalized spiral points are the points of the
sphere with spherical coordinates (θi, ϕi)1⩽i⩽N defined by an iterative procedure: for any
1 ⩽ i ⩽ N, set zi = 1− 2i−1

N
and

θi = arccos zi, ϕi = C
√
Nθi.

It provides a deterministic low-discrepancy family {(xi, yi, zi), 1 ⩽ i ⩽ N} of points of S2,
which can be randomized through a random (uniform) rotation R ∈ SO(3). Although
the QMC method using spiral points was studied in the aforementioned papers, we are
unaware of any theoretical estimation of the variance of the corresponding randomized
QMC. Yet we expect it to be competitive in our low-dimensional setting.

6.3.3 Results

In Figure 3, we display samples of all the models we consider. Note that all spiral points of
the sample are randomized through the same rotation, which makes them look like usual
spiral points. In the case of a Jacobi ensemble, we take a Jacobi ensemble of parameters
(0, 0) (or equivalently, a Legendre ensemble) on [−1, 1]2 mapped onto the sphere through
the diffeomorphism Φ introduced in Proposition 6.1. It corresponds to the method of
Bardenet and Hardy (2020). As expected, we see that a cluster appears in the image of
the boundary of the square [−1, 1]2.

Figure 4 displays the logarithm of each sample variance as a function of logN , across 200
independent repetitions for each model and each N . Keeping in mind that the variance
should be proportional to Nα for various values of α depending on the model, all plots
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(a) i.i.d. uniform (b) randomized spiral

(c) spherical (or Bergman) ensemble (d) Jacobi ensemble

Figure 3: Independent samples of size N = 500 from four distributions on the sphere.
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Figure 4: log variance of four integral estimators wrt. the number N of quadrature nodes.

are supposed to be linear. We consider two functions f1, f2 : R3 → R that we restrict to
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S2, and we choose them with support in

S2
+ = {(x, y, z) ∈ S2 : z ⩾ 0}

in order to avoid numerical errors that could happen in stereographic coordinates for
points which are close to the South pole (corresponding to the point at infinity). We take

f1(x, y, z) = z21z⩾0, f2(x, y, z) = |x|3/2yz1z⩾0.

Both functions are C 1 on S2
+, but f1 is actually smooth. Besides, f2 is supported in the

image of the open square (−1, 1)2 and satisfies therefore the assumptions of Bardenet
and Hardy (2020), whereas f1 is nonzero on the image of the boundary of the square.
Both functions also naturally satisfy the assumptions of the CLT for the i.i.d. Monte
Carlo method. In both cases, the variances of the estimators have the same rankings,
and the slopes are quite close to their theoretical values. It is interesting to see that
for f2, on low values of N , the estimator for the Jacobi ensemble has a slightly lower
variance than the spherical ensemble, although it decays more slowly when N grows. It
does not happen for f1, which is not surprising because it is an edge case for the method
by Bardenet and Hardy (2020). We also remark that the randomized spiral points seem
to provide an overall better performing estimator than all other methods, although there
is no theoretical result to support that, with a similar slope to the spherical ensemble.

7 Conclusion and perspectives

Building on Berman’s seminal work that led to the central limit theorem in (Berman,
2018), we showed that Bergman ensembles can lead to fast Monte Carlo integration
on compact complex manifolds, just like multivariate orthogonal polynomial ensembles
(OPEs) yield fast quadrature on compacts of the Euclidean space (Bardenet and Hardy,
2020). The take-home message is that, like OPEs, Bergman ensembles come up with a
fast central limit theorem for Monte Carlo integration that is also universal, in the sense
that the asymptotic variance of the central limit theorem is invariant to a suitable change
of the reference measure and the kernel. Unlike OPEs, however, the dimension in the rate
of convergence is now the complex dimension of the manifold, which has the important
consequence that Bergman ensembles outperform multivariate OPEs for integration in
Euclidean spaces of even real dimension. Actually, the error rate for Bergman ensembles
matches the optimal worst-case rate by Bakhvalov (1965) for functions of class C 1.

We are currently working on further experiments, to include for instance competitive
approaches such as the Dirichlet DPP of Mazoyer et al. (2020a). We also strive to include a
reasonable implementation of a Bergman ensemble on the sphere that is not the spherical
ensemble, by considering a non-uniform reference measure. We expect the performance
to be similar to the uniform case.

Future work includes the following tasks, roughly ranked by increasing difficulty. We
shall first investigate the influence of the smoothness of the integrand on the error decay,
in line with (Belhadji et al., 2019, 2020). Then, if we want to make DPPs on arbitrary
complex manifolds practical, we need to circumvent the fact that the Bergman kernel is
usually only available in the form of asymptotic estimates. We should thus investigate the
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statistical effect of working with an approximate DPP built using these estimates. Alter-
nately, it might be possible to use importance sampling with a proposal DPP for which
we know how to numerically evaluate the Bergman kernel, for instance, using the Ko-
daira embedding of a Kähler manifold in a complex projective space of higher dimension,
where the Bergman kernel is explicit. Finally, while compact complex manifolds already
include important practical settings, such as Bayesian quantum tomography, extending
the results to more general manifolds, e.g. with a boundary, would further broaden the
applicability of DPP-based Monte Carlo integration.
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