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Minimax optimal seriation in polynomial time

Yann Issartel∗ and Christophe Giraud† and Nicolas Verzelen‡

May 14, 2024

Abstract

We consider the statistical seriation problem, where the statistician seeks to recover a
hidden ordering from a noisy observation of a permuted Robinson matrix. In this paper,
we tightly characterize the minimax rate for this problem of matrix reordering when
the Robinson matrix is bi-Lipschitz, and we also provide a polynomial time algorithm
achieving this rate; thereby answering two open questions of [Giraud et al., 2021]. Our
analysis further extends to broader classes of similarity matrices.

1 Introduction

The seriation problem consists in ordering n objects from pairwise measurements. It has its
roots in archaeology, in particular for the chronological dating of graves [Robinson, 1951].
In modern data science, seriation arises in various applications, such as envelope reduction
for sparse matrices [Barnard et al., 1995], reads alignment in de novo sequencing [Garriga
et al., 2011, Recanati et al., 2017], time synchronization in distributed networks [Elson et al.,
2004, Giridhar and Kumar, 2006], or interval graph identification [Fulkerson and Gross, 1965].

1.1 Seriation problem

We are given a matrix A = [Aij ]1≤i,j≤n of noisy measurements of pairwise similarities between
n objects. In the seriation paradigm, it is assumed that there exists an unknown ordering
(i.e. a permutation) π of [n] such that, the noisy similarity Aij tends to be large when πi
is close to πj , while Aij tends to be small when πi is far from πj . This is formalized by the
following model.

Model. Similarly as in [Fogel et al., 2013, Recanati et al., 2018, Janssen and Smith, 2020,
Giraud et al., 2021, Natik and Smith, 2021], we assume that A ∈ Rn×n is symmetric with null
diagonal, and we model A as a noisy observation of an unknown permuted Robinson matrix.
More precisley, a symmetric matrix F ∈ Rn×n is Robinson (or a R-matrix), if all its rows and
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all its columns are unimodal. In other words, the entries of F decrease when moving away
from the diagonal. Formally, for any i, j ∈ [n], i < j, we have

Fik < Fjk for all k > j , and Fik > Fjk for all k < i . (1)

The observed similarity matrix A is thus a noisy version of a matrix Fπ = [Fπiπj ]1≤i,j≤n,

A = Fπ + σE , (2)

where π : [n] → [n] is an unknown permutation, and Fπ is a π-permuted version of an
unknown Robinson matrix F ∈ [0, 1]n×n with null diagonal. The scalar σ > 0 corresponds
to the noise level, and the noise matrix E ∈ Rn×n is symmetric with null diagonal, and with
lower diagonal entries distributed as independent sub-Gaussian random variables [Rigollet
and Hütter, 2023, Definition 1.2] with zero means EEij = 0 and variance proxies smaller
than 1. This sub-Gaussian assumption includes the special case of Gaussian noise, and also
Bernoulli observations which are used to model random graphs. Results in the sub-Gaussian
setting (2) will thus hold for random graph models, where the {Aij : i < j} follow independent
Bernoulli distributions with parameters Fπiπj .

Objective. In the noisy seriation problem, we want to recover the permutation π from
the matrix A in (2). In the noiseless case (σ = 0), [Atkins et al., 1998] has proved that
it is possible to efficiently reconstruct π from A by a spectral procedure. However, real-
world data are often noisy, and the observation A may not be exactly a disordered R-matrix,
hence the importance of handling the noisy case (σ > 0) [Fogel et al., 2013]. The noise
matrix σE can make it impossible to recover π exactly, and the aim is therefore to build
an estimator π̂ which recovers π up to some error. As usual in noisy seriation [Janssen and
Smith, 2020, Giraud et al., 2021, Natik and Smith, 2021], we consider the maximum ordering
error: maxi∈[n] |π̂i − πi|/n. Our goal is thus to simultaneously recover all the positions πi for
i ∈ [n]. Because of a minor lack of identifiability in the seriation problem, it is impossible to
decipher from A if the latent permutation is π or the reverse πrev(·) = π(n−·+1), and hence
it is usual to take the minimum of ordering errors against π and πrev:

Lmax(π̂, π) =

(
maxi∈[n]

|π̂i − πi|
n

)
∧
(
maxi∈[n]

|π̂i − πrev
i |

n

)
, (3)

where we used the notation a ∧ b = min{a, b} for any numbers a, b. Our objective is to build
an efficient estimator π̂ that achieves, with high probability, a small Lmax error. The optimal
rates will be non-asymptotic, and characterized as functions of the problem parameters: the
sample size n, the noise level σ, and some regularity of F (to be defined).

1.2 Main Contribution

A first idea would be to apply the spectral algorithm of Atkins et al. [Atkins et al., 1998] to
noisy data. Under strong assumptions on the matrix F , the spectral procedure turns out to
work well [Fogel et al., 2013, Giraud et al., 2021]. For instance, this is the case when the matrix
F is Toeplitz and exhibits a large spectral gap. Unfortunately, previous works [Rocha et al.,
2018, Janssen and Smith, 2020, Giraud et al., 2021, Cai and Ma, 2022, Briend et al., 2024]
suggest that the spectral procedure performs poorly beyond this specific example. Therefore,
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there is a need for new seriation algorithms that perform well even if the matrix F is not
Toeplitz.

The Robinson assumption alone may be insufficient to recover π within a small estimation
error. As an extreme example, F may be nearly flat and buried under the noise σE, thus
leaving no chance of finding π. To exclude this trivial case, [Giraud et al., 2021] strengthen
the Robinson assumption by introducing a general bi-Lipschitz assumption. It constrains the
decay of F ’s rows and columns, so that the variations |Fik − Fjk| are bounded from above
and below by |i− j|/n up to some constant factors

α
|i− j|
n

≤ |Fik − Fjk| ≤ β
|i− j|
n

for some k. (4)

The proper definition of bi-Lipschitz matrices is given in Assumption 2.1, page 5. General
models like (4) offer flexibility to fit data, but they are often a roadblock to prove sharp theo-
retical results. [Giraud et al., 2021] prove that the optimal rate for the Lmax loss (3) is of the
order of

√
log(n)/n. Unfortunately, their result is mainly theoretical, as the time-complexity

of their algorithm is super polynomial. In addition, they do not provide dependencies in
the problem parameters (α, β, σ); for example, one would expect Lmax(π̂, π) to decrease with
σ, according to the intuition that the seriation problem becomes easier when the noise level
σ → 0 goes to zero. This left open two important questions of different nature: Does there
exist efficient (i.e. polynomial-time) algorithms converging at the optimal rate

√
log(n)/n?

Is it possible to prove sharp rates with explicit interpretable dependencies in the problem
constants (α, β, σ)? We answer to these two questions for bi-Lipschitz Robinson matrices by:

1. Proving that the optimal minimax rate for recovering π is Lmax(π̂, π) = O

(
σ
α

√
log(n)

n

)
;

2. Providing a polynomial-time algorithm that achieves this rate.

Our new procedure, Seriation by Aggregation of Local Bisections (SALB), is based on the
following general idea. To recover the permutation π, we partially reconstruct the comparison

matrix H(π) ∈ {−1, 0, 1}n×n defined by H
(π)
ij = sign(πi − πj) = 1 − 21πi<πj for all i, j ∈ [n].

In order to reconstruct the H
(π)
ij ’s, we will start by estimating a distance matrix D∗ such that

D∗
ij stands for a measure of dissimilarity between i and j in [n]. Then, we will construct from

this estimator of D∗ a two-step estimator of Hπ. The time complexity of SALB is polynomial
in the sample size n.

For the performance analysis of SALB, we first consider the assumption (4) and we prove
that, up to a numerical factor, the optimal maximum error is (σ/α)

√
log(n)/n. The ratio

(σ/α) between the noise level σ and the minimal slope α of the bi-Lipschitz matrix F gives
a simple and explicit dependency in the problem parameters. In a second part of the paper,
we extend the analysis of SALB to more general matrices, namely (i) matrices F with only
average constraints on their columns, and (ii) latent bi-Lipschitz matrices which are direct
generalizations of bi-Lipschitz matrices to latent space models. We will see that the general
matrices (i-ii) have desired features that bi-Lipschitz matrices do not possess. For example,
the matrices (i) allow quasi null similarities (Fij ≈ 0) for objects i, j that are far apart from
each other in the ordering π; and the matrices (ii) allow the matrix F to have heterogeneous
columns, thus offering more flexibility to fit the data in applications.
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1.3 Related literature

There is a wide range of learning problems where the data is disordered by an unknown
permutation; popular examples includes ranking [Braverman and Mossel, 2009, Mao et al.,
2018b, Chen et al., 2019, Chatterjee and Mukherjee, 2019], feature matching [Collier and
Dalalyan, 2016, Galstyan et al., 2022], matrix estimation under shape constraints [Flammarion
et al., 2019, Chatterjee and Mukherjee, 2019, Mao et al., 2018a] and, closer to our paper,
seriation in R-matrices [Atkins et al., 1998, Fogel et al., 2013, Fogel et al., 2014, Recanati
et al., 2018], [Janssen and Smith, 2020, Giraud et al., 2021, Cai and Ma, 2022]. However,
each problem has its own setting and goal, and hence the solutions are not always related.

Contrasting with the aforementioned literature on matrix estimation, permutation recovery
in seriation has received little attention from statisticians. In particular, most existing works
in the seriation problem have focused on the noiseless case (σ = 0). Efficient algorithms have
been proposed using spectral methods [Atkins et al., 1998] and convex optimization [Fogel
et al., 2013]. Exact recovery have been proved for R-matrices [Atkins et al., 1998] and toroidal
R-matrices [Recanati et al., 2018] using spectral algorithms. As said earlier, such spectral
algorithms are unfortunately not robust to noise perturbations.

Noisy seriation has recently gained interest [Janssen and Smith, 2020, Giraud et al., 2021,
Natik and Smith, 2021, Cai and Ma, 2022]. Efficient algorithms are analyzed inside the set of
Toeplitz R-matrices (a.k.a monotone Toeplitz matrices, see Example 1 in appendix A), which
are matrices defined from a single vector. Some of the aforementioned papers may focus on a
latent space model instead of a matrix model; in this case Toeplitz R-matrices are equivalent
to a geometric latent space model (Example 3 in appendix A). Spectral algorithms [Giraud
et al., 2021, Natik and Smith, 2021] leverage the special connection between the spectrum of
Toeplitz matrices and the latent ordering π; see [Recanati et al., 2018] for a short presentation
of this connection. The iterative sorting algorithm [Cai and Ma, 2022] exploits the correlation
between the position πi and the score Si =

∑
ℓAiℓ. Unfortunately, both arguments (the

spectral property and the score correlation) seem to have a limited scope: they are useful
inside the set of Toeplitz matrices, but there is no clear reason why they will still work
beyond these matrices. In the particular case of network data A ∈ {0, 1}n×n, the authors in
[Janssen and Smith, 2020] study the popular graphon model and propose an algorithm based
on a thresholded version of the squared adjacency matrix A(2). Their assumptions include
a Toeplitz matrix (called “uniformly embedded graphon”) and a technical condition on the
square of the graphon, to ensure that the thresholded squared adjacency matrix used in their
algorithm is close to a Robinson matrix.

By contrast, we will not assume that the matrix F is Toeplitz but is rather bi-Lipschitz
to analyze the performance of our efficient procedure – SALB. As discussed earlier, the bi-
Lipschitz assumption has already been considered in [Giraud et al., 2021], but for this (whole)
class of matrices the authors only provide a non-efficient algorithm. Also, our objective of
controlling the maximum error is the same as in [Janssen and Smith, 2020, Giraud et al., 2021,
Natik and Smith, 2021] but is fundamentally different from that of exact matrix reordering in
[Cai and Ma, 2022]. For a more detailed comparison with [Giraud et al., 2021, Cai and Ma,
2022], we refer to the discussion below Theorem 2.1. For comparisons with results in latent
space settings [Janssen and Smith, 2020, Giraud et al., 2021, Natik and Smith, 2021], see the
discussion below Theorem 5.1. We emphasize that seriation in matrix settings and in latent
space models are closely related. In particular, Theorem 2.1 in the matrix setting is just a
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particular case of the Theorem 5.1 in the latent space setting.

Organization. The main results for bi-Lipschitz matrices are stated in Section 2, whereas
our polynomial-time procedure SALB is described in Section 3. Sections 4 and 5 are dedicated
to extensions to more general models. A conclusion is in section 6. Proofs are postponed to
the appendix.

Notation: We write [n] for the set {1, . . . , n}. Given a set G, #G stands for its cardinality.
For short, we write {k : property P(k) holds} for {k ∈ [n] : property P(k) holds} . We write
G \ G′ the set {k : k ∈ G and k /∈ G′}. Given an n × n matrix F and a permutation π :
[n]→ [n], the permuted matrix Fπ has coefficients Fπiπj , i, j ∈ [n]. We write ∥Fj∥22 =

∑
i F

2
ij

the square of the l2-norm of the j-th column Fj . The maximum of these vector norms is
denoted by |F |2,∞ = maxj∈[n]∥Fj∥2. We write a∨ b for max(a, b) and a∧ b for min(a, b). The
notation a ≍ b means that there exist positive constants c and C such that c b ≤ a ≤ C b. If
the constants c and C depend on some parameters α, β, we use the symbol ≍α,β instead.

2 Result for bi-Lipschitz matrices

2.1 Seriation error

In this section, we focus on the subclass of Robinson matrices (1) that satisfy a bi-Lipschitz
type condition.

Assumption 2.1 (bi-Lipschitz matrix). For any constants 0 < α ≤ β, let BL[α, β] be the
collection of matrices F ∈ Rn×n that satisfy

|Fik − Fjk| ≤ β
|i− j|
n

for all (i, j, k) ; (5)

Fik − Fjk ≥ α
|i− j|
n

for all k < i < j ; (6)

Fjk − Fik ≥ α
|i− j|
n

for all i < j < k .

In the next theorem, we estimate the underlying permutation π in (2), using the polynomial-
time algorithm SALB described in the next section. To simplify the statement of the next
result, we set the tuning parameters (δ1, δ2, δ3) in Algorithm 1 to δ1 = n−1/5, δ2 = log(n)δ1,
and δ3 = log(n)δ2.

Theorem 2.1. For α > 0, β > 0, σ > 0, there exists a positive constant Cα,β,σ only depending
on (α, β, σ) and a numerical constant C > 0 such that the following holds for any n ≥ Cα,β,σ

and for any F ∈ BL[α, β]. With probability higher than 1−9/n2, the permutation π̂o computed
by SALB satisfies

Lmax(π̂o, π) ≤ C
σ

α

√
log(n)

n
. (7)

In other words, the polynomial-time algorithm SALB estimates the position of each object

up to an error of the order σ
α

√
log(n)

n . In particular, the error becomes smaller for larger α,
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larger n, and smaller σ. We prove in the next subsection, that the rate (7) is minimax optimal
on the class BL[α, β].

Theorem 2.1 above is stated in a setting where α, β, and σ are considered as constants
whereas n is large. In fact, SALB achieves the convergence rate (7) even in settings where
the quantities α, β, and σ depend on n, but the choices of the tuning parameters δ1, δ2, δ3
are more intricate. We refer to Theorem C.3 in appendix for a general bound.

To the best of our knowledge, π̂o is the first estimator to both have a polynomial-time com-
plexity and a seriation rate

√
log(n)/n over bi-Lipschitz Robinson matrices. In addition,

the bound (7) captures optimal dependencies in the problem parameters (α, σ), which is a
significant improvement over [Giraud et al., 2021]. In particular, we can derive from (7) that
exact recovery (i.e. Lmax(π̂o, π) < 1/n) is possible on BL[α, β] as soon as α ≳ σ

√
n log(n),

where ≳ hides a numerical constant.

Exact recovery of ordering has been considered recently by [Cai and Ma, 2022] for symmetric
monotone Toeplitz matrices (Example 1 in appendix A). Introducing the signal-to-noise ratio
m(F) = minF∈F ;π,π′∈P ∥Fπ − Fπ′∥F , they prove that for some classes F of (Toeplitz) signal

matrices F , a minimal signal-to-noise ratio m(F) ≳ σ
√
n log(n) is required for achieving

exact recovery, regardless of computational considerations. The situation for signal matrices
F in BL[α, β] is much more favorable. Indeed, for any 0 < α ≤ 1 and α ≤ β, considering
F0 ∈ BL[α, β] defined by

(F0)ij = 1− α
|i− j|
n

, for all i, j ∈ [n] , (8)

we observe that m (BL[α, β]) ≤ m ({F0}) ≤ α/
√
n; so Theorem 2.1 ensures that a signal-

to-noise ratio m (BL[α, β]) ≳ σ
√

log(n) is sufficient for exact recovery in polynomial-time in
BL[α, β].

2.2 Optimality

In this section, we show the optimality of the rate (σ/α)
√
log(n)/n established in (7). Given

the generality of the bi-Lipschitz Assumption 2.1, one might expect that, when the data
is actually drawn from a simpler parametric model, it could be possible to come up with
another algorithm with faster rates of seriation. Surprisingly, this intuition turns out to be
false: imposing the simpler parametric model (8) does not lead to faster rates. The following
result states that, even if the statistician knows in advance that F = F0, she cannot estimate
π at a faster rate than (7).

In the next theorem, for any permutation π, P(F0,π) refers to the distribution of the data

A = (F0)π + σE, (9)

with F0 defined by (8), and for independent Gaussian random variables Eij ∼ N(0, 1), i <
j ∈ [n].

Theorem 2.2. For α > 0 and σ > 0, there exists a positive constant Cα,σ and a numerical
positive constant c such that, for all n ≥ Cα,σ, it holds that

inf
π̂

sup
π

P(F0,π)

[
Lmax(π̂, π) ≥ c

σ

α

√
log(n)

n

]
≥ 1

2
,
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where the infimum is taken over all estimators π̂, the supremum over all permutations π, and
P(F0,π) is defined in (9).

Thus, for n large enough, any estimator π̂ must make an error of the order at least (σ/α)
√

log(n)/n
over some permutation π, with probability at least 1/2. The proof is provided in Appendix P.

3 Description of SALB

In this section, we describe the main ideas of our procedure Seriation by Aggregation of Local
Bisections (SALB) – see Algorithm 1. For recovering the permutation π, the general idea is

to partially reconstruct the comparison matrix H(π) ∈ {−1, 0, 1}n×n defined by H
(π)
ii = 0 and

H
(π)
ij = sign(πi − πj) = 1− 21πi<πj for all i, j ∈ [n], i ̸= j . (10)

The matrix H(π) is only identifiable up to a general multiplicative factor ±1, but this is suffi-

cient for our purpose. In order to reconstruct the H
(π)
ij ’s, we start by estimating a similarity

distance matrix D∗ such that D∗
ij stands for a measure of dissimilarity between i and j in [n]

–see (11) for a definition. Algorithm 1 is mainly organized in four steps. First, we estimate
the distance matrix D∗. Second, we use the distance estimate D̂ to perform local bisections,
and by combining these local bisections, we are able to build a first estimator Ĥ1 of the
comparison matrix H(π). Third, we build upon this estimator Ĥ1 to refine the estimation of
H(π); we thereby obtain Ĥ2. Finally, we use in Lines 4–5 a simple method to infer π from our
estimator Ĥ1 + Ĥ2 of H(π): Since π corresponds to the permutation that ranks the objects
increasingly according to the values of the row sums of H(π), we simply compute the row
sums S of Ĥ1+ Ĥ2 and we build π̂o by ordering the values of S. In the following subsections,
we describe the three main steps (1-2-3).

Algorithm 1 Seriation by Aggregation of Local Bisections (SALB)

Require: (A, δ1, δ2, δ3, σ)
Ensure: π̂o ∈ [n]n an estimator of π.
1: D̂ = DistanceEstimation(A) {see Algo. 4}
2: Ĥ1 = AgregLocalBisection(D̂, δ1, δ2, δ3) {see Algo. 2}
3: Ĥ2 = LocalRefineWS(Ĥ1, D̂, A, σ, δ1, δ2, δ3) {see Algo. 8}
4: Compute the scores S = [Ĥ1 + Ĥ2]1
5: Build any permutation π̂o by increasing values of S.

3.1 Distance estimation

Define the similarity distance between objects i and j of [n] by

D∗
ij =

(
1

n

n∑
ℓ=1

[
Fπiℓ − Fπjℓ

]2)1/2

, (11)

which is the counterpart of the neighborhood distance for graphon analysis – see [Lovász,
2012]. Intuitively, D∗

ij is expected to be small when πi and πj are close, while D
∗
ij is expected

to be large when πi and πj are distant.
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If we knew in advance the variances of the Eij ’s, we could simply estimate (D∗)2ij by the

unbiased estimator n−1
[
∥Ai −Aj∥2 − (

∑n
k=1 var(Eik) + var(Ejk))

]
. However, in most situa-

tions (e.g. binary data), the variances of noise terms are unknown and it is not possible to
craft an unbiased estimator of D∗

ij or (D
∗)2ij . The problem of estimating D∗

ij has been studied

in [Issartel, 2021], on which we rely to produce the estimator D̂ (Algorithm 4).

The precise definition of the procedure DistanceEstimation to compute D̂ is postponed
to appendix B. We only give the general idea here. The quadratic form n(D∗

ij)
2 can be

decomposed as
∑n

ℓ=1 F
2
πiℓ

+
∑n

ℓ=1 F
2
πjℓ
− 2

∑n
ℓ=1 FπjℓFπiℓ. An unbiased estimator of the cross

term is simply
∑n

ℓ=1AjℓAiℓ. However, the quadratic term
∑n

ℓ=1 F
2
πiℓ

is more challenging to
handle. In DistanceEstimation, we estimate this quantity by a cross-term

∑n
ℓ=1AiℓAm̂iℓ,

where the data-driven object m̂i is chosen in such a way that D∗
im̂i

is as small as possible.
Since D∗

im̂i
is unknown (and still to be estimated), we rely on a specific procedure to choose

m̂i –see [Issartel, 2021] or appendix B.1.

Our interest in the similarity distance matrix comes from the fact that this distance D∗
ij is

somewhat related to the distance |πi − πj |. More precisely, we hope that D∗
ij is small when

πi is close to πj and that D∗
ij is large when πi is far from πj . Unfortunately, this is not true

for general Robinson matrices F . However, if we make additional assumptions on F , such as
Assumption 2.1, we are able to establish some formal connection between the two distances
–see Lemma C.1 in appendix.

3.2 Rough estimation of H(π) by aggregation of local bisections

In the second step AgregLocalBisection of SALB, we build a rough estimator of H(π) from
the estimator D̂ of the distance matrix. The procedure summarized in Algorithm 2 works as

follows. For each object i ∈ [n], we first build two subsets G
(1)
i and G

(2)
i of [n] such that, with

respect to the oracle ordering π, all objects in G
(1)
i are on one side of i and all objects of G

(2)
i

are on the other side of i. This is the purpose of the corresponding function LocalBisection

– see Line 2 of Algorithm 2 – which will be described after Algorithm 2. Then, we align all

sets (G
(1)
i , G

(2)
i ) in a coherent manner by deciding which ones are on the left of i, and which

ones are on the right of i. The corresponding function Orientation – Line 4 of Algorithm 2 –
is postponed to appendix B.1 (pseudo code in Algorithm 6). This common orientation allows
us to obtain the collection of subsets (L,R) := (Li, Ri)i∈[n] of nodes that are left (resp. right)
of i. Finally, in Lines 5–12, we simply build upon the (Li, Ri)’s to define a comparison matrix
H. We set Hij = −1 if i ∈ Lj or j ∈ Ri, and set Hij = 1 if i ∈ Rj or j ∈ Li. If none of these
conditions is met, we simply keep Hij = 0.
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Algorithm 2 AgregLocalBisection

Require: (D, δ1, δ2, δ3)
Ensure: H ∈ {−1, 0, 1}n×n

1: for i = 1, . . . , n do

2: (G
(1)
i , G

(2)
i ) =LocalBisection(i,D, δ1, δ2, δ3)

3: end for
4: (L,R) = Orientation(G

(1)
1 , G

(2)
1 , . . . , G

(1)
n , G

(2)
n )

5: Set H = 0n×n

6: for i, j = 1, . . . , n do
7: if i ∈ Lj or j ∈ Ri then
8: Hij = −1
9: else if i ∈ Rj or j ∈ Li then

10: Hij = 1
11: end if
12: end for

Let us describe how LocalBisection (Line 2) builds the subset G
(1)
i and G

(2)
i from a distance

matrix estimate D. For i ∈ [n] and δ = (δ1, δ2, δ3), define the graph Gi,δ of node set [n] \ {i}
as follows:

Put an edge between any nodes k and l if, Dkl ≤ δ1 and Dik ∨Dil ≥ δ2 . (12)

Then, the result (G
(1)
i , G

(2)
i ) =LocalBisection(i,D, δ1, δ2, δ3) is any two largest connected

components of Gi,δ that contain at least a node k such that Dik ≥ δ3. By convention, G
(1)
i or

G
(2)
i can be empty sets if there exist less than two such connected components. The pseudo

code of LocalBisection is written in Algortihm 5.

Let us explain the rationale behind the construction of (G
(1)
i , G

(2)
i ). Recall that, for a bi-

Lipschitz matrix F , the distance D∗
ij behaves analogously to |πi − πj | (see Lemma C.1 in

appendix) and assume, for the purpose of this discussion, that we have perfectly estimated
D∗ so that D = D∗ above. Then, for suitable tuning parameters δ1 and δ2, any node (k, l)
such that |πk − πl| = 1 and |πk − πi| is large will be connected in Gi,δ by (12) since this
implies that Dkl is small and Dik is large. Besides, any two nodes (k, l) which are not on the
same side of i with respect to π cannot be connected. (Indeed, either |πk − πl| is large but
this enforces that Dkl is large which prohibits k and l to be connected in the construction
(12), or |πk − πl| is small but this enforces that Dik ∨Dil is small which prevents again k and
l to be connected in (12).) In conclusion, we expect the graph Gi,δ to have two connected
components which contain, respectively, all nodes that are far from i on the left of i (w.r.t
π), and all nodes that are far from i on the right of i.

Discussion of the tuning parameters δ = (δ1, δ2, δ3). For the purpose of this discussion,
let us assume that F is bi-Lipschitz as in the previous section, and that the quantities α,
β, and σ are considered as fixed positive constants. In this case, we state in Lemma C.1
that nD∗

kl/|πk − πl| ∈ (α/2, β) as long as k and l are close enough, namely |πk − πl| < n/4 or

D∗
kl < 1/4. Besides, Lemma D.1 in appendix implies that, with high probability, |D∗

kl−D̂kl| is
at most of the order (

√
log(n)/n)1/4 uniformly for all k, l close enough. Thus, when they are

small enough, the distances D̂kl and D∗
kl and |πk−πl|/n are equivalent, up to constant factors
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α, β and to additive error of the order (
√
log(n)/n)1/4. Going back to the construction (12) of

the graph Gi,δ, we first need to choose the tuning parameter δ1, in such a way that, consecutive
points in the ordering π are connected in Gi,δ, that is for k and l satisfying |πk − πl| = 1, we

have D̂kl ≤ δ1 with high probability. As a consequence, taking δ1 = n−1/5, that is slightly
larger that (

√
log(n)/n)1/4, is sufficient for our purpose. Then, we choose δ2 in order to

preclude the existence of any edge between any two nodes k and l that lie on both sides of i.
If we set δ2 = log(n)δ1 = log(n)n−1/5, then D̂ij ∨ D̂ik ≥ δ2 implies that |πk − πi| ∨ |πl − πi|
is at least of the order of nδ2. As a consequence, if k and l are on two different sides of i
(w.r.t. π), this implies that |πk − πl| is at least of the order nδ2 and we cannot have D̂kl

smaller than δ1, hence an absence of edge between k and l in Gi,δ by construction (12). For
this choice of δ2, each connected component of Gi,δ is thus made of nodes located on only one
side of i (w.r.t. π). Finally, we can fix δ3 = log2(n)δ1 ≫ δ2, so that the two chosen connected

components (G
(1)
i , G

(2)
i ) =LocalBisection(i,D, δ1, δ2, δ3) contain all the points l such that

|πl − πi| is at least of the order of δ3 (up to multiplicative constants depending on α, β, σ).
These guarantees are formalized in appendix D.3.1.

3.3 Local refinement of the estimation of H(π)

In this step, we build a second matrix Ĥ2 whose support does not intersect that of Ĥ1. The
matrix Ĥ1 built in the previous step possibly contains a lot of zero entries. The purpose of this
local refinement is to compare all those objects i and j such that (Ĥ1)ij = 0. For each such
(i, j), the broad idea is to test the relative position of i and j by relying on the observation A
and our present knowledge Ĥ1 of the ordering. As there are complex dependencies between
Ĥ1 and A, the actual procedure LocalRefineWS involves sample splitting scheme. For the
sake of clarity, we describe the simpler procedure LocalRefine in Algorithm 3 without any
sample splitting and postpone LocalRefineWS to the appendix H.

Let us explain how we compare the relative position of i and j. Define L∗
ij (resp. R∗

i,j)
as the set of objects k such that πk ≤ πi ∧ πj (resp. πk ≥ πi ∨ πj). If πi < πj , then we
deduce from the Robinson property (1) of the matrix F that

∑
k∈L∗

ij
Fπiπk

−Fπjπk
is positive

when L∗
ij ̸= ∅. Similarly, we also have that

∑
k∈R∗

ij
Fπjπk

− Fπiπk
is positive. Obviously,

we do not know L∗
ij and R∗

ij , but we can estimate them thanks to Ĥ1. More specifically,
given any comparison matrix H1, we define Lij = {k, (H1)ki = −1 and (H1)kj = −1} and
Rij = {k, (H1)ki = 1 and (H1)kj = 1}. On the event where H1 does not make any false
comparison, Lij is a subset1 of L∗

ij and Rij is a subset of R∗
ij . Then, we consider the statistics

lij =
∑

k∈Lij
Aik − Ajk and rij =

∑
k∈Rij

Aik − Ajk. If |lij | ∨ |rij | < 5σ
√

n log(n), then we

cannot draw a statistically significant conclusion. Otherwise, when either |lij | or |rij | is higher
than 5σ

√
n log(n), we set Hij to −1 or 1 depending on the sign lij or rij – see Lines 8 and

11 in Algorithm 3.

1Actually, as π is not identifiable, we can also have Lij is a subset of R∗
ij and Rij is a subset of L∗

ij but this
is not an issue for our purpose.
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Algorithm 3 LocalRefine

Require: (H1, A, σ)
Ensure: H ∈ {−1, 0, 1}n×n

1: Initiate H = 0n×n

2: for (1 ≤ i < j ≤ n) s.t. (H1)ij = 0 do
3: Lij = {k, (H1)ki = −1 and (H1)kj = −1}
4: Rij = {k, (H1)ki = 1 and (H1)kj = 1}
5: lij =

∑
k∈Lij

Aik −Ajk

6: rij =
∑

k∈Rij
Aik −Ajk

7: if |lij | ≥ 5σ
√

n log(n) then
8: Hij = −sign(lij) and Hji = −Hij

9: else
10: if |rij | ≥ 5σ

√
n log(n) then

11: Hij = sign(rij) and Hji = −Hij

12: end if
13: end if
14: end for

4 Beyond bi-Lipschitz matrices via average type constraints

Bi-Lipschitz matrices (Assumption 2.1) offer a simple model that facilitates exposition, but
that may be quite restrictive in applications. We therefore present more realistic assumptions
in this section, which are at the core of our analysis of SALB. They seem (to us) somewhat
natural and minimal assumptions for SALB’s performance, and their presentation in sec-
tion 4.1 makes our results more transparent. We also illustrate in section 4.2 the flexibility
of these new assumptions compared to bi-Lipschitz matrices.

4.1 Seriation error under average type assumptions on F

To prove good performances for the distance based method − AgregLocalBisection (Algo-
rithm 2) − we need the input D = [Dij ] to be informative on the distances |πi − πj | in some
way. Specifically, we will need Dij to be locally equivalent to |πi − πj |/n as in (13).

Assumption 4.1 (Local Distance Equivalence). For any constants 0 < α̃ ≤ β̃, 0 < r and
0 ≤ ω, let LDE [α̃, β̃, ω, r] be the collection of symmetric matrices D ∈ Rn×n that satisfy

α̃
|πi − πj |

n
− ω ≤ Dij ≤ β̃

|πi − πj |
n

+ ω (13)

for all i, j ∈ [n] such that
|πi−πj |

n ∧Dij ≤ r.

Thus, a matrixD satisfies Assumption 4.1 if its entriesDij are lower and upper bounded by the
distances |πi−πj |/n, up to factors α̃ and β̃, and to an additive error ω. This condition is local
as it only concerns the pairs i, j within a distance r. Assumption 4.1 is therefore quite general,
since it enforces no constraints for medium and large distances, and it permits bounded
distortions of small distances (by α̃ and β̃), and even gives some slack (by ±ω). In contrast
with usual properties of distances, we assume no form of transitivity, e.g. πi − πk ≥ πj − πk
=⇒ Dik ≥ Djk, and no form of triangular inequality.
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While Assumption 4.1 is at the core of our analysis of AgregLocalBisection for the input
D = D̂, we need another type of assumption for proving good performances for LocalRefine
and LocalRefineWS. To analyze the statistical test in Algorithm 3, we will use Assumption 4.2
which ensures that, for any (close) indices i and j, there is a separation between the extreme
similarities of i and that of j (i.e. between the sums of their pairwise similarities Fiℓ and Fjℓ

for ℓ’s running over the left or right sets of i, j).

Assumption 4.2 (Separated Cumulative Similarities). For any constants 0 < γ, r′, r′′, let
SCA[γ, r′, r′′] be the collection of matrices that satisfy, for all i < j and |i− j| ≤ r′n,∑

ℓ: 1≤ℓ<i−r′′n

Fiℓ − Fjℓ ≥ γ|i− j| if
i

n
≥ 1− r′

2
, (14)

∑
ℓ: j+r′′n<ℓ≤n

Fjℓ − Fiℓ ≥ γ|i− j| if
j

n
≤ 1 + r′

2
.

The constant γ represents the cumulative signal when comparing the sum of similarities of
i < j over their left set {ℓ : ℓ < i} or right set {ℓ : j < ℓ}. (For technical reasons,
however, Assumption 4.2 involves instead the left and right subsets reduced by a length
r′′.) Assumption 4.2 is local as it only concerns the pairs i, j at distance less than r′. This is
sufficient for our purpose, since LocalRefineWS only deals with the pairs i, j left undetermined
by AgregLocalBisection and, as will be proved later, such i, j are within a small distance
from each other (with high probability).

Let us give a justification for Assumption 4.2. To be able to compare i, j, there should be at
least one set in [n] on which the similarities FiS and FjS of i, j are different; otherwise, the

estimation of the comparison H
(π)
ij is hopeless. Then, since F has a Robinson structure (1),

a natural choice of discriminating set for i < j is either the left set {ℓ : ℓ < i}, or the right
set {ℓ : j < ℓ} of i and j.

Theorem 4.1 ensures that our estimator π̂o still achieves the same
√
log(n)/n rate, when the

distance matrixD∗ in (11) belongs to LDE [α̃, β̃, 0, r] and when F ∈ SCA[γ, r′, r′′]. We simplify
the statement of the next result by setting the tuning parameters (δ1, δ2, δ3) of Algorithm 1
to δ1 = n−1/5, δ2 = log(n)δ1, and δ3 = log(n)δ2. Theorem 4.1 is proved in Appendix C.6.

Theorem 4.1. For α̃, β̃, r, σ, γ, r′, r′′ > 0, there exists a positive constant Cα̃,β̃,r,σ,r′,r′′ only

depending on (α̃, β̃, r, σ, r′, r′′) and a numerical constant C > 0 such that the following holds
for any n ≥ Cα̃,β̃,r,σ,r′,r′′ and for any matrix F ∈ SCA[γ, r′, r′′] such that D∗ ∈ LDE [α̃, β̃, 0, r].
With probability higher than 1− 9/n2, the permutation π̂o computed by SALB satisfies

Lmax(π̂o, π) ≤ C
σ

γ

√
log(n)

n
. (15)

In other words, the polynomial-time algorithm SALB estimates the position of each object

up to an error of the order σ
γ

√
log(n)

n . In particular, one sees that the error becomes smaller
for larger γ. Theorem 4.1 is stated for simplicity in a setting where α, β, and σ are constants
and n is relatively large, but SALB achieves the convergence rate (15) even in settings where
the quantities α, β, and σ depend on n. We refer to Theorem C.4 for a general bound.
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In comparison with Theorem 2.1, the bound (15) involves the constant γ of Assumption 4.2
instead of the constant α of Assumption 2.1. In fact, Theorem 2.1 is particular case of
Theorem 4.1, since the assumptions of the latter hold for any bi-Lipschitz F . More precisely,
if F ∈ BL[α, β], then F ∈ SCA[γ, r′, r′′] for γ = α/4, and D∗ ∈ LDE [α/2, β, 0, r]; see
Lemma C.1 and C.2 for details.

Remark 4.1. Although Assumptions 4.1 and 4.2 are distinct hypotheses, they are not independent.

As said above, if F ∈ BL[α, β], then Assumption 4.1 and 4.2 hold for α̃ = α/2 and γ = α/4, so we

have the strong relation α̃ = γ/2 between Assumption 4.1 and 4.2.

4.2 Motivation for average type Assumption 4.1 and 4.2

The merits of the bi-Lipschitz Assumption 2.1 was to offer a simple model, but this assumption
is sometimes too restrictive. In particular, it enforces “long range similarities” which are
unrealistic in applications where distant objects have a small similarity (see next paragraph).
Besides being more transparent of our analysis, Assumption 4.1 and 4.2 alleviate this long
range issue; see the last paragraph for an example. This relaxation comes from the following:
the bi-Lipschitz assumption is an entry-wise constraint on the matrix F , while Assumption 4.1
and 4.2 are only average constraints on F ’s columns (respectively an l2 and l1 type average
constraints). Thus, Assumption 4.1 and 4.2 offer more flexibility to fit data in applications.

Long-range affinity: Taking objects i, j, k that are far from each other, say i = 1, j = n/2
and k = n, Assumption 2.1 enforces the variation n|F1n − Fn

2
n| ≍α,β n. Such a long-range

constraint is not satisfied in applications where the pairwise similarity between distant objects
is nearly zero (e.g. F1n = Fn

2
n = 0), and only close objects have significant similarities.

Example of a Robinson matrix F that is not bi-Lipschitz, but satisfies Assump-
tion 4.1 and 4.2: Given some k ∈ [n/2], let F such that Fij = a|i−j| where ai = [(k−i)∨0]/n
for i = 0, . . . , n − 1. Then, F is a monotone Toeplitz matrix, which is a standard model of
Robinson matrix (Example 1 in appendix A). Obviously, F violates the long-range affinity
of the bi-Lipschitz Assumption 2.1. But, one can readily check that Assumption 4.1 and 4.2
are satisfied, that is there exist positive constants α̃, β̃, r and γ, r, r′′ such that the distance
matrix D∗ in (11) belongs to the set LDE [α̃, β̃, 0, r], and F is in SCA[γ, r′, r′′]. Besides, when
k is proportional to n, say k = n/2, one can see that α̃, β̃ and γ are numerical constants.

5 Beyond bi-Lipschitz matrices via latent space formulation

We relax the bi-Lipschitz assumption in two different ways: (i) by removing the entry-wise
constraints and replacing them with average constraints on the matrix F ; we did this in
section 4. (ii) by removing the homogeneity assumption that all F ’s columns have a similar
shape, in particular that consecutive columns Fi and Fi+1 are almost identical. We are about
to explore this second way, using a latent space generalization of the former bi-Lipschitz
assumption. Our result is stated in section 5.1, and the motivation for this generalization is
discussed in section 5.2.
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5.1 Seriation error on latent bi-Lipschitz matrices

We replace the former bi-Lipschitz assumption by Assumption 5.1, which consists in replacing
the regular grid {i/n}i∈[n] by general (unknown) points {yi}i∈[n] of [0, 1].

Assumption 5.1 (Latent bi-Lipschitz Matrix). For any points y1 < . . . < yn in [0, 1], and
constants 0 < α ≤ β, let LBL[(yi), α, β] be the collection of matrices F ∈ Rn×n that satisfy

|Fik − Fjk| ≤ β|yi − yj | for all (i, j, k) ; (16)

Fik − Fjk ≥ α|yi − yj | for all k < i < j ; (17)

Fjk − Fik ≥ α|yi − yj | for all i < j < k .

If the unknown points yi are completely arbitrary in [0, 1], the seriation problem is not well
defined – see Remark 5.1.2. For this purpose, we consider the additional conditions (18-19),
which ensure that the y1, . . . , yn are nearly well spread in [0, 1]. Compared to the regular grid
(yi = i/n), the conditions (18-19) still give significant liberty to the yi’s – see section 5.2 for
a discusion.

Unclustered spreading: Let η > 0 such that

sup
y∈[0,1]

min
i∈[n]

|y − yi| ≤ η . (18)

This means that, for any interval I ⊂ [0, 1] of length η, there is (at least) one yi ∈ I.

Balanced spreading: Let η̃ ∈ (0, 1) such that

Card
{
i ∈ [n] : yi ∈ [0,

1

4
]
}
≥ η̃n , Card

{
i ∈ [n] : yi ∈ [

3

4
, 1]
}
≥ η̃n . (19)

In words, the extreme intervals of length 1/4 contains (at least) a proportion η̃ of the yi’s.

Remark 5.1. on modeling assumptions

1. The constant η in (18) is non-increasing with n. In standard latent space models, the yi’s are

often assumed to come from an uniform sample of [0, 1], and hence η goes to zero as n →
∞. By contrast, we make no assumption on the decay of η (with n) in this paper; the yi’s

are deterministic. (If the yi’s were random, our results should be stated conditionally to the

randomness of the yi’s.) The proximity condition (18), which bounds the distance between

consecutive objects yi, yi+1, is crucial for our distance based method − AgregLocalBisection

− which operates locally (on small distances).

2. Without (18-19), the yi’s could be clustered around a small number of points (that are properly

spaced) in [0, 1], hence the problem would become a clustering problem rather than a seri-

ation problem, and our algorithm is not suited for clustering data. The question of handling

simultaneously clustering and seriation is interesting, but is beyond the scope of the paper.

To work in a latent setting as in Assumption 5.1, it is crucial to introduce a more general loss
than the Lmax loss, because Lmax is too crude for assessing estimator performances in latent
space models − see Remark 5.2.1. Given xi = yπi for all i, with π = (πi)i≤n, we define a new
loss, denoted Lcomp, as follows. For ϵ > 0, it is bounded by Lcomp(π̂, π) ≤ ϵ if there exists
s ∈ {±} such that

∀i, j s.t. |xi − xj | ≥ ϵ : H
(π̂)
ij = sH

(π)
ij , (20)
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where we used the definition (10) for the map π̃ 7→ H
(π̃)
ij which sends any permutation π̃ to

a comparison matrix H
(π̃)
ij . The Lcomp was studied in [Janssen and Smith, 2020]. It returns

the minimal distance |xi − xj | above which, all comparisons π̂i < π̂j coincide with the true
comparisons πi < πi. The sign change s ∈ {±} comes from the identifiability in the seriation
problem which holds only up to a reversal of the ordering π. The Lcomp loss is a natural
extension of Lmax and is even equivalent to Lmax under the original Assumption 2.1; see
Remark 5.2.2.

Remark 5.2. on the Lcomp-loss:

1. Since Lmax returns the maximum of all estimation errors of the πi, i ∈ [n], it only reflects the

learning difficulty of the worst πi among the π1, . . . , πn. For this crude measure, no estimator

is consistent for the Lmax loss in the latent setting (Assumption 5.1). As an extreme example,

let y1 = . . . = yk for k ∈ [n], then their similarity vectors are all equal Fπ1 = . . . = Fπk
(by

Assumption 5.1). There is therefore no hope of recovering the positions π1, . . . , πk. Inevitably,

the Lmax loss of any estimator is at least of the order of k/n. Thus, Lmax only reflects the

learning impossibility of these k (identical) positions.

2. In the original matrix Assumption 2.1, the Lcomp and Lmax losses are equivalent (up to a factor

2). We have Lmax(π̂, π) ≤ 2ϵ when Lcomp(π̂, π) ≤ ϵ (by taking H = H π̂ in Proposition C.9 and

using π̂ = πHπ̂

). Vice versa, we can readily check that Lcomp(π̂, π) ≤ 2ϵ when Lmax(π̂, π) ≤ ϵ.

This equivalence between Lcomp and Lmax in bi-Lipschitz matrices (Assumption 2.1) is not true

anymore in latent bi-Lipschitz matrices (Assumption 5.1).

The next theorem shows that our estimator π̂o performs well even in latent bi-Lipschitz
matrices, when the latent yi’s satisfy the conditions (18-19). To simplify the statement of
the next result, we consider the special case of a clustering constant η in (18) that converges
to zero, that is η := ηn → 0 as n → ∞, and we set the tuning parameters (δ1, δ2, δ3) in

Algorithm 1 to δ1 = n−1/5 + η
1/3
n , δ2 = − log(δ1)δ1, and δ3 = − log(δ1)δ2,

Theorem 5.1. For α > 0, β > 0, σ > 0 and any sequence η = (ηn)n≥1 such that η := ηn → 0,
there exists a positive constant Cα,β,σ,η only depending on (α, β, σ, η) and a numerical constant
C > 0 such that the following holds for any n ≥ Cα,β,σ,η, for any η̃ > 0 and y1, . . . , yn ∈
[0, 1] complying with (18-19), and for any F ∈ LBL[(yi), α, β]. With probability higher than
1− 9/n2, the permutation π̂o computed by SALB satisfies

Lcomp(π̂o, π) ≤ C
σ

η̃α

√
log(n)

n
. (21)

In comparison with Theorem 2.1, the rate (21) also contains the term η̃ of condition (19),
which measures the balance of yi’s spreading in [0, 1]. This highlights the effect of well spread
points y1, . . . , yn in [0, 1] for the latent bi-Lipschitz setting (Assumption 5.1). Note that the
rate in Theorem 2.1 follows directly from (21) since η̃ = 1/4 when yi = i/n.

Theorem 5.1 is stated in a special case setting where η → 0 as n→∞, (and the α, β, σ are
considered as constants whereas n is large). But SALB achieves the convergence rate (21)
even in settings where η does not converge to zero (and the quantities α, β, σ may depend
on n), but the choices of the tuning parameters δ1, δ2, δ3 are more intricate. We refer to
appendix L.1 for a general bound.
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Assumption 5.1 is similar to the latent space model considered in [Giraud et al., 2021]. The
(non-efficient) procedure in [Giraud et al., 2021] attains the rate

√
log(n)/n in the special

case of the regular grid yi = i/n. By contrast, our estimator π̂o achieves the rate
√

log(n)/n
even when the latent points (yi) depart from the regular grid (i/n), and even when two
consecutive points yi, yi+1 are at a constant distance from each other (see the general theorem
in appendix L.1). This improvement is especially interesting for applications where one wants
to order objects that are non evenly spread in some feature space. Our improvements over the
earlier work [Giraud et al., 2021] also include a rate (21) giving explicit dependencies in the
problem parameters, and an optimal estimator π̂o over the class of latent bi-Lipschitz matrices
that is efficient (i.e. whose time complexity is polynomial in n). The proof of Theorem 5.1 is
in appendix L.

[Janssen and Smith, 2020, Giraud et al., 2021, Natik and Smith, 2021] prove theoretical guar-
antees for efficient procedures in Toeplitz matrices (Example 1 in appendix A), which are
generated by geometric latent space models (Example 3 in appendix A). Closer to our paper,
in latent bi-Lipschitz matrices [Giraud et al., 2021] show that, if the matrix is approximately
a Toeplitz matrix, then the standard spectral procedure coupled with a post-processing step
achieves the (optimal) error bound Lcomp(π̂, π) ≤ C

√
log(n)/n with high probability. Al-

though their rate is of the same order, their assumptions are more restrictive than ours.
Further from our paper, [Janssen and Smith, 2020, Natik and Smith, 2021] study the spe-
cial case of network data A ∈ {0, 1}n×n generated by the popular graphon model, where
the latent points (yi) are a uniform sample / the regular grid of [0, 1] (it is a special case of
Example 2 in appendix A). On the one hand, [Janssen and Smith, 2020] assumes a Toeplitz
matrix (“uniformly embedded graphon” with a uniform sample), a constant signal Fij = c
beyond a certain distance |i−j|, as well as a technical condition on the square of the graphon,
to guarantee that the thresholded squared adjacency matrix A(2) used in their algorithm is
close to a Robinson matrix. Their new procedure, which is based on a thresholded ver-

sion of A(2), provably achieves the error bound Lcomp(π̂, π) ≤ (log(n))5√
n

with high probability.

On the other hand, [Natik and Smith, 2021] assumes a Toeplitz matrix (“uniformly embed-
ded graphon” with a uniform sample) and some C1-smooth graphon with a strictly negative
derivative (called “nice” graphon); they show that the standard spectral algorithm (with
post-processing) attains a similar error bound than above. Although the rates in [Janssen
and Smith, 2020, Natik and Smith, 2021] are similar (up to log factors), their assumptions
are not directly comparable to ours. We mention that [Janssen and Smith, 2020, Natik and
Smith, 2021] also propose relaxations of the aforementioned assumptions, but these are rather
technical and difficult to interpret here.

5.2 Motivation for the latent space model

While the simple bi-Lipschitz Assumption 2.1 facilitated our exposition, it is quite restrictive
in practice, in particular because of the homogeneity assumption on F ’s columns, which
fails to fit heterogeneous data in applications. By comparison, the latent space formulation
(Assumption 5.1), which still offers a simple model to interpret, is flexible enough to alleviate
the homogeneity issue, by allowing more variations between F ’s columns.

Interpretation. Setting xi = yπi , Assumption 5.1 has the following simple interpretation.
Each object i has an unknown feature xi and a similarity vector EAi = Fπi . Two objects
i, j with close features xi, xj in [0, 1] will have almost identical similarity vectors, while two
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objects with distant features will have very different similarity vectors. In this setting, the
task of finding π is equivalent to reordering the xi’s in the latent space [0, 1].

Breaking the homogeneity restriction? In bi-Lipschitz matrices (Assumption 2.1),
two consecutive columns are almost identical since |Fik − F(i+1)k| ≍α,β n−1. Therefore,
the (squared) Euclidean distance between consecutive vectors equals almost zero: ∥Fi −
Fi+1∥22 ≍α,β n−1. (Here, we used Fi(i+1) = F(i+1)i, and considered the vectors Fi and Fi+1 in
Rn−1, by removing their respective null coordinates Fii and F(i+1)(i+1).) This homogeneity
restriction between consecutive columns is relaxed in latent bi-Lipschitz matrices (Assump-
tion 5.1) where one may have yi+1 − yi = η for a positive constant η > 0, and hence the
(squared) Euclidean distance ∥Fi − Fi+1∥22 ≍α,β η2n may diverge. Compared to the null
distance in bi-Lipschitz matrices, latent bi-Lipschitz matrices thus offer a significant relax-
ation of the homogeneity constraint. Hopefully, such a latent space model would fit better
heterogeneous data encountered in applications, e.g. in networks where popular individuals
have many interactions (i.e. many high similarities), while some others have much fewer
interactions (many low similarities).

6 Discussion

We studied the seriation problem under bi-Lipschitz assumptions on the signal matrix F ,
and focused on the Lmax loss which returns the maximum estimation error of all positions
π1, . . . , πn. The good news is that, even for the crude loss Lmax, in such a general and un-
specified model as bi-Lipschitz matrices, we successfully characterized the optimal rate of
seriation, as a function of the problem parameters. We also gave a polynomial time estima-
tor that achieves this optimal rate. Besides, we proved that the estimator also enjoys good
performances in more general sets of matrices, namely, matrices with only average type con-
straints, and latent bi-Lipschitz matrices. Overall, our work showcases the versatility of this
permutation estimator.

As a preliminary step, we estimated the measure D∗ defined in (11), via the estimator D̂
described in appendix B.1. In principle, we could have used any other (good) estimator
of D∗, or even any other measures than D∗, as long as this measure is informative on the
latent distances |πi − πj |/n. Perhaps surprisingly, this measure does not have to fulfill the
usual properties of distances and linear orderings, such as the triangular inequality or the
transitivity. Thus, our approach is quite general, and perhaps could be exported elsewhere.

One might hope that the distances D∗
ij and |πi − πj |/n are almost the same, or sufficiently

similar for trying to recover π from D∗ directly. This will not work in general, because both
distances may behave very differently. For example, D∗

ij can be a huge distortion of |πi−πj |/n,
and this distortion can go both ways (contraction or dilation). Thus, the two distances are
sometimes in contradiction in the following sense. One can find R-matrices F such that
D∗

1n < D∗
1(n/2) while the reverse holds for the ordering, i.e., |π1 − πn| > |π1 − πn/2|. More

generally, D∗ does not satisfy the following transitivity implication: πi − πk ≥ πj − πk ≥ 0
=⇒ D∗

ik ≥ D∗
jk. Therefore, in the current paper, we only assumed that D∗ satisfies the

local equivalence in Assumption 4.1, ensuring that small D∗
ij are bounded distortions of small

|πi−πj |/n. This weak connection between D∗ and π forced us to develop a more sophisticated
local procedure to recover π.
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On the negative side, the time complexity of our procedure is only bounded by O(n5), where
n is the sample size of the observation A ∈ Rn×n. This high complexity comes from the
heavy data-splitting that we used in LocalRefineWS (appendix H). We recall that the data-
splitting was only made to facilitate the theoretical analysis of the estimator. In practice, it
could be better to run the algorithm without data-splitting, i.e. to use LocalRefine instead
of LocalRefineWS. Doing so, the time complexity will reduce from O(n5) to O(n3). However,
because of complex statistical dependencies in this version without data-splitting, it is difficult
to prove theoretical guarantees for the output π̂o. We only provided guarantees when each
step of this algorithm are taken separately, and thus share no statistical dependencies.

The choice of tuning parameters δ1, δ2, δ3 is problematic, in general, since it depends on
unknown constants, such as the parameters α, β of the class BL[α, β] of bi-Lipschitz matrices.
However, for a sufficiently large n, we proved that the choice of inputs becomes easier, and it
is possible to choose δ1, δ2, δ3 as a function of n, independently of other parameters.

Acknowledgments

The work of C. Giraud has been partially supported by by grant ANR-19-CHIA-0021-01
(BiSCottE, ANR) and ANR-21-CE23-0035 (ASCAI, ANR). The work of N. Verzelen has
been partially supported by ANR-21-CE23-0035 (ASCAI, ANR).

A Models in the literature

Example 1: Monotone Toeplitz Matrix (a.k.a. Toeplitz R-matrix): Given a vector
(θ0, θ1, . . . , θn−1), a symmetric Toeplitz matrix F is defined by Fij = θ|i−j|, for i, j ∈ [n]. If
the vector is monotone θ0 > θ1 > . . . > θn−1, the matrix F is called a monotone Toeplitz
matrix. Thus, F is a special instance of R-matrix (1). This model has been recently studied
in noisy seriation [Cai and Ma, 2022]. These matrices are equivalent to geometric 1D latent
space model in Example 3.

Example 2: 1D latent space models: As probabilistic tools, latent space models are
widely-used to study pairwise information data like networks [Hoff et al., 2002]. In 1D latent
space models, the similarity matrix A is assumed to be sampled as follows. The distribu-
tion is parametrized by a 1D metric space (X , d), some (possibly random) latent positions
x1, . . . , xn ∈ X and an similarity function f : X ×X → R. Then, conditionally on x1, . . . , xn,
the upper-diagonal entries Aij of the similarity matrix are sampled independently, with con-
ditional mean E [Aij |x1, . . . , xn] = f(xi, xj).

This latent space formulation encompasses many classical models, such as graphons and f -
Random Graphs [Diaconis and Janson, 2007, Lovász, 2012] and random geometric graphs
[Penrose, 2003, Diaz et al., 2020, De Castro et al., 2017]. It also encompasses R-matrices (1),
and monotone Toeplitz matrices (Example 1). To see that, take the latent space X = [0, 1],
the latent positions xi = πi/n, and a similarity function f fulfilling f(xi, xj) = Fπi,πj .

Seriation in the 1D latent space models was considered in [Giraud et al., 2021] (with sub-
Gaussian noise and real valued observations Aij ∈ R), and in [Janssen and Smith, 2020, Natik
and Smith, 2021] (with f -random graphs, i.e., with binary observations Aij ∈ {0, 1} and a
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uniform sample x1, . . . , xn ∼ U[0,1] of the latent space X = [0, 1]). The objective of recovering
π is equivalent to re-ordering the latent positions x1, . . . , xn in the 1D space X .

Example 3: Geometric 1D latent space model. As a special case of the 1D latent space
model (Example 2), the geometric 1D latent space model is characterized by a similarity
function of the form f(xi, xj) = g(m(xi, xj)) for a real non-increasing function g : [0,∞)→ R

and a metric m on X . Thus, the similarity f(xi, xj) depends on the latent positions xi, xj only
via their distance m(xi, xj). When the observations Aij ∈ {0, 1} are binary, this model is an
instance of the popular random geometric graph [Penrose, 2003, Diaz et al., 2020, De Castro
et al., 2017].

The geometric 1D latent space model is equivalent to the monotone Toeplitz matrices (Exam-
ple 2). Indeed, for a vector θ0 > . . . > θn−1 defining the monotone Toeplitz matrix Fij = θ|i−j|,
one can set a geometric 1D latent space model as follows. Take the latent space X = [0, 1]
endowed with the metric m(x, y) = |x−y|, and the positions xi = πi/n, and a similarity func-
tion f = g ◦m where g fulfills g(t/n) = θt for all t ∈ {0, . . . , n− 1}. Thus, (for deterministic
xi’s) the two models lead to the same mean EAij = f(xi, xj) = g(|xi−xj |) = θ|πi−πj | = Fπiπj .

By contrast, the latent bi-Lipschitz matrices (studied in the current paper) are not (fully)
determined by some distances m(xi, xj). Their general similarities Fπi,πj = f(xi, xj) depend
on the positions xi, xj , in such a way that, they can take different values f(xi, xj) ̸= f(xk, xl)
even on points at a same distance m(xi, xj) = m(xk, xl).

For statistical seriation in geometric 1D latent space models, see [Janssen and Smith, 2020],
and [Giraud et al., 2021, section 4] and [Natik and Smith, 2021].

B Description of sub-algorithms

To complete the description of our procedure, we present the sub-algorithms DistanceEstimation,
LocalBisection and Orientation in appendix B.1, B.2, B.3, respectively.

B.1 Distance estimation

We give the construction of the distance estimator D̂. The l2-type distance D∗ in (11) is
associated with a structure of inner product: Given vectors V and Ṽ in Rn, we write their
(normalized) inner product ⟨V, Ṽ ⟩n = n−1

∑n
ℓ=1 VℓṼℓ.

Algorithm 4 DistanceEstimation

Require: A = [Aij ]ij∈[n] data matrix.

Ensure: D̂ an n× n matrix.
1: for i = 1, . . . , n do
2: m̂i = argmin j∈[n]: j ̸=i max k∈[n]: k ̸=i,j

∣∣⟨Ak, Ai −Aj⟩n
∣∣.

3: end for
4: for i, j = 1, . . . , n, i < j do
5: D̂ij = ⟨Ai, Am̂i

⟩n + ⟨Aj , Am̂j
⟩n − 2⟨Ai, Aj⟩n.

6: D̂ji = D̂ij .
7: end for
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Let us explain the construction of the distance estimator D̂. Denoting by Fi the ith column
of the signal matrix F , we have the following decomposition of the distance D∗:

∀i, j ∈ [n], i < j : (D∗
ij)

2 = ⟨Fπi , Fπi⟩n + ⟨Fπj , Fπj ⟩n − 2⟨Fπi , Fπj ⟩n. (22)

We estimate separately the crossed term and the two quadratic terms of (22).

◦ Crossed-term: Denoting by Ai the i
th column of the data matrix A, we observe that ⟨Ai, Aj⟩n

is a sum of (n− 2) i.i.d. random variables (since Aii = Ajj = 0). The n− 2 random variables
{AikAjk : k ∈ [n] and k ̸= i, j} are independent with the same mean

E [AikAjk] = Fπiπk
Fπjπk

, (23)

where the expectation E is taken over the data distribution P(F,π). It is therefore possible
to use standard concentration bounds to prove that, with high probability, ⟨Ai, Aj⟩n is close
to its mean ⟨Fπi , Fπj ⟩n; see Lemma E.2. The inner product ⟨Ai, Aj⟩n (between two different
columns) is thus a consistent estimator of the crossed term ⟨Fπi , Fπj ⟩n in (22).

◦ Quadratic-term: We cannot proceed in the same way for the quadratic term ⟨Fπi , Fπi⟩n in
(22), since it would lead to an inconsistent estimation. Indeed, we have

E
[
A2

ik

]
= F 2

πiπk
+ σ2 E

[
E2

ik

]
, (24)

and hence the inner product ⟨Ai, Ai⟩n between the same column is an inconsistent estimator
of the quadratic term ⟨Fπi , Fπi⟩n. It is possible to work around this issue via the following
nearest neighbor approximation, which replaces the quadratic term by a crossed term, so as
to be back to the unbiased case (23). Specifically, the approximation consists in replacing an
object i by its nearest neighbor with respect to the distance D∗. Let mi ∈ {1, . . . , n}, mi ̸= i,
denote a nearest neighbor of i according to the distance D∗, that is mi ∈ argmint: t̸=i D∗

it.
Then, we have the following approximation:

|
〈
Fπi , Fπi

〉
n
−
〈
Fπi , Fπmi

〉
n
| = |

〈
Fπi , Fπi − Fπmi

〉
n
|

≤ ∥Fπi∥2√
n

D∗
imi
≤ D∗

imi
(25)

using Cauchy-Schwarz inequality in the first inequality, and Fπi ∈ [0, 1]n in the last one. The
nearest neighbor approximation (25) thus yields a bias in our estimation procedure, which
is equal to the distance D∗

imi
between i and its nearest neighbor mi. Since mi is unknown,

we still need to estimate mi, and define an estimator m̂i. This step is performed in line 2 of
Algorithm 4. Comments on it can be found in [Issartel, 2021, section 4.1]. We finally obtain
an estimator ⟨Ai, Am̂i

⟩n of the quadratic term ⟨Fπi , Fπi⟩n in (22).

Putting things together, we get the estimator in line 5 of Algorithm 4. More information on
this distance estimator can be found in appendix E.

B.2 Local Bisection

LocalBisection was described in plain words below Algorithm 2. Here we give its pseudo
code. The inputs are an index i ∈ [n], a symmetric matrix D ∈ Rn×n, and tuning parameters
δ1, δ2, δ3 > 0. It performs a rough bisection of the set [n] in i, so as to output two sets
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G
(1)
i , G

(2)
i , one on each side of i (with respect to the ordering π). We use the notation

a ∨ b = max(a, b).

Algorithm 5 LocalBisection

Require: (i,D, δ1, δ2, δ3)

Ensure: G
(1)
i , G

(2)
i

1: Build a graph Gi with node set [n], by linking all k, ℓ ∈ [n], k, ℓ ̸= i such that

Dkℓ ≤ δ1 and Dik ∨Diℓ ≥ δ2 . (26)

2: Collect only the connected components of Gi that include (any) k ∈ [n] such that

Dki ≥ δ3 . (27)

3: Denote by G
(1)
i , G

(2)
i the two connected components with the largest cardinal numbers.

LocalBisection builds a graph Gi according to the rule (26). Among all connected compo-
nents of Gi, only those satisfying (27) are collected, and then only the two largest of these
components are output by the algorithm. We have the following interpretation, in the ideal
scenario where the inputs Dij are equal to the latent distances |πi − πj |/n. The rule (26)
connects two nodes k, ℓ, if they are close to each other (Dkℓ ≤ δ1), but one of them is far from
i (Dik ∨Diℓ ≥ δ2). Thus, such a connected component should be either on the right side of
i, or on the left side of i. The second rule (27) selects the connected components of Gi that
contains (al least) a distant object from i (Dki ≥ δ3). As will be shown in appendix D.3, at

most two connected components satisfy the condition (27), hence the outputs G
(1)
i , G

(2)
i are

necessarily these components, and the line 3 of LocalBisection is theoretically superfluous.

We will see that G
(1)
i , G

(2)
i are each on a different side of i.

B.3 Orientation

Orientation takes as inputs n pairs (G
(1)
1 , G

(2)
1 , . . .,G

(1)
n , G

(2)
n ) of sets G

(1)
i , G

(2)
i ⊂ [n], and

outputs a new arrangement [Li, Ri]i∈[n] of these pairs, i.e. Li, Ri ∈ {G(1)
i , G

(2)
i } and Li ̸= Ri

(when G
(1)
i ̸= ∅, G

(2)
i ̸= ∅). The objective is to give a common orientation for the n new pairs

Li, Ri, i = 1, . . . , n, e.g., all Li are on the left side while all Ri are on the right side of i. To do
so, we choose an arbitrary direction Li∗ , Ri∗ for an index i∗, and then use this direction as a
reference for all other indices i ∈ [n], i ̸= i∗. We will show in appendix D.3 that Orientation
gives n pairs Li, Ri, i = 1, . . . , n, sharing a same direction.
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Algorithm 6 Orientation

Require: (G
(1)
i , G

(2)
i )i∈[n].

Ensure: (L,R) := (Li, Ri)i∈[n]

1: Let V ̸=∅ = {i ∈ [n] : G
(1)
i ̸= ∅ and G

(2)
i ̸= ∅} and V ′

̸=∅ = {i ∈ [n] : G
(1)
i ̸= ∅ or G

(2)
i ̸= ∅}.

2: if V ̸=∅ = ∅ then
3: Li = Ri = 0 for all i ∈ [n]; stop algorithm.
4: else
5: let i∗ ∈ V ̸=∅, set Li∗ = G

(1)
i∗ and Ri∗ = G

(2)
i∗ . %Picking a reference direction Li∗ , Ri∗

6: end if
7: for i /∈ V ̸=∅ ∪ V ′

̸=∅ do
8: Li = Ri = ∅.
9: end for

10: for i ∈ V ̸=∅, i ̸= i∗ do

11: if G
(u)
i ∩ Li∗ = ∅ for an u ∈ [2] then

12: Ri = G
(u)
i and Li = G

(v)
i for v ∈ [2], v ̸= u %Setting Li, Ri for i ̸= i∗, i ∈ V ̸=∅

13: else if G
(u)
i ∩Ri∗ = ∅ for an u ∈ [2] then

14: Li = G
(u)
i and Ri = G

(v)
i for v ∈ [2], v ̸= u

15: end if
16: end for
17: for i ∈ V ′

̸=∅ do

18: Rearrange the notations G
(1)
i and G

(2)
i to obtain G

(1)
i ̸= ∅.

19: end for
20: for i ∈ V ′

̸=∅ do

21: for k ∈ V̸=∅ such that G
(1)
i ∩ Lk ̸= ∅ and G

(1)
i ∩Rk ̸= ∅ do

22: if i ∈ Lk then
23: Li = ∅ and Ri = G

(1)
i ; end for. %Setting Li, Ri for i ∈ V ′

̸=∅
24: else if i ∈ Rk then
25: Ri = ∅ and Li = G

(1)
i ; end for.

26: end if
27: end for
28: end for

In line 5, we take a reference index i∗ ∈ V ̸=∅ that has two non-empty sets, and we arbitrary

choose its direction Li∗ , Ri∗ . To align the sets G
(1)
i , G

(2)
i of any i with the direction of Li∗ , Ri∗ ,

we look at the values of (the four) intersections between these sets. The exact procedure
depends on whether i has empty sets (line 7-8), or two non-empty sets (line 10-16), or one
non-empty set (line 20-28). Since the i’s with (exactly) one non-empty set are more difficult
to align, for them we may need to replace the initial reference sets Li∗ , Ri∗ by another pair
Lk, Rk, k ∈ V ̸=∅ which provides more information on i’s set orientation (lines 21-27).

In line 11 and 13, the algorithm tests the emptiness of four intersections at most (for u ∈ [2]),
and it stops as soon as one intersection is found empty. The testing order for u ∈ [2] does not
matter in our analysis.
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C Proof of Theorem 2.1

Proof. (Theorem 2.1 follows from Theorem 4.1) The next two lemmas show that the bi-
Lipschitz Assumption 2.1 implies the local distance equivalence Assumption 4.1, and the
separated cumulative similarities Assumption 4.2.

Lemma C.1. If F belongs to the class BL[α, β] of bi-lipschitz matrices (as in Assump-
tion 2.1), then, for n ≥ 8, the distance matrix D∗ is in LDE [α/2, β, 0, r] (as in Assump-
tion 4.1) for any r ∈ (0, 1/4).

Lemma C.1 states that, when F is a bi-Lipschitz matrix of BL[α, β], the distance matrix D∗

belongs to the class LDE [α̃, β̃, 0, r] for the parameters β̃ = β and α̃ = α/2, thus conserving
the Lipschitz upper constant β intact, and the lower constant α up to a factor 1/2. The proof
of Lemma C.1 is in appendix D.1.

Lemma C.2. If F ∈ BL[α, β] as in Assumption 2.1, then Assumption 4.2 holds for γ = α/4,
any r′ ∈ (0, 1/5) and any r′′ ∈ [0, 1/10), when n ≥ 20.

Lemma C.2 states that, when F ∈ BL[α, β], Assumption 4.2 holds for the constants γ = α/4,
any r′ ∈ (0, 1/5) and any r′′ ∈ [0, 1/10), hence a conservation of the Lipschitz lower constant
α up to a factor 1/4. he proof of Lemma C.2 is in appendix D.1.

Thus, Theorem 2.1 follows from Theorem 4.1.

In order to prove Theorem 4.1, the rest of the section is organized as follows. We give in
appendix C.1 the general versions of Theorem 2.1 and 4.1 where α, β, and σ may depend on
n, but the choices of the tuning parameters δ1, δ2, δ3 are more intricate. (This appendix C.1
may be skipped if the reader is only interested in the proof of Theorem 4.1.) Next, we present
guarantees for the sub-algorithms of SALB in the following order: the distance estimation is in
appendix C.2, the first and second estimators of H(π) in appendix C.3 and C.4, respectively,
and the transition from comparison matrix to permutation in appendix C.5. Finally, the
proof of Theorem 4.1 (and of its general version, Theorem C.4) is in appendix C.6.

C.1 Choice of tuning parameters δ1, δ2, δ3 and general results

◦For Theorem 2.1: To simplify, Theorem 2.1 was stated in a setting where α, β, and σ
are considered as constants whereas n is large, and where the tuning parameters δ1, δ2, δ3 of
Algorithm 1 was set to specific values δ1 = n−1/5, δ2 = log(n)δ1 and δ3 = log(n)δ2. However,
SALB achieves the same convergence rate even in settings where the quantities α, β, σ depend
on n, but the choices of the tuning parameters δ1, δ2, δ3 are more intricate. The choices of
δ1, δ2, δ3 may be summarized by the following conditions:

Cβσ

(
log(n)

n

)1/4

≤ δ1, Cαβ δ1 ≤ δ2 ≤ Cα, C ′
αβ δ2 ≤ δ3 ≤ C ′′

αβ, (28)

where n ≥ 8, and Cβσ, Cαβ, Cα, C
′
αβ, C

′′
αβ are constants only depending on (some of) the

problem parameters α, β, σ. The exact conditions (with explicit constants) for the choices of
δ1, δ2, δ3 can be found in (112-113).
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The next result generalizes Theorem 2.1 to a setting where α, β, σ may depend on n, and the
δ1, δ2, δ3 are chosen in the admissible range (28).

Theorem C.3. For n ≥ 8 and α, β, σ > 0, there exist positive constants Cβσ, Cαβ, Cα, C
′
αβ,

C ′′
αβ such that the following holds for any δ1, δ2, δ3 fulfilling (28) and for any F ∈ BL[α, β].

With probability 1− 9/n2, the permutation π̂o output by SALB satisfies

Lmax(π̂o, π) ≤ C
σ

α

√
log(n)

n
, (29)

where C > 0 is a numerical constant.

The choices of δ1, δ2, δ3 enforced by (28) may seem purely theoretical since they depend on
unknown problem parameters α, β, σ (via the constants Cβ,σ, . . .). In fact, (28) shows that
any δ1, δ2, δ3 satisfying the following conditions, as n→∞,

δ1

(log(n)/n)1/4
→∞,

δ2
δ1
→∞,

δ3
δ2
→∞, δ3 → 0, (30)

will be a solution of (28) as soon as n is larger than some constant Cαβσ. In particular,
our choice of tuning parameter in Theorem 2.1, which was δ1 = n−1/5, δ2 = log(n)δ1 and
δ3 = log(n)δ2, satisfies (30). Thus, Theorem 2.1 follows from Theorem C.3. □

◦ For Theorem 4.1: The same goes as for Theorem 2.1, except that the constants in (28)
have new dependencies. More precisely, the dependencies in the bi-Lipschitz constants α and
β are replaced by dependencies in the distance equivalence constants α̃ and β̃, respectively,
and there are new dependencies in r, r′ and r′′. This gives

Cβ̃σ

(
log(n)

n

)1/4

≤ δ1, Cα̃β̃ δ1 ≤ δ2 ≤ Cα̃rr′r′′ , C ′
α̃β̃

δ2 ≤ δ3 ≤ Cα̃β̃rr′′ , (31)

where n ≥ (1/2r)∨ 8, and where Cβ̃σ, Cα̃β̃, Cα̃rr′r′′ , C
′
α̃β̃

, Cα̃β̃rr′′ are constants only depending

on (some of) the problem parameters α̃, β̃, r, r′, r′′, σ. The exact conditions (with explicit
constants) for the choices of δ1, δ2, δ3 can be found in (115), taking ω = ωn and ρ̃ = ρ in
(115). Note that the constant γ of Assumption 4.2 is not involved in the choice of tuning
parameter. The next result generalizes Theorem 4.1 to a setting where α̃, β̃, σ, r, r′, r′′ may
depend on n, but the tuning parameters δ1, δ2, δ3 must fulfill (31).

Theorem C.4. For n ≥ 8 and α̃, β̃, σ, r, r′, r′′ >, there exist positive constants Cβ̃σ, Cα̃β̃,

Cα̃rr′r′′, C
′
α̃β̃

, Cα̃β̃rr′′ such that the following holds for any δ1, δ2, δ3 fulfilling (31) and for any

F ∈ SCA[γ, r′, r′′] such that D∗ ∈ LDE [α̃, β̃, 0, r]. With probability 1− 9/n2, the permutation
π̂o output by SALB satisfies

Lmax(π̂o, π) ≤ C
σ

γ

√
log(n)

n
,

where C > 0 is a numerical constant.

24



Theorem 4.1 follows from Theorem C.4 (in the same way that Theorem 2.1 followed from
Theorem C.3 above). □

We proved that Theorem 2.1 followed from Theorem 4.1 (at the beginning of appendix C),
and it goes the same for their generalizations: Theorem C.3 follows from Theorem C.4. Thus,
Theorem C.4 implies all the results Theorem 2.1, C.3 and 4.1.

C.2 Error of the distance estimator

The next proposition gives a local upper bound on the estimation error of D̂, that is, on the
errors |D̂ij −D∗

ij | for all i, j within a distance r.

Proposition C.5. For any 8 ≤ n, and 0 < α̃ ≤ β̃ and 0 < r, the following holds for any
D∗ ∈ LDE [α̃, β̃, 0, r] (as defined in Assumption 4.1). With probability 1 − 1/n4, the matrix
D̂ is LDE [α̃, β̃, ωn, r] for

ωn = C

√ β̃

n
+
√

(σ + 1)σ

(
log(n)

n

)1/4
 (32)

where C > 0 is a numerical constant.

Thus, for all i, j within a distance r, the estimate D̂ij is equivalent to the distance |πi−πj |/n,
up to factors α̃ and β̃, and to the additive error ωn. The proof in appendix D.2 shows that
ωn upper bounds the (local) estimation errors of distances D∗

ij .

C.3 Error of the first estimator of H(π)

Since our intermediate objective is to estimate the matrix H(π), we introduce for convenience
the notion of error for a comparison matrix H. We say that a comparison matrix H has an
error smaller than ν, if it satisfies the following for an s ∈ {±},

sHij = H
(π)
ij for all i, j such that

|πi − πj |
n

≥ ν . (33)

In words, H matches H(π) on all pairs i, j whose positions πi, πj in the ordering are at distance
greater than ν. The sign (s = ±) comes from the fact that π is identifiable up to a reverse of
the ordering (section 1.1).

Recall that AgregLocalBisection takes as inputs a matrixD and tuning parameters δ1, δ2, δ3,
and it outputs a comparison matrix H. Proposition C.6 states that, if the inputs Dij are
locally equivalent to the distances |πi − πj |/n as in Assumption 4.1, then the output H
coincides with the true comparison matrix H(π) on all entries (i, j) such that i, j are at a
distance greater than some constant ρ. The proof is in appendix D.3.

Proposition C.6. For any 0 < α̃ ≤ β̃ and 0 < r and 0 ≤ ω, the following holds for any
D ∈ LDE [α̃, β̃, ω, r] (as defined in Assumption 4.1) and any δ1, δ2, δ3 fulfilling (114). There
exists s ∈ {±} such that, the output H of AgregLocalBisection satisfies

Hij = sH
(π)
ij for all i, j ∈ [n] where Hij ̸= 0 or

|πi − πj |
n

≥ ρ ,

for ρ = (δ2 + ω)/α̃
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A remarkable property of H is to be correct on its support (i.e., for all entries Hij ̸= 0), and
thus, we know which part of the matrix H is trustworthy. In addition, H is correct for all
i, j that are at distance |πi−πj |/n greater than ρ. This lower bound ρ = (δ2+ω)/α̃ depends
on some parameters of the LDE [α̃, β̃, ω, r] class of the input D, namely, the additive error ω
and the contraction factor α̃ of the local distance equivalence in Assumption 4.1. One can see
that the lower bound ρ deteriorates (i.e. becomes larger) when the ratio ω/α̃ gets bigger, i.e.,
when the minimum signal α̃|πi−πj |/n−ω ≤ Dij (ensured by the LDE assumption) becomes
close to zero. This confirms the intuition that, when the inputs Dij are less uninformative
about the distances |πi − πj |/n, the performance of AgregLocalBisection deteriorates.

Although none of the usual properties of distances are assumed (e.g. transitivity, or triangle
inequality), Proposition C.6 shows that our distance based method can partially recover the
matrix of comparison H(π).

In Proposition C.6, we assumed the conditions (114) on δ1, δ2, δ3,; these conditions can be
summarized by (31) when ω = ωn for the ωn defined in (32).

C.4 Error of the second estimator of H(π)

Recall that LocalRefine takes as input a comparison matrix H1 ∈ {−1, 0, 1}n×n and outputs
another comparison matrix H. When the input H1 is a good enough estimate of H(π) to
fulfill (34), then, Proposition C.7 ensures that the output H improves on the accuracy of

H1, recovering the remaining entries (i, j) up to up to a distance (σ/γ)

√
log(n)

n between i, j,

as described in (35). In plain words, if H1 is correct on its support and on all its entries
(i, j) such that i, j are at distance greater than a constant ρ̃, then, H will successfully recover

any comparison H
(π)
ij left undetermined by H1 such that i, j are at distance greater than

(π/γ)
√
log n/n.

Proposition C.7. For any 0 < γ, r′ and 0 ≤ r′′, the following holds for any F ∈ SCA[γ, r′, r′′]
(as defined in Assumption 4.2) and any ρ̃ ∈ [0, r′ ∧ r′′]. If the the input H1 of LocalRefine
is deterministic or independent of the data A, with the following accuracy, for any ϵ ∈ {±},

(H1)ij = ϵH
(π)
ij for all i, j ∈ [n] where (H1)ij ̸= 0 or

|πi − πj |
n

≥ ρ̃ , (34)

then, with probability 1− 4/n3, the output H of LocalRefine satisfies for all i, j,

Hij = ϵH
(π)
ij wherever (H1)ij = 0 and

|πi − πj |
n

≥ C
σ

γ

√
log(n)

n
. (35)

In addition, Hij = 0 wherever (H1)ij ̸= 0.

Among the comparisons H
(π)
ij left undetermined by the input H1, LocalRefine correctly

estimates the ones fulfilling (35), i.e., those associated with distances |πi − πj |/n greater
than (Cσ/γ)

√
log(n)/n. The distance (σ/γ)

√
log(n)/n shows that the performance of H

is declining with the input σ, but is improving with the level of separation γ of cumulative
similarities of F ∈ SCA[γ, r′, r′′].

The proof of Proposition C.7 is in Appendix D.4. The next proposition gives guarantees for
LocalrefineWS performance; it looks essentially the same as Proposition C.7, up to technical
details related to the data splitting in LocalrefineWS.
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Proposition C.8. For any 0 < α̃ ≤ β̃ and 0 < r, γ, r′ and 0 ≤ ω, r′′, ρ̃, the following holds
for any D∗ ∈ LDE [α̃, β̃, 0, r] and D ∈ LDE [α̃, β̃, ω, r] (as defined in Assumption 4.1), any
F ∈ SCA[γ, r′, r′′] (as defined in Assumption 4.2) and any δ1, δ2, δ3, ρ̃ fulfilling (115). If the
input H1 of LocalRefineWS has the following accuracy, for any ϵ ∈ {±},

(H1)ij = ϵH
(π)
ij for all i, j ∈ [n] where (H1)ij ̸= 0 or

|πi − πj |
n

≥ ρ̃ , (36)

then, with probability 1− 8/n2, the output H satisfies

Hij = ϵH
(π)
ij wherever (H1)ij = 0 and

|πi − πj |
n

≥ C
σ

γ

√
log(n)

n
. (37)

In addition, Hij = 0 wherever (H1)ij ̸= 0.

The proof of Proposition C.8 is relatively lengthy and technical, but the essence is a combi-
nation of the ideas from Proposition C.7, C.6 and C.5. The proof is delayed to appendix I.

C.5 Final step: from comparison matrix to permutation

Recall the last two lines of SALB (Algorithm 1): compute the scores S = [Ĥ1 + Ĥ2]1; then
build any permutation π̂o by increasing values of S. This can be more generally stated as
follows: Given a comparison matrix H ∈ {−1, 0, 1}n×n, define a permutation πH by

∀i ∈ [n] : SH
i =

∑
j∈[n]

Hij and πH
i = #

{
j ∈ [n] : SH

j ≤ SH
i

}
, (38)

where we break ties arbitrarily, so that πH is a permutation of [n]. We emphasize that
any comparison matrix H has zero diagonal coefficients (i.e. Hii = 0 for all i). In the

definition (38), we can observe that πH(π)
= π, whereH(π) is the comparison matrix associated

to π.

Recalling the notion of error (33) for a comparison matrix H, we want to prove that πH is
almost as accurate as H. Proposition C.9 states precisely this, that the error of πH is bounded
by that of H up to a factor 2. The proof is in Appendix D.5.

Proposition C.9. Let ν > 0. If a comparison matrix H has an error less than ν as in (33),
then the permutation πH in (38) has an Lmax error less than 2ν, that is, Lmax(π

H , π) ≤ 2ν.

C.6 Proof of Theorem 4.1 and C.4

We run SALB(A, δ1, δ2, δ3, σ) − Algorithm 1. Let En be the event where D̂ − the output of
Distance Estimation(A) − is LDE [α̃, β̃, ωn, r] for the ωn defined in (32). Proposition C.5
states that the probability of occurrence of the event En is at least 1− 1/n4.

We now want to apply Proposition C.6 and C.8 to obtain guarantees for Ĥ1 + Ĥ2 − the sum
of the outputs of AgreLocalBisection(A,D̂, δ1,δ2, δ3) and LocalRefineWS(A, D̂, δ1,δ2, δ3, σ).
Conditionally to the event En, and if δ1, δ2, δ3 fulfill the conditions (114-115), Proposition C.6
and C.8 ensure that the following holds with probability at least 1 − 8/n2. For an s ∈ {±},
we have

(Ĥ1 + Ĥ2)ij = sH
(π)
ij for all i, j such that |πi − πj | ≥ C

σ

γ

√
n log(n) . (39)
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Parenthesis:[ Let us make a parenthesis to unpack the step (39), placing us for a moment in
the imaginary scenario where Ĥ1 would be either deterministic or independent of the data A.
In this scenario, we can run the simpler LocalRefine instead of LocalRefineWS. Then, since
the input D̂ of AgregLocalBisection is LDE [α̃, β̃, ωn, r] on the event E , Proposition C.6
guarantees that the output Ĥ1 of AgregLocalBisection satisfies, for an s ∈ {±1},

(Ĥ1)ij = sH
(π)
ij wherever (Ĥ1)ij ̸= 0 or

|πi − πj |
n

≥ ρ ,

where ρ = (δ2 + ω)/α̃. Then, if ρ ≤ r′ ∧ r′′, we can take ρ̃ = ρ and H = Ĥ1 in Proposi-
tion C.7. This yields, with probability 1− 4/n3, the following accuracy for the output Ĥ2 of
LocalRefine:

(Ĥ2)ij = sH
(π)
ij wherever (Ĥ1)ij = 0 and

|πi − πj |
n

≥ C
σ

γ

√
log(n)

n
,

and, in addition, (Ĥ2)ij = 0 on the support of Ĥ1 (where (Ĥ1)ij ̸= 0). Note that the afore-
mentioned condition ρ ≤ r′ ∧ r′′ is satisfied under the assumption that the tuning parameter
δ1, δ2, δ3 fulfills the constraints (31). Putting the last two displays together, we obtain the
accuracy (39), which closes the parenthesis. ]

The output π̂o of SALB can be written as π̂o = πĤ1+Ĥ2 using the formula (38) (taking H =
Ĥ1 + Ĥ2 in the formula). Conditionally to the event (39), Proposition C.9 yields

Lmax (π̂o, π) ≤ 2C
σ

γ

√
log(n)

n
. (40)

Taking a union bound over the events En and (39), we conclude that the bound (40) holds
with probability 1 − 9/n2 (using 8/n2 + 1/n4 ≤ 9/n2). Thus, Theorem C.4 follows. Since
Theorem 4.1 is a particular case of Theorem C.4 (see appendix C.1), Theorem 4.1 follows too.

D Proof of lemmas and propositions from Appendix C

D.1 Proofs of Lemma C.1 and C.2

Proof of Lemma C.1. We use the notation yj = j/n and xj = πj/n for all j ∈ [n]. Let
r ∈ (0, 1/4), and i, j ∈ [n] such that |xi − xj | ≤ r. For F ∈ BL[α, β] we have

D∗
ij =

(
1

n

n∑
ℓ=1

[
Fπiℓ − Fπjℓ

]2)1/2

≤ β
|πi − πj |

n
.

This gives the upper bound in the LDE [α/2, β, 0, r] condition.

Since n ≥ 8 and |xi − xj | ≤ r for r < 1/4, one can readily check that xi, xj ∈ (1/4 + 1/n, 1],
or xi, xj ∈ [0, 3/4− 1/n). We only study the case xi, xj ∈ (1/4+ 1/n, 1], the other case being
symmetric. For F ∈ BL[α, β] as in Assumption 2.1, we have

D∗
ij ≥

 1

n

∑
ℓ: yℓ≤ 1

4
+ 1

n

[
Fπi,ℓ − Fπj ,ℓ

]2
1/2

≥ α
|πi − πj |

n

(
1

n
#{ℓ : yℓ ≤

1

4
+

1

n
}
)1/2

.
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We have #{ℓ : yℓ ≤ 1
4 + 1

n} ≥
n
4 , so the lower bound in LDE [α/2, β, 0, r] follows. □

Proof of Lemma C.2. We use the notation yj = j/n and xj = πj/n for all j ∈ [n]. Let
r′ ∈ (0, 1/5), r′′ ∈ [0, 1/10) and i, j ∈ [n], i < j, such that |yi − yj | ≤ r′. Then, at least one

of the two following inequalities holds: yi ≥ 1
2 −

r′

2 or yj ≤ 1
2 + r′

2 . We only study the case

where yi ≥ 1
2 −

r′

2 . Then, we have

yj > yi >
4

10
> r′′ +

3

10
.

For n ≥ 20, it follows that

yi − r′′ >
3

10
≥ 1

4
+

1

n
.

This gives {ℓ : yℓ ≤ 1
4 + 1

n} ⊂ {ℓ : yℓ < yi − r′′} and then #{ℓ : yℓ < yi − r′′} ≥ n/4.
Combining with the assumption F ∈ BL[α, β], we obtain∑

ℓ: yℓ<yi−r′′

Fiℓ − Fjℓ ≥ α
|i− j|
n

#{ℓ : yℓ < yi − r′′} ≥ α

4
|i− j| .

Thus, Assumption 4.2 holds for γ = α/4. □

D.2 Proof of Proposition C.5

It is sufficient to show that, with high probability, the estimation error of D̂ is locally bounded
by ωn, that is, |(D̂)ij −Dij | < ωn for all close i, j. Lemma D.1 makes this claim clear. Then,

on this high probability event, the estimator D̂ inherits the LDE properties of the distance
matrix D∗, up to an additive error ωn. Proposition C.5 is proved. □

Lemma D.1. For any 4 ≤ n, and 0 < α̃ ≤ β̃ and 0 < r, the following holds for any
D∗ ∈ LDE [α̃, β̃, 0, r] (as defined in Assumption 4.1). With probability 1− 1/n4, we have

|(D̂)ij −D∗
ij | < ωn for all i, j ∈ [n] such that

|πi − πj |
n

∧D∗
ij ≤ r (41)

where

ωn = C

√ β̃

n
+
√

(σ + 1)σ

(
log(n)

n

)1/4


and C is a numerical constant.

When the true distance matrix D∗ is LDE [α̃, β̃, 0, r] (as in Assumption 4.1), Lemma D.1
gives, with high probability, a uniform control on the estimation errors |(D̂)ij −D∗

ij |, for all
i, j at distance less than r. The error bound ωn is increasing with σ (the noise level bound),
and with β̃ (the upper bound on the distortions of (D∗)ij with respect to |πi − πj |/n). In

particular, when β̃, σ are fixed constants, the bound ωn goes to zero (as n→∞) and thus D̂
is locally a consistent estimator of D∗. The proof of Lemma D.1 is in appendix E.
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D.3 Proof of Proposition C.6

We analyze separately the three steps of AgregLocalBisection. More precisely, the perfor-
mance of the first step LocalBisection is given by Lemma D.3, the second step Orientation

by Lemma D.4, and the last step (lines 6-12 of AgregLocalBisection which set the values of
a comparison matrix H) by Lemma D.5. Proposition C.6 will then follow directly from these
three lemmas.

D.3.1 The first step: LocalBisection

We start by giving a rationale for LocalBisection: Lemma D.2 gives theoretical guarantees
in the ideal situation where the inputs Dij are equal to the latent distances |πi−πj |/n. More
precisely, it states that: (1) at most two connected components of the graph Gi satisfy the
condition (27) (hence the line 3 of LocalBisection is theoretically unnecessary), and (2)
each of these components is on a (different) side of i (in the ordering π).

Before stating Lemma D.2, we need some notations. For any i ∈ [n], denote by L∗
i (resp. R∗

i )
the set of objects k such that πk < πi (resp. πk > πi). For any λ > 0, denote by sL∗

i (λ)
(resp. sR∗

i (λ)) the set of object k such that πk ≤ πi−nλ (resp. πk ≥ πi−nλ). Thus, sL∗
i (λ)

(resp. sR∗
i (λ)) is the subset of L∗

i (resp. R∗
i ) reduced by the length λ. We now define two

properties:

• Property Pi(λ,G): given any λ > 0 and any G ⊂ [n], we have the inclusions

∅ ≠ sL∗
i (λ) ⊂ G ⊂ L∗

i or ∅ ≠ sR∗
i (λ) ⊂ G ⊂ R∗

i . (42)

• Property P ′
i(λ,G

(1), G(2)): given any λ > 0 and any G(1), G(2) ⊂ [n], we have

∅ ≠ sL∗
i (λ) ⊂ G(u) ⊂ L∗

i and ∅ ≠ sR∗
i (λ) ⊂ G(v) ⊂ R∗

i , (43)

for some u, v ∈ [2], u ̸= v.

Lemma D.2 (ideal input D). Let i ∈ [n]. If the inputs in LocalBisection(i,D, δ1, δ2, δ3)
are such that, 1/n ≤ δ1 ≤ δ2 ≤ δ3 ≤ 1/4, and Dij = |πi − πj |/n for all i, j ∈ [n], then:

1. at least one and at most two connected components of Gi satisfy the condition (27). We

write G
(1)
i , G

(2)
i these outputs, with the convention G

(1)
i ̸= ∅, while G

(2)
i may be empty.

2. When G
(2)
i = ∅, the set G

(1)
i is on one side of i, and includes all objects δ2 away from i

on this side (w.r.t. the distance Dij = |πi−πj |/n). More precisely, property Pi(δ2, G(1)
i )

in (42) is satisfied.

3. When G
(2)
i ̸= ∅, the sets G

(1)
i , G

(2)
i are on opposite sides of i, and include together all

objects δ2 away from i. More precisely, property P ′
i(δ2, G

(1)
i , G

(2)
i ) in (43) is satisfied.

Thus, the outputs G
(1)
i , G

(2)
i are on different sides of i in the ordering π, one being included

in the left set L∗
i , while the other is in the right ser R∗

i . In addition, G
(1)
i , G

(2)
i together

contain all objects at distance δ2 from i, one including sL∗
i (δ2), the other sR

∗
i (δ2). Therefore,

LocalBisection recovers left and right sets of i with an accuracy δ2. The interest of this
lemma is to show the mechanics of LocalBisection in a simple situation (where we have
ideal inputs Dij = |πi − πj |/n). The proof of Lemma D.2 is in appendix F.1.

30



Lemma D.3 generalizes Lemma D.2 to the situation considered in this paper where the quan-
tities |πi − πj |/n are unknown, and our input D can deviate from these ideal quantities as
much as permitted by Assumption 4.1.

Lemma D.3. Let i ∈ [n]. If the inputs in LocalBisection(i,D, δ1, δ2, δ3) are such that, D
is LDE [α̃, β̃, ω, r] as in Assumption 4.1, and δ1, δ2, δ3 fulfill the constraints

δ1 ≥ ω +
β̃

n
, δ2 > ω +

β̃

α̃
(δ1 + ω) , r ≥ n−1 ∨ (δ1 + ω) ∨ (δ2 + ω)

1 ∧ α̃
,

(44)

n ≥ 4 , (r ∧ (α̃/4))− ω ≥ δ3 > ω + β̃ρ ,

for ρ = (δ2 + ω)/α̃. Then, the points 1,2,3 of Lemma D.2 hold for an accuracy ρ instead of
δ2, that is:

1. point 1 is unchanged,

2. points 2 holds for Pi(ρ,G(1)
i ) instead of Pi(δ2, G(1)

i ),

3. points 3 holds for P ′
i(ρ,G

(1)
i , G

(2)
i ) instead of P ′

i(δ2, G
(1)
i , G

(2)
i ).

Thus, when the input D is in LDE [α̃, β̃, ω, r], LocalBisection successfully recovers left and
right sets with an accuracy ρ = (δ2 + ω)/α̃. The proof is in appendix F.2.

Remark D.1. For the inputs δ3 = δ2 = δ1 = 1/n in Lemma D.2, we get a perfect recovery of the

left and right groups L∗
i , R

∗
i of i. This is not true anymore in the realistic scenario of Lemma D.3,

where the recovery error ρ = (δ2+ω)/α̃ is possibly large, in part because of the constraints (44) which

prevent from choosing a small value for the tuning parameter δ2.

Remark D.2. The rule (27) of LocalBisection removes the connected components that do not have

a node at distance greater than δ3. Since δ3 must be sufficiently large to satisfy the constraints (44),

the rule (27) may cause abusive deletions of graph components. As a consequence, we may (too) often

have an empty output G
(2)
i in the LocalBisection, resulting in a loss of information. To circumvent

this issue, we use a double checking to set H in AgregLocalBisection (the first checking is in lines

7-8, and the second checking in lines 9-10).

D.3.2 The second step: Orientation

Lemma D.4 ensures that Orientation will rearrange the outputs [G
(1)
i , G

(2)
i ]i∈[n] of LocalBisection

to obtain n pairs [Li, Ri]i∈[n] that share a same orientation.

Lemma D.4. Assume that the inputs [G
(1)
i , G

(2)
i ]i∈[n] of Orientation are equal to the outputs

of LocalBisection. With no loss of generality, assume that the following orientation is taken
in the line 5 of Orientation:

argmin
i∈Li∗∪Ri∗

πi ∈ Li∗ . (45)

Under the hypotheses of Lemma D.3, and the constraints n−1 ≤ ρ ≤ 1/8 and δ3+ω ≤ r∧(α̃/8),
the outputs Li, Ri of Orientation satisfy, for all i ∈ [n],

Li ∪Ri ̸= ∅ ,

∅ ≠ sL∗
i (ρ) ⊂ Li ⊂ L∗

i if Li ̸= ∅ ,

∅ ≠ sR∗
i (ρ) ⊂ Ri ⊂ R∗

i if Ri ̸= ∅ . (46)
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By property (46), the outputs [Li, Ri]i∈[n] of Orientation are such that, all sets Li are on the
left side while all sets Ri are on the right side of i. The proof of Lemma D.4 is in appendix F.3.

D.3.3 The last step: lines 6-12 of AgregLocalBisection

Having sets [Li, Ri]i∈[n] satisfying (46) at out disposal, it would be natural to define a com-
parison matrix H as follows:

∀i ∈ [n] : Hij = 1 for j ∈ Li and Hij = −1 for j ∈ Ri , (47)

leaving undetermined the other entries (i.e., Hij = 0 for j /∈ Li ∪ Ri). This gives correct

estimates Hij of true comparisons H
(π)
ij for all j ∈ Li ∪ Ri. However, this single checking is

not sufficient to prove good performances for H, and accordingly, the proper construction of
H in lines 6-12 of AgregLocalBisection is slightly less direct, and uses a douche checking
instead of one. This double checking is discussed in Remark D.2 and D.3.

Lemma D.5. Under the hypotheses of Lemma D.4, the output H of AgregLocalBisection
satisfies, for an s ∈ {±},

Hij = sH
(π)
ij for all i, j ∈ [n] such that Hij ̸= 0 or

|πi − πj |
n

≥ ρ ,

where ρ = (δ2 + ω)/α̃.

Lemma D.5 gives guarantees for lines 6-12 of AgregLocalBisection. It bounds the error of
H by ρ = (δ2 + ω)/α̃. Thus, AgregLocalBisection gives an estimate of H(π) with accuracy
ρ = (δ2 + ω)/α̃. The proof of Lemma D.5 is in appendix F.4.

Remark D.3. The double checking in lines 6-12 of AgregLocalBisection is necessary since we may

have j /∈ Li ∪ Ri but i ∈ Lj ∪ Rj . This asymmetrical scenario may occur when one of the sets Li, Ri

is empty, e.g., when j ∈ R∗
i but Ri = ∅ we would have j /∈ Li ∪ Ri. Such empty sets cause a loss of

information, but we circumvent this by a simple double checking (first in lines 7-8, tsecond in lines

9-10). The empty sets come from the roughness of LocalBisection; see Remark D.2.

D.4 Proof of Proposition C.7

The latent positions πj/n are denoted by xj = πj/n for all j ∈ [n]. Given a matrix H1 ∈
{−1, 0, 1}n×n, let SH1 the set of all undetermined pairs i < j by H1, that is:

SH1 =
{
(i, j) ∈ [n]2 : i < j and (H1)ij = 0

}
. (48)

For any (i, j) ∈ SH1 , LocalRefine computes the sets Lij , Rij ⊂ [n], which are equal to

Lij = {k : (H1)ik = (H1)jk = 1} and Rij = {k : (H1)ik = (H1)jk = −1} . (49)

For the purpose of the current analysis (and also for the future analysis of LocalRefineWS),
we encapsulate the subsequent instructions of LocalRefine into a sub-algorithm Test,
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Algorithm 7 Test

Require: (i, j, B−
ij , B

+
ij , A, σ)

Ensure: Hij ∈ {−1, 0, 1}
1: lij =

∑
k∈B−

ij
Aik −Ajk

2: rij =
∑

k∈B+
ij
Aik −Ajk

3: if |lij | ≥ 5σ
√
n log(n) then

4: Hij = −sign(lij) and Hji = −Hij

5: else
6: if |rij | ≥ 5σ

√
n log(n) then

7: Hij = sign(rij) and Hji = −Hij

8: end if
9: end if

so that, LocalRefine uses Test for the inputs

B−
ij = Lij and B+

ij = Rij . (50)

We will sometimes write B−ϵ
ij and Bϵ

ij for an unknown ϵ ∈ {±}, with the convention

−ϵ =
{
− if ϵ = + ,
+ if ϵ = − .

To have guarantees for the output Hij of Test, we will use the general Lemma D.6, which
states that: if the two input sets B−

ij , B
+
ij satisfy the inclusions (51), and the noise E is a

realisation of the event (52), then, the output Hij will have the desired accuracy (53), up
to a sign change ϵ ∈ {±} which is the orientation of the sets B−ϵ

ij , Bϵ
ij in (51). To read the

conditions (51), we recall some notations: L∗
ij , R

∗
ij are respectively the left and right sets of i, j

with respect to the ordering π, that is L∗
ij = {ℓ : xℓ < xi ∧ xj} and R∗

ij = {ℓ : xℓ > xi ∨ xj}.
For any λ > 0, we also use the left and right λ sub-sets of i, j, which are defined by

sL∗
ij(λ) = {ℓ : xℓ < (xi ∧ xj)− λ} and sR∗

ij(λ) = {ℓ : xℓ > (xi ∨ xj) + λ} .

Lemma D.6. For any constants 0 < γ, r′ and 0 ≤ r′′, the following holds for any (Robinson)
matrix F in SCA[γ, r′, r′′] (as defined in Assumption 4.2), and for any ρ̃ ∈ [0, r′]. If i, j
satisfy |xi − xj | ≤ ρ̃, and B−

ij , B
+
ij are such that, for an ϵ ∈ {±},

sL∗
ij(r

′′) ⊂ B−ϵ
ij ⊂ L∗

ij when xi ∧ xj ≥ 1/2− ρ̃/2 ,

sR∗
ij(r

′′) ⊂ Bϵ
ij ⊂ R∗

ij when xi ∨ xj ≤ 1/2 + ρ̃/2 , (51)

then, conditionally on the event

EB±
ij
=

 max
ϵ∈{±}

1√
2#Bϵ

ij

∣∣∣ ∑
ℓ∈Bϵ

ij

(Ejℓ − Eiℓ)
∣∣∣ ≤ √

10 log(n)

 (52)

the output Hij of Test satisfies

Hij = ϵH
(π)
ij whenever |xi − xj | ≥ C

σ

γ

√
log(n)

n
. (53)
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The proof of Lemma D.6 is in appendix G.

Let us now check that the assumptions of Lemma D.6 are satisfied by the inputs B−
ij = Lij and

B+
ij = Rij . By assumption, the input H1 of LocalRefine is deterministic, or more generally,

is independent of A. Therefore, the sets Lij , Rij , which are induced by H1 in (49), are also
independent of A. Then, Lemma D.7 ensures that, with high probability, the events (52) for
B−

ij = Lij and B+
ij = Rij hold, simultaneously, for all i, j ∈ SH1 (recall that the set SH1 is

defined in (48)). The proof of Lemma D.7 is in appendix G.

Lemma D.7. If the inputs B−
ij , B

+
ij of Test are deterministic (or more generally, are inde-

pendent of A), then, with probability at least 1− 4/n3, the following event holds.

⋂
(i,j)∈SH1

EB±
ij
=

 max
(i,j)∈SH1

, ϵ∈{±}

1√
2#Bϵ

ij

∣∣∣ ∑
k∈Bϵ

ij

(Eik − Ejk)
∣∣∣ ≤ √

10 log(n)


Lemma D.8 show that, all pairs Lij , Rij share the same orientation as the one encoded by
the input H1 of LocalRefine. Therefore, with respect to a same ϵ ∈ {±}, the inclusions (51)
are fulfilled by the sets B−

ij = Lij and B+
ij = Rij for all i, j ∈ SH1 .

Lemma D.8. Let r′′ ∈ [0, 1), ϵ ∈ {±} and ρ̃ ∈ [0, r′′]. Assume that the input H1 of
LocalRefine has the following accuracy

(H1)kℓ = ϵH
(π)
kℓ for all k, ℓ ∈ [n] such that (H1)kℓ ̸= 0 or |xk − xℓ| ≥ ρ̃ . (54)

Then, writing B−
ij = Lij and B+

ij = Rij, the following inclusions hold for all (i, j) ∈ SH1,

sL∗
ij(r

′′) ⊂ B−ϵ
ij ⊂ L∗

ij and sR∗
ij(r

′′) ⊂ Bϵ
ij ⊂ R∗

ij .

The proof of Lemma D.8 is in appendix G.3. Note that the wanted inclusions (51) are weaker
than the conclusion of Lemma D.8 which holds without any restriction on the xi, xj . In
fact, the weaker requirement (51) will be relevant only later, for analyzing the more complex
algorithm LocalRefineWS.

The next lemma gives us the proximity condition of Lemma D.6, that is |xi − xj | ≤ ρ̃ for all
i, j ∈ SH1 . The proof is in appendix G.3.

Lemma D.9. Let ρ̃ ∈ (0, 1]. If a matrix H1 ∈ {−1, 0, 1}n×n satisfies, for an ϵ ∈ {±} and all
k, ℓ,

(H1)kℓ = ϵH
(π)
kℓ wherever (H1)kℓ ̸= 0 or |xk − xℓ| ≥ ρ̃ ,

then, we have |xi − xj | < ρ̃ for all (i, j) ∈ SH1, where SH1 is defined in (48).

We have proved that the conditions of Lemma D.6 are, with probability 1 − 4/n3, satisfied
uniformly for all (i, j) ∈ SH1 . Therefore, the conclusion of Lemma D.6 holds for all (i, j) ∈
SH1 , and with respect to the orientation ϵ ∈ {±} encoded by the input H1 of LocalRefine
in (34). The proof of Proposition C.7 is complete.
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D.5 Proof of Proposition C.9

We recall that H
(π)
ij = 1 − 21πi<πj for all i, j ∈ [n]. Let H ∈ {−1, 0, 1}n×n be a comparison

matrix with an error less than some ν > 0, that is, h satisfies (33) for some s ∈ {±}. Without
the loss of generality, we assume that s = +. This gives

Hij = H
(π)
ij for all i, j ∈ [n] such that |πi − πj | ≥ νn. (55)

To obtain Lmax(π
h, π) ≤ 2ν for πH = (πH

1 , . . . , πH
n ) defined in (38), it is sufficient to prove

that
πH
j > πH

i for all i, j ∈ [n] such that πj ≥ πi + 2νn .

By definition of πH , we have to show that

SH
j − SH

i =
n∑

k=1

Hjk −Hik ≥ 1 for all i, j ∈ [n] such that πj ≥ πi + 2νn. (56)

We now prove (56). Let a pair i, j ∈ [n] such that πj ≥ πi + 2νn. We introduce the following
partition of the ordering π,

I1 = [1, πi − νn], I2 = (πi − νn, πi + νn) , I3 = [πi + νn, πj − νn],

I4 = (πj − νn, πj + νn), I5 = [πj + νn, n],

assuming that πi > νn and πj + νn ≤ n
(
the other cases, where πi ≤ νn or πj + νn > n,

can be similarly analyzed with a slight adaptation of the partition
)
. We define the associated

partition of indices Rs = {k ∈ [n] : πk ∈ Is} for s ∈ [5].

• For πk ∈ I1 ∪ I5, we have |πi − πk| ∧ |πj − πk| ≥ νn, hence (55) gives Hik = H
(π)
ik and

Hjk = H
(π)
jk for all k ∈ R1 ∪R5. Since H

(π)
ik = H

(π)
jk for all k ∈ R1 ∪R5, we have∑

k∈R1∪R5

Hjk −Hik = 0 .

• For πk ∈ I2, we have πj − πk ≥ νn, hence Hjk = H
(π)
jk = 1 for all k ∈ R2, and∑

k∈R2

Hjk −Hik = 1 +
∑

k∈R2, k ̸=i

Hjk −Hik ≥ 1 ,

where we used Hii = 0 in the equality, and Hik ∈ {−1, 0, 1} in the inequality. A similar
reasoning yields

∑
k∈R4

Hjk −Hik ≥ 1, as R2 and R4 are symmetric.

• For πk ∈ I3, we have |πi−πk|∧ |πj−πk| ≥ νn, hence Hik = H
(π)
ik = −1 and Hjk = H

(π)
jk = 1

for all k ∈ R3. It follows that ∑
k∈R3

Hjk −Hik ≥ 2 #R3 ,

where #R3 is the cardinal number of the set R3.

Gathering the (bullet points) above, we obtain (56). This concludes the proof.
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E Proof of Lemma D.1

Under the assumption that D∗ ∈ LDE [α̃, β̃, 0, σ], Lemma D.1 gave an upper bound on the
errors |D∗

ij− (D̂)ij | for close i, j, in terms of β̃, σ, n. In fact, Lemma D.1 follows from the next

result which is valid for any F , in particular for those that do not satisfy D∗ ∈ LDE [α̃, β̃, 0, σ].
Recall the notation mi ∈ {1, . . . , n}, mi ̸= i, which denotes a nearest neighbor of i according
to the distance D∗, that is mi ∈ argmint: t̸=i D∗

it.

Lemma E.1. Consider the observation model A = Fπ + σE, where E has independent (up
to symmetries) sub-Gaussian entries, with zero means and variance proxies all smaller than
1. Then, for any 4 ≤ n, the estimator D̂ described in appendix B.1 satisfies, with probability
1− 1/n4,

max
i,j∈[n]

∣∣∣(D∗
ij)

2 − (D̂)2ij

∣∣∣ ≲ |F |2,∞√
n

max
i∈[n]

D∗
imi

+

[
σ +
|F |2,∞√

n

]
σ

√
log(n)

n

where the notation a ≲ b (for any real numbers a, b) means that a ≤ Cb for a numerical
constant C.

The error bound has two parts: the term D∗
imi

is the l2-distance between i and its nearest
neighbor mi. It is a bias-type term that comes from the nearest neighbor approximation
(25). The second term that contains σ

√
log(n)/n is an upper bound on the fluctuations of

the sub-Gaussian noise.

Proof of Lemma D.1. To bound |D∗
ij−(D̂)ij |, we first use the inequality |a−b| ≤

√
|a2 − b2|,

then apply Lemma E.1, and finally use the inequality
√
a+ b ≤

√
a +
√
b, which are valid

for any non-negative real numbers a, b. For D∗ ∈ LDE [α̃, β̃, 0, σ], the bias term can be upper
bounded by D∗

imi
≤ β̃/n. For F ∈ [0, 1]n×n, we can check that |F |2,∞/

√
n ≤ 1. Thus

Lemma D.1 follows. □

Lemma E.1 is an extension of the work in [Issartel, 2021] to real-valued matrices A with
sub-Gaussian noise. The proof of Lemma E.1 follows the same steps as in [Issartel, 2021].
For completeness, elements of proof can be found below.

E.1 Elements of proof for Lemma E.1

The next lemma shows that the inner product ⟨Ai, Aj⟩n (between two different columns) is a
consistent estimator of the crossed term ⟨Fπi , Fπj ⟩n in (22).

Lemma E.2. Consider the observation model A = Fπ + σE, where E has independent (up
to symmetries) sub-Gaussian entries, with zero means and variance proxies all smaller than
1. Then, for any 4 ≤ n, we have, with probability 1− 1/n4,

∀i, j ∈ [n], i < j :
∣∣⟨Ai, Aj⟩n − ⟨Fπi , Fπj ⟩n

∣∣ ≤ C

[
|F |2,∞√

n
+ σ

]
σ

√
logn

n
,

where C is a numerical constant, and we used the notation |F |2,∞ = maxi∈[n]∥Fi∥2, with
∥Fi∥22 =

∑
j∈[n] F

2
ij.
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Lemma E.2 states that, with high probability, ⟨Ai, Aj⟩n is close to its mean ⟨Fπi , Fπj ⟩n. The
proof in appendix E.2 is based on standard concentration bounds.

The strategy of the distance estimation is to estimate separately the crossed term and the
two quadratic terms in (22). Combining Lemma E.2 (for the crossed term) and the nearest
neighbor approximation (25) (for the quadratic terms), it is possible to prove the following
high probability bound for D̂:

max
i,j∈[n]

∣∣∣(D∗
ij)

2 − (D̂)2ij

∣∣∣ ≲ |F |2,∞√
n

max
i∈[n]

D∗
imi

+

[
|F |2,∞√

n
+ σ

]
σ

√
log(n)

n
,

which is the bound in Lemma E.1.

E.2 Proof of Lemma E.2

Let i, j ∈ [n], i < j. For the model A = Fπ + σE, we have

⟨Ai, Aj⟩n − ⟨Fπi , Fπj ⟩n = σ⟨Fπi , Ej⟩n + σ⟨Ei, Fπj ⟩n + σ2⟨Ei, Ej⟩n . (57)

We control each term separately. The term ⟨Fπi , Ej⟩n is a linear combination of n− 2 (cen-
tered) independent sub-Gaussian random variables, with variance proxies smaller than 1.
Using Hoeffding’s inequality, we obtain

|⟨Fπi , Ej⟩n | ≤ C1 |F |2,∞
√
logn

n
,

with probability 1 − 1/n6, where C1 is a numerical constant, and n ≥ 4. The other term
⟨Ei, Fπj ⟩n of (57) is equal to ⟨Fπj , Ei⟩n and admits the same upper bound as above.

For k ̸= i, j, the random variable EikEjk is the product of two sub-Gaussian r.v., and hence
is a sub-exponential r.v.. The scalar product ⟨Ei, Ej⟩n is therefore a sum of independent
sub-exponential r.v. (divided by n), and Bernstein’s inequality yields

|⟨Ei, Ej⟩n | ≤ C2

√
logn

n
,

with a probability greater than 1− 1/n6, where C2 is a numerical constant.

Taking a union bound over all i, j ∈ [n], i < j, we obtain the uniform control of Lemma E.2
which holds with probability at least 1− 1/n4.

F Proofs of Lemma D.2 to D.5

We prove Lemma D.2, D.3, D.4, D.5 in section F.1, F.2, F.3, F.4, respectively.

F.1 Proof of Lemma D.2 (LocalBisection with ideal input)

Fix i ∈ [n]. Let Gi the graph build by LocalBisection(i,D, δ1, δ2, δ3), where δ1, δ2, δ3 are
and positive real numbers, and Dij = |xi − xj | for all i, j, using the notation

xj = πj/n for all j ∈ [n] . (58)

We will use Lemma F.1, F.2, F.3 to prove Lemma D.2.
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Lemma F.1. If δ1 ≤ δ2, all nodes of a connected component of Gi are on the same side of i.

Lemma F.2. If δ1 ≥ 1/n, all k such that xk ≤ xi − δ2 (resp. xk ≥ xi + δ2) are in a same
connected component of Gi.

Lemma F.3. Under the hypothesis of Lemma F.2, and if δ2 ≤ δ3 ≤ 1/4, there exist at least
one and at most two connected components of Gi including k ∈ [n] such that |xk − xi| ≥ δ3.

By Lemma F.3, the rule Dik ≥ δ3 in (27) of LocalBisection is fulfilled by at least one and
at most two connected components of Gi, hence LocalBisection outputs at least one and

at most two sets (of [n]). We denote these outputs by G
(1)
i and G

(2)
i , using the convention

G
(1)
i ̸= ∅, while G

(2)
i may be empty. This gives the point 1 of Lemma D.2 follows.

Assume that G
(2)
i = ∅. By Lemma F.1, G

(1)
i is on one side of i, and thus G

(1)
i ⊂ L∗

i or

G
(1)
i ⊂ R∗

i . By symmetry, we only focus on the case G
(1)
i ⊂ R∗

i . Then, Lemma F.3 ensures

that, G
(1)
i includes k ∈ R∗

i at distance (at least) δ3, i.e., there exists k ∈ G
(1)
i such that

xk − xi ≥ δ3. Since δ3 ≥ δ2, we obtain xk − xi ≥ δ2, hence k ∈ sR∗
i (δ2). Combining with

Lemma F.2 we conclude that
∅ ≠ sR∗

i (δ2) ⊂ G
(1)
i .

The point 2 of Lemma D.2 is proved.

If G
(2)
i ̸= ∅, we can similarly prove the point 3. The proof of Lemma D.2 is complete. □

Lemma F.1, F.2, F.3 are proved below.

Proof of Lemma F.1. If two nodes are connected (by one edge), then they are on the same
side of i. Indeed, let k, ℓ ∈ [n], k, ℓ ̸= i, be a pair of connected nodes, then (by construction of
Gi) the pair k, ℓ satisfies the rule (26), i.e., we have |xk−xℓ| ≤ δ1 and |xi−xℓ|∨ |xi−xk| ≥ δ2.
If δ2 > δ1, the objects k, ℓ are necessarily on the same side of i. If δ2 = δ1, the same conclusion
holds since mins∈[n],s ̸=i |xi − xs| = 1/n > 0.

We readily deduce from the above that all nodes of a connected component are on a same
side. Let k, k′ ∈ [n] be in a same connected component, then there exists a path (of connected
nodes) going from k to k′. Since any two consecutive nodes along the path are on the same
side, the extremities k and k′ are necessarily on a same side too. □

Proof of Lemma F.2. Let k such that xk ≤ xi − δ2 (the symmetric case xk ≥ xi + δ2
is omitted). If there do not exist k′ ̸= k such that xk′ ≤ xi − δ2, then the statement of
the lemma holds (trivially). In the following, assume that such a k′ exists. Here we assume
(for simplicity) that π = id, that is, the notation (58) becomes xj = j/n for all j. We only
focus on the case k′ < k (the other case k < k′ being symmetric). The objects k − 1, k are
consecutive objects in the ordering π, and so |xk−1 − xk| = 1/n ≤ δ1. Since they are also at
distance δ2 from i, the rule (26) holds for k and ℓ = k − 1. This means that k and k − 1 are
connected by an edge in the graph. By induction, every pair of consecutive nodes along the
path k′, k′ + 1, . . . , k − 1, k is connected by an edge. Thus, k, k′ belong to a same connected
component. □
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Proof of Lemma F.3. By Lemma F.2, all objects on one side of i, which are at distance
δ2 from i, belong to a same connected component. The graph Gi has therefore at most two
connected components that contain a k such that |xi − xk| ≥ δ3 for δ3 ≥ δ2.

Let us show the existence. Here we assume (for simplicity) that π = id, so that the no-
tation (58) becomes xj = j/n for all j. Observe that |xi − x1| ≥ 1/4 or |xn − xi| ≥ 1/4.
Therefore, there exists k ∈ {1, n} such that |xi − xk| ≥ δ3 for δ3 ≤ 1/4. □

F.2 Proof of Lemma D.3 (LocalBisection)

At a high level, the proof follows the same steps as for Lemma D.2 (appendix F.1). Fix i ∈ [n],
and let Gi the graph build by LocalBisection(i,D, δ1, δ2, δ3), where D is LDE [α̃, β̃, ω, r].
Lemma D.3 follows from the three next lemmas, which are generalizations of the three lemmas
used in the proof of Lemma D.2. We use again the notation xj = πj/n from (58).

Lemma F.4. All nodes of a connected component of Gi are on the same side of i, if

δ1 ≥ ω +
β̃

n
, δ2 > ω +

β̃

α̃
(δ1 + ω) , r ≥ n−1 ∨ (δ1 + ω) ∨ (δ2 + ω)

1 ∧ α̃
.

Lemma F.5. Under the hypotheses of Lemma F.4, all ℓ such that xℓ ≤ xi − ρ (respectively
xℓ ≥ xi + ρ) are in a same connected component of Gi.

Lemma F.6. Under the hypothesis of Lemma F.5, and if n ≥ 4 and ω + β̃ρ < δ3 ≤
(r ∧ (α̃/4))−ω, there exist at least one and at most two connected components of Gi including
k ∈ [n] such that Dki ≥ δ3.

Using Lemma F.4, F.5, F.6, we obtain Lemma D.3 in the same way as we did for Lemma D.2
(in appendix F.1). □

Lemma F.4, F.5, F.6 are proved below.

F.2.1 Proof of Lemma F.4, F.5, F.6

Using the assumption that D is LDE [α̃, β̃, ω, r], we first derive some relations between the
inputs Dij and the latent distances |xi − xj |. Lemma F.7 gives the useful relations (59-62).

Lemma F.7. Under the hypotheses of Lemma F.4, the following conditions are fulfilled

Dkℓ ≤ δ1 =⇒ |xk − xℓ| ≤ κ (59)

|xi − xℓ| ≤ κ =⇒ Diℓ < δ2 (60)

Diℓ < δ2 =⇒ |xi − xℓ| < ρ (61)

Dℓℓc ≤ δ1 (62)

for all i, k, ℓ, where ℓc is the consecutive object after ℓ in the ordering π (i.e., πℓc = πℓ + 1),
and

κ =
δ1 + ω

α̃
and ρ =

δ2 + ω

α̃
.
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Proof of Lemma F.7. If Dkℓ ≤ δ1, where D is LDE [α̃, β̃, ω, r] and δ1 ≤ r, then the LDE
(local distance equivalence) in Assumption (4.1) gives

|xk − xℓ| ≤
Dkℓ + ω

α̃
≤ δ1 + ω

α̃
= κ .

Similarly, if |xi − xℓ| ≤ κ, with κ ≤ r, then Diℓ ≤ β̃κ+ ω < δ2 by the LDE .

If Diℓ < δ2, with δ2 ≤ r, then |xi − xℓ| < (δ2 + ω) /α̃ = ρ.

We have |xℓ − xℓc | = 1/n, with 1/n ≤ r, so Dℓℓc ≤ (β̃/n) + ω ≤ δ1.

Lemma F.7 follows. □

We are now ready to prove Lemma F.4, F.5, F.6.

Proof of Lemma F.4. Assume that the rule (26) holds, i.e., Dkℓ ≤ δ1 and Dik ∨Diℓ ≥ δ2.
Then, (59-60 yield |xk − xℓ| ≤ κ and |xi − xℓ| ∨ |xi − xk| > κ. Therefore, k and ℓ are
necessarily on the same side of i. As in the proof of Lemma F.1, we can deduce that all nodes
of a connected component of Gi are on the same side of i. □

Proof of Lemma F.5. Let ℓ, ℓ′ such that xℓ ≤ xi − ρ and xℓ′ ≤ xi − ρ. The relation (61)
yields Diℓ∧Diℓ′ ≥ δ2. We only focus on the case πℓ < πℓ′ . For the object ℓc that is consecutive
after ℓ in the ordering π, the relation (62) gives Dℓℓc ≤ δ1. Therefore, the rule (26) holds for
ℓ and k = ℓc. This means that the nodes ℓ, ℓc are connected by an edge. As in Lemma F.2,
we can conclude by induction. Thus, ℓ and ℓ′ are in a same connected component of Gi. □

Proof of Lemma F.6. By Lemma F.5, all objects k on one side of i, which are at distance
|xk−xi| ≥ ρ, belong to a same connected component. The graph Gi has therefore at most two
connected components that contain a k such that |xk − xi| ≥ ρ. As proved below, Dki ≥ δ3
implies |xk − xi| ≥ ρ, so the graph Gi has at most two connected components including a
k ∈ [n] such that Dki ≥ δ3.

By contraposition: if |xi − xk| < ρ (with ρ ≤ r), then the LDE Assumption (4.1) gives
Dki < β̃ρ+ ω ≤ δ3 for β̃ρ+ ω ≤ δ3.

Let us show the existence. Assume (for simplicity) that π = id, so that xj = j/n for all j. If
Dki < δ3 (with δ3 ≤ r), the LDE yields |xk − xi| < (δ3 + ω)/α̃ ≤ 1/4 for δ3 ≤ (α̃/4)− ω. But
we know that |xi − x1| ≥ 1/4 or |xi − xn| ≥ 1/4, so Dki ≥ δ3 for some k ∈ {1, n}. □

F.3 Proof of Lemma D.4 (Orientation)

We assume (for simplicity) that π = id, so that the notation (58) becomes xj = j/n for all j.

Line 5 of Orientation: This step takes an index i∗ in V ̸=∅, so we have to show that V ̸=∅ ̸= ∅.
We do so by proving that io = ⌊n/2⌋ belongs to V ̸=∅. By definition, io ∈ V ̸=∅ means that

G
(1)
io
̸= ∅ and G

(2)
io
̸= ∅, i.e. LocalBisection outputs two (non-empty) connected components

(of the graph Gio). This scenario happens only when the rule (27) is met by two objects k
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and k′ (i.e. Dki ≥ δ3 and Dk′i ≥ δ3) which come from different components of Gio . Therefore,
it is enough to show that the rule (27) is satisfied for k = 1 and k′ = n, i.e.:

Dio1 ∧Dion ≥ δ3 . (63)

Indeed, the objects 1 and n are on different sides of io (in the ordering π = id), and thus (by
Lemma F.4) they do not belong to a same connected component.

Proof of (63) by contradiction: If Dio1 < δ3 (with δ3 ≤ r), the LDE Assumption 4.1 would
yield xio − x1 < (δ3 +ω)/α̃ ≤ 1/8. But this contradicts the fact that xio − x1 = io/n− 1/n ≥
(1/2− 1/n)− 1/n ≥ 1/4 (for n ≥ 8). The same applies to Dion < δ3. Thus (63) follows. □

Lines 12 and 14: We recall that the inputsG
(1)
i , G

(2)
i are equal to the outputs of LocalBisection.

Let i∗, i ∈ V ̸=∅, i ̸= i∗. Since i∗ ∈ V ̸=∅, both sets Li∗ = G
(1)
i∗ and Ri∗ = G

(2)
i∗ are non-empty,

and we can apply the point 3 of Lemma D.3. Combining with the orientation (45) we obtain

∅ ≠ sL∗
i∗(ρ) ⊂ Li∗ ⊂ L∗

i∗ and ∅ ≠ sR∗
i∗(ρ) ⊂ Ri∗ ⊂ R∗

i∗ . (64)

Thus i∗ fulfills the wanted property (46) of the lemma.

For i ∈ V ̸=∅, both sets G
(1)
i and G

(2)
i are non-empty, and again we apply the point 3 of

Lemma D.3. This gives

∅ ≠ sL∗
i (ρ) ⊂ G

(u)
i ⊂ L∗

i and ∅ ≠ sR∗
i (ρ) ⊂ G

(v)
i ⊂ R∗

i , (65)

for some u, v ∈ [2], u ̸= v. We now check if the algorithm successfully rearranges this pair of

sets G
(1)
i , G

(2)
i , so as to align them the i∗-direction in (64). There are two scenarios: either

G
(1)
i , G

(2)
i are (respectively) on the left and right sides of i, or vice-versa. We can focus on one

case, say G
(1)
i and G

(2)
i are on the left and the right sides of i, respectively. This orientation

and (65) yield

∅ ≠ sL∗
i (ρ) ⊂ G

(1)
i ⊂ L∗

i and ∅ ≠ sR∗
i (ρ) ⊂ G

(2)
i ⊂ R∗

i . (66)

The algorithm tests (at most) four intersections, between G
(u)
i , u ∈ [2], and the reference sets

Li∗ and Ri∗ , and the algorithm stops as soon as an intersection is found empty. We will see

that the order of testing does not matter. If it finds the null intersections G
(1)
i ∩ Ri∗ = ∅ or

G
(2)
i ∩ Li∗ = ∅, in both cases it sets Li = G

(1)
i and Ri = G

(2)
i . Then, (66) will imply

∅ ≠ sL∗
i (ρ) ⊂ Li ⊂ L∗

i and ∅ ≠ sR∗
i (ρ) ⊂ Ri ⊂ R∗

i ,

and i will satisfy the property (46) of the lemma.

In light of the above, we only need to check two facts: (1) at least one of the two intersections

G
(1)
i ∩ Ri∗ or G

(2)
i ∩ Li∗ is null, and (2) the two other intersections, which the algorithm

(possibly) tests, are not null. For (2), it suffices to observe that the inclusions (64-66) ensure

that 1 ∈ G
(1)
i ∩ Li∗ and n ∈ G

(2)
i ∩Ri∗ . Thus, none of these intersections is null. For (1), the

relations (64-66) yield G
(2)
i ∩Li∗ = ∅ if i∗ < i, and G

(1)
i ∩Ri∗ = ∅ otherwise (when i < i∗). □

Lines 23 and 25: Let i /∈ V̸=∅. The point 1 of Lemma D.3 gives G
(1)
i ̸= ∅. Then, by

definition of V ̸=∅, we have G
(2)
i = ∅. Thus i ∈ V ′

̸=∅. The point 2 of Lemma D.3 ensures that
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G
(1)
i is on one side of i. Without the loss of generality, we focus here on the case where G

(1)
i

is on the right side of i. Then, the point 2 of Lemma D.3 yields

∅ ≠ sR∗
i (ρ) ⊂ G

(1)
i ⊂ R∗

i . (67)

For any k ∈ V ̸=∅, the associated sets Lk, Rk have already been defined in lines 12 and 14
of Orientation. We have shown above that these sets satisfy the property (46), which we
recall:

∅ ≠ sL∗
k(ρ) ⊂ Lk ⊂ L∗

k and ∅ ≠ sR∗
k(ρ) ⊂ Rk ⊂ R∗

k . (68)

We momentarily assume that one of the tests in lines 23 and 25 is satisfied, i.e., there exists
k ∈ V ̸=∅ such that

i ∈ Lk ∪Rk and G
(1)
i ∩ Lk ̸= ∅ and G

(1)
i ∩Rk ̸= ∅ . (69)

Let us determine whether i ∈ Lk or i ∈ Rk. If k < i were true, then (67-68) would yield

G
(1)
i ∩ Lk = ∅, hence a contradiction with (69). Therefore we have i < k. Reading (69) with

this new information and with (68), we see that necessarily i ∈ Lk. Thus, Line 23 of the

algorithm sets Li = ∅ and Ri = G
(1)
i . Combining with the inclusions (67), we get

∅ ≠ sR∗
i (ρ) ⊂ Ri ⊂ R∗

i .

Thus, i fulfills the property (46) of the lemma. □

Proof of (69). Let us show that k = ko = ⌊3n/4⌋ fulfills the three parts of (69). We assume
(for now) that

(1.bis) xi < 1/4 , (2.bis) ko ∈ V̸=∅ . (70)

◦ Using (1.bis), with n ≥ 8 and ρ ≤ 1/8, we obtain

xko − xi > (3/4− 1/n)− 1/4 ≥ 1/4 ≥ ρ ,

hence i ∈ sL∗
ko
(ρ). Since (68) holds for any k ∈ V ̸=∅, it holds in particular for k = ko by

(2.bis), and we have
sL∗

ko(ρ) ⊂ Lko . (71)

Therefore, i ∈ Lko . This gives the first part of (69) for k = ko.

◦ The assumption (2.bis) ensures that (67-68) hold for k = ko. It follows from (67-68) that

n ∈ G
(1)
i ∩Rko . The third part of (69) is checked.

◦ By definition of ko = ⌊3n/4⌋ we have xko = ko/n ∈ [3/4− 1/n, 3/4] ⊂ [5/8, 3/4] for n ≥ 8.
Then, (1.bis) yields

x⌊n/2⌋ − xi > (1/2− 1/n)− 1/4 ≥ 1/8 ≥ ρ ,

for ρ ≤ 1/8. Thus ⌊n/2⌋ ∈ sR∗
i (ρ) ⊂ G

(1)
i , where the inclusion follows directly from (67).

Similarly, we have
xko − x⌊n/2⌋ ≥ 5/8− 1/2 ≥ 1/8 ≥ ρ ,

hence ⌊n/2⌋ ∈ sL∗
ko
(ρ) ⊂ Lko , where we used (71). We have proved ⌊n/2⌋ ∈ G

(1)
i ∩Lko , which

is the second part of (69) for k = ko. Thus, (69) is proved. □
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Proof of (70). ◦ Let us start with (1.bis) and recall that i /∈ V ̸=∅. Following the same
reasoning as above (63), we proceed by contradiction. If we had Di1 ≥ δ3, we would have

1 ∈ G
(1)
i ∪ G

(2)
i . But, G

(2)
i = ∅ since i /∈ V ̸=∅, hence 1 ∈ G

(1)
i . This yields the contradiction

with (67). We have proved that Di1 < δ3.

Then, the LDE Assumption 4.1 yields

α̃|xi − x1| ≤ Di1 + ω < δ3 + ω ≤ α̃/8 ,

for δ3 + ω ≤ α̃/8, which leads to

xi < x1 + 1/8 = 1/n+ 1/8 ≤ 1/4 , (72)

for n ≥ 8. The proof of (1.bis) is complete.

◦ Let us prove (2.bis), that is, LocalBisection releases two non empty connected components

G
(1)
ko

, G
(2)
ko

of the graph Gko . As seen above (63), it suffices to show that Dko1 ∧Dkon ≥ δ3.

By contradiction, if we had Dko1 < δ3, then, following the same lines as for (72) we would
obtain xko < 1/4. Similarly, if Dkon < δ3, then xko > 3/4. Both inequalities xko < 1/4 and
xko > 3/4 contradict the definition of ko = ⌊3n/4⌋ since xko = ko/n ∈ [3/4 − 1/n, 3/4] ⊂
[5/8, 3/4] for n ≥ 8. Therefore, Dko1 ∧Dkon ≥ δ3.

Thus, (2.bis) is proved. The proof of (70) is complete. □

Lemma D.4 is proved.

F.4 Proof of Lemma D.5

Without the loss of generality, we assume that π = id, so that the notation (58) becomes
xj = πj/n = j/n for all j.

◦ Let i, j ∈ [n] such that Hij ̸= 0. AgregLocalBisection defines Hij as follows: it sets
Hij = −1 if j ∈ Ri or i ∈ Li; it sets Hij = 1 otherwise, when j ∈ Li or i ∈ Ri. Lemma D.4
ensures that, for any k ∈ [n], if the set Lk (resp. Rk) is non-empty, then it is on the left

(resp. right) side of k. It follows that Hij = H
(π)
ij , thus AgregLocalBisection recovers the

comparison H
(π)
ij . □

◦ Let i, j ∈ [n] such that |xi − xj | ≥ ρ. We focus on the case i < j (the symmetric case
can be handled similarly). One can see that j ∈ sR∗

i (ρ). Besides, if Ri ̸= ∅, Lemma D.4 gives
sR∗

i (ρ) ⊂ Ri. Therefore, j ∈ Ri whenever Ri ̸= ∅. AgregLocalBisection sets accordingly

Hij = −1, which matches the true value H
(π)
ij = −1.

We have yet to analyze the situation Ri = ∅. Lemma D.4 ensures that Li ∪ Ri ̸= ∅, so we
necessarily have Li ̸= ∅. Then, Lemma D.4 ensures that Li is on the left side of i. Since i < j,
we have j /∈ Li ∪Ri. This means that AgregLocalBisection will check whether i ∈ Lj ∪Rj

holds or not, and then will set the correct value Hij = −1 = H
(π)
ij iff i ∈ Lj . To prove that

i ∈ Lj , we only have to verify that Lj ̸= ∅. (Indeed, if Lj ̸= ∅, Lemma D.4 ensures that
sL∗

j (ρ) ⊂ Lj . Besides, we know that xi ≤ xj − ρ, so i ∈ sL∗
j (ρ). Therefore, i ∈ Lj .) The
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verification of Lj ̸= ∅ is similar to previous arguments, and is delayed at the end of section.
Thus, AgregLocalBisection sets the correct value Hij = −1. □

Verification of Lj ̸= ∅, in the situation Ri = ∅. This amounts to checking that the LocalBisection
releases a connected component (of Gj) which is on the left side of j. As seen before, it is
enough to check that the rule (27) is met by j and 1, that is, Dj1 ≥ δ3.

By contradiction, assume that Dj1 < δ3. The LDE Assumption (4.1) yields |xj − x1| <
(δ3 + ω)/α̃ ≤ 1/8, hence xj < 1/8 + x1 = 1/8 + (1/n) ≤ 1/4 for n ≥ 8. Thus xi < 1/4 (since
xi < xj).

On the other hand, when Ri = ∅, we haveDin < δ3 (otherwise, LocalBisection would release
a component of Gi that is on the right side of i, i.e., Ri ̸= ∅). Then, the LDE assumption
gives |xi − xn| < (δ3 + ω)/α̃ ≤ 1/8, hence xi > xn − 1/8 ≥ (1 − 1/n) − 1/8 ≥ 3/4. Thus
xi > 3/4, which brings the contradiction with the conclusion of the previous paragraph. □

G Proof of Lemma D.6 to D.9

G.1 Proof of Lemma D.6

Recall the notation xi = πi/n for all i. Without the loss of generality, we focus on the
case where xi < xj , and ϵ = + in (51) (the other cases are symmetric and can be analyzed

similarly). Thus, we have H
(π)
ij = −1 and we want to prove that Hij = −1, under the

assumption (51) which becomes here

sL∗
ij(r

′′) ⊂ B−
ij ⊂ L∗

ij when xi ∧ xj ≥ 1/2− ρ̃/2 , (73)

sR∗
ij(r

′′) ⊂ B+
ij ⊂ R∗

ij when xi ∨ xj ≤ 1/2 + ρ̃/2 .

To have Hij = −1, we only need to check that one of the two following inequalities holds

lij :=
∑
k∈B−

ij

Aik −Ajk ≥ 5σ
√

n log(n) or rij :=
∑
k∈B+

ij

Aik −Ajk ≤ −5σ
√
n log(n) , (74)

while none of the two other results lij ≤ −5σ
√
n log(n) or rij ≥ 5σ

√
n log(n) is possible.

• Proof of (74). We drop the dependency in i, j for convenience and write Bϵ for ϵ ∈ {±}.
Then, to prove (74), we need to show that

∑
ℓ∈Bϵ ϵ(Ajℓ−Aiℓ) ≥ 5σ

√
n log(n) for an ϵ ∈ {±}.

We have ∑
ℓ∈Bϵ

ϵ(Ajℓ −Aiℓ) =
∑
ℓ∈Bϵ

ϵ(Fπjπℓ
− Fπiπℓ

) +
∑
ℓ∈Bϵ

ϵσ(Ejℓ − Eiℓ)

≥
∑
ℓ∈Bϵ

ϵ(Fπjπℓ
− Fπiπℓ

)− σ max
ϵ∈{±}

∣∣∣ ∑
ℓ∈Bϵ

(Ejℓ − Eiℓ)
∣∣∣

>
∑
ℓ∈Bϵ

ϵ(Fπjπℓ
− Fπiπℓ

)− 5σ
√
n log(n) , (75)

where the last line holds conditionally on the event EB± of (52), with maxϵ∈{±}#Bϵ ≤ n and√
2
√
10 < 5. Using the inclusions B− ⊂ L∗

ij and B+ ⊂ R∗
ij of (73), and the Robinson shape
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(1) of F , we get

Fπjπℓ
− Fπiπℓ

> 0 for all ℓ ∈ B+ ,

Fπjπℓ
− Fπiπℓ

< 0 for all ℓ ∈ B− . (76)

since xi < xj where xi = πi/n and xj = πj/n. Therefore, for any ϵ ∈ {±}, the sum∑
ℓ∈Bϵ ϵ(Fπjπℓ

− Fπiπℓ
) is composed of non-negative terms, and hence we can lower bound it

by any sub-sum. In particular, if we have the following inclusions

sL∗
ij(r

′′) := {ℓ : xℓ < xi − r′′} ⊂ B− and sR∗
ij(r

′′) := {ℓ : xℓ > xj + r′′} ⊂ B+ (77)

then we can lower bound the last sum in (75) by

when ϵ = −,
∑
ℓ∈B−

−(Fπjπℓ
− Fπiπℓ

) ≥
∑

ℓ: xℓ<xi−r′′

Fπiπℓ
− Fπjπℓ

,

when ϵ = +,
∑
ℓ∈B+

(Fπjπℓ
− Fπiπℓ

) ≥
∑

ℓ: xℓ>xj+r′′

Fπjπℓ
− Fπiπℓ

. (78)

To see why (at least) one of the the inclusions (77) holds, one can readily check that xi ≥
1/2− ρ̃/2 or xj ≤ 1/2 + ρ̃/2 (since |xi − xj | ≤ ρ̃ and xi < xj by assumption) and then use
assumption (73).

To lower bound (78), we use Assumption 4.2. Recall that this assumption only holds when
xi ≥ 1/2−r′/2 or xj ≤ 1/2+r′/2, but one of these two inequalities is actually satisfied here
(indeed, we have seen above that xi ≥ 1/2− ρ̃/2 or xj ≤ 1/2 + ρ̃/2, and we have ρ̃ ≤ r′ by
assumption). Therefore, focusing on one of these two symmetric cases, say xi ≥ 1/2 − r′/2,
Assumption 4.2 yields ∑

ℓ: xℓ<xi−r′′

Fπiπℓ
− Fπjπℓ

≥ γ|xi − xj |n .

Substituting into (78) and then into (75), we obtain

max
ϵ∈{±}

∑
ℓ∈Bϵ

ϵ(Ajℓ −Aiℓ) > γ|xi − xj |n− 5σ
√
n log(n) .

Thus, the test (74) will be satisfied when γ|xi−xj |n−5σ
√

n log(n) is greater than 5σ
√

n log(n).
This gives the following condition for a successful test:

|xi − xj | ≥ 10
σ

γ

√
log(n)

n
.

We retrieve the accuracy (53) of Lemma D.6.

• Proof that neither lij ≤ −5σ
√

n log(n) or rij ≥ 5σ
√
n log(n) is possible. Following the

lines in (75), we obtain∑
ℓ∈Bϵ

ϵ(Aiℓ −Ajℓ) <
∑
ℓ∈Bϵ

ϵ(Fπiπℓ
− Fπjπℓ

) + 5σ
√
n log(n) , (79)

conditionally on the event EB± . By (76), the last sum in (79) is non-positive, hence∑
ℓ∈Bϵ

ϵ(Aiℓ −Ajℓ) < 5σ
√

n log(n) . (80)

Thus, rij < 5σ
√

n log(n) and lij > −5σ
√
n log(n).
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G.2 Proof of Lemma D.7.

By assumption, the sets B−
ij and B+

ij are independent of A. Therefore, conditionally to B−
ij

and B+
ij , the 2(n− 1) real numbers {Eiℓ : ℓ ∈ [n], ℓ ̸= i} and {Ejℓ : ℓ ∈ [n], ℓ ̸= j} are (still)

independent sub-Gaussian random variables, with zero means and variance proxies all smaller
than 1. Applying a standard concentration inequality [Rigollet and Hütter, 2023, Corollary
1.7], we obtain

P

 1√
2#Bϵ

ij

∣∣∣ ∑
ℓ∈Bϵ

ij

(Eiℓ − Ejℓ)
∣∣∣ ≥ t

∣∣∣∣∣∣ Bϵ
ij

 ≤ 2e−t2/2 ,

for all t > 0 (using the convention 0/0 = 0 and
∑

k∈∅ = 0). Since this inequality holds
for any Bϵ

ij ⊂ [n], we have the same upper bound without conditioning (to Bϵ
ij). Taking

t =
√
10 log(n), and a union bound over all ϵ ∈ {±} and all (i, j) ∈ SH1 , we get 2e

−t2/2 ≤ 4/n3

(using the bound #SH1 ≤ n2 on the cardinal number of SH1).

G.3 Proof of Lemma D.8 and D.9.

Proof of Lemma D.8. Without the loss of generality, we assume that the assumption on H1

holds for ϵ = +, so we have (H1)kℓ = H
(π)
kℓ for all k, ℓ such that (H1)kℓ ̸= ∅, or |xℓ − xk| ≥ ρ̃.

In particular, for (i, j) ∈ SH1 we have (H1)ik = H
(π)
ik whenever (H1)ik ̸= ∅, and similarly

(H1)jk = H
(π)
jk whenever (H1)jk ̸= ∅. Combining with the definition (49) of Lij , Rij , we

obtain
Lij ⊂ L∗

ij and Rij ⊂ R∗
ij .

Since (H1)ik = H
(π)
ik when |xk − xi| ≥ ρ̃, and similarly (H1)jk = H

(π)
jk when |xk − xj | ≥ ρ̃, we

also have for ρ̃ ≤ r′′,

sL∗
ij(r

′′) ⊂ sL∗
ij(ρ̃) ⊂ Lij and sR∗

ij(r
′′) ⊂ sR∗

ij(ρ̃) ⊂ Rij .

Thus, for B−
ij = Lij and B+

ij = Rij , the conclusion of Lemma D.8 follows. (Note that some
sets in these inclusions might be empty, e.g., when xi, xj are close to an extremity 0 or 1). □

Proof of Lemma D.9. Let (i, j) ∈ SH1 . We have (H1)ij = 0 by definition of SH1 . Since

(H1)kℓ = H
(π)
kℓ ̸= 0 when |xk − xℓ| ≥ ρ̃, we necessarily have |xi − xj | < ρ̃. □

H LocalRefineWS

We have already presented LocalRefine for which our performance analysis only deals with
deterministic or independent input H1. LocalRefineWS can be seen as an extension of
LocalRefine which allows to deal with non-independent random input H1. This extension
will still use statistics like the lij and rij of LocalRefine, in order to determine comparisons

H
(π)
ij . Before giving the algorithm, let us explain the issue when H1 is non independent of A.

LocalRefine uses statistics lij , rij that involve both the random data columns Ai, Aj , and

the sets Lij , Rij computed from H1. So, when taking the input H1 = Ĥ1 in the meta algo-
rithm SALB, we do not have independence between the sets Lij , Rij and the random columns
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Ai, Aj . In order to avoid such statistical dependencies in the statistics lij , rij , we introduce
LocalRefineWS which splits the data A to obtain the wanted independence. More precisely,
it computes proxy sets pLij , pRij from the split data A−(i,j) where the ith and jth lines of A
have been set to zero. Thus, pLij , pRij will be independent of the data columns Ai, Aj , and
we will be able to analyze statistics like lij , rij on these sets pLij , pRij .

Unfortunately, there is a computational drawback for splitting data. The time complexity
of SALB is O(n5) because of LocalRefineWS, whereas it would have been only O(n3) if
LocalRefine were used (instead of LocalRefineWS). Indeed, LocalRefineWS repeats almost
the entire procedure (i.e. steps like distance estimation − local bisection − test as in local
refine) for each pair i, j left undetermined by AgregLocalBisection. The number of such
pairs is at most O(n2), and the computational cost per iteration is O(n3). Each iteration
involves a call to DistanceEstimation to obtain distance estimates D̂−(i,j) from A−(i,j), and

then a call to ProxyLocalBisection to build proxy sets pLij , pRij from D̂−(i,j).

Algorithm 8 LocalRefineWS

Require: (H1, D,A, σ, δ1, δ2, δ3)
Ensure: H ∈ {−1, 0, 1}n×n

1: Let SH1 = {(i, j) ∈ [n]2 s.t. i < j and (H1)ij = 0}
2: for i ∈ [n] do
3: Si

H1
= {j ∈ [n] s.t. (i, j) ∈ SH1}

4: if Si
H1
̸= ∅ then

5: Li = {k : (H1)ki = −1} and Ri = {k : (H1)ki = 1}
6: if Li ̸= ∅ then
7: [pLij ]j∈Si

H1

= ProxySetDataSplit(i, Si
H1

, Li, D,A, δ1, δ2, δ3)

8: else
9: pLij = ∅ for all j ∈ Si

H1

10: end if
11: if Ri ̸= ∅ then
12: [pRij ]j∈Si

H1

= ProxySetDataSplit(i, Si
H1

, Ri, D,A, δ1, δ2, δ3)

13: else
14: pRij = ∅ for all j ∈ Si

H1

15: end if
16: end if
17: end for
18: for (i, j) ∈ SH1 do
19: Hij = Test(i, j, pLij , pRij , A, σ) and Hji = −Hij .
20: end for

Given a comparison matrix H1 ∈ {−1, 0, 1}n×n, let SH1 ⊂ [n]2 the set of pairs (i, j) left
undetermined by H1,

SH1 = {(i, j) ∈ [n]2 : i < j and (H1)ij = 0} . (81)

We will also use the notation

Si
H1

= {j ∈ [n] : (i, j) ∈ SH1} i ∈ [n] , (82)
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for denoting the indices j such that (i, j) ∈ SH1 . The objective in LocalRefineWS(H1, . . . )

is to compute, for all (i, j) ∈ SH1 , an estimate Hij of H
(π)
ij . In lines 7 and 12, LocalRefineWS

computes proxy sets pLij , pRij which will be used (instead of the old sets Lij , Rij) in the
statistical test in line 19. This test is the same as the one used earlier in LocalRefine, and is
encapsulated in Algorithm 7. The key point here, is that the input sets pLij , pRij are inde-
pendent of the data columns Ai, Aj that will be tested, thus avoiding any complex statistical
dependencies. The construction of proxies pLij , pRij is done by ProxySetDataSplit:

Algorithm 9 ProxySetDataSplit

Require: (i, S,G,D,A, δ1, δ2, δ3)
Ensure: [Gij ]j∈S
1: Set ki ∈ argmin{k∈G s.t.Dik≥δ3} Dik.
2: for j ∈ S do
3: A−(i,j) = matrix equal to A but with 0 on ith, jth rows/columns

4: D̂−(i,j) = DistanceEstimation(A−(i,j))

5: Let (G
(1)
ki

, G
(2)
ki

) = LocalBisection(ki, D̂−(i,j), δ1, δ2, δ3)

6: if G
(1)
ki
⊂ G then

7: Gij = G
(1)
ki

8: else
9: Gij = G

(2)
ki

.
10: end if
11: end for

Since i is missing in the split data A−(i,j), we need a proxy for i. The proxy ki (defined in
line 1) is chosen among all elements k ∈ G such that it is at a small distance Dik of i. But
for technical reasons, this distance cannot be smaller than δ3. Then, DistanceEstimation
computes (from A−(i,j)) an estimate D̂−(i,j) of the distance matrix D∗

−(i,j); here we used the

notation D∗
−(i,j) to denote the original distance matrix D∗ with zeros on the ith and jth rows;

accordingly, the estimator D̂−(i,j) is a symmetric matrix in Rn×n with zeros on the ith and jth

rows. Finally, LocalBisection computes (from D̂−(i,j)) two sets G
(1)
ki

, G
(2)
ki

that we expect
to be on different sides of ki (by Lemma D.2 and D.3). Among these two sets, we select (in
lines 7 and 9) the one that is located in a set G of reference.

I Proof of Proposition C.8

LocalRefineWS (in line 19) and LocalRefine uses the same algorithm Test, so the proofs of
Proposition C.8 and Proposition C.7 (in appendix D.4) are similar at a high level: It invokes
Lemma D.6 to obtain guarantees for the output Hij of Test, and the difficulty is to prove that
the hypotheses of Lemma D.6 are fulfilled. More precisely, for an input H1 ∈ {−1, 0, 1}n×n,
and any pair (i, j) in the set SH1 of (81), LocalRefineWS computes an estimate Hij =
Test(i, j, pLij , pRij , A, σ). Using the convenient notation

B−
ij = pLij and B+

ij = pRij , (83)
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Lemma D.6 will give us the desired guarantees for Hij , if we succeed in proving the three
conditions below:

(1) that the following distance bounds hold for a constant ρ̃ ∈ [0, r′] and all (i, j) ∈ SH1 ,

|xi − xj | < ρ̃ , (84)

where xj = πj/n for all j ∈ [n].

(2) that the following event holds with probability 1− 8/n2,

⋂
i,j∈SH1

EB±
ij
=

 max
(i,j)∈SH1
ϵ∈{±}

1√
2#Bϵ

ij

∣∣∣ ∑
ℓ∈Bϵ

ij

(Eiℓ − Ejℓ)
∣∣∣ <

√
10 log(n)

 (85)

(3) that the following inclusions are satisfied for all (i, j) ∈ SH1 , with respect to the same
ϵ ∈ {±} as in the error bound (36) assumed on the input H1 (of LocalRefineWS),

sL∗
ij(r

′′) ⊂ B−ϵ
ij ⊂ L∗

ij when xi ∧ xj ≥ 1/2− ρ̃/2 ,

sR∗
ij(r

′′) ⊂ Bϵ
ij ⊂ R∗

ij when xi ∨ xj ≤ 1/2 + ρ̃/2 . (86)

By Lemma D.9, condition (84) is satisfied, with respect to the same ρ̃ as in the error bound
(36) on H1. The high probability event (85) is proved in appendix I.1. The inclusions (86)
are proved in in appendix I.2. Thus, all hypotheses of Lemma D.6 hold; this gives the wanted
guarantees for the output H of LocalRefineWS. Proposition C.8 follows. □

I.1 Proof for high probability event (85)

Complementing the notation B−
ij = pLij and B+

ij = pRij introduced in (83), we will also write

B−
i = Li and B+

i = Ri . (87)

With these notations and ϵ ∈ {±}, we have that the sets Bϵ
ij for j ∈ Si

H1
are defined in

LocalRefineWS by

[Bϵ
ij ]j∈Si

H1

= ProxySetDataSplit(i, Si
H1

, Bϵ
i , D . . .) .

More precisely, following the lines of ProxySetDataSplit (Algorithm 9), this means that, for

kϵi := ki ∈ argmin
k∈Bϵ

i s.t.Dik≥δ3

Dik , (88)

and
(G

(1)
ki

, G
(2)
ki

) = LocalBisection(ki, D̂−(i,j) . . .) , (89)

we have
Bϵ

ij = G
(1)
ki

or Bϵ
ij = G

(2)
ki

. (90)

Thus, Bϵ
ij depends on the possibly random quantities kϵi ∈ [n] and D̂−(i,j) ∈ Rn×n, and some

random variable qi ∈ [2] representing the two outcomes situation in (90) (that is: qi = 1 when
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Bϵ
ij = G

(1)
ki

, and qi = 2 when Bϵ
ij = G

(2)
ki

). Therefore, there exists a deterministic function F
(from the space product [n]× [2]× Rn×n to the set of all subsets of [n]) such that

Bϵ
ij = F (kϵi , qi, D̂−(i,j)) .

Consider deterministic integers k ∈ [n] and q ∈ [2]. Since D̂−(i,j) is computed from A−(i,j)

only, it is independent of Ai and Aj , and hence of Ei and Ej . Therefore, conditionally to

D̂−(i,j), the set F (k, q, D̂−(i,j)) for k ∈ [n], q ∈ [2] is deterministic, and the 2(n − 1) real
numbers {Eiℓ : ℓ ∈ [n], ℓ ̸= i} and {Ejℓ : ℓ ∈ [n], ℓ ̸= j} are independent sub-Gaussian
random variables, with zero means and variance proxies smaller than 1. Then, for fixed
k ∈ [n] and q ∈ [2], we can apply a standard concentration inequality [Rigollet and Hütter,
2023, Corollary 1.7] and obtain

P

 1√
2#F (k, q, D̂−(i,j))

∣∣∣ ∑
ℓ∈F (k,q,D̂−(i,j))

(Eiℓ − Ejℓ)
∣∣∣ ≥ t

∣∣∣∣∣∣∣ D̂−(i,j)

 ≤ 2e−t2/2 ,

for all t > 0 (using the convention 0/0 = 0 and
∑

k∈∅ = 0). Since this inequality holds

for all D̂−(i,j) computed by DistanceEstimation, we have the same upper bound without

conditioning (to D̂−(i,j)). Taking t =
√
10 log(n), and a union bound over all ϵ ∈ {±}, k ∈ [n],

q ∈ [2] and (i, j) ∈ SH1 , we obtain

P

 max
(i,j)∈SH1
ϵ∈{±}

q∈[2], k∈[n]

1√
2#F (k, q, D̂−(i,j))

∣∣∣ ∑
ℓ∈F (k,q,D̂−(i,j)))

(Eiℓ − Ejℓ)
∣∣∣ ≥ √

10 log(n)

 ≤ 8

n2
.

This bound holds uniformly over all sets F (k, q, D̂−(i,j)) for k ∈ [n], q ∈ [2]. In particular,

it holds for the sets Bϵ
ij = F (kϵi , qi, D̂−(i,j)). Thus, the event (85) occurs with probability

1− 8/n2. □

I.2 Proof for inclusions (86)

For convenience, we encapsulate in Lemma I.1 the result we want to prove. We recall the
notation xj = πj/n for all j ∈ [n].

Lemma I.1. For any 0 < α̃ ≤ β̃ and 0 < r, γ, r′ and 0 ≤ ω, r′′, the following holds for
any D∗ ∈ LDE [α̃, β̃, 0, r] and D ∈ LDE [α̃, β̃, ω, r] (as defined in Assumption 4.1), and any
δ1, δ2, δ3, ρ̃ fulfilling the constraints (115), in particular the following constraints: ρ̃ ∈ (0, 1)
and ρ̃ ≤ ρ for ρ = (δ2 + ω)/α̃, and ρ̃′ + ρ ≤ r′′ for

ρ̃′ =
(ϕ1 ∨ ϕ2) + 2ω

α̃
where ϕ1 = β̃(n−1 + ρ̃) and ϕ2 = β̃

(
n−1 + α̃−1(δ3 + ω)

)
.

If the input H1 of LocalRefineWS has an accuracy, for an ϵ ∈ {±},

(H1)kℓ = ϵH
(π)
kℓ for all k, ℓ ∈ [n] where (H1)kℓ ̸= 0 or |xk − xℓ| ≥ ρ̃ , (91)

then, we have the inclusions (86) for all (i, j) ∈ SH1, with the same ϵ ∈ {±} as in (91).
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Proof of Lemma I.1. Without the loss of generality, we focus on the case where ϵ = + in
(91), so that we have

(H1)kℓ = H
(π)
kℓ , wherever (H1)kℓ ̸= 0 or |xk − xℓ| ≥ ρ̃ . (92)

For any (i, j) ∈ SH1 , the definition of SH1 in (81) yields (H1)ij = 0, and hence |xi − xj | < ρ̃.
Thus, we have at least one of the two inequalities: xi∧xj ≥ 1/2− ρ̃/2 or xi∨xj ≤ 1/2+ ρ̃/2.
By symmetry, we can focus on a single case, say xi∨xj ≤ 1/2+ ρ̃/2. Then, the inclusions (86)
(to prove) become

sR∗
ij(r

′′) ⊂ pRij ⊂ R∗
ij , (93)

where we used the notation B+
ij = pRij introduced in (83). By definition, the sets pRij are

defined by
[pRij ]j∈Si

H1

= ProxySetDataSplit(i, Si
H1

, Ri, D,A, δ1, δ2, δ3) . (94)

Reading ProxySetDataSplit (Algorithm 9), this means that, for

ki ∈ argmin
k∈Ri s.t.Dik≥δ3

Dik , (95)

and
(G

(1)
ki

, G
(2)
ki

) = LocalBisection(ki, D̂−(i,j) . . .) , (96)

we have

pRij = G
(1)
ki

ifG
(1)
ki
⊂ Ri , (97)

pRij = G
(2)
ki

otherwise .

Lemma I.2 ensures the existence of ki in (95), and also that the set Ri (where ki lives)
is correctly located. This lemma uses the error bound assumption (92) on H1, and the
LDE [α̃, β̃, ω, r] regularity assumption on D. The proof is in appendix J.1.

Lemma I.2. For any n ≥ 4, ρ̃ ∈ (0, 1/4], δ3 ≤ r and δ3 + ω < α̃/4, the following holds for
all i ∈ [n]. If xi ≤ 1/2 + ρ̃/2, and H1 satisfies (92), and D is LDE [α̃, β̃, ω, r], then

∅ ≠ sR∗
i (ρ̃) ⊂ Ri ⊂ R∗

i ,

and ki ∈ Ri is well-defined.

Lemma I.3 gives a control on the distance |xki − xi| between i and ki. The proof is in
appendix J.2.

Lemma I.3. Define ρ = (δ2 + ω)/α̃ and ϕ1 = β̃(n−1 + ρ̃) and ϕ2 = β̃
(
n−1 + α̃−1(δ3 + ω)

)
and ρ̃′ = α̃−1 ((ϕ1 ∨ ϕ2) + 2ω). Under the constraints |xi − xj | < ρ̃, and ρ̃ ≤ ρ, and

ω + β̃ρ < δ3 , n−1 + ρ̃ ≤ r , ϕ2 ≤ β̃r , (ϕ1 ∨ ϕ2) + ω ≤ r ,

and under the hypotheses of Lemma I.2, we have the following

xj ∨ (xi + ρ) < xki < xi + ρ̃′ .
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To have guarantees for the sets (G
(1)
ki

, G
(2)
ki

) in (96), we essentially need to check that D̂−(i,j) is

a good enough estimator of D∗
−(i,j). Since the ith and jth rows/columns of these matrices are

null, we will describe the regularity of D̂−(i,j) via a direct extension of the LDE assumption

to matrices of smaller support S ⊂ [n]. Here, the support of D̂−(i,j) and D∗
−(i,j) is denoted

by S−{i,j} = {ℓ ∈ [n], ℓ ̸= i, j}. The adapted LDE assumption to arbitrary support S is

properly defined in Assumption J.1, and is denoted by LDE(α̃, β̃, ω, r, S). Lemma I.4 ensures
that, with high probability, the D̂−(i,j) are simultaneously in LDE(α̃, β̃, 2ωn, r, S−{i,j}) for

(i, j) ∈ Sh1 . We introduce more formally this event: Given any α̃, β̃, ω, r > 0, let⋂
(i,j)∈SH1

Fij(α̃, β̃, ω) =
{
for all (i, j) ∈ SH1 : D̂−(i,j) isLDE

(
α̃, β̃, ω, r, S−{i,j}

) }
. (98)

Lemma I.4. For any α̃, β̃, r > 0, the following holds when the distance matrix D∗ is
LDE(α̃, β̃, 0, r). Then event

⋂
(i,j)∈SH1

Fij(α̃, β̃, 2ωn) in (98) occurs with probability 1−1/n2,

where ωn is the distance estimation error defined in (32).

The proof of Lemma I.4 is in appendix J.3. We can now apply Lemma I.5; it will give the
desired inclusions (93) for the output pRij in (97). The proof of Lemma I.5 is in appendix J.4.

Lemma I.5. For any i, j ∈ [n], i ̸= j, any ρ̃ ∈ (0, 1), any δ1, δ2, δ3, n complying with the
constraints (44) and also the constraints

δ3 ≤ r , δ3 + ω < α̃/4 , ρ̃+ 2t′ ≤ 1/2 ,

the following holds. If xi ≤ 1/2 + ρ̃/2, and ki and Ri satisfy, for some t′ > t > 0,

xj ∨ (xi + t) < xki < xi + t′ and sR∗
i (t) ⊂ Ri ⊂ R∗

i , (99)

and D̂−(i,j) is LDE [α̃, β̃, ω,r,S−(i,j)] (as in Assumption J.1), then, the output pRij satisfies
the following inclusions, for ρ = (δ2 + ω)/α̃,

sR∗
ij(t

′ + ρ) ⊂ pRij ⊂ R∗
ij . (100)

By Lemma I.2, I.3 and I.4, we can take t = ρ (with ρ ≥ ρ̃), and t′ = ρ̃′ (with ρ̃′ defined
in Lemma I.3) and ω = 2ωn, so that, all conditions of Lemma I.5 are satisfied. Then, for
ρ̃′ + ρ ≤ r′′, the conclusion of Lemma I.5 gives the inclusions (93). The proof of Lemma I.1
is complete.

J Proofs of Lemma I.2 to I.5

J.1 Proof of Lemma I.2

We recall that Ri is defined by LocalRefineWS by Ri = {k : (H1)ik = −1}. The accuracy
(92) of H1 ensures that Ri is on the right side of i, and it includes all objects at distance (at
least) ρ̃ on that side. This gives

sR∗
i (ρ̃) ⊂ Ri ⊂ R∗

i ,
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where we recall the notations sR∗
i (ρ̃) = {ℓ : xℓ > xi + ρ̃} and R∗

i = {ℓ : xℓ > xi}.

To check that sR∗
i (ρ̃) ̸= ∅ for ρ̃ ≤ 1/4, one observes that xi ≤ 5/8 (since xi ≤ 1/2 + ρ̃/2

by assumption), and the xj = πj/n for j ∈ [n] are evenly spread in [0, 1], with a spacing
1/n ≤ 1/4. Thus, we have shown that

∅ ≠ sR∗
i (ρ̃) ⊂ Ri ⊂ R∗

i . (101)

To complement the proof of Lemma I.2, it remains to check that ki is well-defined. By
definition (95), we have ki ∈ argminKi

Dik where

Ki = {k ∈ Ri : Dik ≥ δ3} . (102)

Thus, it suffices to show that Ki ̸= ∅. Assuming (w.l.o.g.) π = id (i.e. xk = k/n for all
k ∈ [n]), we will show that n ∈ Ki. This is equivalent to show that n ∈ Ri and Din ≥ δ3. The
property (101) yiels n ∈ Ri. To prove Din ≥ δ3, we proceed by contradiction: if Din < δ3,
the LDE regularity (with δ3 ≤ r) would give

xn − xi < (δ3 + ω)/α̃ < 1/4 ,

since δ3 + ω < α̃/4. But, for ρ̃ ≤ 1/2, the assumption xi ≤ 1/2 + ρ̃/2 yields

xn − xi ≥ 1− (1/2 + ρ̃/2) ≥ 1/4 ,

hence a contradiction between the last two displays. Therefore, we have Din ≥ δ3. Combining
with n ∈ Ri, we obtain n ∈ Ki. Thus Ki ̸= ∅ and the index ki is well defined. The proof of
Lemma I.2 is complete.

J.2 Proof of Lemma I.3

Without the loss of generality, we assume that π = id, so that xℓ = ℓ/n for all ℓ ∈ [n].

Lower bound: We recall that ki ∈ argminKi
Dik where the set Ki is defined in (102). This

means that ki ∈ Ki ⊂ Ri. Combining with the the inclusion Ri ⊂ R∗
i of Lemma I.2, we obtain

ki ∈ R∗
i , which implies xi < xki . Then, the LDE [α̃, β̃, ω, r] regularity and the inequality

Diki ≥ δ3 give

xki − xi ≥
δ3 − ω

β̃
> ρ ,

since δ3 > ω + β̃ρ. Thus xi + ρ < xki which is half of the lower bound of Lemma I.3. Using
the assumption |xi − xj | < ρ̃, we have

xj = (xj − xi) + (xi − xki) + xki < ρ̃− ρ+ xki ≤ xki ,

since ρ̃ ≤ ρ. This yields xj < xki , the other half of the lower bound of Lemma I.3. □

Upper bound: Given the set Ki = {k ∈ Ri : Dik ≥ δ3} from (102), we define b+i as an
element of Ki which has the lowest position in the ordering π, that is:

b+i = min Ki . (103)
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Note that b+i is well defined since ∅ ≠ Ki ⊂ [n] (where the non-emptiness was checked in
the proof of Lemma I.2). We also have b+i − 1 ∈ [n] \ Ki. (Indeed, by definition of bi, we
have b+i − 1 /∈ Ki, and, to see that b+i − 1 ∈ [n], one can observe that i + 1 ≤ b+i (since
b+i ∈ Ki ⊂ Ri ⊂ R∗

i , where the second inclusion is guaranteed by Lemma I.2).) By definition
of Ki, the fact b+i − 1 ∈ [n] \ Ki means that b+i − 1 /∈ Ri or Di, b+i −1 < δ3. Both cases are

analyzed separately.

◦ Case b+i −1 /∈ Ri : Since sR∗
i (ρ̃) ⊂ Ri by Lemma I.2, we have xb+i −1 /∈ sR∗

i (ρ̃), which means

xb+i −1 ≤ xi+ ρ̃. We also have xi < xb+i
, since b+i ∈ Ki ⊂ Ri ⊂ R∗

i (by Lemma I.2). Combining

these inequalities, we obtain

0 < xb+i
− xi = (xb+i

− xb+i −1) + (xb+i −1 − xi) ≤ n−1 + ρ̃ . (104)

By definition of ki, we have Dkii ≤ Db+i i. Then, the LDE [α̃, β̃, ω, r] regularity of D (for

n−1 + ρ̃ ≤ r) yields
Dkii ≤ Db+i i ≤ β̃(n−1 + ρ̃) + ω = ϕ1 + ω , (105)

where we wrote ϕ1 = β̃(n−1 + ρ̃).

◦ Case Dib+i −1 < δ3 : The distance matrix D∗ satisfies the triangular inequality, so we could

have assumed that the input D satisfies the triangular inequality too. Then, we would directly
obtain Dkii ≤ Dib+i

≤ Di,b+i −1+Db+i −1,b+i
< δ3+βn−1+ω, using the LDE [α̃, β̃, ω, r] regularity

of D (for n−1 ≤ r). Nevertheless, we do not need the triangular inequality for our analysis;
below, we give a proof without using it.

The LDE [α̃, β̃, ω, r] regularity (for δ3 ≤ r) yields α̃(xb+i −1 − xi) < δ3 + ω. Then, with the

same decomposition as in (104), we obtain

|xb+i − xi| < n−1 + α̃−1(δ3 + ω) .

We apply the LDE [α̃, β̃, ω, r] regularity again (for n−1 + α̃−1(δ3 + ω) ≤ r), and derive

Dib+i
< β̃

(
n−1 + α̃−1(δ3 + ω)

)
+ ω .

Using the definition of ki, we get

Dkii ≤ Db+i i < β̃
(
n−1 + α̃−1(δ3 + ω)

)
+ ω := ϕ2 + ω , (106)

where we wrote ϕ2 = β̃
(
n−1 + α̃−1(δ3 + ω)

)
.

◦ Conclusion : Combining the bounds (105-106) and the LDE [α̃, β̃, ω, r] regularity (for (ϕ1 ∨
ϕ2) + ω ≤ r) we obtain

α̃|xki − xi| ≤ Dkii + ω < (ϕ1 ∨ ϕ2) + 2ω .

This gives
xki < xi + ρ̃′, where ρ̃′ = α̃−1 ((ϕ1 ∨ ϕ2) + 2ω) ,

which is the upper bound of Lemma I.3. The proof of the lemma is complete.
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J.3 Proof of Lemma I.4

The next assumption is a direct extension of the LDE [α̃, β̃, ω, r] regularity to matrices of
arbitrary support S ⊂ [n]. Here, we use the notation xi = πi/n for all i.

Assumption J.1 (Local Distance Equivalence with support S). For any constants 0 < α̃ ≤ β̃,
0 < r, 0 ≤ ω and a set S ⊂ [n], let LDE [α̃, β̃, ω, r, S] be the collection of symmetric matrices
D in ∈ Rn×n that satisfy

α̃|xi − xj | − ω̃ ≤ Dij ≤ β̃|xi − xj |+ ω̃ (107)

for all i, j ∈ S such that |xi − xj | ∧Dij ≤ r.

We have already seen that, when D∗ is LDE(α̃, β̃, 0, r), the estimator D̂ is LDE [α̃, β̃, ωn, r]
with probability 1−1/n4 (by Lemma C.5). To extend these guarantees to D∗

−(i,j) and D̂−(i,j),
we will apply Lemma L.5, which is a generalization of Proposition C.5 for general positions
xi ∈ [0, 1] (instead of the regular grid of [0, 1]).

Fix (i, j) ∈ [n]2, i ̸= j. SinceD∗ is LDE(α̃, β̃, 0, r], we have thatD∗
−(i,j) is LDE [α̃, β̃, 0, r, S−{i,j}]

as in Assumption J.1. The (n− 2) latent positions xk, for k ̸= i, j, satisfy the spreading con-
dition (18) for η = 3/n. (In fact, this value η = 3/n is attained by the configuration of xk’s
where the removed points xi, xj are consecutive points in the ordering π). Then, Lemma L.5

(with a sample size n − 2) ensures that, with probability 1 − 1/n4, the matrix D̂−(i,j) is

LDE [α̃, β̃, ωn, 3
n
, r, S−{i,j}], where the distance estimator error ωn, 3

n
is given by

ωn, 3
n
= C

√3β̃

n
+
√
(σ + 1)σ

(
log(n)

n

)1/4
 .

Since
√
3 ≤ 2, we have ωn, 3

n
≤ 2ωn. Thus D̂−(i,j) is LDE [α̃, β̃, 2ωn, r, S−{i,j}].

Taking a union bound over all pairs i, j ∈ [n], we obtain that, with probability 1− 1/n2, all
D̂−(i,j) are simultaneously in LDE [α̃, β̃, 2ωn, r, S−{i,j}] for all i, j. Lemma I.4 follows.

J.4 Proof of Lemma I.5

Assume (w.l.o.g.) π = id, so that xℓ = ℓ/n for all ℓ ∈ [n]. Recall the definition (97) of the

output pRij : we first compute two sets (G
(1)
ki

, G
(2)
ki

) = LocalBisection(ki, D̂−(i,j) . . .), and

then the output is equal to pRij = G
(1)
ki

if G
(1)
ki
⊂ Ri, and to pRij = G

(2)
ki

otherwise. Using the

convenient notations k = ki and D̃ = D̂−(i,j) for the rest of the proof, we momentarily assume

that D̃kn ≥ δ3 (we will prove it at the end of the section). By construction of LocalBisection

(and Lemma F.6), the inequality D̃kn ≥ δ3 yields n ∈ G
(1)
k or n ∈ G

(2)
k . We study both cases

separately.

◦ Case n ∈ G
(1)
k . We want to apply Lemma D.3 to have guarantees for the output G

(1)
k

of LocalBisection. The conditions of Lemma D.3 are indeed fulfilled, since the δ1, δ2, δ3
comply with the constraints (44) and D̃ is LDE [α̃, β̃, ω,r,S−(i,j)]. The fact that D̃ is only
LDE w.r.t. S−(i,j) (instead of the whole set [n]) is not an issue here, because we only focus

55



on the output G
(1)
k for k ̸= i, j. Then, Lemma D.3 and n ∈ G

(1)
k together yield

sR∗
k(ρ) ⊂ G

(1)
k ⊂ R∗

k , (108)

for ρ = (δ2+ω)/α̃. On the one hand, the assumption (99) gives xj ∨xi < xk, that is, k ∈ R∗
ij ,

and hence R∗
k ⊂ R∗

ij . Combining with (108), we obtain

G
(1)
k ⊂ R∗

ij . (109)

On the other hand, the assumption (99) also gives xi < xk < xi+t′, which yields sR∗
i (t

′+ρ) ⊂
sR∗

k(ρ). Then, using the trivial inclusion sR∗
ij(t

′ + ρ) ⊂ sR∗
i (t

′ + ρ) and (108), we obtain

sR∗
ij(t

′ + ρ) ⊂ G
(1)
k . (110)

Putting everything together, we get

sR∗
ij(t

′ + ρ) ⊂ G
(1)
k ⊂ R∗

ij . (111)

Therefore, it remains to prove that pRij = G
(1)
k . By construction of ProxySetDataSplit,

this equality will occur iff G
(1)
k ⊂ Ri. The assumption (99) gives xi+ t < xk and sR∗

i (t) ⊂ Ri,
therefore we have k ∈ sR∗

i (t) ⊂ Ri. In particular, this implies that any set on the right side

of k is in Ri. Therefore, the inclusion G
(1)
k ⊂ R∗

k of (108) yields G
(1)
k ⊂ Ri. This means

that pRij = G
(1)
k (by construction of ProxySetDataSplit). Substituting this into (111), we

obtain the conclusion of Lemma I.5. □

◦ Case n ∈ G
(2)
k . We are back to the situation above, and we can proceed in a similar fashion

to obtain the inclusions (111) with G
(2)
k instead of G

(1)
k . Then, we have to check the equality

G
(2)
k = pRij . By definition of ProxySetDataSplit, this equality holds iff G

(1)
k ̸⊂ Ri. On

the one hand, the assumption (99) gives Ri ⊂ R∗
i ⊂ R∗

ij , where the last inclusion is trivial.
Therefore 1 /∈ Ri.

On the other hand, Lemma D.3 ensures that G
(1)
k , G

(2)
k are on different sides of k. Then, G

(2)
k

is necessarily on the right side of k (since n ∈ G
(2)
k ) and hence G

(1)
k is on the left side. Using

Lemma D.3, we obtain that G
(1)
k is non-empty and contains all objects at distance ρ on the

left side of k. This yields 1 ∈ G
(1)
k . .

Combining the conclusions of the last two paragraphs, we obtainG
(1)
k ̸⊂ Ri. ThusG

(2)
k = pRij .

The proof for the case n ∈ G
(2)
k is complete. □

◦ Proof of the initial assumption D̃kn ≥ δ3. By contradiction, if D̃kn < δ3, the LDE
regularity (for δ3 ≤ r) would give xn − xk < (δ3 + ω)/α̃ < 1/4.

On the other hand, we have 0 < xk − xi < t′ by assumption (99). Combining with the
assumption xi ≤ 1/2 + ρ̃/2, we obtain the following contradiction

xn − xk = xn − xi + (xi − xk) > 1− (1/2 + ρ̃/2)− t′ = 1/2− ρ̃/2− t′ ≥ 1/4 ,

using xn = 1 in the first inequality, and ρ̃+ 2t′ ≤ 1/2 in the last inequality.

Thus, we have D̃kn ≥ δ3. □

Lemma I.5 is proved.
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K Conditions on the tuning parameters

The rate in Theorem 2.1 still holds when the constants α, β, σ depend on n, but the conditions
on the tuning parameters δ1, δ2, δ3 are more intricate. To state these general conditions on
δ1, δ2, δ3, we first need to recall some key quantities. For F ∈ BL[α, β], recall that Proposi-
tion C.5 gives the following bound on the estimation error of D̂:

ωn = C

(√
β

n
+
√

(σ + 1)σ

(
log(n)

n

)1/4
)

where C is a numerical constant. Then, taking the input D = D̂ in AgregLocalBisection,
the output Ĥ1 of AgregLocalBisection has an estimation error bounded by ρ = (δ2+ωn)/α
(Proposition C.6). With the definition of these quantities ωn and ρ, we are now ready to give
the conditions on δ1, δ2, δ3 for which the rate in Theorem 2.1 is achieved:

δ1 ≥ 2ωn +
β

n
, δ2 > 2ωn +

2β

α
(δ1 + 2ωn) ,

1

4
>

n−1 ∨ (δ1 + 2ωn) ∨ (δ2 + 2ωn)

1 ∧ (α/2)
,

(112)

n−1 ≤ ρ ≤ 1/8,

(
1

4
∧ (α/16)

)
− 2ωn > δ3 > 2ωn + βρ,

and also:

n−1 + ρ <
1

8
, 4

(ϕ1 ∨ ϕ2) + 2ωn

α
<

1

10
− ρ,

(113)

ϕ2 <
β

4
, (ϕ1 ∨ ϕ2) + 4ωn <

1

4
,

where we wrote ϕ1 = β(n−1+ρ), and ϕ2 = β
(
n−1 + 2α−1(δ3 + 2ωn)

)
. To sum up, if δ1, δ2, δ3

satisfy (112-113), the conclusion of Theorem 2.1 is still valid, even if α, β, σ depend on n. For
convenience, we have summarized these conditions in a single line in (28). In appendix K.1,
we briefly give the origins of the conditions (112-113) in our analysis.

K.1 Origins of the conditions

AgregLocalBisection. The conditions in (112) are used for the performance analysis of
AgregLocalBisection. More precisely, assuming that the input D of AgregLocalBisection
is in LDE [α̃, β̃, ω, r] for positive constants α̃, β̃, ω, r, we get garantees for the output of
AgregLocalBisection by using Lemma D.3 D.4, D.5 which require the following conditions:

δ1 ≥ ω +
β̃

n
, δ2 > ω +

β̃

α̃
(δ1 + ω) , r ≥ n−1 ∨ (δ1 + ω) ∨ (δ2 + ω)

1 ∧ α̃
,

(114)

n−1 ≤ ρ ≤ 1/8 , (r ∧ (α̃/8))− ω ≥ δ3 > ω + β̃ρ .

To obtain the conditions (112), we first check that the input D = D̂ is in LDE [α/2, β, ωn, r]
(see next paragraph), and then we simply substitute α̃ = α/2, β̃ = β and ω = ωn in the
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conditions (114). In fact, there is an extra factor 2 in front of the ωn in the conditions (112)
which comes from the conditions below associated to LocalRefineWS performance.

Let us check that D̂ is in LDE [α/2, β, ωn, r] when F ∈ BL[α, β]. Proposition C.5 ensures that,
when D∗ ∈ LDE [α̃, β̃, 0, r], the estimator D̂ is in LDE [α̃, β̃, ωn, r]. Besides, for F ∈ BL[α, β],
Lemma C.1 ensures that D∗ is in LDE [α/2, β, 0, r]. Thus we have D̂ ∈ LDE [α/2, β̃, ωn, r].

LocalRefineWS. SALB also calls to LocalRefineWS whose main input is a comparison
matrix H1. Proposition C.8 requires that the error of H1 is less than a constant ρ̃. This is
guaranteed for H1 = Ĥ1 by Proposition C.6 which gives the error bound ρ̃ = ρ = (δ2 + ω)/α̃
= 2(δ2 + ωn)/α when D̂ is in LDE [α/2, β, ωn, r] (or F ∈ BL[α, β]). Besides, the performance
analysis of LocalRefineWS also requires the conditions (114) because LocalRefineWS uses
parts of AgregLocalBisection. But, LocalRefineWS uses both D ∈ LDE [α̃, β̃, ω, r] and
estimates D̂−(i,j) (from the split data A−(i,j)) in LDE [α/2, β, 2ωn, r] (Lemma I.4), so the
conditions (114) must be satisfied by ω ∨ 2ωn (instead of just ω). In addition, the analysis of
LocalRefineWS requires other conditions written in (115). For F as in Assumption 4.2 with
constants γ, r′, r′′ > 0, and for an input D ∈ LDE [α̃, β̃, ω, r], we use the following conditions
in the proof of Proposition C.8:

Conditions (114) with the replacement ω ← (ω ∨ 2ωn) ;

ρ̃ ∈ [0, r′], ρ̃ ≤ ρ, ρ̃′ + ρ ≤ r′′, ρ̃+ 2ρ̃′ ≤ 1/2 ;

(115)

ω̃ + β̃ρ < δ3 , n−1 + ρ̃ ≤ r , ϕ2 ≤ β̃r , (ϕ1 ∨ ϕ2) + ω̃ ≤ r ;

for the notation ω̃ = ω ∨ 2ωn and ρ = (δ2 + ω̃)/α, and

ρ̃′ =
(ϕ1 ∨ ϕ2) + 2ω̃

α̃
with ϕ1 = β̃(n−1 + ρ̃) and ϕ2 = β̃

(
n−1 + α̃−1(δ3 + ω̃)

)
.

The conditions (115) yield conditions that are satisfied under the constraints (113) and (112).
Indeed, we have ρ̃ = ρ by Proposition C.6. Also, for F ∈ BL[α, β], Lemma C.2 ensures that
F fulfills Assumption 4.2 for γ = α/4 and any r′ ∈ (0, 1/5) and r′′ ∈ [0, 1/10). Besides, for
F ∈ BL[α, β], Lemma C.1 guarantees that D∗ that is LDE [α/2, β, 0, r] for any r ∈ (0, 1/4).
Then, Proposition C.5 gives D̂ ∈ LDE [α/2, β, ωn, r]. Thus, for D = D̂ we have ω = ωn, and
hence ω̃ = ω ∨ 2ωn = 2ωn. Substituting in (115) the constants α̃ = α/2, β̃ = β, ω̃ = 2ωn, and
taking the largest possible values for r ∈ (0, 1/4), r′ ∈ (0, 1/5) and r′′ ∈ [0, 1/10), we obtain
conditions that are satisfied under the constraints (113) and (112).

L Proof of Theorem 5.1

L.1 General statement of the theorem

The next result extends Theorem 5.1 to the general situation where the α, β, σ may depend
on n, and the maximum spacing η can be any constant that satisfies

η ≤ cαβ , (116)
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where cαβ is a positive constant only depending on α, β. In this general situation, the choices
of tuning parameters δ1, δ2, δ3 may be summarized by the conditions

βη + C
√

βη + Cβσ

(
log(n)

n

)1/4

≤ δ1, Cαβ δ1 ≤ δ2 ≤ Cα, C ′
αβ δ2 ≤ δ3 ≤ C ′′

αβ, (117)

where C > 0 is a numerical constant, and Cβσ, Cαβ, Cα, C
′
αβ, C

′′
αβ are positive constants only

depending on α, β, σ. The exact conditions (with explicit constants) for the choices of δ1, δ2, δ3
can be found in (131) (taking ω = ωn and ρ̃ = ρ in (131)).

Theorem L.1. For n ≥ 8, and α, β, σ > 0, there exist positive constants cαβ, Cβσ, Cαβ, Cα, C
′
αβ, C

′′
αβ

such that the following holds for any η as in (116), any δ1, δ2, δ3 fulfilling (117), for any η̃ > 0
and y1, . . . , yn ∈ [0, 1] complying with (18-19), and for any F ∈ LBL[(yi), α, β]. With proba-
bility higher than 1− 9/n2, the permutation π̂o computed by SALB satisfies

Lcomp(π̂o, π) ≤ C ′ σ

η̃α

√
log(n)

n
, (118)

where C ′ > 0 is a numerical constant.

L.2 Proof of Theorem 5.1 and L.1

The proof follows the same lines as for Theorem 2.1 and 4.1. Using the notation xi = yπi for
all i, we first introduce the latent space extensions of Assumption 4.1 and 4.2.

Assumption L.1 (Latent Local Distance Equivalence). For any constants 0 < α̃ ≤ β̃, 0 < r,
0 ≤ ω and latent points y1 < . . . < yn in [0, 1], let LDE [(yi), α̃, β̃, ω, r] be the collection of
symmetric matrices D ∈ Rn×n that satisfy

α̃|yπi − yπj | − ω ≤ Dij ≤ β̃|yπi − yπj |+ ω (119)

for all i, j ∈ [n] such that |yπi − yπj | ∧Dij ≤ r.

Assumption L.2 (Latent Separated Cumulative similarities). For any constants 0 < γ, r′, r′′

and latent points y1 < . . . < yn in [0, 1], let SCA[(yi), γ, r′, r′′] be the collection of matrices
that satisfy, for all i, j ∈ [n], yi < yj and |yi − yj | ≤ r′,∑

ℓ: yℓ<yi−r′′

Fiℓ − Fjℓ ≥ γn|yi − yj | if yi ≥
1− r′

2
(120)

∑
ℓ: yℓ>yj+r′′

Fjℓ − Fiℓ ≥ γn|yi − yj | if yj ≤
1 + r′

2
.

Assumption L.1 and L.2 simply extend Assumption 4.1 and 4.2 in that they replace the
regular grid yi = i/n with general points yi ∈ [0, 1].

The next result ensures that π̂o achieves the rate
√

log(n)/n under Assumption L.1 and L.2,
and for y1, . . . , yn fulfilling the conditions (18-19). The choice of tuning parameters δ1, δ2, δ3
is characterized by the following conditions:

η ≤ cα̃β̃rr′r′′ (121)

β̃η + C

√
β̃η + Cβ̃σ

(
log(n)

n

)1/4

≤ δ1, Cα̃β̃ δ1 ≤ δ2 ≤ Cα̃rr′r′′ , C ′
α̃β̃

δ2 ≤ δ3 ≤ Cα̃β̃rr′′ ,
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where C > 0 is a numerical constant, and cα̃β̃rr′r′′ , Cβ̃σ, Cα̃β̃, Cα̃rr′r′′ , C
′
α̃β̃

, Cα̃β̃rr′′ are positive

constants only depending on α̃, β̃, σ, r, r′, r′′.

Theorem L.2. For n ≥ 8 and α̃, β̃, σ, r, r′, r′′ > 0, the following holds for any η, δ1, δ2, δ3
fulfilling (121), and y1, . . . , yn ∈ [0, 1] complying with (18), and for any F ∈ SCA[(yi), γ, r′, r′′]
such that D∗ ∈ LDE [(yi), α̃, β̃, ω, r]. With probability higher than 1 − 9/n2, the permutation
π̂o computed by SALB satisfies

Lcomp(π̂o, π) ≤ C ′σ

γ

√
log(n)

n
, (122)

where C ′ > 0 is a numerical constant.

We are now ready to prove Theorem 5.1 and its general version Theorem L.1.

Proof. (Theorem 5.1 and L.1) The next two lemmas show that the latent bi-Lipschitz as-
sumption F ∈ LBL[(yi), α, β] implies Assumption L.1 and L.2.

Lemma L.3. If F belongs to the class LBL[(yi), α, β] of latent bi-lipschitz matrices (as in
Assumption 5.1) for n ≥ 8, with y1, . . . , yn ∈ [0, 1] fulfilling (19) for any η̃ > 0, then, the
distance matrix D∗ is in LDE [(yi),

√
η̃α, β, 0, r] (as in Assumption L.1), for any r ∈ (0, 1/4).

Lemma L.3 states that, when F is a latent bi-Lipschitz matrix in LBL[(yi), α, β], the distance
matrix D∗ belongs to the class LDE [(yi), α̃, β̃, 0, r] for the parameters β̃ = β and α̃ = α

√
η̃.

Lemma L.4. If F belongs to the class LBL[(yi), α, β] of latent bi-lipschitz matrices (as in
Assumption 5.1), with y1, . . . , yn ∈ [0, 1] fulfilling (19) for η̃ > 0, then, Assumption L.2 holds
for γ = η̃α, any r′ ∈ (0, 1/4) and any r′′ ∈ [0, 1/8).

The proofs of Lemma L.3 and L.4 are in appendix M.1.

Thus Theorem 5.1 (and L.1) follows from Theorem L.2.

In order to prove Theorem L.2, the rest of the section is organized as follows. We give
the latent space extensions for the distance estimation in appendix L.3, for the first com-
parison matrix estimation in appendix L.4, for the second comparison matrix estimation in
appendix L.5, for the final step (comparison matrix to permutation) in appendix L.6. Finally
the proof of Theorem L.2 is in appendix L.7.

L.3 Extension for distance estimation

The next lemma upper bounds the (local) estimation errors of distances D∗
ij . This result is

an extension of Lemma D.1 for general positions yi ∈ [0, 1]. The proof is in appendix M.2.

Lemma L.5. For any 8 ≤ n, and 0 < α̃ ≤ β̃ and 0 < η ≤ r, the following holds for any
y1, . . . , yn ∈ [0, 1] satisfying (18) and for any D∗ ∈ LDE [(yi)α̃, β̃, 0, r] (as in Assumption L.1).
With probability 1− 1/n4, we have

|D̂ij −D∗
ij | < ωn,η for all i, j ∈ [n] such that |yπi − yπj | ∧D∗

ij ≤ r (123)
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where

ωn,η = C

(√
β̃η +

√
(σ + 1)σ

(
log(n)

n

)1/4
)

(124)

and C is a numerical constant.

In the special case where yi = i/n, one has η = 1/n, and one recovers Lemma D.1. In contrast
with Lemma D.1, the bound (124) depends on the spreading constant η of (18). In latent
space models, the yi’s are often assumed to be a uniform sample of [0, 1], and hence the
parameter η goes to zero (with n), and the error bound ωn,η of (124) goes to zero. However,
no assumption is made on the convergence of η in the current paper. Therefore, the estimator

D̂ may suffer from a bias

√
β̃η. When this bias is large, it may be interesting to change the

estimator D̂ for another estimator less sensitive to η. We propose such an alternative distance
estimator in appendix O.

L.4 Extension for the first estimator of H(π)

If the input D of AgregLocalBisection is in LDE [(yi), α̃, β̃, ω, r], then the next proposition
guarantees that the output H has an error smaller than a constant ρ. This result is a
generalization of Proposition C.6 to the latent space setting.

Proposition L.6. For any 0 < α̃ ≤ β̃ and 0 < r and 0 ≤ ω and 0 < η, the following holds
for any y1, . . . , yn ∈ [0, 1] as in (18), and for any D ∈ LDE [(yi), α̃, β̃, ω, r] (as defined in
Assumption L.1) and any δ1, δ2, δ3 fulfilling (130). There exists s ∈ {±} such that, the output
H of AgregLocalBisection satisfies

Hij = sH
(π)
ij for all i, j ∈ [n] where Hij ̸= 0 or |yπi − yπj | ≥ ρ ,

for ρ = (δ2 + ω)/α̃

Compared to Proposition C.6, the constraints on δ1, δ2, δ3 change and now involve the spread-
ing constant η. For the special case η = 1/n, one recovers Proposition C.6. The proof of
Proposition L.6 is in appendix M.3.

L.5 Extension for the second estimator of H(π)

Proposition L.7 extends Proposition C.7 to general yi ∈ [0, 1]. There is no change between
the two propositions. Indeed, going through the proof of Proposition C.7, we observe that
none property of the yi’s is used. As a consequence, the latent space formulation for general
positions yi follows directly.

Proposition L.7. For any 0 < γ, r′ and 0 ≤ r′′ and y1 < . . . < yn ∈ [0, 1], the following
holds for any F ∈ SCA[(yi), γ, r′, r′′] (as defined in Assumption L.2) and any ρ̃ ∈ [0, r′ ∧ r′′].
If the the input H1 of LocalRefine is deterministic or independent of the data A, with the
following accuracy, for any ϵ ∈ {±},

(H1)ij = ϵH
(π)
ij for all i, j ∈ [n] where (H1)ij ̸= 0 or |yπi − yπj | ≥ ρ̃ , (125)
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then, with probability 1− 4/n3, the output H of LocalRefine satisfies for all i, j,

Hij = ϵH
(π)
ij wherever (H1)ij = 0 and |yπi − yπj | ≥ C

σ

γ

√
log(n)

n
. (126)

In addition, Hij = 0 wherever (H1)ij ̸= 0.

The next proposition is an extension of Proposition C.8.

Proposition L.8. For any 0 < α̃ ≤ β̃ and 0 < r, γ, r′ and 0 ≤ ω, r′′, ρ̃ and 0 < η, the
following holds for any y1 < . . . < yn ∈ [0, 1] as in (18) and for any D∗ ∈ LDE [(yi), α̃, β̃, 0, r]
and D ∈ LDE [(yi), α̃, β̃, ω, r] (as defined in Assumption L.1), for any F ∈ SCA[(yi), γ, r′, r′′]
(as defined in Assumption L.2) and for any δ1, δ2, δ3, ρ̃ fulfilling (131). If the input H1 of
LocalRefineWS has the following accuracy, for any ϵ ∈ {±},

(H1)ij = ϵH
(π)
ij for all i, j ∈ [n] where (H1)ij ̸= 0 or |yπi − yπj | ≥ ρ̃ , (127)

then, with probability 1− 8/n2, the output H satisfies

Hij = ϵH
(π)
ij wherever (H1)ij = 0 and |yπi − yπj | ≥ C

σ

γ

√
log(n)

n
. (128)

In addition, Hij = 0 wherever (H1)ij ̸= 0.

Compared to Proposition C.8, Proposition L.8 involves three changes: (1) the positions
xi = yπi ’s in [0, 1] are only assumed to satisfy (18); (2) Assumption 4.2 is replaced by Assump-
tion L.2 w.r.t. the yi’s; (3) the matrix D∗, D are LDE w.r.t. the xi’s as in Assumption L.1.
The proof of Proposition L.8 is in appendix M.4.

L.6 Extension for final step (comparison matrix to permutation)

Generalizing the definition of error (33) for comparison matrix H, we say that H has an error
smaller than ν, if it satisfies the following for an s ∈ {±},

Hij = sH
(π)
ij for all i, j such that |yπi − yπj | ≥ ν . (129)

The next proposition generalizes Proposition C.9.

Proposition L.9. Let ν > 0. If a comparison matrix H has an error less than ν as in (129),
then the permutation πH in (38) has an Lcomp error less than 2ν, that is Lcomp(π

H , π) ≤ 2ν.

The proof of Proposition L.9 is in appendix M.5.

L.7 Proof of Theorem L.2

The proof follows the same lines as for Theorem 4.1 (in appendix C.6). Since D∗ is in
LDE [(yi), α̃, β̃, 0, r], we can apply Lemma L.5; this gives D̂ ∈ LDE [(yi), α̃, β̃, ωn,η, r] where

ωn,η is defined in Lemma L.5. Then, Proposition L.6 and L.8 gives guarantees for Ĥ1 + Ĥ2

− the sum of the outputs of AgregLocalBisection(A, D̂, . . .). Thus, the error of Ĥ1 + Ĥ2 is
bounded by (σ/γ)

√
log(n)/n, up to some numerical factor C. Finally, Proposition L.9 allows

us to conclude that πo = πĤ1+Ĥ2 satisfies the error bound of Theorem L.2.

62



L.8 Conditions on tuning parameters

The conditions on δ1, δ2, δ3 for the analysis of AgregLocalBisection in the latent space
setting are written below. They are a direct extensions of the conditions (114) used for the
matrix setting, where we have simply replaced n−1 by η.

δ1 ≥ ω + β̃η , δ2 > ω +
β̃

α̃
(δ1 + ω) , r ≥ η ∨ (δ1 + ω) ∨ (δ2 + ω)

1 ∧ α̃
,

(130)

η ≤ ρ ≤ 1/8 , (r ∧ (α̃/8))− ω ≥ δ3 > ω + β̃ρ ,

for ρ = (δ2 + ω)/α̃.

We now give the conditions on δ1, δ2, δ3 for the analysis of LocalRefineWS in the latent space
setting. They are extensions of the conditions (115), where we have included the modifications
explained in the proof of Proposition L.8, in particular the replacement of ωn with ωn,η.

Conditions (130) with the replacement ω ← (ω ∨ 2ωn,η) ;

ρ̃ ∈ [0, r′], ρ̃ ≤ρ, ρ̃′ + ρ ≤ r′′, 2η + ρ̃+ 2ρ̃′ ≤ 1/2 4η + 3ρ̃ ≤ 1;

(131)

ω̃ + β̃ρ < δ3 , η + ρ̃ ≤ r , ϕ2 ≤ β̃r , (ϕ1 ∨ ϕ2) + ω̃ ≤ r ;

for the notation ω̃ = ω̃ ∨ 2ωn,η, and ρ = (δ2 + ω̃)/α, and

ρ̃′ =
(ϕ1 ∨ ϕ2) + 2ω̃

α̃
with ϕ1 = β̃(η + ρ̃) and ϕ2 = β̃

(
η + α̃−1(δ3 + ω̃)

)
.

M Proofs of lemmas and propositions from appendix L

M.1 Proofs of Lemma L.3 and L.4

We will use the notation xi = yπi for all i.

Proof of Lemma L.3. The proof follows the same lines as for Lemma C.1 (appendix D.1),

up to the following difference. We replace
|πi−πj |

n by |xi − xj | = |yπi − yπj in the two main
inequalities of the proof, and we lower bound the cardinal number #{ℓ : yℓ ≤ 1

4 + 1
n} by η̃n,

using (19). □

Proof of Lemma L.4. The proof follows the same lines as for Lemma C.2 (appendix D.1),
up to the following difference. Since yj > yi >

3
8 , we have yi − r′′ > 1

4 and then {ℓ : yℓ ≤
1
4} ⊂ {ℓ : yℓ < yi − r′′}. This inclusion and condition (19) yield #{ℓ : yℓ < yi − r′′} ≥ η̃n.
Combining with the assumption F ∈ LBL[(yi), α, β], we obtain∑

ℓ: yℓ<yi−r′′

Fiℓ − Fjℓ ≥ α|yi − yj | #{ℓ : yℓ < yi − r′′} ≥ αη̃n|yi − yj | .

Thus, Assumption L.2 holds for γ = αη̃. □
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M.2 Proof of Lemma L.5

The proof is similar to that of Lemma D.1 in appendix E. The only difference is for controlling
the bias term D∗

imi
from the error bound in Lemma E.1. For D∗ ∈ LDE [(yi), α̃, β̃, 0, σ], we

upper bound the bias term by D∗
imi
≤ β̃η (instead of D∗

imi
≤ β̃/n).

M.3 Proof of Proposition L.6

Recall that, under Assumption 4.1, we used Lemma D.3 to D.5 for analysing AgregLocalBisection
and proving guarantees for the output H (Proposition C.6). We now state the counterparts
of these three lemmas for the general Assumption L.1.

Lemma M.1. Let y1, . . . , yn ∈ [0, 1] satisfy (18), and let i ∈ [n]. If the inputs in LocalBisection(i,
D,δ1,δ2,δ3) are such that, D is LDE [(yi), α̃, β̃, ω, r] as in Assumption L.1, and δ1, δ2, δ3 fulfill
the constraints (130)

Then, the conclusion of Lemma D.3 holds.

Lemma M.2. In the statement of Lemma D.4, replace the condition n−1 ≤ ρ by η ≤ ρ, and
“Lemma D.3” by “Lemma M.1”. Then, the same conclusion as in Lemma D.4 holds.

Lemma M.3. Under the hypotheses of Lemma M.2, the output H of AgregLocalBisection
satisfies, for some s ∈ {±},

Hij = sH
(π)
ij , for all i, j ∈ [n] such that Hij ̸= 0 or |yπi − yπj | ≥ ρ ,

where ρ = (δ2 + ω)/α̃.

Lemma M.1, M.2 and M.3 respectively generalize Lemma D.3, D.4 and D.5. The proofs of
these three lemmas are in appendix N.

Proposition L.6 follows from these lemmas.

M.4 Proof of Proposition L.8

Reading the proof of Proposition C.8 (in appendix I), one can see the few spots where the
yi’s spreading comes into play; we will adjust them below. Ultimately, these minor changes
will yield an extra constant (η) in the conditions on the tuning parameters δ1, δ2, δ3.

We will use the notation xi = yπi for all i. The equality xn = 1 is replaced by the lower bound
xn ≥ 1 − η, where η is the constant of the constraint (18). This replacement only occurs in
the proof of Lemma I.1. Going through the proof of Lemma I.1, we observe that this change
occurs in the following sub-Lemma I.5, I.4 I.2, I.3.

• To adapt Lemma I.5 for the latent space setting, we have to replace the constraint
ρ̃ + 2t′ ≤ 1/2 by 2η + ρ̃ + 2t′ ≤ 1/2. This change is useful at the end of proof of
Lemma I.5, when proving the inequality D̃kn ≥ δ3. More precisely, we now have

xn − xk = xn − xi + (xi − xk) > (1− η)− (1/2 + ρ̃/2)− t′ = 1/2− η − ρ̃/2− t′ ≥ 1/4 ,

when 2η + ρ̃+ 2t′ ≤ 1/2.
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• For Lemma I.4, the additive error 2ωn of the LDE regularity is replaced by 2ωn,η where
ωn,η is defined in (124).

• For the generalization of Lemma I.2, we need to add the new constraint 4η + 3ρ̃ ≤ 1.
This is useful at the end of the proof of Lemma I.2. We now have

xn − xi ≥ (1− η)− (1/2 + ρ̃/2) ≥ 1/4 ,

when 4η + 2ρ̃ ≤ 1.

• For Lemma I.3, we replace n−1 by η. Thus, the constraint n−1 + ρ̃ ≤ r becomes
η + ρ̃ ≤ r, and the constants ϕ1 and ϕ2 are now equal to: ϕ1 = β̃(η + ρ̃) and ϕ2 =
β̃
(
η + α̃−1(δ3 + ω)

)
.

Taking t′ = ρ̃′ (as in the proof of Proposition C.8), we obtain the new conditions on δ1, δ2, δ3.
They are gathered in (131), and used in Proposition L.8.

M.5 Proof of Proposition L.9

We will use the notation xi = yπi for all i. The proof follows the sames lines as for Proposi-
tion C.9 (appendix D.5). We only have to replace the πi/n’s with the xi’s, and the Lmax loss
by the Lcomp loss. We just give the changes.

To obtain Lcomp(π
h, π) ≤ 2ν for πh defined by (38), it is sufficient to prove that

πh
j > πh

i for all i, j ∈ [n] such that xj ≥ xi + 2ν .

Let i, j ∈ [n] such that xj ≥ xi + 2ν. We introduce the following partition of the space [0, 1],

I1 = [1, xi − ν], I2 = (xi − ν, xi + ν) , I3 = [xi + ν, xj − ν],

I4 = (xj − ν, xj + ν), I5 = [xj + ν, 1],

assuming that xi > ν and xj + ν ≤ 1
(
the other cases, where xi ≤ ν or xj + ν > 1, can

be analyzed in a similar fashion, with a slight adaptation of the partition
)
. We define the

associated partition of indices Rs = {k ∈ [n] : xk ∈ Is} for s ∈ [5].

The rest of the proof can be done as for Proposition C.9 (appendix D.5). For completeness,

we do the case xk ∈ I2. If xk ∈ I2, then xj − xk ≥ ν, and hence Hjk = H
(π)
jk = 1 for all

k ∈ R2. This yields∑
k∈R2

Hjk −Hik = 1 +
∑

k∈R2, k ̸=i

Hjk −Hik ≥ 1 ,

where we used Hii = 0 in the equality, and Hik ∈ {−1, 0, 1} in the inequality.

N Proofs of Lemma M.1, M.2, M.3

Throughout the section, we use the notation xi = yπi for all i.

Proof of Lemma M.1. The proof follows the same lines as for Lemma D.3 (in appendix F.2),
with a slight adaptation for the two following arguments: (1) the relation |xi−x1| = |xi−1/n|
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is replaced by |xi− x1| = |xi− η|, and similarly, |xi− xn| = |1− xi| is replaced by |xi− xn| =
|(1− η)−xi|; (2) the old |xℓ−xℓc | ≤ 1/n is replaced by |xℓ−xℓc | ≤ η. The change (1) occurs
in the last sentence of the proof of sub-Lemma F.6. The change (2) is in the last line of the
proof of Lemma F.7.

Proof of Lemma M.2. The proof is almost the same as for Lemma D.4 (in appendix F.3),
and we only point the changes out. Without the loss of generality, we assume that π = id, so
that x1 < . . . < xn.

◦ Point 2 of Align: The definition of io changes: Let io such that xio ∈ [1/2 − η, 1/2].
Such an io exists by (18). Then, following the same lines as in the old proof, we adapt the
verification of the inequality xio − x1 ≥ 1/4 as follows. Since x1 ∈ [0, η] by (18), we have
xio − x1 ≥ (1/2− η)− η ≥ 1/2− 2η ≥ 1/4 for η ≤ 1/8.

◦ Point 4 of Align: The modifications concern the proof of (69) and (70), but we only present
the changes for (69), the ones for (70) being similar. As a new definition of ko, let ko ∈ [n]
such that xko ∈ [3/4 − η, 3/4], whose existence is ensured by (18). To keep the same proof
as before, we need to check two facts: (i) the inequality xko − xi ≥ ρ for xi < 1/4, and (ii)
xko ∈ [5/8, 3/4]. For (i), we have xko − xi ≥ (3/4 − η) − 1/4 ≥ 1/4 ≥ ρ, for η ≤ 1/4 and
ρ ≤ 1/8. This (i) holds. For (ii), we have xko ∈ [(3/4− η), 3/4] ⊂ [5/8, 3/4] for η ≤ 1/8.

Instead of the point x⌊n/2⌋ used in the old proof, we define a new point xℓ satisfying xℓ ∈
[1/2 − η, 1/2]. For this new point, we have to check two inequalities to keep the same old
proof, namely, xℓ − xi > 1/8, and xko − xℓ > 1/8. Using xi < 1/4, we indeed have

xℓ − xi > (1/2− η)− 1/4 ≥ 1/8 and xko − xℓ > 5/8− 1/2 ≥ 1/8 .

Proof of Lemma M.3. Same proof as for Lemma D.5 (in appendix F.4).

O Alternative distance estimator

Since the error bound on the estimator D̂ has a bias term that is proportional to
√
η

(Lemma L.5), the estimator D̂ may perform poorly, and so might the permutation estimator
π̂o build on D̂. This issue happens even if the noise level σ goes to zero. To rectify this, we
describe in this section an alternative distance estimator whose estimation error goes to zero
when σ → 0.

Like in the definition of D̂, the crossed term in (22) is estimated by the scalar product
⟨Ai, Aj⟩n. But, the quadratic term is now estimated by the empirical quadratic term ⟨Ai, Ai⟩n.
We have

E
[
A2

ik

]
≲ F 2

πiπk
+ σ2 .

It is therefore possible to use standard concentration bounds to prove that, with high proba-
bility, |⟨Ai, Ai⟩n − ⟨Fπi , Fπi⟩n| ≲ σ2 + cn where

cn =

[
|F |2,∞√

n
+ σ

]
σ

√
logn

n
. (132)
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It is the same upper bound as in Lemma E.2, up to an additive error σ2. Thus, when σ → 0,
the inner product ⟨Ai, Ai⟩n is a consistent estimator of the quadratic term ⟨Fπi , Fπj ⟩n.

Putting things together, we obtain the estimator D̂2
o(i, j) = ⟨Ai, Ai⟩n+ ⟨Aj , Aj⟩n−2⟨Ai, Aj⟩n

of (22). Combining (132) and Lemma E.2, it is possible to prove that D̂2
o satisfies the following

error bound

max
i,j∈[n]

∣∣∣(D∗)ij − (D̂o)
2
ij

∣∣∣ ≲ σ2 +

[
|F |2,∞√

n
+ σ

]
σ

√
log(n)

n
(133)

with a probability greater than 1− 1/n4.

Unlike the (main) estimator D̂, the alternative estimator D̂o is consistent when σ → 0,
regardless of the value of η.

P Proof of Theorem 2.2

We recall that the lower bound is proved in the particular case where F is known and equal
to the matrix F0,

F0,ij = 1− α
|i− j|
n

, for all i, j ∈ [n] . (134)

It is not difficult to check that, for α ∈ (0, 1] and any β ≥ α, the matrix F0 belongs to
[0, 1]n×n as in model (2), and to the class BL[α, β] of bi-Lipschitz matrices. We will establish
the lower bound (σ/α)

√
log(n)/n under the condition that α/σ ≥ C0

√
log(n)/n where C0

is a numerical constant (which will be set later). This last condition is satisfied as soon as
n ≥ Cα,σ for some constant Cα,σ only depending on α and σ.

Our minimax lower bound is based on Fano’s method as stated below. We denote the set of
permutations of [n] by Πn. For two permutations π and π′ in Πn, we denote the Kullback-
Leibler divergence of P(F0,π) and P(F0,π′) by KL(P(F0,π) ∥P(F0,π′)). Given the loss Lmax defined
in (3), a radius ϵ > 0 and a subset S ⊂ Πn, the packing numberM(ϵ,S, Lmax) is defined as
the largest number of points in S that are at least ϵ away from each other with respect to
Lmax. Below, we state a specific version of Fano’s lemma.

Lemma P.1 (from [Yu, 1997]). Consider any subset S ⊂ Πn. Define the Kullback-Leibler
diameter of S by

dKL(S) = sup
π,π′∈S

KL(P(F0,π) ∥P(F0,π′)) .

Then, for any estimator π̂ and any ϵ > 0, we have

sup
π∈S

P(F0,π)

[
Lmax(π̂, π) ≥

ϵ

2

]
≥ 1− dKL(S) + log(2)

logM(ϵ,S, Lmax)
.

In view of the above proposition, we mainly have to choose a suitable subset S, control its
Kullback-Leibler diameter, and get a sharp lower bound of its packing number. A difficulty
stems from the fact that the loss Lmax(π̂, π) is invariant when reversing the ordering π.

Let k := C1(σ/α)
√
n log(n), for a small enough numerical constant C1 ∈ (0, 1] (which will

be set later). To ensure that k ≤ n/4, we enforce the condition α/σ ≥ C0

√
log(n)/n, with

C0 := 4C1. For simplicity, we assume that n/4 is an integer (otherwise take the floor value
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⌊n/4⌋). We introduce n/4 permutations π(s) ∈ Πn, s = 1, . . . , n/4. For each s ∈ [n/4], let

π
(s)
j be such that

∀j ∈ [n] \ {s, s+ k} : π
(s)
j = j , and π(s)

s = s+ k , and π
(s)
s+k = s .

Each permutation π(s) is therefore equal to the identity (j)j∈[n] up to an exchange of the two
indices s and s+ k. This collection of n/4 permutations is denoted by

S := {π(1), . . . , π(n/4)} . (135)

For the subset S ⊂ Πn, we readily check that

∀s, t ∈
[n
4

]
, s ̸= t : Lmax(π

(t), π(s)) ≥ k

n
.

This gives a lower bound on the packing numberM(ϵn,S, Lmax) of radius ϵn:

M(ϵn,S, Lmax) ≥ n/4 , for ϵn = k/n .

To upper bound the KL diameter of S, we use the following claim whose proof is postponed
to the end of the section.

Claim P.2. For any π, π′ ∈ Πn, and any n × n matrix F , we have KL(P(F,π) ∥P(F,π′)) ≤
1

2σ2

∑
i,j∈[n](Fπiπj − Fπ′

iπ
′
j
)2.

Combining with the definition (134) of F0, we obtain

KL(P(F0,π) ∥P(F0,π′)) ≤ C2n
(αϵn)

2

σ2
= C2C

2
1 log(n) ,

for ϵn = k/n = C1(σ/α)
√

log(n)/n, and a numerical constant C2 > 0. Taking the value
C1 = (2

√
C2)

−1, we have

dKL(S) ≤
log(n)

4
.

Applying Lemma P.1 to the set S of (135), we arrive at

inf
π̂

sup
π∈S

P(F0,π)

[
Lmax(π̂, π) ≥

ϵn
2

]
≥ 1− log(n)/4 + log(2)

log(n/4)
≥ 1

2
,

as soon as n is greater than some numerical constant. The lower bound ϵn/2 is of the order
of (σ/α)

√
log(n)/n. Theorem 2.2 follows. □

P.0.1 Proof of Claim P.2

We recall that P(F,π) is the probability distribution of the data A. For all pairs i, j ∈ [n],
we denote the marginal distribution of Aij by P(Fij ,π). By definition of the Kullback-Leibler
divergence, we have

KL(P(F,π) ∥P(F,π′)) =
∑
i<j

KL(P(Fij ,π),P(Fij ,π′)) ≤
∑
i,j

(
Fπiπj − Fπ′

iπ
′
j

)2
2σ2

,
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where the equality follows immediately from the independence of the Aij , i < j, and the
inequality from Claim P.3 (for d = 1, Σ1 = Σ2 = σ2, µ1 = Fij , µ2 = F ′

ij).

Claim P.2 is proved. □

Claim P.3. Let two (multivariate) normal distributions P = N(µ1,Σ1) and Q = N(µ2,Σ2),
both d dimensional, with respective mean vectors µ1, µ2 ∈ Rd, and covariance matrices Σ1,Σ2 ∈
Rd×d. Then, we have

KL(P,Q) =
1

2

[
log

(
|Σ2|
|Σ1|

)
+ (µ1 − µ2)Σ

−1
2 (µ1 − µ2) + tr(Σ−1

2 Σ1)− d

]
.

In particular, when Σ1 = Σ2 = σ Id, we have the simpler formula

KL(P,Q) =
∥µ1 − µ2∥22

2σ2
.

We used the notation Id for the identity matrix, |M | for the determinant and tr(M) for the
trace of any matrix M .

For a proof of the first relation in Claim P.3, see [Duchi, 2014, section 9]. The second relation
is a direct consequence.
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