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Abstract—Sparse Bayesian Learning (SBL) stands as a widely
utilized compressed sensing technique wherein the sparsity-
inducing prior for the unknowns within the underdetermined
linear system is characterized by a Gaussian scale mixture. This
formulation results in several hyperparameters, which encom-
pass the variance profile, noise variance, and potentially other
parameters within the variance profile priors. Traditionally, these
hyperparameters are determined via Type I or Type II Maximum
Likelihood (ML) estimation methods. In this paper, we introduce
SURE SBL, wherein the optimization of hyperparameters (as
opposed to mere estimation) relies on Stein’s Unbiased Risk
Estimator (SURE). Notably, the primary performance criterion
typically centers on the Mean Squared Error (MSE) of the
sparse parameters or the resultant signal model. We conduct
a review of the SURE approach. Subsequently, we apply the
SURE approach to assess the MSE of the sparse parameters (the
input to the linear model) and observe that it produces identical
hyperparameter optimization outcomes as those obtained via
Type II ML. Furthermore, we propose extending the SURE
approach to the output level of the linear model. Remarkably,
in the context of the large system limit, this extension yields
equivalent hyperparameter optimization outcomes concerning the
input to the linear model; however, when measurement noise is
present, the results obtained by the two kinds of SURE optimizers
diverge from those obtained through MSE optimization.

I. INTRODUCTION

Sparse signal reconstruction and compressed sensing (CS)
have garnered significant attention in recent years across vari-
ous fields. Applications span from massive multi-input multi-
output (MIMO) channel estimation [1], direction of arrival
estimation [2], biomagnetic imaging [3], to tasks such as image
restoration and echo cancellation. The compressed sensing
(CS) problem can be formulated as:

y = Ax+w, (1)

where y are the observations or data, A is called the mea-
surement or sensing matrix which in a first instance is known
and is of dimension N × M with N < M , x is the M -
dimensional sparse signal and w is the additive noise. In the
exactly sparse case, the unknown x contains only K non-zero
entries, with K << M . w is assumed to be a white Gaussian
noise, w ∼ N (0, γ−1I) with precision (inverse variance)
γ. To address this problem, a variety of algorithms such as
Orthogonal Matching Pursuit (OMP) [4], basis pursuit [5] and
the iterative re-weighted l1 and l2 algorithms [6] exist in the
literature. Compared to these algorithms, employing Bayesian
techniques for sparse signal recovery (SSR) typically achieves
superior performance. Notably, [7] offers a comprehensive

overview of various SSR algorithms falling under l1 or l2
norm minimization approaches, such as Basis Pursuit, LASSO,
etc., as well as Sparse Bayesian Learning (SBL) methods.
The authors substantiate the enhanced recovery performance of
SBL compared to the conventional methods mentioned above.

The SBL algorithm was initially introduced by [8] and
then first proposed for sparse signal recovery (SSR) by [9].
In a Bayesian framework, the objective is to compute the
posterior distribution of the parameters x given some obser-
vations (data) and prior knowledge. One of the distinguishing
features of SBL, compared to other state-of-the-art techniques,
is its utilization of hierarchical prior modeling, leading to
the sparsification of the state x. The Bayesian LASSO, as
described by [10], employs a similar hierarchical modeling
approach with a Gaussian-Exponential prior (equivalent to a
Laplace prior), which is revealed to be a special case of the
Student-t prior used in SBL.

In SBL, the unknown parameters x are modeled as decor-
related zero-mean Gaussian 1x ∼ N (0, (Diag(ξ))−1) with
precision profile ξ. The estimation of the hyperparameters
ξ, γ and the sparse signal x is performed jointly. In one ap-
proach, the hyperparameters are estimated first using evidence
maximization, which is referred to as the Type II Maximum
Likelihood (ML) method [7], which is also an instance of
Empirical Bayes (EB) estimation (i.e. Bayesian estimation
with a parameterized prior in which the hyperparameters are
estimated also). For a given estimate of ξ, γ, the Gaussian
posterior of x is formulated as p(x|y, ξ̂, γ̂) and the mean
of this posterior distribution is used as a Linear Mimimum
Mean Squared Error (LMMSE) [11] point estimate of x̂. In
[12], the authors propose a Fast Marginalized ML (FMML) by
alternating likelihood maximization w.r.t. the hyperparameters.
Both previous approaches allow for a greedy (OMP-like,
Orthogonal Matching Pursuit) initialization which improves
convergence speed. Recently, Approximate Message Passing
(AMP) [13], generalized AMP (GAMP) and vector AMP

1Notations: The operator (·)T denotes the matrix transpose. The probability density
function (pdf) of a Gaussian random variable x with mean µ and variance σ2 is denoted
as N (x;µ, ν). xk denotes the kth element of the vector x. KL(q||p) denotes the
Kullback-Leibler distance between the distributions q and p. An represents the nth

column of the matrix A. diag(X) or Diag(x) represents a vector obtained by extracting
the diagonal elements of the matrix X or a diagonal matrix obtained with the elements
of x on the diagonal, respectively. IM represents a vector of length M with all elements
set to one. For a matrix A, A ≥ 0 indicates that it is non-negative definite. IM denotes
the identity matrix of size M . tr{A} represents the trace of A (the sum of its diagonal
elements). Aij denotes the element at row i and column j of matrix A. ⌊a⌋+ denotes
max(0, a).



(VAMP) [14], [15], [16] were introduced to compute the
posterior distributions in a message passing (MP) framework,
with reduced complexity. The fundamental idea behind the
derivation of AMP is the central limit theorem and Taylor
series expansions, which allows to simplify the messages to
be exchanged in MP and reduce their number. However, so far
the Bayes optimality of these AMP algorithms has been shown
only for i.i.d. or right orthogonally invariant A, which severely
limits their applicability. More recent attempts at obtaining
converging versions of (G)AMP appear in [17], [18], where
alternating constrained minimization of a large system limit
of the Bethe Free Energy is pursued.

SBL (LMMSE) entails a matrix inversion step, particularly
at each iteration in Type I ML, which involves the joint estima-
tion of parameters x and hyperparameters. This characteristic
renders it computationally complex, especially for moderately
large datasets. An alternative approach to SBL involves uti-
lizing variational approximation for Bayesian inference, as
proposed by [19]. Variational Bayesian (VB) inference aims to
discover a factored approximation of the posterior distribution
that maximizes the variational lower bound on ln p(y). In
a similar vein, [20] introduces a fast version of SBL by
iteratively maximizing the variational posterior lower bound
with respect to (w.r.t.) individual (hyper)parameters. Another
notable approach is presented in [21], wherein the authors
introduce a Belief Propagation (BP)-based SBL algorithm,
which proves to be computationally more efficient. Here, BP
is employed to infer the posterior probability density function
(pdf) of x, while the hyperparameters are estimated using the
Expectation-Maximization (EM) algorithm. Furthermore, [22]
utilizes the Approximate Message Passing (AMP) algorithm
for LMMSE and introduces a non-parametric algorithm called
NOPE, which doesn’t necessitate any prior knowledge of
the signal and noise powers. Notably, these parameters are
adjusted via SURE. The authors also demonstrate that in the
large system limit, NOPE achieves performance comparable
to that of the LMMSE equalizer.

Another approach is presented in [23] (and previous publica-
tions by the same authors), known as the SPICE methodology.
In this approach, hyperparameters are adjusted through covari-
ance fitting using a weighted covariance fitting cost function.

tr{(yyT −R)R−1(yyT −R)} (2)

where R is the one appearing in (15). Now, (2) differs from
the optimally weighted covariance fitting criterion

tr{(yyT −R)R−1(yyT −R)R−1} (3)

which leads to the same hyperparameter adjustments as Type
II ML (EB).

In this paper, we have tried to analyze the use of SURE esti-
mator for hyperparameter estimation of SBL and by analyzing
SUREx and SUREz, we have come up with the expression
of the estimator w.r.t. the hyperparameters of SBL. And we
analyze that both SURE optimizers have the same effect under
the large system assumption, but diverge to MSE optimization
when measurement is not negligible.

II. STEIN’S UNBIASED RISK ESTIMATOR: SURE
PRINCIPLE

Consider a simple additive white Gaussian noise model:

y = z+w (4)

where w ∼ N (v; 0, σ2IM ). Let ẑ(y) be an estimator of z.
Then we get for the MSE

MSEz=E ∥ẑ− z∥2 = E {∥z∥2 + ∥ẑ∥2 − 2 ẑT z}
(a)
=E {∥z∥2 + ∥ẑ∥2 − 2 ẑTy + 2σ2 tr{∂ẑT

∂y } }
=E {∥z∥2 − ∥y∥2 + ∥ẑ− y∥2 + 2σ2 tr{∂ẑT

∂y } }
(5)

where E is w.r.t. w (z is treated as deterministic) and (a)
follows as a property of the Gaussian pdf [24]. By dropping
expectation, we get an instantaneous unbiased estimate of the
MSE and the corresponding SURE function (which is the part
of M̂SE that depends on ẑ)

M̂SEz = ∥z∥2 − ∥y∥2 + SUREz ,

SUREz = ∥ẑ− y∥2 + 2σ2 tr{∂ẑT

∂y } .
(6)

In SUREz, the first term reflects the effect of bias in ẑ whereas
the second term reflects the variance of ẑ and the noise effect
in the first term due to replacing z by y.

III. PRIOR VARIANCE DETERMINATION IN SBL
ALGORITHMS

Consider an analysis per component xi in which we opti-
mize over the prior variance pi, keeping others Pi fixed. Then
Variational Bayes, like EM, converges to:

p̂i = |x̂i(pi)|2 + σ2
x̃i(pi)

(7a)

= ⌊|x̂i(0)|2 − σ2
x̃i(0)

⌋+ (7b)

where x̂i(pi) and σ2
x̃i(pi)

are the LMMSE estimate and the
corresponding error variance for a priori variance pi. The
first line (7a) corresponds to the update equation at conver-
gence of VB (or EM), yielding an implicit equation for pi.
The expression corresponds to the orthogonality principle of
LMMSE: the prior variance equals the estimate variance plus
the error variance, where the estimate variance is replaced by
its instantaneous value.

The second line (7b) is the corresponding solution, which
is also the estimate for pi in Type II ML (EB). It is again an
intuitive expression: for an unbiased estimate, the power in
the estimate equals the prior power plus the estimation error
variance.

IV. FIRST SBL SURE APPLICATION: COMPONENT-WISE xi

Consider component i of the LMMSE estimate for x in
SBL, x̂i(pi). Then a simple instance of the previous additive
noise model is

x̂i(0) = xi + x̃i(0) (8)

where x̃i(0) has variance σ2 = σ2
x̃i(0)

. We consider the
LMMSE estimator

x̂i = x̂i(pi) =
pi

pi + σ2
x̂i(0). (9)



Then we get

SURExi(pi)=

(
σ2

pi + σ2
x̂i(0)

)2

+ 2
σ2 pi

pi + σ2

=

(
σ2

pi + σ2
x̂i(0)

)2

− 2
σ4

pi + σ2
+ 2σ2

(10)

where as a function of pi, the first term is decreasing and the
second term is increasing. We get

∂SURExi

∂pi
= 2σ4(pi + σ2 − x̂2

i (0))/(pi + σ2)3. (11)

SURExi(pi) has a single extremum, a local minimum, at pi =
x̂2
i (0)− σ2. We have

∂SURExi

∂pi
(pi = 0) = 2(1− x̂2

i (0)

σ2
). (12)

So, the minimum of SURExi
(pi) occurs at positive pi when

x̂2
i (0) > σ2, but at negative pi in the opposite case. Hence,

since we need pi ≥ 0, we get for the optimum

p̂i = ⌊|x̂i(0)|2 − σ2
x̃i(0)

⌋+ (13)

which leads to exactly the same result as by VB or Type
II ML (EB). This could be extended to the (non-Gaussian)
Generalized Linear Model via GAMP.

V. SURE APPLIED TO SBL: DISCUSSION

Consider now the linear model z = Ax with diagonal
Gaussian prior for x: a simple additive white Gaussian noise
model:

y = Ax+w ,w ∼ N (v; 0, σ2I) , x ∼ N (x; 0,P ) (14)

where x,v are independent. By the Gauss-Markov theorem,
the posterior for x is Gaussian again

x|y∼N (x; PATR−1y, P − PATR−1AP ) (15)

where R = APAT + σ2I is the covariance matrix of y.
In the SURE approach, the Gaussian prior on x is not really

considered as the true prior, but rather as a mechanism that
leads to biased estimates for x in a principled way, allowing
to optimize the bias for MMSE.

In some compressed sensing settings (e.g. DoA estimation),
the important information is in the support of x (or diag(P )).
In that case the estimation of the individual components xi and
their prior power pi is indeed important (previous section).

In the context of estimating the i-th entry of the signal vector
x, we can follow the Component-Wise Conditionally Unbiased
(CWCU-)LMMSE approach [25]. This approach assumes that
the i-th entry of x is deterministic while the other entries are
random. When considering only the i-th entry of the signal
vector x to be deterministic (assume the prior variance to be
+∞), and treating the other entries as random variables, we
can estimate the i-th entry of x and the associated error using
the following equations:

x̂i(0) =
AT

i (
∑N

j ̸=i pjAjA
T
j + σ2I)−1y

AT
i (
∑N

j ̸=i pjAjAT
j + σ2I)−1Ai

; (16a)

σ2
x̃i(0)

= (AT
i (

N∑
j ̸=i

pjAjA
T
j + σ2I)−1Ai)

−1. (16b)

Note that the (partial) Bayesian modeling (of xi) is a must
here, in the application of SURE, as no deterministic estimate
of x is possible in the underdetermined case.

VI. SECOND SBL SURE APPLICATION: LINEAR MODEL
OUTPUT z = Ax

In other compressed sensing settings (e.g. channel esti-
mation with a superposition of multipath components), the
important quantity is s = Cx in which a signal s gets
represented (approximated) as a superposition of atoms in a
dictionary C. In this case, x is not as important as the resulting
s. In compressed sensing, we cannot measure the whole of s
but only a projection (sketch) z = Bs = Ax with A = BC.
for instance, in OFDM based wireless channel estimation, B
may have the structure of a fat permutation submatrix and is
semi-orthogonal. In such case, the MSE on z is representative
of the MSE on s. Hence we focus on the estimation of z,
which in case of no RIP (Restricted Isometry Property) on A
could be quite different from a superposition of estimations of
the xi.

The estimation in the underdetermined linear model (fat
A) is related to the case of reduced rank (overdetermined)
A discussed in [24].

Hence with ẑ = Ax̂ = APATR−1y, parameterized by
P ,

SUREz(P ) = ∥y − ẑ∥2 + 2σ2 tr{∂ẑT

∂y } = σ4yTR−2y

+2σ2tr{APATR−1} = 2σ2 + σ4yTR−2y − 2σ4tr{R−1}.
(17)

Focusing on optimizing one pi at a time, making explicit the
dependence on pi, we get

p̂i = argminpi
SUREz(P )

= argminpi yTR−2y − 2tr{R−1}
= argminpi

(AT
i R

−1

ĩ
Ai + 1/pi)

−2AT
i R

−2

ĩ
Ai(A

T
i R

−1

ĩ
y)2

−2(AT
i R

−1

ĩ
Ai + 1/pi)

−1(yTR−2

ĩ
AiA

T
i R

−1

ĩ
y −AiR

−2

ĩ
Ai)

+yTR−2

ĩ
y

= argminpi

[
a− 2 b

c+ 1/pi
+

d

(c+ 1/pi)2

]
,

(18)
where

b = yTR−2

ĩ
AiA

T
i R

−1

ĩ
y −AiR

−2

ĩ
Ai; (19a)

c = AT
i R

−1

ĩ
Ai; (19b)

d = AT
i R

−2

ĩ
Ai(A

T
i R

−1

ĩ
y)2. (19c)

With the limit of pi should always be non-negative, we get

p̂i = ⌊ b

d− cb
⌋+ . (20)

Though this expression requires further interpretation, it is
expected that the assignment of power pi in SUREz is (even)



more affected (more sparsifying) in the case that A contains
columns that are close to collinear.

VII. LARGE SYSTEM ANALYSIS

In our treatment of the linear regression problem (1),
the vectors y = [y1, · · · , yM ]T , x = [x1, · · · , xN ]T , and
w = [w1, · · · , wM ]T are deterministic, while the matrix
A ∈ RM×N is also deterministic. However, it’s crucial to note
that we assume the components Aij of A are realizations of in-
dependent and identically distributed (i.i.d.) Gaussian random
variables Aij ∼ N (0, 1

M ), which are drawn independently of
x and w. Throughout our analysis, we will primarily focus
on the following large-system limit. Definition 1: The ”large
system limit” is defined as M,N → ∞ with M/N → α for
some fixed sampling ratio α ∈ (0,∞).

A. Preliminary

The analysis of the large system primarily relies on the
deterministic equivalent proposed in [Wagner, 2012], which
states:

Lemma 1: Let Q be any Hermitian deterministic matrix
and let Σ ∈ RM×M = APAT =

∑N
i=1 piAiA

T
i , with

diagonal matrix P , and A containing N independent columns
Ai with covariance matrix Θi. Also, assume that Q, Θi have
uniformly bounded spectral norms. Then, for any z > 0 the
following convergence result holds almost surely,

1

M
tr{Q(Σ+ zI)−1} − 1

M
tr{QT(z)} a.s−−−−→

M→∞
0, (21)

with

T(z) =

(
N∑
i=1

diΘi

1 + li(z)
+ zI

)−1

(22)

where li(z) = l
(∞)
i (z) is defined as the unique positive

solution of

li(z) = tr

{
diΘi

(
N∑
i=1

diΘi

1 + li(z)
+ zI

)}−1

. (23)

Also, in the appendix VI of [26], they defined as
Lemma 2: AT

i ΣAi − 1
M tr{Σ} N,M→∞−−−−−−→ 0 when the

elements of Ai are i.i.d. with zero mean and variance 1/M
and independent of Ai, and similarly when y is independent
of Ai, that AT

i Σy
M,N→∞−−−−−−→ 0.

Based on Lemma 1, it is obvious to define that
Lemma 3: If mo(z) = 1

M tr{(Σ+ zI)−1}, then ∂mo(z)
∂z =

− 1
M tr{(Σ+ zI)−2} and ∂2mo(z)

∂z2 = 1
2

1
M tr{(Σ+ zI)−3}.

Sketch of the proof: Lemma 3 is straightforward via algebra
derivation.

B. Large System Analysis to p̂i w.r.t. SUREx

Theorem 1: Optimizing pi from SUREx(pi), we have the
optimized pi in (13) and x̂i(0), x̃i(0) in (16), under large

system limit, the following convergence result holds almost
surely

p̂i
M,N→∞−−−−−−→ ⌊x2

i −
1

M

N∑
j ̸=i

pj
1 + lj

− N

M
σ2⌋+, (24)

where

lj =
pjM

N

 N∑
j ̸=i

pj/N

1 + lj
+ σ2

v

−1

. (25)

Proof: For the sake of brevity, we define Rĩ =∑N
j ̸=i pjAjA

T
j + σ2I. Then according to (16), we have

x̂i(0)
2 = (AT

i R
−1

ĩ
y)2/(AT

i R
−1

ĩ
Ai)

2

= (AT
i R

−1

ĩ
(AxxTA+wwT )R−T

ĩ
Ai)/(A

T
i R

−1

ĩ
Ai)

2

=
{
AT

i R
−1

ĩ

[(∑N
j=1 xjAj

)(∑N
j=1 xjA

T
j

)
+wwT

]
R−T

ĩ
Ai

}
/(AT

i R
−1

ĩ
Ai)

2.
(26)

Each column Ai of A is independent each other and w is
independent to all Ai, therefore, according to Lemma 2, we
can have

AT
i R

−1

ĩ
w = 0; (27a)

AT
i R

−1

ĩ
Aj = 0, if j ̸= i; (27b)

AT
i R

−1

ĩ
Ai =

1

N
tr{R−1

ĩ
}. (27c)

Thus we have:

x̂i(0)
2 = (x2

i (A
T
i R

−1

ĩ
Ai)

2)/(AT
i R

−1

ĩ
Ai)

2 = x2
i . (28)

According to Lemma 1, we can have

AT
i R

−1

ĩ
Ai =

1
N tr{R−1

ĩ
}

= 1
N tr

{(∑N
i=1

pi/N
1+li

I+ σ2I
)−1

}
= M

N

(∑N
i=1

pi/N
1+li

+ σ2
)−1

,

(29)

where

lj =
pjM

N

 N∑
j ̸=i

pj/N

1 + lj
+ σ2

v

−1

. (30)

Defining m(σ2) = AT
i R

−1

ĩ
Ai, according to Lemma 3, we

have

AT
i R

−2

ĩ
Ai = −∂m(σ2)

∂σ2
=

N

M
m2(σ2). (31)

Then for σ2
x̃i(0)

, we have

σ2
x̃i(0)

= (AT
i R

−1

ĩ
Ai)

−1 = 1/m(σ2), (32)

where li(z) has already defined in (30). Combining
(29)(31)(30)(32), we have

p̂i = ⌊x2
i −

1

M

N∑
j ̸=i

pj
1 + lj

− N

M
σ2⌋+ (33)

as Theorem 1.



C. Large System Analysis to p̂i w.r.t. SUREz

Theorem 2: Optimizing pi from SUREz(pi) in (18), we
have the optimized p̂i in (13), under large system limit, the
following convergence result holds almost surely

p̂i
M,N→∞−−−−−−→ ⌊x2

i −
1

M

N∑
j ̸=i

pj
1 + lj

− N

M
σ2⌋+, (34)

where

lj =
pjM

N

 N∑
j ̸=i

pj/N

1 + lj
+ σ2

v

−1

. (35)

Proof: Firstly, following the approach employed in the proof
of Theorem 1 and leveraging Lemma 3, we obtain:

1

2

∂2m(σ2)

∂σ4
= AT

i R
−3

ĩ
Ai =

N2

M2
m3(σ2). (36)

Therefore, we can directly express b, c, and d in (19) as:

b = x2
iA

T
i R

−1

ĩ
AiA

T
i R

−2

ĩ
Ai −AT

i R
−2

ĩ
Ai

= x2
i

N2

M2
m3(σ2)− N

M
m2(σ2); (37a)

c = AT
i R

−1

ĩ
Ai = m(σ2); (37b)

d = x2
iA

T
i R

−2

ĩ
Ai(A

T
i R

−1

ĩ
Ai)

2 = x2
i

N2

M2
m4(σ2). (37c)

Based on the aforementioned results and subsequent algebraic
manipulation, we can express (20) as follows:

p̂i = ⌊ b

d− cb
⌋+ = ⌊x2

i −m−1(σ2)⌋+ . (38)

As we can see, optimizing pi from SUREz and SUREx leads
to the same result under large system limit.

VIII. HYPERPARAMETER OPTIMIZATION VIA MSE

For optimizing hyperparameter pi from MSEx, they can be
expressed as:

p̂i = argmin
pi

MSEx = E{SUREx}, (39)

where E is w.r.t. w (x is treated as deterministic). With (10)
and (11), (39) can be derived as:

p̂i = ⌊Ew{|x̂i(0)|2} − σ2
x̃i(0)

⌋+ , (40)

where x̂i(0) and MSEx are defined in (16), respectively.
Theorem 3: Optimizing pi from MSEx(pi) defined in (39),
we have the optimized p̂i in (40) and x̂i(0), x̃i(0) in (16),
under large system limit, the following convergence result
holds almost surely,

p̂i
M,N→∞−−−−−−→ ⌊x2

i −
1

M

N∑
j ̸=i

pj
1 + lj

⌋+, (41)

where

lj =
pjM

N

 N∑
j ̸=i

pj/N

1 + lj
+ σ2

v

−1

. (42)

Proof: According to (26) and with large system limit,
Ew{|x̂i(0)|2} can be calculated as:

Ew{|x̂i(0)|2} =
AT

i R
−1

ĩ
(AxxTA+ σ2I)R−T

ĩ
Ai

(AT
i R

−1

ĩ
Ai)2

= x2
i + σ2

AT
i R

−2

ĩ
Ai

(AT
i R

−1

ĩ
Ai)2

= x2
i +

N

M
σ2.

(43)

Afterwards by a simple derivation, similar to the proof of The-
orem 1, we can prove the correctness of Theorem 3. According
to Theorem 1,2,3, under the large system limit, the two SURE
optimizers yield the same results as the MSE optimizer when
the noise tends towards zero. However, discrepancies arise
when the noise is significant.

IX. CONCLUSION

In this paper, we explore the utilization of Stein’s unbi-
ased risk estimation (SURE) for hyperparameter estimation
within sparse Bayesian learning. We provide the derivation
of expressions for SURE estimators w.r.t. hyperparameters of
SBL based on linear model input and output. Additionally,
we analyze the estimated parameters utilizing constraints from
large systems. Notably, our analysis demonstrates that both
SURE estimators yield equivalent outcomes when subjected to
large system restrictions. Under the large system limit, the two
SURE optimizers yield the same results as the MSE optimizer
when the noise tends towards zero. However, discrepancies
arise when the noise is significant.
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