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Abstract— Despite the significant success of using Machine 

Learning (ML) in numerous industrial applications, how to 

integrate these technologies in safety-critical contexts poses many 

challenging questions. Several industrial and academic research 

groups, as well as various standardization committees are actively 

working to provide (partial) answers to these questions. In this 

document, we focus on one such initiative led by the EASA, which 

proposes a series of guidelines and requirements to develop ML-

based systems for critical applications in the aviation domain. In 

this paper we investigate whether these requirements can be 

satisfied when using ML to solve a relatively simple regression 

task, that of building a neural network surrogate of the 

International Geomagnetic Reference Field (IGRF) model. 

Though we acknowledge all the structuring efforts towards the 

ambitious certification goal, our analysis pinpoints several 

important issues with some of these guidelines, such as ambiguous 

definitions, prohibitive computational costs, or currently very 

limited theoretical guarantees. Our analysis compels us to remain 

cautious about the various general recommendations proposed for 

designing trustworthy ML components for safety-critical systems. 

These conclusions call for the academic and industrial 

communities concerned by "Trustworthy AI" to strengthen their 

collaboration and pursue the research efforts necessary to address 

the existing challenges and establish sound methodologies for 

building safe ML-based applications.  

Keywords— machine learning, safety, guidelines, certification, 

trustworthiness. 

I. CONTEXT 

In recent years, we have witnessed a multitude of ongoing 

initiatives to establish recommendations, guidelines and norms 

on how to develop and certify trustworthy Machine Learning 

(ML) solutions for safety-critical systems in the context of 

several application domains. One such initiative in the aviation 

domain is led by the European Union Aviation Safety Agency 

(EASA). In early 2023 the EASA released an open version of 

the "EASA concept paper: first usable guidance for level 1&2 

machine learning applications", updated in March 2024 [1]. The 

document proposes a series of guidelines aimed at increasing 

the trustworthiness of ML components intended for aviation-

related safety-critical applications. The authors formulate 

several objectives which, in their view, must be met to certify 

such technologies. 

 

II. CONCEPT PAPER OVERVIEW 

Ensuring that a data-driven software component is trustworthy 

raises numerous challenges. The EASA concept paper attempts 

to provide a holistic design methodology for ML-based systems 

in the aviation domain. In this section we briefly describe the 

structure of the concept paper and point out the requirements we 

choose to analyze. 

 

The EASA concept paper is structured around four main blocks: 

AI Trustworthiness analysis, AI assurance, Human factors for 

AI and AI safety risk mitigation. The safety assessment lies at 

the heart of the first block. It is within this phase that a system 

is assigned its main objectives in terms of safety, in particular, 

the assessment of the impact of a system failure on its 

environment (and notably on human lives), i.e. the 

dangerousness of the failures. The other blocks complete this 

assessment from different angles. AI assurance reinforces the 

level of trust in the AI system itself: on the one hand via 

"learning assurances" that "cover the paradigm shift from 

programming to learning", on the other hand via "development 

explainability", which seeks to open the "black box" that is 

machine learning. The remaining two blocks participate in 

safety "from the outside" of the system: the Human factors for 

AI cover the aspects of the relationship of the system with its 

user/operator, while the AI safety risk mitigation covers the 

residual risks identified by the AI Trustworthiness analysis. 

We focus on AI/ML component safety only, because our field 

of research focuses on the ML models themselves. We seek to 

evaluate both the intrinsic risks of ML components, as well as 

the means of mitigation of these risks, which are also directly 

associated to the models. In this context, our analysis will focus 

on the objectives of the blocks AI Trustworthiness analysis (SA) 

and AI assurance (LM) only.  

LM objectives can be divided into two categories: the objectives 

pertaining to the transparency and consistency of the 

engineering process, and the objectives related to the 

exploitation of quantitative and mathematical elements of the 

AI/ML models. 

We do not address the objectives related to the engineering 

process, because they are classical and relatively indisputable. 

These objectives mainly request that each of the engineering 

activities must be clearly defined, traced and verified. In this set 

of objectives, the causal relationship between the measures 

taken and the safety risk is obvious, since it ensures that there is 

no discrepancy (or that it is as minimal as possible) between the 

discourse and the reality of engineering. Indeed, a lack of 

transparency and consistency in the engineering process 

undermines the whole safety demonstration.  

 

The LM objectives related to the quantitative and mathematical 

elements of the ML model (the ones we focus on in this paper) 

are the following: 

· LM-04: Quantifiable generalisation bounds 
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· LM-07: Bias-variance trade-off 

· LM-08: Bias-variance requirement 

· LM-09: Performance result 

· LM-11: Stability analysis of the learning algorithm 

· LM-12: Stability of the trained model 

· LM-13: Model robustness 

· LM-14: Verification of the anticipated generalisation bounds 

 

Let us highlight that the EASA concept paper establishes a 

strong link between some objectives of the SA and of the LM. 

This link is implemented in the objectives relating to 

performance (LM 09), generalization (LM 04) and safety 

assessments (SA 01). Indeed, the anticipated Mean of 

Compliance of SA 01 objective indicates that "as part of the 

safety assessment process, AI/ML item failure modes are 

expected to be identified. Performance metrics should provide a 

conservative estimation of the probability of occurrence of the 

AI/ML item failures modes". The LM 09 and IMP 09 objectives 

are then referenced in the same paragraph as participating in this 

estimation, in connection with the LM04 generalization 

objective, which allows pronouncing on the failure rate in 

operation. Therefore, even if we do not analyze SA objectives 

directly, we discuss in Section V the link between LM 

objectives and safety. 

 

The goal of the present paper is to evaluate the feasibility of the 

above LM objectives. However, doing so for a new operational 

use case is notably hard, mainly due to the cost of data 

acquisition. Therefore, we choose to focus on the magnetic 

declination estimation use case, a surrogate modelling problem 

(cf. the technical details in the next section). We have chosen 

this particular use-case for three main reasons:  

 it is suitable for integration into an airborne system, 

 a ML-based approach appear promising as compared 

to more traditional approaches, 

 both data and algorithms are readily available. 

For most common ML tasks, the ground truth values are either 

unknown, or observed via a noisy measurement process. The 

case of surrogate modelling is simpler, since it aims at 

approximating existing complex functions with ML models, 

and the ground truth values are therefore known. As such, the 

LM objectives are easier to evaluate for our surrogate modelling 

use case than for other ML tasks. We thus anticipate that the 

challenges identified in this work about the application of the 

LM objectives will also hold for other (more complex) use 

cases. 

 

For the magnetic declination estimation use case, we can derive 

system/ML requirements using the requirements on magnetic 

heading provided in [2], which are performance oriented. 

Ensuring these requirements is considered as sufficient to 

demonstrate trustworthiness. Consequently, while the proposed 

use case may not strictly fall under the EASA guidelines for 

critical airborne systems, it still presents a realistic, well-

defined, and thoroughly documented system. Moreover, the 

study performed on this use case is mostly generalizable to other 

surrogate software items used in critical embedded systems. In 

the upcoming sections, along with the analysis of our surrogate 

modelling use case, we also discuss the generalization of our 

findings to other types of ML tasks. 

 

III. USE CASE AND APPROACH 

In this section, we describe the magnetic declination estimation 

use case in detail, as well as our analysis approach, including 

the experiment setup. 

 

Use case. We consider the following use case: build a neural 

network surrogate model of the International Geomagnetic 

Reference Field (IGRF) produced by IAGA. The IGRF 

describes the Earth’s main magnetic field, by modelling the 

geomagnetic potential as a finite series of spherical harmonics. 

The latest generation, IGRF-13 [3], involves Schmidt semi-

normalized associated Legendre functions of degree up to n=13, 

and provides the values of all spherical harmonics Gauss 

coefficients (which vary over time) at various 5-year-spaced 

epochs. IGRF-13 enables users to compute the magnetic field 

components in three dimensions, the magnetic inclination and 

the magnetic declination at each location on and above the 

Earth’s surface, from 1900 to the present.  

 

 
Figure 1: Declination map at the WGS84 ellipsoid surface for epoch 

2020 (source: Alken et al. [1], Fig 1). 

In the sequel we focus on the magnetic declination (also known 

as magnetic variation), which is the angle between the true 

North and the magnetic North. The magnetic declination 

depends on the latitude, longitude, altitude, and time; see Figure 

1 for an illustration. The magnetic declination model is currently 

embedded in large commercial aircrafts to compute the 

aircraft´s magnetic heading in real time. The magnetic heading 

data is crucial during the landing process, as airport diagrams 

still describe runways by their magnetic heading. However, for 

some aeronautics systems, embedding limitations prevent the 

use of the complete IGRF model and call for using a 

computationally more tractable model. To that end, and for 

illustrative purposes, we approximate the magnetic declination 

computation done by the IGRF-13 with a shallow neural 

network surrogate (see the experiment setup details below). 

 

We stress that our goal is not to produce the most efficient or 

accurate surrogate model, but rather to propose a simple real-

world use case on which the LM objectives can be instantiated. 

However, to keep things realistic, we consider the performance 

requirements on magnetic heading provided in [2].  

 

Latitude range Acceptable accuracy (95%) 

50°S - 50°N 2° 

50°N - 73°N 3° 

60°S - 50°S 3° 

73°N - 79°N 5° 

79°N - 82°N 8° 
Table 1: Acceptable accuracy values for magnetic heading [2] 
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Approach. We analyse the LM objectives of the EASA concept 

paper listed in Section II. For each of the objectives, we study 

the following (related) aspects: 

 Clarity: is the objective clearly formulated or might it 

be prone to ambiguous interpretations? 

 Applicability: does the objective apply to the 

considered use case? 

 Feasibility: can the objective be achieved within 

reasonable costs and in a timely manner? Can it be 

formally and/or empirically assessed?  

 

For each of the objectives, we start our analysis by instantiating 

generic definitions and principles to our use case. Then, we seek 

and apply well-established methods and results in the scientific 

literature to fulfill these requirements. Our experiment setup is 

described in the paragraph below. We also identify the 

hypotheses that must be met to ensure the validity of these 

approaches. Finally, we assess their practical feasibility and 

computational complexity. 

 

Experiment setup. We use the python tool PyIGRF as the 

ground truth reference [4]. We restrict our study to the latitude 

range 60°S-82°N for which performance requirements are 

available (see Table 1). We consider all locations within that 

range, at an altitude of 100 meters and for the year 2005 for 

simplicity. This defines the Operational Design Domain (ODD). 

 

We build three independent datasets that will prove useful in the 

next sections. The letters 𝜃  and 𝜙  denote the latitude and 

longitude.  

1. Training set: it consists of 750K points 𝑥𝑖 = (𝜃𝑖, 𝜙𝑖) 

drawn independently at random, uniformly within the 

latitude range 60°S-82°N and longitude range 180°W-

180°E. This dataset is used for model training, that is, to 

build the neural network surrogate. 

2. Calibration set: it consists of 10K points (𝜃𝑖 , 𝜙𝑖) 

drawn independently at random, uniformly within the 

latitude range 60°S-82°N and longitude range 180°W-

180°E. This dataset is used in order to obtain estimates about 

the trained model, for the objectives pertaining to 

generalisation (see Section IV.F). 

3. Test set: it consists of 250K points (𝜃𝑖 , 𝜙𝑖)  drawn 

independently at random, uniformly within the latitude 

range 60°S-82°N and longitude range 180°W-180°E. This 

dataset is used only for test purposes. 

 

Our surrogate model is a neural network having the following 

architecture: a fully connected ReLU neural network with 3 

hidden layers, and 20 neurons per layer. We provide four 

scalar inputs to the neural network: 

cos(𝜃) , sin(𝜃) , cos(𝜙) , sin(𝜙). The network has one scalar 

output modelling the magnetic declination. The outputs are 

normalized to [0,1]. We train the network to fit the magnetic 

declination (obtained with PyIGRF) on the training set, using 

the square loss with the SGD optimizer, a learning rate of 

0.005, batches of size 32 and 15 epochs. We thus obtain a 

trained model. 

 

Notation. We denote by 𝑓 the true IGRF-13 model. We denote 

by 𝑆 the training set and by 𝑓𝑆 the trained surrogate model built 

as explained in the paragraph above and trained used the 

training set 𝑆.  

IV. RESULTS 

In this section, we instantiate all the aforementioned LM 

objectives to this specific use case, and we evaluate them in 

terms of clarity, applicability, and feasibility. 

A. Analysis of objective LM-09: Performance on test set 

The first objective is about the performance of the trained 

model. 

 

Objective LM-09: The applicant should perform an 

evaluation of the performance of the trained model 

based on the test data set and document the result of 

the model verification. 

 

To achieve this objective we evaluate appropriate metrics over 

a “representative” test set. There is no particular issue 

concerning the clarity, applicability and feasibility of this 

verification step. For the IGRF surrogate model, 

representativity is simple since we can build the test data set as 

desired. Moreover, the performance metric is defined as the 

95% quantile of all absolute errors on the test set, where an 

absolute error (also termed accuracy thereafter) is the absolute 

difference between the true and predicted magnetic declination 

values. Results are displayed in Table 2. 

 

Latitude range 95% accuracy on test set 

50°S - 50°N 1.51° 

50°N - 73°N 1.97° 

60°S - 50°S 3.14° 

73°N - 79°N 3.47° 

79°N - 82°N 5.00° 
Table 2: Accuracy of the trained model when evaluated on the test set. 

We report the 95% empirical quantiles of the absolute errors 

(accuracies) on each latitude range. 

Note that the trained model seems accurate enough in that the 

95% accuracies on the test set almost meet the performance 

requirements of Table 1.  

Even if the LM-09 objective is feasible for this surrogate use 

case, the choice of the adequate performance metrics may be a 

complex activity for the applicant. Notably more so if the 

applicant is dealing with computer vision or natural language 

processing models, where common metrics have a less clear-cut 

interpretation. 

 

B. Analysis of objectives LM-07 and LM-08: Bias-Variance 

The next objectives are about the Bias-Variance trade-off.  
 

Objective LM-07-SL: The applicant should account for 

the bias-variance trade-off in the model family 

selection and should provide evidence of the 

reproducibility of the model training process. 

 

Objective LM-08: The applicant should ensure that the 

estimated bias and variance of the selected model meet 

the associated learning process management 

requirements. 

 

These two objectives seem, at first glance, both justifiable and 

achievable. Informally speaking, achieving a low bias and low 

variance corresponds to learning a sufficiently expressive model 

that does not depend too much on the training set. For many ML 

models, achieving low bias and low variance simultaneously 

should constitute a good indication of a well-performing 

predictive model. Despite these first intuitions, our analysis 
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shows that, even for the surrogate model case, the satisfaction 

of these objectives is not straightforward. 

From a theoretical point of view, we can often consider, at least 

intuitively for regression tasks, the mean least square error 

decomposition into bias and variance. For a given example x, 

this decomposition expresses the expected squared error as the 

sum of a bias term (squared), a variance term, and a noise term: 

𝔼𝑆,𝑦 [(𝑓�̂�(𝑥) − 𝑦)
2

] 

     = (𝔼𝑆[𝑓�̂�(𝑥)] − 𝑓(𝑥))
2

+ 𝔼𝑆 [(𝑓�̂�(𝑥) − 𝔼𝑆[𝑓�̂�(𝑥)])
2

] 

                                                  + 𝔼𝑦[(𝑦 − 𝑓(𝑥))²]  

In the above equation, 𝔼𝑆,𝑦  means that we consider averages 

over all training sets 𝑆 of a given size and all possible labels 𝑦 

for a fixed input 𝑥 . The notation 𝔼𝑆  and 𝔼𝑦  are understood 

similarly. We can identify: 

 the bias: 𝐵(𝑥) = 𝔼𝑆[𝑓�̂�(𝑥)] − 𝑓(𝑥) 

 the variance: 𝑉(𝑥) = 𝔼𝑆 [(𝑓�̂�(𝑥) − 𝔼𝑆[𝑓�̂�(𝑥)])
2

] 

 the variance of the noise: 𝜎2(𝑥) =  𝔼𝑦 [(𝑦 − 𝑓(𝑥))
2

] 

In our surrogate use case, the variance of the noise equals zero. 

We perform a rough estimation of the bias and variance terms 

with a bootstrap method [5]. It consists in performing 𝑀 

experiments where a new data set S(𝑖) is drawn by sampling 

with replacement inside S. For the bias term, we estimate 

𝔼𝑆[𝑓(𝑥)]  with 
1

𝑀
∑ 𝑓𝑆(𝑖)(𝑥)  for each x, substract the known 

value of 𝑓(𝑥), and average the squared result over all values of 

𝑥 in the test set. We proceed similarly for the variance. Results 

are shown in Figure 2, for a reduced training dataset of n=25K 

points and M=200 bootstrap experiments.  These estimates are 

repeated for several values of model complexity corresponding 

to the number of neurons per layer. 

 

 
Figure 2: Rough estimation of MSE decomposition terms, for a 

variable number of neurons per layer. 

Note that both the bias and variance terms are (roughly) 

decreasing for layer widths larger than 5. These rough 

observations are reminiscent of the double descent phenomenon 

in deep learning. This could lead the applicant to choose the 

largest network among those evaluated, while smaller networks 

(with about 40 neurons per layer in our case) might already be 

sufficiently accurate. This might raise embedding challenges. 

We thus argue that the bias-variance estimation may not always 

be the best tool to select an ML model architecture. 

                                                           
1 Indeed, for an overparametrized neural network that can easily 

overfit the training data, the in-sample error can be zero, while 

the bias and the variance can be positive. 

 

These considerations and experiments allow us to provide the 

following answers with respect to the criteria enumerated 

above: 

- clarity: bias and variance are mathematical notions that are 

easily misinterpreted. Since the suggested informal 

definitions in the concept paper (see Anticipated MOC LM-

08) are ambiguous and possibly different from the 

traditional notions1, we used instead the formal definitions 

above, which are in line with those of the CoDANN report 

[6]. 

- applicability: these definitions should be specialized to the 

learning task at hand and the performance metrics used. 

Applying them to the absolute error metric (which would 

be more consistent with our use case) instead of the squared 

error metric is not straightforward. Applications to 

classification use cases would raise similar difficulties. A 

unified framework for bias-variance decomposition is 

proposed in [7, 8], but this decomposition is complex (the 

performances may not decompose as a sum of bias and 

variance terms) and not feasible in general. 

- feasibility: While estimating the bias is possible in this 

surrogate model context, this is not the case for general ML 

problems, where the true value 𝑓(𝑥) is typically unknown. 

Furthermore, even in our setting, estimating the bias-

variance tradeoff is computationally prohibitive as it 

requires training an important number of models (number 

of settings of complexity parameter, times number of 

bootstrap experiments). 

 

Our analysis shows that attempting to satisfy this seemingly 

intuitive criterion for the trustworthiness of ML models can 

raise significant technical and methodological challenges. This 

calls for further academic research efforts. It would also be 

useful to investigate the quantitative link between an optimal 

bias-variance tradeoff and the resulting ML performances for 

several task-specific metrics. 

 

C. Analysis of objective LM-11: Learning algorithm stability 

The next selected objective is about stability of the learning 

algorithm. 

 

Objective LM-11: The applicant should provide an 

analysis on the stability of the learning algorithms. 

 

This objective aims at assessing the reproducibility of the 

learning process. As no anticipated means of compliance is 

provided in the concept paper, we choose to rely on the 

definition provided in [9]: Assume 𝐴 is a symmetric learning 

algorithm2 , which given a training set 𝑆 = {𝑧𝑖 = (𝑥𝑖,𝑦𝑖), 𝑖 =

1, … , 𝑛}, outputs a function 𝑓𝑆 (a model) mapping 𝑥 to 𝑦. 

For any 𝑖  and any new sample 𝑧′ = (𝑥’, 𝑦’) , consider the 

modified training set  𝑆𝑖 = (𝑆\ {𝑧𝑖}) ∪ {𝑧′}  obtained by 

replacing 𝑧𝑖 with 𝑧′ in 𝑆. The algorithm 𝐴 is called 𝛽-stable if, 

for any training set 𝑆, any 𝑖, and any new sample 𝑧′, the losses 

of the models 𝑓𝑆 and 𝑓𝑆𝑖
 on any sample 𝑧 = (𝑥, 𝑦) differ by at 

most 𝛽. More formally, the algorithm 𝐴 is called 𝛽-stable if  

∀𝑆, ∀𝑖, ∀𝑧′, ∀𝑧,   |𝑙𝑜𝑠𝑠(𝑓𝑆, 𝑧) − 𝑙𝑜𝑠𝑠(𝑓𝑆𝑖
, 𝑧)| ≤ 𝛽. 

2 To be rigorous, this symmetry assumption does not hold in our 

case (we use batch stochastic gradient descent). Though this 

assumption is useful for the theoretical guarantees proved in [9], 

the rest of the definition still makes sense without it. 
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This definition helps to define a process to assess learning 

stability: 

- create new training datasets 𝑆𝑖 by modifying one sample of 

the training dataset 𝑆 and train a replacement model 𝑓𝑆𝑖
; 

- compute, for any sample 𝑧 of the test dataset, the absolute 

value of the loss difference between the trained model 

𝑓𝑆 and the replacement model 𝑓𝑆𝑖
; 

- find the maximal absolute difference, which should be 

lower than a given threshold 𝛽. 

 

In our surrogate use case, we follow this process to empirically 

estimate a lower bound of β through Monte Carlo experiments 

on 𝑀  modified datasets and their corresponding trained ML 

models. Due to the extensive computational cost, we only use a 

reduced initial training dataset n=25K, and M=200 modified 

training sets. For each experiment, we evaluate the maximum 

absolute difference over the test set. We also experiment with 

two different design choices to evaluate their influence on the 

estimated lower bounds: the first one uses the same weights 

initialization for all trainings, the second one uses independent 

random weights initialization for each experiment.3 

Figure 3 presents the results obtained for each training iteration. 

We observe that the estimated β parameter is very high in the 

random weight initialization case. Even with a fixed weight 

initialization, the variation of the loss can be high which is 

difficult to interpret (optimization problem, parameters choice,  

complexity of the ground truth function to approximate,…). 

 

 
Figure 3 Maximum loss variation across the M training sets – (left) 

with random weights initialization – (right) with fixed weight 

initialization. Maximum value represents a lower bound on the β 

threshold of learning algorithm stability. 

These considerations and experiments allow us to provide the 

following answers with respect to the criteria enumerated 

above: 

- clarity: even if the formal definition given above seems 

understandable, it raises the challenge of the specification 

of the appropriate β parameter. The interpretation of this 

parameter represents the worst case over all training 

datasets 𝑆, all their modifications 𝑆𝑖 , and all ODD points 𝑧. 

- applicability: despite this favorable use case (surrogate 

modeling), we cannot find a sound choice of  the threshold 

𝛽. We must notice that usual ML learning processes rely on 

randomness (e.g., dataset shuffling, random ML model 

weights initialization) and on the choice of an optimizer. 

These elements all constitute a source of variability that can 

lead to the un-stability of performances in several points in 

the input space. Consequently, the design choices and the 

knowledge of the training framework highly affect the 

applicability of the learning process stability assessment. 

- feasibility, considering that few or no formal methods are 

found in the literature even for our use case, we rely on a 

                                                           
3 This again goes slightly outside of the scope of [9], which only 

considers deterministic algorithms. This experiment can 

however be useful to assess learning stability in a wide sense. 

Monte Carlo estimation of the parameter 𝛽 . Such an 

evaluation is computationally expensive (for instance we 

had to work with a limited training set in our case), and 

would be even more challenging for large models and 

datasets. Moreover, performing this objective requires the 

evaluation of each source of variability in the learning 

process, which may be not be feasible with a black-box 

training framework. Furthermore, for general ML 

problems, a major difficulty may also come from the 

impossibility of generating new dataset samples. 

 

To conclude, even for this surrogate use case, the interpretation 

of the evaluated 𝛽 parameter is not clear, since the variation of 

the loss can depend on sources other than the dataset, such as 

the optimization process. Thus, we argue that the choice of the 

𝛽  parameter during model design is almost impossible, as it 

must bound all possible loss differences across the choice of the 

changed example. 

 

D. Analysis of objective LM-12: Trained model stability 

The next objectives are about the stability of the trained 

model 𝑓�̂�.  
 

Objective LM-12: The applicant should perform and 

document the verification of the stability of the trained 

model, covering the whole AI/ML constituent ODD. 

 

The Anticipated MOC LM-12-1 gives only an informal 

definition as the evaluation of “perturbations in the operational 

phase due to fluctuations in the data input (e.g. noise on sensors) 

and having a possible effect on the trained model output”. We 

can rely on the formal definition given in [6]: given two 

thresholds 𝛿 and 𝜖, stability is assessed by evaluating if : 

 

∀𝑥, 𝑥′  ∊ 𝑂𝐷𝐷, ‖𝑥 − 𝑥′‖ ≤ 𝛿 ⇒  |𝑓�̂�(𝑥) − 𝑓�̂�(𝑥′)| ≤ 𝜖. 
 

The values 𝛿  and 𝜖  are supposed to be given in the ML 

component requirements, but the choice of 𝛿  and 𝜖  raises 

several challenges, as we point out both below and in 

Section V.B. 

 

Clarity: At a first glance, this definition seems understandable 

and easy to achieve. However, even for a surrogate task it may 

not be adequate: if the ground truth function presents high local 

variations (large Lipschitz constant) in some parts of the ODD, 

a good surrogate ML model 𝑓�̂�  will also vary greatly. In 

particular, the surrogate model will only be able to fulfill the 

above condition for either very high values of 𝜖, or for very 

small values of 𝛿. Of course, such a choice of 𝛿 and 𝜖 is too 

conservative in regions of the ODD where the Lipschitz 

constant of the ground truth function is small, and does not at 

all guarantee that the surrogate model will be stable in such 

regions. 

 

Applicability: For the IGRF use case, performance objectives 

are given in Table 1; we can therefore specify an acceptable ε 

threshold based on these performance requirements. For the 𝛿 

threshold describing position errors we suggest to use the 

maximal lateral position error of 20 Nm (Nautic mile) given in 

[10]. In order to evaluate the stability condition above, we 

compute a two dimensional perturbation within this maximal 
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radius. Note that, for more complex use cases involving data in 

the form of text or image, the notion of “perturbation” is not so 

well-defined as in our use-case, and choosing the right notion of 

“perturbation” is already a challenge necessitating knowledge 

on the operational noise level and the Lipschitz constant of the 

targeted function (i.e., the local variation of 𝑓 ). A recent 

example of an expert definition of the maximal safe perturbation 

in subranges of the ODD can be found in [11]. 

 

Feasibility: On the IGRF use case, both the input space and the 

neural network have a small size. Therefore it is possible to 

employ complete formal methods (such as the SMT-based 

method described in [12]), to verify the stability property over 

all the input space4. For more complex problems, an estimation 

of 𝜖 can be empirically evaluated; either by sampling in the 

neighborhood 5  of the test set samples, by using adversarial 

attack methods [13, 14] (aiming to maximize the error in the 

neighborhood), or by incomplete formal methods (such as 

abstract interpretation [15]). None of these methods provides 

guarantees for all 𝑥 and 𝑥′, much less so when the ODD is high 

dimensional. For such more complex problems, the following 

probabilistic formulation of the property would be more 

convenient: 

 

𝑃𝑋(∀𝑥′ ∈ 𝐵(𝑋, 𝛿),  |𝑓�̂�(𝑋) − 𝑓�̂�(𝑥′)| ≤ 𝜖) ≥ 1 − 𝛼 , 

 

where 𝑋  is a random point in the ODD (drawn from some 

distribution), and the ball 𝐵(𝑋, 𝛿) is the set of all 𝑥′ ∈ 𝑂𝐷𝐷 

such that ‖𝑥′ − 𝑋‖ ≤ 𝛿 . The above probabilistic property 

would mean that for most points 𝑥 in the ODD (representing a 

fraction at least  1 − 𝛼  of the ODD), the surrogate model would 

not vary too much in a close neighborhood of 𝑥. 

 

For the IGRF use case, we have experimented Monte-Carlo 

sampling estimation. We also perform an incomplete formal 

method (with Alpha-Crown [15]) on one thousand samples of 

the test set. This method is designed to compute upper up and 

lower lp bounds containing model outputs (e.g. 𝑙𝑝 ≤ 𝑓�̂�(𝑥′) ≤

up) , when the input is contained inside an 𝑙𝑝-ball around 𝑥: 

𝐵𝑝 = {𝑥′ | ||𝑥′ − 𝑥||
𝑝

≤ 𝛿}6. We perform the computation with 

𝑝 = 2 for 10K samples and plot the absolute difference between 

these bounds and 𝑓�̂�(𝑥). 

 

Results are shown in Figure 4. Interestingly, on this use case, 

both methods (Monte-Carlo and Alpha-Crown) present 

coherent results and show that: 

- the ML model is not stable close the north pole, 

- the estimated model stability is consistent with the 

performance requirements. 

 

                                                           
4  This was not done in this study due to lack of time and 

resources. 
5 A particular attention should be paid to the condition "inside 

the ODD". 

 
Figure 4 Trained model stability estimation:  (left) Estimated local 

variations by Monte-Carlo sampling (right) Alpha-Crown upper and 

lower bound estimation for a 20Nm position perturbation [Note that 

only a subsample of test was processed with this method]. 

In conclusion, stability estimation is a pertinent tool to evaluate 

model vulnerabilities, when the variations of the ground truth 

function are known. 

 

These results prove the feasibility of the objective in the low 

dimensional ML model that we study. However, the clarity and 

the applicability of the objective, such as the definition of the 

appropriate perturbation (e.g., δ) and model impact (e.g., loss 

function and ε), greatly depend on the use case and require both 

ML and operational expertise. Furthermore, since currently 

formal methods do not scale to large deep learning models, 

stability is mainly estimated by Monte Carlo or Adversarial 

methods, providing only a statistical lower bound estimation. 

Consequently, we cannot assume that this objective is feasible 

for such tasks. 

 

E. Analysis of objective LM-13: Model robustness 

The next objective is defined by:  

Objective LM-13: The applicant should perform and 

document the verification of the robustness of the trained 

model in adverse conditions. 

The concept paper suggests evaluating the model’s robustness 

against three types of examples:  

-  Edge or corner cases that can arise when considering data 

within the ODD but with one (resp. at least two) input 

variable(s) that is(are) close to the extremal values of the 

ODD;  

- Out of distribution (OoD) examples that correspond to 

input data that are not covered by the training set 

distribution; 

- Adversarial examples that may affect the AI/ML 

constituent expected behavior.   

 

Edge, Corner and OoD. Concerning clarity, the definition of 

the edge, corner, and OoD examples is quite clear for our use 

case, but this definition is challenging for high-dimensional 

data. 

As for applicability and feasibility: In the context of the 

surrogate use case, as we master data generation, it is quite easy 

to generate such test samples. For example, OoD samples will 

coincide with out of ODD samples (since the training dataset is 

drawn uniformly within the ODD). We can generate samples in 

the latitude range [82°N, 83°N] and evaluate the ML model 

6 For the sake of simplicity, the study was done on an ℓ2 –ball 

of the neural network input space. Since our neural network is 

in fact only provided with vectors of the form 

( cos(𝜃) , sin(𝜃) , cos(𝜙) , sin(𝜙) ) as inputs, this over-

approximation leads to conservative stability estimates. 
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performances. Table 3 presents some results for 1000 samples, 

revealing, as expected, a performance degradation outside the 

ODD. 
 

Latitude range 95% accuracy on OoD set  

82°N - 83°N 11.60° 

61°S - 60°S 8.81° 
Table 3 OoD performances evaluation 

We must highlight that for real-world use-cases, collecting 

corner, edge, and OoD points may be a challenge in itself. 

Detection of OoD samples is also a challenge for safety in order 

to monitor the usage of the ML model, but this is part of other 

objectives. Feasibility may not be reachable for some real-world 

cases, since OoD, edge and corner cases are not easily defined 

for high-dimensional data.  

 

Adversarial robustness. Adversarial robustness is generally 

defined for classification tasks, with few works in the literature 

addressing regression. For regression tasks, a definition is 

provided in [16], which refers to the "worst perturbation" �̂�  

defined, for a given sample (𝑥, 𝑦), as: 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑢:||𝑢||≤𝛿|𝑓(𝑥 + 𝑢) − 𝑦| 

Estimating the worst perturbation �̂� seems applicable and 

feasible for our surrogate use case. However it must be noted 

that the “worst perturbation” for a given sample (𝑥, 𝑦)  will 

depend on the operational noise level and the Lipschitz constant 

of the targeted function (i.e., the local variation of 𝑓). Besides, 

the proposed definition prevents us from using many of the 

existing formals methods, such as [15].  

 

To enhance feasibility, we propose to use the following tractable 

definition: Given a tolerated variation  𝜖 , find the largest 

perturbation norm δ (also called robustness radius) on 𝑥: 

 

 max{𝛿 ≥ 0: ∀||𝑢|| ≤ 𝛿, |𝑓(𝑥 + 𝑢) − 𝑓(𝑥)| ≤ ϵ }. 

 

With this definition, the previous results on trained model 

stability obtained with [15] or by Monte-Carlo sampling 

(Section IV.D) are applicable. This local largest perturbation 

should be compared to the knowledge of the target function to 

provide interesting features on ML model robustness. 

 

F. Analysis of objectives LM-04 and LM-14: Generalisation 

bounds 

Two LM objectives focus on the generalisation bounds of the 

trained model 𝑓𝑆: 

 

Objective LM-04: The applicant should provide 

quantifiable generalisation bounds. 

Objective LM-14: The applicant should verify the 

anticipated generalisation bounds using the test data set. 

 

Informally speaking, the generalisation ability of a trained 

model is about how well it performs on unseen operational data. 

This is formalized in the statistics and ML theory literatures 

(see, e.g., in [17] or [18]) through the statistical notion of risk. 

 

The risk of a trained model 𝑓𝑆 , denoted by 𝑅(𝑓�̂�) , is the 

(theoretical) average error over all possible operational points, 

weighted by an appropriate distribution. In our case, since the 

ground truth is given by the output 𝑓(𝑥) of the IGRF-13 model, 

and since we consider uniformly distributed latitude 𝜃  and 

longitude 𝜙  within the ranges 60°S-82°N and 180°W-180°E, 

the risk reads: 

𝑅(𝑓𝑆) =  ∫ ∫ |𝑓𝑠(𝑥𝜃,𝜙) − 𝑓(𝑥𝜃,𝜙)|
180

−180

 
𝑑𝜃

142

𝑑𝜙

360

82

−60

  , 

where 𝑥𝜃,𝜙  denotes the Earth location at latitude 𝜃  and 

longitude 𝜙 (at an altitude of 100 meters). Importantly, the risk 

𝑅(𝑓�̂�) depends on the training set 𝑆; it is a random variable. 

A generalisation bound is a probabilistic bound on the risk 

𝑅(𝑓�̂�), typically expressed as a sum of an observed average error 

(called the empirical risk) and some statistical margin. 

Depending on whether the empirical risk is measured on the 

training set 𝑆 or on some new calibration dataset 𝑆’, different 

mathematical tools are used. To the best of our knowledge, there 

are at least three families of methods to obtain generalisation 

guarantees. 

 

A first family of bounds, which we could call training-based 

generalisation bounds, use the training set 𝑆  to estimate the 

risk 𝑅(𝑓�̂�) with the empirical risk given in our case by 

𝑅𝑆(𝑓𝑆) =  
1

𝑛𝑆

∑ |𝑓𝑠(𝑥) − 𝑓(𝑥)|
𝑥∈𝑆

, 

where 𝑛𝑆 is the number of training examples. A rigorous 

statistical margin is then computed, i.e. a guaranteed upper 

bound on the generalisation gap 𝐺 = 𝑅(𝑓�̂�) − 𝑅𝑆(𝑓�̂�) that 

holds with high probability over the draw of the training set 𝑆. 

Various such bounds exist. They typically depend on the 

number 𝑛𝑆 of training examples, on some (light) properties of 

the data distribution, and (to account for possible overfitting) on 

the model family complexity (e.g., the number of layers or 

parameters of the neural network, the type of activation 

function, etc). Unfortunately, such bounds are typically too 

large to be practical. A historical example in regression is given 

by the pseudo-dimension bounds (a generalization of VC-

bounds to regression problems; see Theorem 11.8 in [18]). It is 

well known that these bounds are conservative (and thus 

typically pessimistic), as noted in the concept paper. Indeed 

these bounds control the generalisation gap 𝑅(g) − 𝑅𝑆(g) of all 

models 𝑔  under consideration (e.g., when varying all 

parameters of a given architecture) instead of the trained model 

𝑓𝑆 only, and hold for virtually any data distribution. 

 

Next we focus on post-processing methods that seem more 

promising in the near future. Such methods require a calibration 

set 𝑆′, which is a new dataset drawn independently from the 

training set 𝑆 , and on which the trained model 𝑓�̂�  is either 

evaluated or modified (see below). Post-processing approaches 

typically yield better bounds than training-based methods, as 

they offer guarantees on the trained model only, instead of the 

whole model family. 

 

Post-processing evaluation of 𝐟𝑺 . In this post-processing 

setting, the empirical risk is computed on the calibration set 𝑆’: 

𝑅𝑆′(𝑓𝑆) =  
1

𝑛𝑆′
∑ |𝑓𝑠(𝑥) − 𝑓(𝑥)|

𝑥∈𝑆′
 

where 𝑛𝑆′  is the size of 𝑆’ . Then, the risk 𝑅(𝑓�̂�)  is upper 

bounded by 𝑅𝑆′(𝑓�̂�)  plus some guaranteed statistical margin. 

Various such generalisation bounds exist [17, 18] (using so-

called concentration inequalities [19]). For example, when both 

outputs 𝑓𝑠(𝑥)  and 𝑓(𝑥) are bounded in [0,1] , Hoeffding’s 

inequality yields 𝑃𝑆′ (𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
ln(1/𝛿)

2 𝑛𝑆′
 ) ≥ 1 − 𝛿, 

which means that the generalization bound 
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𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
ln(1/𝛿)

2 𝑛𝑆′
  

is valid for at least a fraction 1 − 𝛿 of all possible calibration 

sets 𝑆’ (while only one of them is observed in practice). Note 

that the bound is valid for any training set 𝑆. 

Another example is given by Bernstein’s inequality. The 

following version also holds when 𝑓𝑠(𝑥) , 𝑓(𝑥) ∈ [0,1], for a 

fraction at least 1 − 𝛿 of all possible calibration sets 𝑆’: 

𝑅(𝑓�̂�) ≤ 𝑅𝑆′(𝑓�̂�) + √
2 𝑅𝑆′(𝑓�̂�) ln (

1
𝛿

)

𝑛𝑆′
+

2 ln (
1
𝛿

)

𝑛𝑆′
 

 

 
Figure 5: Hoeffding and Bernstein generalisation bounds in the IGRF 

use case. 

In Figure 5 we plot the above two generalisation bounds in our 

IGRF use case (to that end, 𝑓𝑠(𝑥) and 𝑓(𝑥) are first normalised 

to [0,1], but the bounds are then converted back into degrees). 

On the left, we display the two guaranteed statistical margins 

√ln (
1

𝛿
) /(2 𝑛𝑆′) and √2 𝑅𝑆′(𝑓�̂�) ln (

1

𝛿
) /𝑛𝑆′ + 2 ln (

1

𝛿
) /𝑛𝑆′  as 

functions of 𝑛𝑆′ . On the right plot, we display the resulting 

generalisation bounds, given by the sum of the empirical risk 

𝑅𝑆′(𝑓�̂�)  and these guaranteed statistical margins. They are 

statistically guaranteed upper bounds on the average magnetic 

declination error, for a latitude 𝜃  and longitude 𝜙  that are 

uniformly distributed within the ranges 60°S-82°N and 180°W-

180°E. A classical observation (from statistics theory) is that 

Bernstein’s inequality entails a better bound, at least for 

sufficiently many calibration examples. 

 

Post-processing modification of 𝐟𝑺 : risk-controlling 

prediction sets. An alternative family of post-processing 

methods consists in adding a predictive uncertainty 

quantification feature on top of the trained model. After 

modification, the predictor outputs a set of values (called a 

prediction set, typically an interval) instead of a single value, 

but with the guarantee of containing the ground truth with high 

probability. Conformal prediction methods [20] have gained 

renewed attention due to their simplicity and genericity. Next 

we focus on one algorithmic variant known as risk controlling 

prediction sets (RCPS) [21]. Just as before, this approach is only 

applicable once the model 𝑓�̂� has been trained and requires an 

additional independent calibration dataset 𝑆’. 
 

Several RCPS instances exist. For pedagogical purposes we 

describe a simple version below, which consists in replacing 

predictions 𝑓𝑆(𝑥)  with a prediction set 𝐶𝜆(𝑥) =  [𝑓𝑆(𝑥) −

𝜆; 𝑓𝑆(𝑥) + 𝜆]. To that end, the user first defines a risk level 𝛼, 

and then computes a margin value �̂�  by solving some 

optimization problem specified in [21]; roughly speaking, �̂� is 

chosen so that the empirical risk on the calibration set 𝑆′ plus 

some statistical margin (given by, e.g., Hoeffding’s or 

Bernstein’s inequalities) falls below 𝛼. 

This process comes with a probabilistic guarantee, which in our 

surrogate use case reads: 

𝑃𝑆′( 𝑃𝑋[𝑓(𝑋) ∈ 𝐶�̂�(𝑋) ] ≥ 1 − 𝛼 ) ≥ 1 − 𝛿 

This means that for a fraction 1 − 𝛿 of all possible calibration 

sets 𝑆’ , the prediction sets 𝐶�̂�(𝑥) = [𝑓𝑆(𝑥) − �̂�  ;  𝑓𝑆(𝑥) + �̂� ] 

contain the ground truth 𝑓(𝑥)  for most inputs 𝑥  (at least a 

fraction 1 − 𝛼 of all inputs). 

We apply RCPS to the IGRF use case, with 𝛼 = 𝛿 = 0.05 and 

a calibration dataset of 10K samples for each latitude range. 

Results are shown in Table 4. The computed margin �̂�  (3rd 

column) is consistent with the performance requirements (2nd 

column). Note that the 4th column somehow corresponds to the 

objective LM-14, but that our conclusions (3rd column) are 

slightly more conservative, as statistical wisdom suggests. 

Latitude 

range 

Performance 

requirements 

(95%) (°) 

Lambda 

(°) 

Observed 95% 

quantile (°) 

-50°,50° 2 1.7 1.51 

50°, 73° 3 2.1 1.966 

-60°, -50° 3 3.5 3.140 

73°, 79° 5 3.9 3.472 

79°, 82° 8 5.9 5.004 
Table 4: Application of the RCPS method to the IGRF use case 

In conclusion, back to our three criteria: 

 clarity: we found that the LM-04 and LM-14 objectives 

are clear enough, though several interpretations are 

possible (cf., e.g., our two post-processing approaches). 

 applicability: these objectives are applicable. Note that we 

had to assume some distribution on the latitude 𝜃  and 

longitude 𝜙. For another distribution, the results in Table 

4 would likely be different. 

 feasibility: the objectives can be reached with post-

processing methods, within reasonable computational 

costs, and with theoretical guarantees. The latter however 

crucially rely on the fact that the examples in the 

calibration set are independent and drawn from the right 

distribution (the uniform distribution in our case). 

 

We stress that instances where the above guarantees are 

breached may be concentrated within specific segments of the 

ODD, which could significantly impact the integration of such 

metrics in safety assessments. 

 

G. Overview of LM objectives analysis 

The detailed analyses of the previous sections led to several 

conclusions regarding the clarity, applicability, and feasibility 

of the LM objectives under study. Table 5 below provides a 

synthetic overview of our results, with a focus on feasibility. 

The conclusions drawn pertain to the magnetic declination 

estimation use case. Though not showed in the paper, we also 

analyzed the LM objectives on other toy use cases, for 

regression (a univariate nonparametric regression problem with 

Gaussian noise) and for classification (the classical two moons 

dataset). We obtained similar conclusions, though these (non-

surrogate) ML tasks raise additional challenges.  
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Table 5. Overview of the analyzed objectives.  

Objective DAL Feasibility? 

Performance on 

test set (LM-09) 

D, C Empirically: Yes 

Bias-Variance 
analysis (LM-07, 

LM-08) 

C Empirically: only rough estimation of 
bias and variance. Computationally 

prohibitive. Bias estimation is mostly 

specific to the surrogate setting (known 

𝑓(𝑥)). 
Formally: No 

Learning 

algorithm stability 

(LM-11) 

C Empirically: Only rough 

approximation 

Formally: No, very limited existing 
            Theory 

Trained model 

stability (LM-12) 

D, C Empirically: Yes with average metrics 

Formally: Yes, formal methods for 
specific model architectures (not 

scalable to higher dimensional problems). 

Model robustness 

(LM-13) 

D, C Empirically: Yes but clearer 

definitions and metrics needed 

Generalization 

bounds (LM-04, 

LM-14) 

C Formally: No for training-based 

bounds: computable but not 

actionable. Yes for post-processing 
bounds. 

Warning: these bounds require statistical 

properties on the datasets. 

 

V. DISCUSSION 

In Section IV, we only address the technical challenges raised 

by the LM objectives, namely: the clarity of the objectives in 

terms of their mathematical definitions, the applicability to the 

IGRF use case, and the feasibility (computational cost, choice 

of some parameter values, theoretical guarantees, assumptions 

on the data, etc). However, we do not address the link between 

system safety and the LM objectives. This connection is 

established within the concept paper for LM-04 and LM-09 (as 

recalled in Section II), but in the future it would be useful to re-

assess and refine this link. The contributions of the other LM 

objectives to system safety also need to be thoroughly 

investigated. 

 

In Section V.A, we recall  the paradigm shift from programming 

to learning, since it has key consequences on safety assurances. 

In Section V.B, we raise several questions concerning the 

contribution of safety assurance to system safety. 

A. The paradigm shift 

The concept paper proposes to address "the paradigm shift from 

programming to learning" with "learning assurances". We 

remind that the goal of the assurances is to obtain as many 

guarantees as possible that the contribution to safety of residual 

errors during operation will be acceptable. We highlight below 

how the two main engineering approaches described here 

(human programming-based and machine learning-based) 

address this goal radically differently. We conclude that they are 

significantly different information processing (i.e., 

transformation) approaches. In this perspective, we depict here 

the following fundamental differences of this "shift": 

1. Actor of the transformation. To minimize the errors 

made by humans, engineers rely on well-established 

principles and practices, supported by strong evidence 

gathered throughout extensive experience. On the other 

hand, to minimize the errors done by the machine, the 

applicant can only rely on a deep understanding of the 

learning process. 

                                                           
7  Even in the case of surrogate models, for which detailed 

specifications of the function may be available, the compression 

task performed by the model cannot be fully specified. Note that 

2. Complexity of the problems to be solved. We make the 

rather obvious assumption that ML techniques are to be 

used whenever no efficient alternative solution exists (i.e., 

one which can be completely specified and coded by 

humans) 7 . Consequently, no individual (or group of 

individuals) can analyze and verify exhaustively whether 

the computations of the ML-based software are correct or 

not. In most cases (in particular, when formal methods do 

not apply), engineers can only perform an empirical 

analysis of the ML model on some finite set of test 

examples, as if it were a black box. The human-written 

code based on complete software specifications can, on the 

other hand, be fully verified by other humans. 

3. Intrinsic nature of the transformation process. In the 

case of human programming, software requirements are 

transformed into code via a succession of abstractions and 

decompositions, from the highest and widest level, to the 

lowest and thinnest one. This transformation allows 

several intermediate verifications, by either tests or 

analysis, and is end-to-end understandable and traceable. 

In the case of ML software, the transformation (i.e. the 

learning phase) is mostly done by an optimization 

algorithm, which computes the parameters of the ML 

model, by minimizing a loss function to automatically 

capture statistical patterns in the training data. These are 

two fundamentally different ways of processing the 

information. 

4. Coverage of the input data. ML is mostly used to solve 

highly dimensional problems, which are impossible to 

describe / specify completely. Therefore, ensuring an 

exhaustive coverage of the input data space through 

massive testing is prohibitive for ML software (in absence 

of strong hypotheses regarding the data or the model). On 

the other hand, extensive coverage tests of human-written 

software are far more feasible essentially with the help of 

“equivalence classes” methods. The concept of 

“equivalence classes” frequently used in classical software 

test practices does not apply to ML software, due to the 

incomplete nature of the specifications of the problem 

being solved. 

 

B. Safety-related challenges 

We now briefly discuss important safety-related challenges that 

arise from the aforementioned paradigm shift. In safety, the 

main goal is to identify foreseeable failures and to obtain as 

many guarantees as possible that the impact and likelihood of 

failures will be acceptable in operation. It is thus important to 

question the link between the satisfaction of the LM objectives 

and this safety principle. Though these objectives appear to be 

very intuitive at first sight, we anticipate that seemingly small 

technical details in their instantiation might influence safety 

conclusions in a non-negligible way. Let us mention several 

examples, which appear at different levels. 

1. When interpreting an LM objective in terms of a 

mathematical definition. For example, for the IGRF use 

case, in Section IV.F we provide two generalisation 

guarantees, but only one of them seems directly related to 

safety or, more precisely, to the performance requirements 

is a reason to forbid compression options in the compilers in the 

safety critical software. 
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given in [2] 8. Indeed a small risk 𝑅(𝑓�̂�) only means that 

the average absolute error over the Earth’s surface (for a 

specific distribution) is small, which does not directly 

translate into whether the 95% performance requirements 

of Table 1 are met9. On the other hand, the RCPS method 

yields results that can be directly compared to these 

requirements; see Table 4. 

2. When applying a mathematical definition that depends 

on parameters, metrics, assumptions, etc. Since the link 

between the LM objectives satisfaction and system safety 

is not clarified, the applicant can have trouble in 

motivating the choice of some parameter values (such as 

the 𝛽 , 𝛿  or 𝜖  parameters in Sections IV.C and IV.D), 

performance metrics (the loss function involved in the risk 

definition), acceptable performance values, and data 

assumptions. 

For the IGRF use case the absolute error seems to be the 

most natural metric choice, but this is use-case specific. 

The choice of parameter values, and how they contribute 

to system safety, also seems very delicate. For example, as 

discussed in Section IV.D, a very stable trained model 

might feature a poor accuracy. Therefore, while a too small 

𝛿  for a given value of 𝜖  could be detrimental to safety 

(since the ML model could be sensitive to adversarial 

attacks), a too large 𝛿 may lead to inaccurate predictions 

and could be detrimental to safety too. 

Note from the previous paragraph that maximizing both 

robustness and accuracy is virtually impossible. This 

phenomenon contrasts with traditional assurance rules on 

software development. Indeed, traditional assurance rules 

can be cumulated to reduce the residual risk i.e., the effects 

of a given rule will not cancel out the effects of another 

rule. The experiments conducted in this paper reveal that, 

when interpreted with our mathematical definitions with 

some parameter values, some LM objectives could be 

competitive. The classical cumulative property no longer 

holds for this specific phase of the ML development 

process. In other words, the Rearson metaphor of Swiss 

cheese slices does not apply anymore. In practice, whether 

all objectives can be satisfied simultaneously or not will 

depend on parameter values as well as other choices (e.g., 

performance metrics), which should thus be properly 

linked to system safety. 

  

Overall, important efforts are needed to establish the links 

between the LM objectives satisfaction and system safety. This 

will enable to refine such objectives (in terms of mathematical 

definitions, parameter values, performance metrics, acceptable 

performance values, data assumptions, etc), or possibly to 

define new LM objectives. 

 

VI. CONCLUSIONS 

In this paper, we analyze several of the objectives proposed in 

[1]. We would first like to acknowledge all the structuring 

efforts towards the challenging goal of certifying safety-critical 

systems with AI components. However, our study shows that, 

even on a seemingly simple use-case, these objectives raise a 

                                                           
8 As noted in Section II, though the IGRF use case may not 

strictly fall under the EASA guidelines for critical airborne 

systems, it presents a realistic, well-defined, and thoroughly 

documented system. We use it as an illustrative example here.  
9 If the risk 𝑅(𝑓�̂�)  were redefined for each latitude range of 

Table 1 (instead of a global average), Markov’s inequality 

series of technical and methodological challenges; see Section 

IV.G for a synthetic overview. While intuitive and arguably 

helpful to gain confidence in ML-based systems, some of these 

objectives turn out to be ambiguous or unfeasible from a 

practical standpoint in the analyzed context. Satisfying these 

objectives for non-surrogate ML tasks, or quantifying their 

eventual (degree of) satisfaction to the reduction of safety-

related risks may posit additional hard challenges. 

 

In light of these findings, we consider that: 

 Further academic research must be conducted to develop 

methods that guarantee trustworthiness of an ML 

constituent. The scientific literature contains few 

appropriate methods that allow for the straightforward and 

efficient verification of the above objectives. 

 Despite the relevance of the guidelines towards the 

certification goal, the scope and formulation of several 

requirements should be refined and clarified. This 

clarification is key to address complex use-cases. 
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