
HAL Id: hal-04575249
https://hal.science/hal-04575249

Preprint submitted on 14 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emulation of the FMA in rounded-to-nearest
floating-point arithmetic
Stef Graillat, Jean-Michel Muller

To cite this version:
Stef Graillat, Jean-Michel Muller. Emulation of the FMA in rounded-to-nearest floating-point arith-
metic. 2024. �hal-04575249�

https://hal.science/hal-04575249
https://hal.archives-ouvertes.fr

Emulation of the FMA in rounded-to-nearest

floating-point arithmetic

Stef Graillat∗ Jean-Michel Muller†

May 14, 2024

Abstract

We present an algorithm that allows to emulate the fused multiply-
add (FMA) instruction in binary floating-point arithmetic, using only
rounded-to-nearest floating-point additions, multiplications, and compar-
isons.

Keywords. Floating-point arithmetic, FMA, fused multiply-add, Error-free
transforms, double-word arithmetic.

1 Introduction

The fused multiply-add (FMA) instruction evaluates an expression of the form
ab + c, where a, b, and c are floating-point numbers, with one final rounding
only. It appeared in 1990 in the IBM POWER instruction set [6], and its
specification was incorporated in the 2008 version of the IEEE-754 Standard
for Floating-Point Arithmetic [1]. It facilitates the software implementation of
correctly rounded division and square root [14, 7], and, in general, allows for
faster and more accurate evaluation of dot products and polynomials.

To be able to run programs that use FMAs on architectures without an
FMA instruction, it may be interesting to have algorithms that emulate that
instruction. We are interested in emulating the FMA for rounded-to-nearest
arithmetic. It is always possible to do that using integer arithmetic and masks.
However, for portability and performance reasons, one may wish to use “high
level” algorithms, that only use floating-point operations. This could be done
using an algorithm devised by Boldo and Melquiond [5]. Unfortunately, their
algorithm requires a “round to odd” rounding function that is not yet available
on current processors and is not specified by the current version of the IEEE
754 Standard for Floating-Point Arithmetic [1, 4]. Kornerup et al. [12] show
how one could emulate rounded-to-odd additions/subtractions using arithmetic

∗Sorbonne Université, CNRS, LIP6, Paris, France
†CNRS, Laboratoire LIP, Université de Lyon, Lyon, France

1

operations with round-to-+∞ and round-to-−∞ rounding functions. In princi-
ple, this makes it possible to use the Boldo-Melquiond algorithm and emulate
rounded-to-nearest FMAs. However, changing the rounding function remains a
complex and costly procedure.

The purpose of this paper is to find how an FMA instruction can be evaluated
using only rounded-to-nearest floating-point additions, subtractions, multiplica-
tions and tests.

Throughout the paper, we assume a binary, precision-p floating-point (FP)
arithmetic. Unless otherwise specified, it is assumed that the exponent range is
unbounded. This implies that the results presented here apply to conventional
binary floating-point arithmetic provided that underflow and overflow do not
occur. We assume that the rounding function is round-to-nearest, ties-to-even,
noted RN, which is the default in IEEE 754 arithmetic. The unit round-off is
u = 2−p. It is an upper bound on the relative error due to rounding. This implies
that when an arithmetic operation x⊤y is performed (with ⊤ ∈ {+,−,×,÷}) ,
the computed result z satisfies

(1− u) · |(x⊤y)| ≤ z = |RN(x⊤y)| ≤ (1 + u) · |(x⊤y)|. (1)

We will say that x is a double-word1 (DW) number if it is the unevaluated
sum xh + xℓ of two floating-point numbers xh and xℓ such that xh = RN(x).
Some algorithms for manipulating double-word numbers are presented and an-
alyzed in [10].

1.1 Some classical results of floating-point arithmetic used
in this paper

In this section, we just briefly present the results needed in the sequel of the
paper. More detailed presentations and proofs can be found in [16].

In order to emulate an FMA instruction using FP multiplications and addi-
tions, it is necessary to conduct an analysis of the errors associated with these
operations. Although very useful, the relative error bound (1) is not the final
word:

• First, some operations are exact. A straightforward example is the case
of multiplications and divisions by powers of 2. Another, less intuitive,
example is the case of the subtraction of two numbers that are close enough
to each other, as presented in Section 1.1.1;

• Second, a simple analysis shows that the error of an FP addition or mul-
tiplication is an FP number.2 See for instance [2, 3]. Furthermore, these

1We frequently see the name “double double” in the literature. We prefer “double word”
because there is no reason to systematically assume that the underlying format is double
precision/binary64.

2Concerning addition, this is true only when the rounding function is round-to-nearest,
which we have assumed here.

2

errors can be computed, using relatively simple algorithms, called Error-
Free Transforms in the literature [17], presented in §1.1.2 (for addition)
and §1.1.3 (for multiplication).

1.1.1 Sterbenz’s theorem

Sterbenz’s theorem is extremely useful in error analysis. For instance, the proof
of the double-word algorithms presented in [10] heavily relies on Sterbenz’s
theorem.

Theorem 1.1 (Sterbenz Theorem [18]). Let a, b be FP numbers. If a
2 ≤ b ≤ 2a

then a − b is an FP number. This implies that the subtraction a − b will be
performed exactly in FP arithmetic.

1.1.2 The Fast2Sum and 2Sum algorithms

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [8].

s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)
return (s, t)

If the floating-point exponents ea and eb of a and b are such that ea ≥ eb
then t is the error of the floating-point addition RN(a+b) (i.e., the double word
(s, t) is exactly equal to a+ b). The condition on the exponents may be difficult
to check, but it is satisfied if |a| ≥ |b|.

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [15, 11].

s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)
return (s, t)

For all FP numbers a and b, t is the error of the floating-point addition
RN(a+ b).

1.1.3 The Dekker-Veltkamp multiplication algorithm

If an FMA instruction is available, then the error of an FP multiplication is
very easy and fast to compute: the error of the multiplication πh = RN(ab)
is πℓ = RN(ab − πh). Since our goal here is to emulate an FMA instruction,

3

we obviously cannot assume that such an instruction is already available, so
we must use a more complex algorithm, Algorithm 4 below, due to Dekker and
Veltkamp [8]. In order to compute the product ab “exactly”, Algorithm 4 must
first “split” the input operands a and b into sub-operands of precision around
p/2, so that the product of two such sub-operands can be representable exactly
in precision-p floating-point arithmetic (and is therefore obtained by a simple
floating-point multiplication). This preliminary splitting is done by Algorithm 3.
For a proof of these algorithms, see [16].

Algorithm 3 – Split(x, s). Veltkamp’s splitting algorithm. Returns a pair
(xh, xℓ) of FP numbers such that the significand of xh fits in s − p bits, the
significand of xℓ fits in s− 1 bits, and xh + xℓ = x.

Require: K = 2s + 1
Require: 2 ≤ s ≤ p− 2
γ ← RN(K · x)
δ ← RN(x− γ)
ah ← RN(γ + δ)
aℓ ← RN(x− ah)
return (xh, xℓ)

Algorithm 4 – DekkerProd(a, b). Dekker’s product. Returns a pair (πh, πℓ)
of FP numbers such that πh = RN(ab) and πh + πℓ = ab.

Require: s = ⌈p/2⌉
(ah, aℓ)← Split(a, s)
(bh, bℓ)← Split(b, s)
πh ← RN(a · b)
t1 ← RN(−πh +RN(ah · bh))
t2 ← RN(t1 +RN(ah · bℓ))
t3 ← RN(t2 +RN(aℓ · bh))
πℓ ← RN(t3 +RN(aℓ · bℓ))
return (πh, πℓ)

1.2 Workplan

Assume we wish to compute

d = RN(d̂), with d̂ = ab+ c,

using only rounded-to-nearest floating-point additions and multiplications, and
(if needed) comparisons. Algorithm 4 (DekkerProd) makes it possible to express
the product ab as a double word (πh, πℓ) such that πh+πℓ = ab. We are therefore
reduced to computing the sum of a double-word and an FP number.

We will start from the algorithm implemented in Hida, Li and Bailey’s QD
library [9], that returns a double-word number very close to the sum of a double-
word number and a floating-point number. It is Algorithm 5 below, analyzed

4

in [10]. It will not suffice for our purpose since it does not return a correctly-
rounded result, so modifications will be necessary.

Algorithm 5 – DWPlusFP(xh, xℓ, y). Computes (xh, xℓ) + y in binary,
precision-p, floating-point arithmetic. Implemented in the QD library. The
number x = xh+xℓ is a double-word number (i.e., it satisfies xh = RN(xh+xℓ).

1: (sh, sℓ)← 2Sum(xh, y)
2: v ← RN(xℓ + sℓ)
3: (zh, zℓ)← Fast2Sum(sh, v)
4: return (zh, zℓ)

The following result is proven in [10].

Theorem 1.2. The pair (zh, zℓ) returned by Algorithm 5 is a DW number. it
safisfies:

|(zh + zℓ)− (x+ y)| ≤ 2u2 · |x+ y| . (2)

In Section 2.1 we analyze the various cases that may occur when trying to
compute RN(πh + πℓ + c). We will find that the calculation will be simple,
unless some intermediate variable (variable w in Algorithm 7) is a power of 2.
We explain how that case can be detected in Section 2.2, and how it can be
dealt with in Section 2.3.

2 Building the algorithm

2.1 Reduction to the computation of the sum of 3 FP
numbers

As stated in the previous section, we aim at computing d = RN(d̂), with d̂ =
ab + c, by first expressing the product ab as a double word (πh, πℓ) (this is
done by using the Dekker-Veltkamp product, i.e., Algorithm 4). Hence we are
reduced to computing

RN(πh + πℓ + c).

Lauter [13] shows that for the IEEE754 binary formats, this can be done using
128-bit integer operations. Here, we are going to use floating-point operations
only (with the advantage of being able to handle any possible binary FP format,
and the inconvenient of not handling underflows, overflows and the various IEEE
flags). Interestingly enough, Algorithm 5 almost always computes d: the correct
result will often be the most significant term of the pair returned by the call to
DWPlusFP(πh, πℓ, c). More precisely, let us modify that algorithm and compute (sh, sℓ) = 2Sum(πh, c)

(vh, vℓ) = 2Sum(πℓ, sℓ)
(zh, zℓ) = Fast2Sum(sh, vh)

5

(one easily sees that vh is the variable “v” of Algorithm 5). We obviously have

zh + zℓ + vℓ = ab+ c = d̂, (3)

and Theorem 1.2 tells us that

• (zh, zℓ) is a double-word, i.e., zh = RN(zh + zℓ),

• |vℓ| = |(zh + zℓ)− d̂| ≤ 2u2|d̂|.

Note that when ab+ c = 0 this implies zh = zℓ = vℓ = 0, so we will not need
to consider that case in the following. From

|d̂| ≤ |zh + zℓ|
1− 2u2

≤ |zh|(1 + u)

1− 2u2
,

we obtain

|vℓ| ≤ 2u2|d̂| ≤ 2u2(1 + u)

1− 2u2
|zh| . (4)

Two cases may occur,

• If |zh| is not a power of 2 then |zℓ| ≤ 1
2ulp(zh) and, as ulp(zh) > u|zh|, (4)

implies

|vℓ| ≤
2u(1 + u)

1− 2u2
ulp(zh),

which is strictly less than 1
2ulp(zh) as soon as u ≤ 1/8, so that

|zℓ + vℓ| < ulp(zh).

• If |zh| is a power of 2 then

−1

4
ulp(zh) ≤ zℓ × sign(zh) ≤

1

2
ulp(zh),

and, as ulp(zh) = 2u|zh|, (4) implies

|vℓ| ≤
u(1 + u)

1− 2u2
ulp(zh),

which is strictly less than 1
4ulp(zh) as soon as u ≤ 1/8, so that

−1

2
ulp(zh) < (zℓ + vℓ)× sign(zh) <

3

4
ulp(zh),

The consequence of this is that, as soon as u ≤ 1/8, d̂ = zh+ zℓ+ vℓ satisfies

z−h < d̂ < z+h , where z
−
h and z+h are the floating-point predecessor and successor

of zh, respectively.
In the (by far most frequent) case where |RN(vℓ + zℓ)| is not a power of 2,

the number |vℓ + zℓ| is not a power of 2 either (otherwise it would round to

6

itself), and in that case |RN(vℓ + zℓ)| is larger than 1
2ulp(zh) (resp. 1

4ulp(zh))
iff |vℓ + zℓ| is larger than 1

2ulp(zh) (resp.
1
4ulp(zh)).

Therefore,
if u ≤ 1/8 then when |RN(vℓ+zℓ)| is not a power of 2, d is equal to RN(zh+

RN(zℓ + vℓ)).
We will examine later on what must be done when |RN(vℓ + zℓ)| is a power

of 2, but in the meanwhile, we have to find a simple way of determining if the
absolute value of a FP number is a power of 2.

2.2 Determining if the absolute value of a FP number is
a power of 2

We have,

Theorem 2.1. In binary, precision-p, floating-point arithmetic, assuming no
underflow/overflow occurs, the absolute value of the nonzero FP number x is a
power of 2 if and only if

RN
[
RN

((
2p−1 + 1

)
· x

)
− 2p−1x

]
= x. (5)

Proof. If |x| is a power of 2, then multiplying by x is an exact operation and
therefore (5) boils down to RN(x) = x, which obviously holds since x is a FP
number. If |x| is not a power of 2 then there exist integers N and e such that
N is odd, N > 1, and |x| = N · 2e. Let P = 2p−1 + 1. The number P ·N is an
odd integer of absolute value strictly larger than 2p. Therefore P ·x = P ·N · 2e
is not exactly representable in FP arithmetic. Hence RN (P · x) ̸= P · x.

From

x(2p−1 + 1)(1− u) ≤ RN(P · x) ≤ x(2p−1 + 1)(1 + u),

we deduce (remember: u = 2−p) that

1
2u + 1

1
2u

(1− u) ≤ RN(P · x)
2p−1x

≤
1
2u + 1

1
2u

(1 + u),

so that (as soon as u ≤ 1/4)

1 ≤ 1 + u− 2u2 ≤ RN(P · x)
2p−1x

≤ 1 + 3u+ 2u2 < 2.

Therefore, we can apply Sterbenz Theorem (Theorem 1.1) to the subtraction
RN (P · x) − 2p−1x, and deduce that that subtraction is exact. We therefore
obtain that the left-hand part of (5) is exactly equal to RN (P · x) − 2p−1x,
which differs from P · x− 2p−1x = x.

This gives the following algorithm

7

Algorithm 6 IsPowerOf2(x).

Require: P = 2p−1 + 1
Require: Q = 2p−1

L← RN(P · x)
R← RN(Q · x)
∆← RN(L−R)
return (∆ = x)

2.3 The difficult case: when |RN(vℓ + zℓ)| is a power of 2

Define w = RN(zℓ + vℓ). We are in the case |w| = 2k for some k ∈ Z. We need
to determine if RN(zh +w) differs from RN(zh + zℓ + vℓ). An easy case is when
|w| is less than the “critical” power of 2, defined as

• 1
2ulp(zh) if |zh| is not a power of 2; or if |zh| is a power of 2 and zh and w
have the same sign;

• 1
4ulp(zh) if |zh| is a power of 2 and zh and w have opposite signs.

This is easily determined: Let w′ = RN
(
3
2w

)
= 3

2w, the number |w| is (strictly)
less than the critical power of 2 if and only if RN(zh +w′) = zh. In such a case,
we are done: the result to be returned is zh.

Now, when |w| is equal to the “critical” power of 2, we need to determine if
|zℓ + vℓ| is equal to, above, or below that power of two. This can be done using
the Fast2Sum algorithm (as Property 2.2 below shows that |zℓ| ≥ |vℓ| as soon
as u ≤ 1/16). More precisely, if we compute{

δ = RN(w − zℓ)
t = RN(vℓ − δ),

then w + t = zℓ + vℓ. The choice is now simple:

• if t = 0 then w = zℓ + vℓ, so that d = RN(zh + w);

• if t ̸= 0 and w have opposite signs, then zℓ+ vℓ is below the critical power
of 2, so that d = zh;

• if t ̸= 0 and w have the same sign, then d is the FP predecessor or successor
of zh (depending on the sign of w), which can be obtained as d = RN(zh+
w′), using w′ = RN

(
3
2w

)
= 3

2w, as previously.

The following property shows that we can use the Fast2Sum algorithm for
adding zℓ and vℓ.

Property 2.2. When w is the critical power of 2, we have |vℓ| ≤ |zℓ| as soon
as u ≤ 1/16.

Proof.

8

• If |zh| is not a power of 2, or if |zh| is a power of 2 and w has the same signe
as zh, then w being critical means that |w| = 1

2ulp(zh), and therefore, we
have

|vℓ + zℓ| ≥
1

2

(
1− u

2

)
ulp(zh).

As in that case |vℓ| is less than

2u(1 + u)

1− 2u2
ulp(zh),

we have

|zℓ| ≥
(
1

2
− u

4
− 2u(1 + u)

1− 2u2

)
ulp(zh),

so that |zℓ| ≥ |vℓ| as soon as u ≤ 1/16;

• if |zh| is a power of 2 and the signs of w and zh differ, then |w| = 1
4ulp(zh),

and therefore, we have

|vℓ + zℓ| ≥
1

4

(
1− u

2

)
ulp(zh).

As in that case |vℓ| is less than

u(1 + u)

1− 2u2
ulp(zh),

we have

|zℓ| ≥
(
1

4
− u

8
− u(1 + u)

1− 2u2

)
ulp(zh),

so that |zℓ| ≥ |vℓ| as soon as u ≤ 1/16.

3 Putting all this together

Algorithm 7 below derives from the analysis given in Section 2.

9

Algorithm 7 EmulFMA(a, b, c).

Require: P = 2p−1 + 1
Require: Q = 2p−1

(πh, πℓ)← DekkerProd(a, b)
(sh, sℓ)← 2Sum(πh, c)
(vh, vℓ)← 2Sum(πℓ, sℓ)
(zh, zℓ)← Fast2Sum(sh, vh)
w ← RN(vℓ + zℓ)
L← RN(P · w)
R← RN(Q · w)
∆← RN(L−R)
d1temp ← RN(zh + w)
if ∆ ̸= w then

return d1temp

else
w′ ← RN

(
3
2 · w

)
d2temp ← RN(zh + w′)
if d2temp = zh then
return zh

else
δ ← RN(w − zℓ)
t← RN(vℓ − δ)
if t = 0 then

return d1temp

else
g ← RN(t · w)
if g < 0 then
return zh

else
return d2temp

end if
end if

end if
end if

We have,

Theorem 3.1. In a binary, precision-p, floating-point arithmetic with an un-
bounded exponent range, if p ≥ 4, then Algorithm 7 returns RN(ab + c) for all
floating-point numbers a, b, and c.

Proof. The theorem immediately follows from the analysis of Section 2 and the
fact that p ≥ 4 implies u ≤ 1/16.

The primary disadvantage of our algorithm is the presence of tests. In the
event that the branch prediction mechanism of the processor fails, these tests

10

may result in a significant reduction in performance. However, it is important
to note that the value of |RN(vℓ + zℓ)| is very unlikely to be a power of 2.
Consequently, when a large number of FMAs are computed, the branch pre-
diction should function effectively, whereas when a small number of FMAs are
computed, the performance loss is of minimal consequence. Secondly, and more
importantly, we hypothesize that tests cannot be entirely avoided. In fact, we
make the following conjecture.

Conjecture 3.2. An algorithm that only uses rounded-to-nearest additions,
subtractions and multiplications, without tests, cannot evaluate RN(ab + c) for
all possible FP numbers a, b, and c.

The rationale behind Conjecture 3.2 is as follows:

• The authors of [12] have shown that an algorithm that only uses rounded-
to-nearest additions and subtractions cannot evaluate RN(x + y + z) for
all possible FP numbers x, y, and z (Theorem 8 in [12]);

• When computing RN(ab + c), if we first convert the product ab into a
“double word” (πh, πℓ), as described in Section 2.1, we are reduced to
computing RN(πh + πℓ + c). It is not possible to apply Theorem 8 in [12]
because the sum πh + πℓ + c is not an “arbitrary” sum: as πh + πℓ = ab,
the FP numbers πh and πℓ cannot have an exponent difference larger than
2p. Nevertheless, one easily verifies that the proof of the theorem remains
valid in that specific case;

• Consequently, we conclude that Conjecture 3.2 is valid if we restrict our
consideration to algorithms that first convert ab into the sum of two FP
numbers and then perform only rounded to nearest additions and subtrac-
tions. Although it seems hard to see how it could be any other way, we
have no proof of that.

Conclusion

We have presented a novel approach to emulate the fused multiply-add (FMA)
instruction using standard, rounded-to-nearest floating-point arithmetic oper-
ations. Our method builds on the foundation laid by previous research but
eliminates the need for less commonly supported rounding functions such as
round-to-odd, thereby increasing the practical applicability and portability of
the algorithm across different computing architectures.

Future work could further explore whether Conjecture 3.2 holds.

Acknowledgement

This work was partly supported by the NuSCAP (ANR-20-CE48-0014) project
of the French National Agency for Research (ANR).

11

References

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pages 1–84, July 2019.

[2] G. Bohlender, W. Walter, P. Kornerup, and D.W. Matula. Semantics for
exact floating point operations. In 10th IEEE Symposium on Computer
Arithmetic, pages 22–26, 1991.

[3] Sylvie Boldo and Marc Daumas. Representable correcting terms for pos-
sibly underflowing floating point operations. In 16th IEEE Symposium on
Computer Arithmetic (ARITH-16), pages 79–86, Santiago de Compostela,
Spain, 2003.

[4] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-
Michel Muller. Floating-point arithmetic. Acta Numerica, 32:203–290,
2023.

[5] Sylvie Boldo and Guillaume Melquiond. Emulation of FMA and correctly
rounded sums: proved algorithms using rounding to odd. IEEE Transac-
tions on Computers, 57(4):462–471, April 2008.

[6] John Cocke and V. Markstein. The evolution of RISC technology at IBM.
IBM Journal of Research and Development, 34(1):4–11, January 1990.

[7] Marius A. Cornea-Hasegan, Roger A. Golliver, and Peter Markstein. Cor-
rectness proofs outline for Newton–Raphson based floating-point divide and
square root algorithms. In 14th IEEE Symposium on Computer Arithmetic
(ARITH-14), pages 96–105, April 1999.

[8] T. J. Dekker. A floating-point technique for extending the available preci-
sion. Numerische Mathematik, 18(3):224–242, 1971.

[9] Y. Hida, X. S. Li, and D. H. Bailey. C++/fortran-90 double-double and
quad-double package, release 2.3.17, March 2012. Accessible electronically
at http://crd-legacy.lbl.gov/~dhbailey/mpdist/.

[10] Mioara Joldeş, Jean-Michel Muller, and Valentina Popescu. Tight and
rigourous error bounds for basic building blocks of double-word arithmetic.
ACM Transactions on Mathematical Software, 44(2), 2017.

[11] D. E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, 3rd edition, 1998.

[12] Peter Kornerup, V. Lefèvre, N. Louvet, and J.-M. Muller. On the com-
putation of correctly-rounded sums. IEEE Transactions on Computers,
61(2):289–298, March 2012.

[13] Christoph Lauter. An efficient software implementation of correctly
rounded operations extending FMA: a+ b+ c and a× b+ c× d. In ACSSC
Proc., 2017.

12

http://crd-legacy.lbl.gov/~dhbailey/mpdist/

[14] P. Markstein. Computation of elementary functions on the IBM RISC Sys-
tem/6000 processor. IBM Journal of Research and Development, 34(1):111–
119, January 1990.

[15] O. Møller. Quasi double-precision in floating-point addition. BIT, 5:37–50,
1965.

[16] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre
Jeannerod, Mioara Joldes, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, and Serge Torres. Handbook of Floating-Point Arithmetic, 2nd edi-
tion. Birkhäuser Boston, 2018. ACM G.1.0; G.1.2; G.4; B.2.0; B.2.4; F.2.1.,
ISBN 978-3-319-76525-9.

[17] Takeshi Ogita, Siegfried M. Rump, and Shin’ichi Oishi. Accurate sum and
dot product. SIAM Journal on Scientific Computing, 26(6):1955–1988,
2005.

[18] P. H. Sterbenz. Floating-Point Computation. Prentice-Hall, Englewood
Cliffs, NJ, 1974.

13

	Introduction
	Some classical results of floating-point arithmetic used in this paper
	Sterbenz's theorem
	The Fast2Sum and 2Sum algorithms
	The Dekker-Veltkamp multiplication algorithm

	Workplan

	Building the algorithm
	Reduction to the computation of the sum of 3 FP numbers
	Determining if the absolute value of a FP number is a power of 2
	The difficult case: when |RN(v+ z)| is a power of 2

	Putting all this together

