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Abstract

Missing values have been thoroughly analyzed in the context of linear models,
where the final aim is to build coefficient estimates. However, estimating coeffi-
cients does not directly solve the problem of prediction with missing entries: a
manner to address empty components must be designed. Major approaches to
deal with prediction with missing values are empirically driven and can be decom-
posed into two families: imputation (filling in empty fields) and pattern-by-pattern
prediction, where a predictor is built on each missing pattern. Unfortunately, most
simple imputation techniques used in practice (as constant imputation) are not con-
sistent when combined with linear models. In this paper, we focus on the more
flexible pattern-by-pattern approaches and study their predictive performances on
Missing Completely At Random (MCAR) data. We first show that a pattern-by-
pattern logistic regression model is intrinsically ill-defined, implying that even
classical logistic regression is impossible to apply to missing data. We then ana-
lyze the perceptron model and show how the linear separability property extends
to partially-observed inputs. Finally, we use the Linear Discriminant Analysis to
prove that pattern-by-pattern LDA is consistent in a high-dimensional regime. We
refine our analysis to more complex MNAR data.
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1 Introduction

Due to the large size of modern data sets, and the automatization of data collection, missing values
are ubiquitous in real-world applications. Missing data can arise due to various reasons, such as sen-
sor malfunctions, survey respondents skipping questions, or integration of data from diverse sources,
collected using different methods. In his seminal work, Rubin (1976) categorizes missing value sce-
narios into three types: Missing Completely At Random (MCAR), Missing At Random (MAR), and
Missing Not At Random (MNAR), depending on relationships between observed variables, missing
variables, and the missing data pattern.

Much of the focus in missing value literature is on parameter estimation. Regarding linear mod-
els, closed-form coefficient estimators have been derived (Little, 1992; Jones, 1996; Robins et al.,
1994), including sparsity constraints (Rosenbaum and Tsybakov, 2010; Loh and Wainwright, 2012)
or the study of the optimization procedure (Sportisse et al., 2020). Regarding logistic regression
models, no closed-form solutions are available and one may resort to the Expectation-Maximization
algorithm (Consentino and Claeskens, 2011). Using the EM for parameter estimation in generalized
linear models was introduced by Ibrahim (1990) for MAR data (with asymptotic theoretical guaran-
tees) and later extended to some MNAR settings by modelling the missing indicators (Ibrahim et al.,
1999). Methods for estimating the parameters in a high-dimensional LDA framework with MCAR
missing data have also been proposed (see, e.g., Tony Cai and Zhang, 2019).

Prediction tasks with missing values differ from model estimation: estimated model parameters
alone cannot directly predict outcomes on test samples containing missing values. A first strategy
commonly encountered in practice is to impute the training dataset, before applying standard al-
gorithms. Josse et al. (2019); Bertsimas et al. (2024) prove the consistency of constant imputation
strategies preceding non-parametric learning methods, a result later extended for almost all imputa-
tion functions by Le Morvan et al. (2021). While these results are asymptotic and strongly rely on
non-parametric estimators, Ayme et al. (2023, 2024) provides a finite-sample analysis of imputation
in linear models.

An alternative approach involves decomposing the Bayes predictor on a pattern-by-pattern basis,
training a specific predictor for each missing pattern and leveraging the information provided by
them. Agarwal et al. (2019) examined the Principal Component Regression (PCR) strategy for
handling missing values in high-dimensional settings. Le Morvan et al. (2020a,b) and Ayme et al.
(2022) analyze pattern-by-pattern linear predictors, in finite-sample settings. Regarding classifica-
tion, in fact, few analyses exist on predicting on missing data. Pelckmans et al. (2005) adapted
Support Vector Machine (SVM) classifiers to accommodate missing values. Sell et al. (2023) estab-
lish minimax rate for prediction with missing values and propose HAM, an algorithm based on a
sequential fit of k nearest neighbors on each missing pattern, which is minimax. Jiang et al. (2020)
is one of the few methods able to estimate parameter and predict in presence of missing values.

From a practical perspective, many methods have been proposed to deal with missing values. For
example, García-Laencina et al. (2009) propose to use K nearest neighbors to impute and predict
with missing data, a work later refined by Choudhury and Kosorok (2020). Besides, MissForest
Stekhoven and Bühlmann (2012) is one of the most versatile supervised learning algorithm, able
to deal with discrete and continuous features. The interested reader may refer to Emmanuel et al.
(2021) for a review of methods able to perform classification with missing values. However, most
of these methods are not theoretically grounded.

Contributions Prediction with missing values requires to either use imputation or dedicated pattern-
by-pattern strategies. Most previous works focus on the first approach, trying to derive Bayes op-
timality for generic imputation function in a non-parametric setting, or rate of convergence for the
specific high-dimensional linear regression. Surprisingly, few results are available for pattern-by-
pattern strategies. This paper aims at filling this gap. After formalizing the problem of missing
inputs for prediction purposes (Section 2), we study the validity of pattern-by-pattern linear predic-
tors for MCAR data. First, we show that the widely-used logistic regression is ill-specified to handle
missing inputs (Section 3). More particularly, both pattern-by-pattern and imputation strategies are

2



shown to be invalid, due to the modelling of the outcome probability, too rigid to be adapted to miss-
ing data scenarios. We then choose to break free from the straitjacket of this model by considering
linearly separable data and the pattern-by-pattern perceptron algorithm (Section 4). We quantify
the probability of maintaining linear separability despite missing values. Our results highlight that
preserving linear separability across all missing patterns is restrictive and strongly depends on the
geometry of the problem, but holds in specific high-dimensional sparse settings. To conclude our
analysis of linear predictors, we use the linear discriminant analysis (LDA) framework (Section 5).
Under MCAR data, we quantify the difference between the risk of an empirical classifier with miss-
ing data and that of the complete Bayes predictor. Such an error converges to zero as the number of
samples and the number of inputs grow to infinity. Thus, the LDA is a sound theoretical procedure
to handle missing values. Our analysis also highlights the difficulty of prediction in general MNAR
settings. However, a simple thresholded pattern-by-pattern LDA predictor is shown to be efficient
in MNAR situations, even when all missing patterns are admissible.

2 Preliminaries on supervised statistical learning with missing values

Supervised learning The main objective of binary classification tasks is to predict a target Y ∈
{−1, 1} given some observation X ∈ R

d. A canonical way of quantifying the performance of a

classifier h : Rd → {−1, 1} is given by the probability of misclassification

Rcomp(h) = P(Y 6= h(X)),

where the index “comp” stands for complete data. The Bayes predictor, minimizing the risk Rcomp,
takes the form h⋆

comp(X) = sign(E [Y |X ]). As the data distribution is unknown, learning consists

in estimating h⋆
comp given a training sample Dn := {(Xi, Yi), i = 1, . . . , n}.

Missing data in learning In the context of supervised learning with missing values, we assume
that the input observation X ∈ R

d is only partially observed, with M ∈ {0, 1}d the associated
missing pattern: each coordinate Mj = 1 indicates that the jth component of the input vector Xj is

missing (and Mj = 0 if Xj is observed). Given a specific missing pattern m ∈ {0, 1}d, we define
obs(m) (resp. mis(m)) as the set of indices where m is 0 (resp. 1), representing the observed (resp.
missing) variables. Subsequently, Xobs(M) (resp. Xmis(M)) refers to the subvector of X containing
the observed (resp. missing) entries of X . Our aim is to predict the output Y from a pair consisting
of the masked observation and the missing pattern, denoted as Z := (Xobs(M),M) belonging to Z .

In presence of missing data, the performance of a classifier h : Z → {−1, 1} is evaluated via

Rmis(h) = P(Y 6= h(Z)),

and the Bayes predictor h⋆
mis : Z → {−1, 1} that minimizes Rmis is defined as h⋆

mis(Z) =
sign(E [Y |Z]). Our analysis is based on the fact that the Bayes predictor h⋆

mis can be decomposed
with respect to the missing patterns (see Lemma A.1), that is

h⋆
mis(Z) =

∑

m∈M
h⋆
m(Xobs(m))1M=m with h⋆

m(Xobs(m)) = sign(E
[
Y |Xobs(m),M = m

]
), (1)

where M ⊂ {1, . . . , d} is the set of admissible missing patterns. Learning with missing values can

be seen as estimating h⋆
m for all m ∈ {0, 1}d, given an incomplete i.i.d. training sample Dn :={

(Xi,obs(Mi),Mi, Yi), i = 1, . . . , n
}

.

3 Logistic Regression

One of the most popular parametric methods for binary classification (with complete data) relies on
the following logistic model for the distribution of Y |X .

Assumption 1 (Logistic model). Let σ(t) = 1/(1 + e−t). There exist β⋆
0 , . . . , β

⋆
d ∈ R such that

the distribution of the output Y ∈ {−1, 1} given the complete input X satisfies P (Y = 1|X) =

σ(β⋆
0 +

∑d
j=1 β

⋆
jXj).

In presence of missing data, one could be tempted to learn the parameters of the logistic model on
complete data and use a logistic model with these estimators in order to predict on an incomplete
vector. Proposition 3.1 below shows that such a strategy is doomed to fail when missing data are
uninformative, regardless of the estimation procedure used on the complete data.

3



Assumption 2 (Missing Completely At Random (MCAR)). M is independent of (X,Y ).

Proposition 3.1. Under the logistic model specified by Assumption 1 for complete data, assume
that the components X1, . . . , Xd are independent, each one with an unbounded support, satisfying
E
[
exp(β⋆

jXj)
]
< ∞. Assume also Assumption 2. Let m ∈ {0, 1}d and assume that the logistic

model holds on the missing pattern M = m, that is there exist β⋆
0,m, . . . , β⋆

d,m ∈ R such that

P
(
Y = 1|Xobs(M),M = m

)
= σ

(
β⋆
0,m +

∑

j∈obs(M)

β⋆
j,mXj

)
.

Then, for all j ∈ mis(m), β⋆
j = 0.

Proposition 3.1 emphasizes that under MCAR missing data, the logistic model cannot be valid on the
complete input vector and on any incomplete vector simultaneously, unless the unobserved compo-
nents are not involved in the original logistic regression model. Using logistic models for all missing
patterns is thus an ill-specified strategy, which will lead to inconsistent estimators. Note that such
a result highlights that constant imputation is also an ill-specified strategy, even in the most simple
case of independent entries. Interestingly, this result holds for each missing pattern separately. In
particular, the logistic model should not be used even if only two missing patterns are possible.

Contrary to linear regression for which the prediction structure is preserved when the inputs are par-
tially observed (see, e.g., Le Morvan et al., 2020c; Ayme et al., 2022), logistic models are not suited
for missing data, assuming in both settings independent input variables with MCAR missingness.
Due to the nonlinearity relation between the probability of success and the input vector, we do not
have that the conditional expectation of the full model output is equal to the link function applied to
the conditional expectation of the inputs, that is

P[Y = 1|Xobs(M),M = m] = E

[
P[Y = 1|X ]|Xobs(M)

]
6= σ

(
E[β⋆

0 +
d∑

j=1

β⋆
jXj |Xobs(M)]

)
.

(2)

Therefore, the logistic model is not preserved on missing patterns and resulting imputation strategies
will inevitably fail. To circumvent this issue, one may resort to traditional likelihood approaches at
the price of additional assumptions on the input distribution (see, e.g., Jiang et al., 2020). Although
this approach reduces the applicability and appeal of traditional logistic regression, it brings estima-
tion and prediction down to the same problem. As modelling the output probability in each missing
pattern by a logistic model is too restrictive, we opt in the next section for a deterministic approach
and analyze how linear separability is preserved in presence of missing data.

4 Perceptron

We explore in this section how missing values impact geometry-based predictors such as the percep-
tron. The principle of the perceptron algorithm (Rosenblatt, 1958) is to iteratively find a hyperplane
separating the data. The convergence of the method is ensured under the separability of the obser-
vations (Novikoff, 1962). In order to capture the influence of missing data, the goal is therefore to
quantify the probability of maintaining linear separability in the presence of missing values, thus
ensuring the validity of a pattern-by-pattern perceptron.

4.1 Setting

When dealing with complete observations, we say that the points (Xi, Yi)i=1,...,n ∈ R
d×{−1,+1}

are linearly separable if there exists a hyperplane, parameterized by (w⋆, b⋆) ∈ R
d × R, such that

for all i ∈ {1, ..., n}, Yi

(
X⊤

i w⋆ + b⋆
)
> 0.

When dealing with missing inputs, the training data (Xi ⊙ (1 − Mi),Mi, Yi)i=1,...,n ∈ (Rd ×
{0, 1}d×{−1,+1})n is said linearly separable if ∀m ∈ {0, 1}d, ∃(w⋆

(m), b
⋆
(m)) ∈ R

d×R such that

∀i s.t. Mi = m, Yi

(
(w⋆

(m))
⊤(1 −Mi)⊙Xi + b⋆(m)

)
> 0.
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Remark 4.1 (Related work: the rare eclipse problem). In Bandeira et al. (2014), the authors in-
vestigate the preservation of linear separability between two convex sets under random Gaussian
projections. This particular problem is referred to as the rare eclipse problem. Unlike the Gaussian
projections covered in Bandeira et al. (2014), the case of missing values involves random projections
aligned with canonical axes.

Lemma 4.2. Linear separability of complete data does not imply that of incomplete data.

In all generality, the perceptron model cannot be transferred from complete to missing data patterns.
In the following, we make additional assumptions on the input distribution (adapted to the perceptron
model), to highlight favourable cases of predictor adaptability to missing inputs.

4.2 Fixed centroids

Assumption 3 (Fixed centroids and random radii). For given centroids c1 and c2, both classes are
arbitrarily distributed in disjoint Euclidean balls B1 and B2, of radii R1 and R2, centered around
the centroids. Radii R1 and R2 are uniformly distributed as R1, R2 ∼ U(0, 12 ‖c1 − c2‖2)⊗2.

Under MCAR assumption, remark that preserving linear separability despite missing values means
that the Euclidean balls used to generate data remains disjoint when restricted to the support of
observed entries, and that

P
(
B1,obs(M) ∩B2,obs(M) = ∅

)
= P

(
R1 +R2 <

∥∥c1,obs(M) − c2,obs(M)

∥∥
2

)

= P (R1 +R2 < ‖(1 −M)⊙ (c1 − c2)‖2) . (3)

Proposition 4.3 (Separability of two balls with different radius). Given two fixed centroids c1 and
c2, assume that complete data is generated as in Assumption 3. Under MCAR Assumption 2, with
ηj := P(Mj = 1) for any coordinate j ∈ {1, . . . , d}, then

∑d
j=1(1− ηj)(c1j − c2j)

2

∑d
j=1(c1j − c2j)2

≤ P
(
B1,obs(M) ∩B2,obs(M) = ∅

)
≤

√√√√
∑d

j=1(1− ηj)(c1j − c2j)2
∑d

j=1(c1j − c2j)2
.

This lower bound is informative when the probability of missing values on each coordinate remains
low. When the centroids differ only from one coordinate j0, note that the balls B1,obs(M) and

B2,obs(M) do not overlap if and only if j0 ∈ obs(M), i.e., mj0 = 0, which happens with probability
1 − ηj0 . When for any coordinate j, ηj = η, the bounds obtained in Proposition 4.3 become
independent of the centroids:

(1− η) ≤ P
(
B1,obs(M) ∩B2,obs(M) = ∅

)
≤
√
1− η.

On the contrary, when there is only one coordinate j0 always missing (ηj0 = 1 and ηj = 0 for
j 6= j0), the bounds reveal that

1− (c1,j0 − c2,j0)
2

‖c1 − c2‖22
≤ P

(
B1,obs(M) ∩B2,obs(M) = ∅

)
≤
√
1− (c1,j0 − c2,j0)

2

‖c1 − c2‖22
.

This highlights that for high proportions of missing values that are very localized at certain coor-
dinates, the linear separation will be all the more preserved if the quantity ‖c1 − c2‖22 is carried
uniformly across the coordinates, i.e., when the vector c1 − c2 is anti-sparse.

4.3 Random centroids

The bounds derived in the previous section strongly depends on the geometry of the problem, via the
centroid coordinates. To establish more general result, we consider random centroids C1 and C2 ∈
R

d and work with disjoint ℓp-balls (of same radius for simplicity). The former point is particularly
suited to preserve the data geometry after random projections induced by missing entries.

Assumption 4. We assume that (i) the coordinates of C1 − C2 are i.i.d., (ii) for all j ∈ {1, ..., d},

E
[
(C1 − C2)

p
j

]
< ∞ and (iii) conditional to the centers C1 and C2, the radii R1 is uniformly

distributed as R1|(C1, C2) ∼ U(0, 1
2 ‖C1 − C2‖p), with R2 = R1.
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Assumption 4 trivially includes the cases where (C1, C2) ∼ N (µ1, λ1Id)⊗N (µ2, λ2Id), or where

(C1, C2) ∼ U(a1, b1)⊗d ⊗ U(a2, b2)⊗d.

Assumption 5 (Uniform s-missing patterns). The missing pattern M is sampled uniformly
at random among missing patterns admitting s missing values in total, i.e., M ∼
U(
{
m ∈ {0, 1}d, ‖m‖0 = s

}
).

In the next proposition, we characterize the probability of preserving linear separability despite
missing values, when the dimension d tends to ∞.

Proposition 4.4 (Asymptotic separability of two balls with the same radius). Under Assumption 4
and Assumption 5, let ρ := limd→∞

s
d . Then,

lim
d→+∞

P
(
B1,obs(M) ∩B2,obs(M) = ∅

)
= p
√
1− ρ. (4)

Therefore, in high-dimensional regimes, pattern-by-pattern perceptron is a valid procedure with a
probability converging to p

√
1− ρ, where ρ is the asymptotic ratio of missing values. Note that when

s/d tends to zero, as s and d tend to infinity, the separability of the balls is ensured with probability
1. Besides this asymptotic separability probability p

√
1− ρ increases when p increases. This is

due to the fact that when p increases, the radius R1|(C1, C2) ∼ U(0, 1
2 ‖C1 − C2‖p) is shrinked

(p 7→ ‖x‖p is non-increasing) and the balls are more and more separated. Beyond this restrictive

sparse high-dimensional setting, the linear separability strongly depends on the geometry of the
inputs. To be more conclusive on the efficiency of pattern-by-pattern classifiers, modeling both the
distribution of Y |X and the distribution of X seems to be unavoidable.

5 Linear Discriminant Analysis with missing data

Linear discriminant analysis (LDA) relies on Gaussian assumptions of the distributions of X |Y = k
for each class k. This probabilistic model provides an explicit expression for the Bayes predictor
h⋆(X) = sign(E [Y |X ]) when working with complete data. In this section, we analyze the finite-
sample property of pattern-by-pattern LDA.

5.1 Setting

Assumption 6 (Balanced LDA). Let Σ be a positive semi-definite, symmetric matrix of size d × d.
Set π1 = P(Y = 1) and π−1 = P(Y = −1) such that π1 = π−1. For each class k ∈ {−1, 1},

X |Y = k ∼ N (µk,Σ), with µk ∈ R
d.

In the complete case of LDA, the Bayes predictor reads as

h⋆
comp(x) := sign

(
(µ1 − µ−1)

⊤ Σ−1

(
x− µ1 + µ−1

2

))
, (5)

minimizing the misclassification probability Rcomp (see Section D.1 for details). When MCAR

data occurs, by denoting Σobs(M) := Σobs(M)×obs(M) (and Σ−1
obs(M) = (Σobs(M))

−1), the pattern-

by-pattern Bayes predictor (1) can be written as follows.

Proposition 5.1 (Pattern-by-pattern Bayes predictor for LDA with MCAR data). Under Assump-
tions 2 (MCAR) and 6 (LDA), the pattern-by-pattern Bayes classifier is given by

h⋆
m(xobs(m)) = sign

((
µ1,obs(m) − µ−1,obs(m)

)⊤
Σ−1

obs(m)

(
xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

))
.

The decomposition provided in Proposition 5.1 relies on the fact that, under MCAR assumption, the
distribution of Xobs(M)|Y,M = m is Gaussian for all m ∈ M (see Lemma F.6), similarly to the
complete case. This does not hold anymore with a MAR missing mechanism, as shown below.

Example 5.2 (LDA+MAR is not pattern-by-pattern LDA). Let X ∈ R
2 be a random variable satisfy-

ing Assumption 6, i.e., such that for each class k, X |Y = k ∼ N (µk, I2). Let M = (0,1X1>0) be
the MAR missing pattern, where the first coordinate is always observed, and the second is only ob-
served if the first coordinate is positive. In this case, the input distribution ofXobs(M)|Y =k,M=m,

for the pattern m = (0, 1), is not Gaussian, as its first component is positive.
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Our goal is to study whether the Bayes risk with missing values converges to the Bayes risk with com-
plete data as the dimension d increases. To do so, we scrutinize the error Rmis(h

⋆)−Rcomp(h
⋆
comp).

Assumption 7 (Constant P(Mj = 1)). The random variables M1, . . . ,Md are independent, and
follow a Bernoulli distribution with parameter η.

Assumption 8 (Constant (µ1 − µ−1)j ). ∀j ∈ {1, ...d}, (µ1 − µ−1)j = ±µ, with µ > 0.

Assumption 7 ensures that the missingness probability is the same for each input coordinate. As-
sumption 8 can be achieved up to a change of coordinates. In the sequel, we refer to SNR :=

µ/
√
λmax(Σ) as the signal-to-noise ratio, where λmax(Σ) is the largest eigenvalue of the input co-

variance matrix. This quantity describes the overlapping of the classes, and thus the difficulty of the
classification task.

Proposition 5.3. Under Assumptions 2, 6, 7 and 8, we have that

Rmis(h
⋆)−Rcomp(h

⋆
comp) ≤

ηd

2
+

µη

2
√
2π

√
d

λmin(Σ)

(
ǫ (η, SNR)

d−1 − ηd−1
)
,

with ǫ(η, SNR) := η + e−
SNR2

8 (1− η) < 1.

The bound provided in Proposition 5.3 outlines that the difference between the Bayes risk with
missing and complete data decreases exponentially fast with the input dimension d, assuming
that the minimum eigenvalue of the covariance matrix is lower bounded or decreases at most
polynomially with d (an assumption already considered in high-dimensional statistics, see e.g.,
Tony Cai and Zhang, 2019; Cai and Liu, 2011). This is the first analysis of the bias term due to
learning with missing data in a classification context. When the signal-to-noise ratio SNR goes to
infinity, one should expect the classification rate to be improved.

Corollary 5.4. Under Assumptions 2, 6, 7, 8,

lim
SNR→∞

√
λmax(Σ)

λmin(Σ)

SNR

eSNR2/8
= 0 =⇒ Rmis(h

⋆)−Rcomp(h
⋆
comp) −−−−→

λ→∞

ηd

2
.

The limit established in Corollary 5.4 matches that of the limit of the bound of Proposition 5.3 when
the SNR tends to infinity. It is important to note that the assumption on the structure of Σ is mild
(as λmax(Σ)/λmin(Σ) may increase exponentially) and encompasses various scenarios, for example
when Σ = σ2Id or when Σ is arbitrary but constant, with increasingly separated classes.

5.2 LDA estimation with missing values

Based on Proposition 5.1, we consider the pattern-by-pattern plug-in predictor ĥ, in which

µ̂k,j =

∑n
i=1 Xi,j1Yi=k1Mi,j=0∑n

i=1 1Yi=k1Mi,j=0
=

∑n
i=1(Xi ⊙ (1−Mi))j1Yi=k1Mi,j=0∑n

i=1 1Yi=k1Mi,j=0
, (6)

estimates µk,j , with the convention 0/0 = 0, where the covariance matrix Σ is assumed to be known.
More precisely,

ĥm(xobs(m)) = sign

((
µ̂1,obs(m) − µ̂−1,obs(m)

)⊤
Σ−1

(
xobs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2

))
.

(7)

Remark that under MCAR assumption, the estimates µ̂k,j are built with all the observed in-
puts, independently of their missing patterns. This departs from a pattern-by-pattern estimation
strategy where each mean is computed pattern-wise, using each observation once. We define
κ := maxi∈[d](Σi,i)/λmin(Σ) as the largest value of the diagonal of the covariance over its smallest
eigenvalue, which can be regarded as a non-standard condition number of Σ.

Theorem 5.5 (Bound on p-b-p LDA with known Σ). Grant Assumptions 2, 6 and 7. Then the excess

risk of the classifier ĥ, defined in (7), satisfies

Rmis(ĥ)−Rmis(h
⋆) ≤ 2√

2π

((
1 + η

2

)n ‖µ‖2∞ d(1− η)

λmin (Σ)
+

4κd

n

) 1
2

.
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Then, for n large enough, we have

Rmis(ĥ)−Rmis(h
⋆) .

√
κd/n. (8)

The convergence rate of the LDA classifier in presence of missing values (and with a known covari-

ance) is of the order of (d/n)1/2. Moreover, the dependence of the upper bound on the covariance
matrix Σ is mild, since the respective term decreases exponentially (corresponding to the case where
all data are missing).

The upper bound presented in (8) is independent of the missingness probability η. If this could be
surprising at first sight, it is important to note that the quantity of interest here is the difference be-
tween the misclassification probabilities of the estimated LDA predictor and the pattern-by-pattern
LDA Bayes predictor given in Proposition 5.1. Both risks are integrated w.r.t. the distribution of
missing inputs, so that both risks include the same missing data scenario. However, the influence of
the probability of missingness should be expected when comparing predictors dealing with incom-
plete data on the one hand and the complete case on the other, as shown in the following corollary.

Corollary 5.6. Grant Assumptions 2, 6, 7, 8. Then the classifier ĥ, defined in (7) satisfies

Rmis(ĥ)−Rcomp(h
⋆
comp) ≤

2√
2π

((
1 + η

2

)n ‖µ‖2∞ d(1− η)

λmin (Σ)
+

4κd

n

) 1
2

+
ηd

2
+

µη

2
√
2π

√
d

λmin(Σ)

(
ǫ (η, SNR)d−1 − ηd−1

)

with ǫ(η, SNR) := η + e−
SNR2

8 (1− η) < 1 and SNR := µ/
√
λmax(Σ).

In the previous bound, the first term is the learning error Rmis(ĥ)−Rmis(h
⋆) and scales as

√
d/n;

the second term is the bias Rmis(h
⋆)−Rcomp(h

⋆
comp) due to missing values. When

n ≪ 1

(η · SNR)2
1

ǫ(η, SNR)d
, (9)

the learning error inherent to the estimation procedure prevails over the approximation error due to
missing values. Then, the impact of missing values on the predictive performances is negligible, and,

Rmis(ĥ) − Rcomp(h
⋆
comp) = O(

√
d/n), which corresponds to classical rates (see, e.g. Anderson,

2003). Assuming that d = o(n), the misclassification risk of the estimated LDA with missing values
converges to the Bayes risk with complete data.

Remark 5.7 (Related work on LDA with missing data). Previous work on LDA with missing val-
ues (Cai and Liu, 2011; Tony Cai and Zhang, 2019) focus on parameter estimation, which is not
sufficient to design a procedure to predict with missing values. More precisely, Cai and Liu (2011)
assume the s-sparsity of the so-called discriminant direction β := Σ−1(µ1 − µ−1) and prove that,

estimating this vector via linear programming discriminant (LPD) leads to a predictor ĥLPD on

complete data which satisfies Rcomp(ĥLPD) − Rcomp(h
⋆
comp) = O

(
(s log(d)/n)1/2

)
. Although

Tony Cai and Zhang (2019) follow a completely different approach, their estimator applied on com-
plete data reaches the same rate of convergence.

5.2.1 LDA under MNAR assumption

Extending LDA predictors to handle more general missing values is challenging. Indeed, as shown
in Example 5.2, even under a MAR assumption, a pattern-wise approach for LDA is not valid. In
this section, we exhibit a MNAR setting compatible with pattern-by-pattern LDA as follows.

Assumption 9 (GPMM-LDA). For all m ∈ M and k ∈ {−1,+1}, Xobs(m)|(M=m,Y =k) ∼
N (µm,k,Σm) with πm,1 = πm,−1 where πm,k := P(Y = k,M = m).

Under Assumption 9, the Bayes predictor can be decomposed pattern by pattern as follows.

Proposition 5.8 (MNAR p-b-p LDA). Under Assumption 9, the pattern-by-pattern Bayes classifier
is

h⋆
m(xobs(m)) = sign

(
(µm,1 − µm,−1)

⊤
Σ−1

m

(
xobs(m) −

µm,1 + µm,−1

2

)
− log

(
πm,−1

πm,1

))
.
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Given the expression of the Bayes predictor in Proposition 5.8, we build a plug-in estimate based on
the estimation µ̂m,k of the mean µm,k on pattern m ∈ {0, 1}d and class k, defined as

µ̂m,k :=

∑n
i=1 Xi1Yi=k1Mi=m

1Yi=k1Mi=m
. (10)

Due to the potential exponential number of missing patterns, it may be difficult to estimate the 2d+1

estimates µ̂m,k. In line with Ayme et al. (2022), we employ a thresholded estimate, which boils
down to estimating only the mean over the most frequent missing patterns, that is

µ̃m,k := µ̂m,k1Nm,k
n

>τ
, (11)

with τ :=
√
d/n and Nm,k :=

∑n
i=1 1Mi=m1Yi=k the number of observations of the class k

with m as missing pattern. Note that this estimate is only useful when d < n. Assuming that the
covariance matrix for each missing pattern is known, we construct the pattern-by-pattern predictor

h̃ defined as

h̃m(xobs(m)) = sign

((
µ̃1,obs(m) − µ̃−1,obs(m)

)⊤
Σ−1

m

(
xobs(m) −

µ̃1,obs(m) + µ̃−1,obs(m)

2

))
.

(12)

Theorem 5.9 (MNAR p-b-p LDA estimation). Grant Assumption 9 and assume that the classes

are balanced on each missing pattern. Let τ ≥
√
d/n. Then, the plug-in classifier based on (12)

satisfies

Rmis(h̃)−Rmis(h
⋆) (13)

≤
∑

m∈{0,1}d

(
4√
2π

+
8√
π

‖µm‖√
λmin(Σm)

)
τ ∧ pm +

∑

m∈{0,1}d,
pm≥τ

√
2 ‖µm‖√

πλmin(Σm)
pm(1 − pm)n/2.

Theorem 5.9 holds for various types of missingness. Indeed, Assumption 9 is very generic and may
correspond to very difficult MNAR settings in which there is no relation between any covariances
matrices Σm or any mean vector µm,k. In this setting, building consistent predictions requires to

build 2d estimates of covariances matrices and 2d+1 mean estimates, an exponentially difficult task.
On the other hand, assuming that there exists unique µ−1, µ1,Σ such that µ±1,m = µ±1,obs(m)

and Σm = Σobs(m) allows us to study a MCAR setting in which proportion of missing values are
different across coordinates, a generalization of Section 5.2.

The upper bound established in Theorem 5.9 is low when few missing patterns are admissible, but
it appears to be very large when all 2d missing patterns may occur. However, when the missing
distribution is concentrated enough, one can control this upper bound. To see this, let us introduce
the missing pattern distribution complexity Cp(τ) :=

∑
m∈{0,1}d τ ∧pm used in Ayme et al. (2022),

and assume that the missingness indicators M1, . . . ,Md are independent, distributed as a Bernoulli
with parameter η ≤ d/n. In such a setting, even if each missing pattern is admissible,

Rmis(h̃)−Rmis(h
⋆) .

d2

n
+ (1− min

pm>0
pm)n/2, (14)

which is much better than the initial upper bound, scaling as d2d/n. This upper bound benefits from
the concentration of the missing patterns, as a high number of missing components is unlikely to
occur for independent Bernoulli distribution, with a small parameter η ≤ d/n.

Contrary to Corollary 5.6, we do not compare Rmis(ĥ) to Rcomp(h
⋆
comp) as, in a MNAR setting, the

distribution of the fully observed pattern may not be identifiable from the distribution of all missing
patterns. Indeed, note that, in Assumption 9, the distribution of the complete pattern (corresponding
to m = 0) may be chosen independently of the other distributions (m 6= 0). Thus, the difference

Rmis(ĥ) − Rcomp(h
⋆
comp) may be arbitrary large. This highlights the fact that all strategies that

first estimate parameters from the complete distribution and then predict on each missing pattern by
using these estimations are doomed to fail.
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6 Conclusion

Coefficient estimation in parametric models is different from prediction, as one needs to specify
a way to handle missing fields. Imputation and pattern-by-pattern approaches are the two most
common strategies. The former are difficult to combine with linear classifiers, as the consistency
may be lost. In this paper, we focus on the latter for linear classification purposes. We prove
that pattern-by-pattern logistic regression (and even constant imputation in conjunction with logistic
regression) leads to inconsistent probability estimates. We then study how the linear separability of
complete data may extend to incomplete data, which, if true, underpins the suitability of a pattern-
by-pattern perceptron. Under strong constraints, we prove that such a separability holds in a high-
dimensional sparse setting. Finally, we turn to the LDA framework and propose a finite-sample
analysis, highlighting that in MCAR scenarios, a pattern-by-pattern LDA approach is consistent in
high dimensions. We extend our analysis to more complex types of missing data MNAR and provide
a generic upper bound, which appears to be self-explanatory and legible when missing patterns are
modeled as independent Bernoulli variables.

Our work provides a first analysis on how pattern-by-pattern classifiers may help to handle missing
data in a predictive framework. If probabilistic models can be undermined by missing data (as is
the case for logistic regression), one can expect that their decision frontier remains valid. Indeed,
even if our result shows that the probability of classification cannot be properly estimated for any
missing pattern, it may be possible that the decision frontier is close to the correct one, which should
deserve further study. Regarding the discriminant analysis, the Gaussian assumption of the (con-
ditional) distribution of the inputs helps to be theoretically conclusive when copping with missing
data. Adapting this study framework to manage categorical inputs would confirm the applicability
and relevance of LDA-type predictors in the presence of missing data.
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Notations. For n ∈ N, we denote [n] = {1, . . . , n}. We use . to denote inequality up to a

universal constant. For any x ∈ R
d and for any set J ⊂ [d] of indices, we let xJ be the subvector of

x composed of the components indexed by J . The abbreviation p-b-p refers to pattern-by-pattern.
The values λmax(A) and λmin(A) respectively designate the largest and the smallest eigenvalues of
any matrix A. We denote a ∧ b = min(a, b) and a ∨ b = max(a, b).

A Proofs of Section 2

Lemma A.1. Let h⋆ be a minimizer of Rmis(h) := P(Y 6= h(Z)), where Z = (Xobs(M),M).
Then,

h⋆(Z) =
∑

m∈M
h⋆
m(Xobs(m))1M=m,

with h⋆
m(Xobs(m)) := sign(E

[
Y |Xobs(m),M = m

]
).

Proof of Lemma A.1. Recall that we quantify the accuracy of a classifier using the probability of
misclassification given by

Rmis(h) := P(Y 6= h(Z)) (15)

Therefore, we would like to find a classifier minimizing this probability of misclassification. As
|Y − h(Z)| ∈ {0, 2}, then,

Rmis(h) =
1

4
E
[
(Y − h(Z))2

]
=

1

4
E
[
(Y − E [Y |Z])2

]
+

1

4
E
[
(E [Y |Z]− h(Z))2

]
. (16)

Thus, the Bayes predictor is

h⋆(Z) := sign(E [Y |Z]) = sign(E
[
Y |Xobs(M),M

]
) where sign(x) = 1x≥0 − 1x<0. (17)

As we have that

E
[
Y |Xobs(M),M

]
=
∑

m∈M
E
[
Y |Xobs(m),M = m

]
1M=m, (18)
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then, the Bayes predictor can be written as

h⋆(Z) = sign(E [Y |Z])

= sign

(
∑

m∈M
E
[
Y |Xobs(m),M = m

]
1M=m

)

=
∑

m∈M
sign(E

[
Y |Xobs(m),M = m

]
)1M=m

=
∑

m∈M
h⋆
m(Xobs(m))1M=m (19)

with

h⋆
m(Xobs(m)) := sign(E

[
Y |Xobs(m),M = m

]
). (20)

B (Logistic Model) Proof of Proposition 3.1

Proof. Let m ∈ {0, 1}d,
P
(
Y = 1|Xobs(m),M = m

)
= P

(
Y = 1|Xobs(m)

)
(using Assumption 2)

= E
[
P (Y = 1|X) |Xobs(m)

]
(21)

= E

[
1

1 + exp(−β⋆
0 −∑d

j=1 β
⋆
jXj)

|Xobs(m)

]
. (22)

Now, assume that there exists β⋆
m ∈ R

d−‖m‖0 such that

P
(
Y = 1|Xobs(m),M = m

)
=

1

1 + exp(−β⋆
0,m − ∑

j∈obs(m)

β⋆
j,mXj)

. (23)

Combining the two previous equations leads to

1

1 + exp(−β⋆
0,m − ∑

j∈obs(m)

β⋆
j,mXj)

= E

[
1

1 + exp(−β⋆
0 −∑d

j=1 β
⋆
jXj)

|Xobs(m)

]
(24)

≥ 1

E

[
1 + exp(−β⋆

0 −∑d
j=1 β

⋆
jXj)|Xobs(m)

] (using Jensen Inequality)

=
1

1 + E

[
exp

(
−β⋆

0 − ∑
j∈obs(m)

β⋆
jXj −

∑
j∈mis(m)

β⋆
jXj

)
| Xobs(m)

] (25)

=
1

1 + exp

(
−β⋆

0 − ∑
j∈obs(m)

β⋆
jXj

)
E

[
exp

(
− ∑

j∈mis(m)

β⋆
jXj

)
| Xobs(m)

] , (26)

(27)

which is equivalent to

exp


−(β⋆

0,m − β⋆
0)−

∑

j∈obs(m)

(β⋆
j,m − β⋆

j )Xj


 ≤ E


exp


−

∑

j∈mis(m)

β⋆
jXj


 | Xobs(m)


 .

(28)
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Now, assuming that variables X1, . . . , Xd are independent, we have

exp


−(β⋆

0,m − β⋆
0 )−

∑

j∈obs(m)

(β⋆
j,m − β⋆

j )Xj


 ≤ E


exp


−

∑

j∈mis(m)

β⋆
jXj




 . (29)

Let 1 ≤ k ≤ d. Letting Xj = 0 for all j ∈ obs(m) with j 6= k, we have

exp
(
−(β⋆

0,m − β⋆
0 )− (β⋆

k,m − β⋆
k)Xk

)
≤ E


exp


−

∑

j∈mis(m)

β⋆
jXj




 . (30)

By assumption, the support of Xk is R. Thus, letting Xk tending to ±∞, we deduce that

β⋆
k,m = β⋆

k . (31)

Injecting this into (24) leads to

1

1 + exp(−β⋆
0,m − ∑

j∈obs(m)

β⋆
jXj)

= E

[
1

1 + exp(−β⋆
0 −∑d

j=1 β
⋆
jXj)

|Xobs(m)

]
, (32)

that is

E



1 + exp(−β⋆

0,m − ∑
j∈obs(m)

β⋆
jXj)

1 + exp(−β⋆
0 −∑d

j=1 β
⋆
jXj)

|Xobs(m)


 = 1. (33)

Let

u = exp


−

∑

j∈obs(m)

β⋆
jXj


 and Zmis(m) = exp


−

∑

j∈mis(m)

β⋆
jXj


 . (34)

According to (33), for all u ∈ (0,∞),

E

[
1 + u exp(−β⋆

0,m)

1 + uZmis(m) exp(−β⋆
0)

]
= 1. (35)

Assume that E
[
1/Zmis(m)

]
exists. Take the limit when u tends to infinity. According to Lebesgue

dominated convergence theorem, we have

lim
u→∞

E

[
1 + u exp(−β⋆

0,m)

1 + uZmis(m) exp(−β⋆
0 )

]
= E

[
lim
u→∞

1 + u exp(−β⋆
0,m)

1 + uZmis(m) exp(−β⋆
0 )

]
(36)

= E

[
exp(−β⋆

0,m)

Zmis(m) exp(−β⋆
0 )

]
. (37)

Thus,

E

[
1

Zmis(m)

]
= exp(β⋆

0,m − β⋆
0). (38)

By definition of Zmis(m), we have

exp(β⋆
0,m − β⋆

0 ) = E




1∏
j∈mis(m)

exp
(
−β⋆

jXj

)


 (39)

= E




∏

j∈mis(m)

exp
(
β⋆
jXj

)

 (40)

=
∏

j∈mis(m)

E
[
exp

(
β⋆
jXj

)]
. (41)

14



Thus,

exp(−β⋆
0,m) =

exp(−β⋆
0)∏

j∈mis(m)

E
[
exp

(
β⋆
jXj

)] (42)

=
exp(−β⋆

0 )

E

[
Z ′
mis(m)

] , (43)

where

Z ′
mis(m) = 1/Zmis(m) = exp


 ∑

j∈mis(m)

β⋆
jXj


 . (44)

Injecting this equality into (35) leads to, for all u ∈ (0,∞),

E



1 + u exp(−β⋆

0 )/E
[
Z ′
mis(m)

]

1 + u exp(−β⋆
0 )/Z

′
mis(m)


 = 1 (45)

⇐⇒ E




E

[
Z ′
mis(m)

]
+ u exp(−β⋆

0)

E

[
Z ′
mis(m)

]
+ uE

[
Z ′
mis(m)

]
exp(−β⋆

0 )/Z
′
mis(m)


 = 1 (46)

⇐⇒ E




E

[
Z ′
mis(m)

]
+ v

E

[
Z ′
mis(m)

]
+ vE

[
Z ′
mis(m)

]
/Z ′

mis(m)


 = 1. (47)

where v = u exp(−β⋆
0 ). As this holds for all v ∈ (0,∞), taking the derivative of the expectation

leads to, for all v ∈ (0,∞),

E




E

[
Z ′
mis(m)

](
1− E[Z′

mis(m)]
Z′

mis(m)

)

(
E

[
Z ′
mis(m)

]
+

E

[
Z′

mis(m)

]

Z′

mis(m)
v

)2


 = 0. (48)

Letting v tend to zero leads to

E

[
1

Z ′
mis(m)

]
=

1

E

[
Z ′
mis(m)

] , (49)

which holds only if the random variable Z ′
mis(m) is degenerated. By definition of Z ′

mis(m), we

deduce that for all j ∈ mis(m), Xj is degenerated or β⋆
j = 0. Since the support of Xj is R, we have

that β⋆
j = 0.

C (Perceptron) Proofs of Section 4

C.1 Proof of Lemma 4.2

Proof. Suppose that we only have two points X1, X2 ∈ R
d where x2 =

(x1,1, ..., x1,(k−1), x2,k, x1,(k+1), ..., x1,d) with x1,k 6= x2,k. We have y2 = −y1. We also
suppose that m1,k = m2,k = 1 and m1 = m2. Then, W is not empty, but Wmis is empty

as (1 − m1) ⊙ x1 = (1 − m2) ⊙ x2, thus for any w ∈ R
d if y1w

⊤(1 − m1) ⊙ x1 > 0 then

y2w
⊤(1−m2)⊙ x2 = −y1w

⊤(1 −m1)⊙ x1 < 0, or the symmetric case.
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C.2 Separability characterization

Lemma C.1 (Separability characterization). Consider the ℓp-balls B1 and B2 resp. centered at
c1, c2 and of respective radius R1, R2. They are disjoint for the p-norm if and only if R1 + R2 <
‖(c1 − c2)‖p.

Proof. On the one hand, if ‖C1 − C2‖p ≤ R1 +R2, then B1 ∩B2 6= ∅. For example, x ∈ B1 ∩B2

for x := C1 +
R1

R1+R2
(C2 − C1) because

‖x− C1‖p =

∥∥∥∥
R1

R1 +R2
(C2 − C1)

∥∥∥∥
p

≤ R1

R1 +R2
(R1 +R2) = R1

then x ∈ B1 and

‖x− C2‖p =

∥∥∥∥
R2

R1 +R2
(C2 − C1)

∥∥∥∥
p

≤ R2

R1 +R2
(R1 +R2) = R2

so x ∈ B2.

On the other hand, if there exist an x such that x ∈ B1 ∩ B2 6= ∅, then ‖x− C1‖p ≤ R1 and

‖x− C2‖p ≤ R2. Using the triangle inequality,

‖(C1 − C2)‖p ≤ ‖(C1 − x)‖p + ‖(x− C2)‖p ≤ R1 +R2

By utilizing this characterization, note that we can redefine the linear separability of two balls as the
condition where the distance between their centers is greater than the sum of their individual radii.
In the context of our projected balls, we observe that

P
(
B1,obs(M) ∩B2,obs(M) = ∅

)
= P

(
R1 +R2 <

∥∥c1,obs(M) − c2,obs(M)

∥∥
p

)
(50)

= P

(
R1 +R2 < ‖ΠM (c1)−ΠM (c2)‖p

)
(51)

= P

(
R1 +R2 < ‖(1−M)⊙ (c1 − c2)‖p

)
. (52)

In the remainder, we fix p = 2 (the Euclidean norm).

C.3 Proof of Proposition 4.3

Proof. In order to study the separability of the two balls after projection through the missing pattern,
we need to study the probability that the sum of the radii is still smaller than the distance between
the two centers after projection. Equivalently,

P (R1 +R2 < ‖(1−M)⊙ (c1 − c2)‖2)
as shown in (52). We have that

P (R1 +R2 < ‖(1−M)⊙ (c1 − c2)‖2) ≥ P

(
max(R1, R2) <

1

2
‖(1 −M)⊙ (c1 − c2)‖2

)

=

2∏

i=1

P

(
Ri <

1

2
‖(1−M)⊙ (c1 − c2)‖2

)

(using that R1 ⊥⊥ R2)

= P

(
R1 <

1

2
‖(1−M)⊙ (c1 − c2)‖2

)2

.

(using that R1 ∼ R2)

By Assumption 3, (R1, R2) ∼ U(0, 1
2 ‖c1 − c2‖2)⊗2 and assuming MCAR data (R1 ⊥⊥ M ),
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P

(
R1 <

1

2
‖(1 −M)⊙ (c1 − c2)‖2 | M

)
=

‖(1−M)⊙ (c1 − c2)‖2
‖(c1 − c2)‖2

.

Moreover, note that

E

[
‖(1−M)⊙ (c1 − c2)‖22

‖(c1 − c2)‖22

]
= E

[∑d
j=1(1−Mj)(c1j − c2j)

2

∑d
j=1(c1j − c2j)2

]

=

∑d
j=1 E [(1−Mj)] (c1j − c2j)

2

∑d
j=1(c1j − c2j)2

=

∑d
j=1(1− ηj)(c1j − c2j)

2

∑d
j=1(c1j − c2j)2

Therefore, the lower bound is obtained using Jensen’s inequality as follows

P (R1 +R2 < ‖(1−M)⊙ (c1 − c2)‖2) ≥
(
E

[√
‖(1 −M)⊙ (c1 − c2)‖22

‖(c1 − c2)‖22

])2

≥ E

[
‖(1−M)⊙ (c1 − c2)‖22

‖(c1 − c2)‖22

]

=

∑d
j=1(1− ηj)(c1j − c2j)

2

∑d
j=1(c1j − c2j)2

.

To obtain the upper bound, one can proceed similarly, by using Jensen’s inequality,

P (R1 +R2 < ‖(1−M)⊙ (c1 − c2)‖2) ≤ P (R1 < ‖(1−M)⊙ (c1 − c2)‖2)

= E

[‖(1−M)⊙ (c1 − c2)‖2
‖(c1 − c2)‖2

]

=

√(
E

[‖(1 −M)⊙ (c1 − c2)‖2
‖(c1 − c2)‖2

])2

≤

√√√√E

[
‖(1 −M)⊙ (c1 − c2)‖22

‖(c1 − c2)‖22

]

=

√√√√
∑d

j=1(1− ηj)(c1j − c2j)2
∑d

j=1(c1j − c2j)2
.

C.4 Proof of Proposition 4.4

Proof. In order to study the separability of the two balls after projection through the missing pattern,
we need to study the probability that the sum of radii is still smaller than the distance between the
two centers after projection as shown in Lemma C.1. As seen in (52), since R := R1 = R2, this
probability corresponds to

P

(
R <

1

2
‖(1−M)⊙ (C1 − C2)‖p

)
.

Using Assumption 4, we have that

P

(
R <

1

2
‖(1−M)⊙ (C1 − C2)‖p |M,C1, C2

)
=

‖(1−M)⊙ (C1 − C2)‖p
‖(C1 − C2)‖p

.
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Therefore, if we define Ms =
{
m ∈ {0, 1}d, ‖m‖0 = s

}
,

P

(
R <

1

2
‖(1−M)⊙ (C1 − C2)‖p

)
= E

[
‖(1−M)⊙ (C1 − C2)‖p

‖(C1 − C2)‖p

]

= E

[
E

[
‖(1 −M)⊙ (C1 − C2)‖p

‖(C1 − C2)‖p
| C1, C2

]]

= E


E


 p

√√√√
∑d

j=1(1−Mj)(C1j − C2j)p
∑d

j=1(C1j − C2j)p
| C1, C2






= E


 ∑

m∈Ms

1(
d
s

) p

√√√√
∑

j,mj=0(C1j − C2j)p

∑d
j=1(C1j − C2j)p




(using M ∼ U(Ms))

= E


 p

√√√√
∑d−s

j=1(C1j − C2j)p

∑d
j=1(C1j − C2j)p




after having reordered the terms using the exchangeability of the (C1−C2)j (Assumption 4(i)). One
has ∑d−s

j=1(C1j − C2j)
p

∑d
j=1(C1j − C2j)p

=
1

d−s

∑d−s
j=1(C1j − C2j)

p

1
d−s

∑d−s
j=1(C1j − C2j)p +

s
d−s

1
s

∑d
j=d−s+1(C1j − C2j)p

=
1

1 +
s

d−s
1
s

∑
d
j=d−s+1(C1j−C2j)p

1
d−s

∑d−s
j=1 (C1j−C2j)p

.

As d goes to infinity, we assume that the number of missing values s goes to infinity. Otherwise, if

s is bounded, then ρ = limd→∞
s
d = 0 and s

d−s
1
s

∑d
j=d−s+1(C1j − C2j)

p d→∞−−−→ 0, so we would

have the result using that

P

(
R <

1

2
‖(1−M)⊙ (C1 − C2)‖p

)
−−−→
d→∞

1 = p
√
1− ρ.

Then, combining Assumption 4 and the law of large numbers, we get

1

d− s

d−s∑

j=1

(C1j − C2j)
p P−−−→

d→∞
E [(C11 − C21)

p]

1

s

d∑

j=d−s+1

(C1j − C2j)
p P−−−→

d→∞
E [(C11 − C21)

p] .

Using Slutsky’s theorem,

s

d− s

1

s

d∑

j=d−s+1

(C1j − C2j)
p P−−−→

d→∞

ρ

1− ρ
(E [(C11 − C21)

p]).

Re-using Slutsky’s theorem,

s
d−s

1
s

∑d
j=d−s+1(C1j − C2j)

p

1
d−s

∑d−s
j=1(C1j − C2j)p

P−−−→
d→∞

ρ

1− ρ
.

Finally, using the continuous mapping theorem, we have that

P

(
R <

1

2
‖(1−M)⊙ (C1 − C2)‖p

)
−→
d→∞

p
√
1− ρ.

18



D (LDA + MCAR) Proofs of Section 5.1

D.1 Preliminary

The Bayes predictor h⋆
comp satisfies

Rcomp(h
⋆
comp) = Φ (−am − bm)π−1 +Φ(am − bm) , π1 (53)

where Φ(x) = P[N (0, 1) ≤ x] is the c.d.f. of a standard Gaussian random variable, am =

log
(

π−1

π1

)
/‖Σ− 1

2 (µ1 − µ−1)‖ and bm = ‖Σ− 1
2 (µ1 − µ−1)‖/2.

Corollary D.1 (Bayes Risk of p-b-p LDA). Under Assumptions 2 and 6, the Bayes risk is given by

Rmis(h
⋆) =

∑

m∈{0,1}d

Φ (−am − bm) π−1pm +Φ(am − bm) π1pm, (54)

where, for all m ∈ M,

am =
log
(

π−1

π1

)

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

and bm =

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2

(55)

The proof can be found in Appendix D.3. Note that, from Corollary D.1 (using that π1 = π−1) and
Equation (53), we have that

L(h⋆)−Rcomp(h
⋆
comp)

=
∑

m∈{0,1}d


Φ


−

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2


− Φ


−

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥
2




 pm,

(56)

with Φ the c.d.f. of a standard Gaussian variable.

D.2 Proof of Proposition 5.1

Proof. Expanding (20),

h⋆
m(Xobs(m)) = sign(E

[
Y |Xobs(m),M = m

]
)

= sign
(
P
(
Y = 1 | Xobs(m),M = m

)
− P

(
Y = −1 | Xobs(m),M = m

))
. (57)

Note that, for any Borelian B ⊂ R
|obs(m)|,

P
(
Y = k | Xobs(m) ∈ B,M = m

)
=

P
(
Y = k,Xobs(m) ∈ B | M = m

)

P
(
Xobs(m) ∈ B | M = m

)

=
P
(
Y = k,Xobs(m) ∈ B

)

P
(
Xobs(m) ∈ B

) (using Assumption 2)

=
P
(
Xobs(m) ∈ B | Y = k

)
πk

P
(
Xobs(m) ∈ B

) .

Thus,

P
(
Y = 1 | Xobs(m) ∈ B,M = m

)
> P

(
Y = −1 | Xobs(m) ∈ B,M = m

)
(58)

⇐⇒ P
(
Xobs(m) ∈ B | Y = 1

)
π1 > P

(
Xobs(m) ∈ B | Y = −1

)
π−1. (59)

As this holds for any Borelian B ⊂ R
|obs(m)|, h⋆

m can be rewritten as

h⋆
m(x) = sign

(
π1fXobs(m)|Y=1(x) − π−1fXobs(m)|Y=1(x)

)
(60)

= sign

(
log

(
fXobs(m)|Y =1(x)

fXobs(m)|Y=−1(x)

)
− log

(
π−1

π1

))
, (61)
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where fXobs(m)|Y=k is the density of Xobs(m) | Y = k for all k ∈ {−1, 1}. Under LDA model

(Assumption 6), the objective is to determine the distribution of Xobs(m)|Y = k for each m ∈
{0, 1}d. To this end, Lemma F.6 proves that the projection of a Gaussian vector onto a subset
of coordinates preserves the Gaussianity with projected parameters. Hence, Xobs(m)|Y = k ∼
N (µk,obs(m),Σobs(m)) and therefore,

log

(
fXobs(m)|Y=1(x)

fXobs(m)|Y=−1(x)

)

= log




(
√
2π)−(d−‖m‖0)

√
det(Σ−1

obs(m)) exp
(
− 1

2 (x− µ1,obs(m))
⊤Σ−1

obs(m)(x − µ1,obs(m))
)

(
√
2π)−(d−‖m‖0)

√
det(Σ−1

obs(m)) exp
(
− 1

2 (x− µ−1,obs(m))⊤Σ
−1
obs(m)(x − µ−1,obs(m))

)




= −1

2
(x− µ1,obs(m))

⊤Σ−1
obs(m)(x− µ1,obs(m)) +

1

2
(x − µ−1,obs(m))

⊤Σ−1
obs(m)(x− µ−1,obs(m))

= (µ1,obs(m) − µ−1,obs(m))
⊤Σ−1

obs(m)

(
x− µ1,obs(m) + µ−1,obs(m)

2

)
.

Consequently,

h⋆
m(x) = sign

(
(µ1,obs(m) − µ−1,obs(m))

⊤Σ−1
obs(m)

(
x− µ1,obs(m) + µ−1,obs(m)

2

)
− log

(
π−1

π1

))
,

(62)

which concludes the proof.

D.3 Proof of Corollary D.1

Proof. Let N = Σ
− 1

2

obs(m)(Xobs(m) − µ−1,obs(m)). Using Proposition 5.1, we have

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1

)

=P

( (
µ1,obs(m) − µ−1,obs(m)

)⊤
Σ−1

obs(m)

(
Xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

)

− log

(
π−1

π1

)
> 0 | Y = −1

)

=P

(
γ⊤N − 1

2
‖γ‖2 > log

(
π−1

π1

)
| Y = −1

)
,

where γ = Σ
− 1

2

obs(m)(µ1,obs(m) − µ−1,obs(m)). By Lemma F.6, N |Y = −1 ∼ N (0, Idd−‖m‖0
).

Thus,

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1

)
= P

(
γ⊤N

‖γ‖ >
1

2
‖γ‖+ 1

‖γ‖ log

(
π−1

π1

)
| Y = −1

)

= Φ

(
−1

2
‖γ‖ − 1

‖γ‖ log

(
π−1

π1

))
.
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Similarly, letting N ′ = Σ
− 1

2

obs(m)(Xobs(m) − µ1,obs(m)),

P
(
h⋆
m(Xobs(m)) = −1 | Y = 1

)

=P

( (
µ1,obs(m) − µ−1,obs(m)

)⊤
Σ−1

obs(m)

(
Xobs(m) −

µ1,obs(m) + µ−1,obs(m)

2

)

− log

(
π−1

π1

)
< 0 | Y = 1

)

=P

(
γ⊤N +

1

2
‖γ‖2 < log

(
π−1

π1

)
| Y = 1

)

=P

(
γ⊤N

‖γ‖ >
1

2
‖γ‖ − 1

‖γ‖ log

(
π−1

π1

)
| Y = −1

)

=Φ

(
−1

2
‖γ‖+ 1

‖γ‖ log

(
π−1

π1

))
.

Finally,

Rmis(h
⋆)

= P
(
h⋆(Xobs(M),M) 6= Y

)

=
∑

m∈{0,1}d

P
(
h⋆(Xobs(m),M) 6= Y | M = m

)
pm

=
∑

m∈{0,1}d

P
(
h⋆
m(Xobs(m)) 6= Y

)
pm (using Assumption 2)

=
∑

m∈{0,1}d

P
(
h⋆
m(Xobs(m)) = −1 | Y = 1

)
π1pm + P

(
h⋆
m(Xobs(m)) = 1 | Y = −1

)
π−1pm

=
∑

m∈{0,1}d

Φ(am − bm)π1pm +Φ(−am − bm)π−1pm,

where, for all m ∈ M,

am =
log
(

π−1

π1

)

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

and bm =

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2
.

(63)

D.4 Proof of Proposition 5.3

Proof. Using Assumption 8, we have that

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥ ≤ ‖µ1 − µ−1‖√
λmin(Σ)

= µ

√
d

λmin(Σ)

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥ ≥

∥∥µ1,obs(m) − µ−1,obs(m)

∥∥
√
λmax(Σ)

= µ

√
d− ‖m‖0
λmax(Σ)
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Recall that Φ is the c.d.f. of a standard Gaussian random variable, according to Equation (56), we
have

Rmis(h
⋆)−Rcomp(h

⋆
comp)

=
∑

m∈{0,1}d


Φ


−

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2


− Φ


−

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥
2




 pm

(64)

≤
∑

m∈{0,1}d

(
Φ

(
−µ

2

√
d− ‖m‖0
λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

))
pm

=

d∑

i=0

∑

m∈{0,1}d

s.t. ‖m‖0=i

(
Φ

(
−µ

2

√
d− i

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

))
pm

=

d∑

i=0

(
Φ

(
−µ

2

√
d− i

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

))(
d

i

)
ηi(1− η)d−i

(using Assumption 7)

= E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)]
(65)

where B ∼ B(d, η). The decomposition of this last expression gives us

L(h⋆)−Rcomp(h
⋆
comp)

≤ E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)
| B = d

]
P(B = d)

+ E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)
| B 6= d

]
P(B 6= d)

=

(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd (66)

+ E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
µ

2

√
d

λmin(Σ)

)
| B 6= d

]
(1− ηd) (67)

Now, we study the second term in (67). Letting Q(x) =
∫∞
x

e−
t2

2 dt, we have Φ(x) = 1√
2π

Q(−x),

which leads to

E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)
| B 6= d

]

= E

[
1√
2π

(Q (TB)−Q (t)) | B 6= d

]
,

where TB := µ
2

√
d−B

λmax(Σ) and t = µ
2

√
d

λmin(Σ) . Applying the the mean-value inequality to the

function Q on the interval [TB, t] leads to

Q(TB)−Q(t) ≤ e−
T2
B
2 (t− TB). (68)

22



Thus,

E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)
| B 6= d

]

≤ 1√
2π

E

[
e−

t2
B
2 (t− TB) | B 6= d

]

=
µ

2
√
2π

E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)
| B 6= d

]
. (69)

Besides, since

E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]

= E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)
| B 6= d

]
P(B 6= d) +

√
d

λmin(Σ)
P(B = d),

we have

E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
−µ

2

√
d

λmin(Σ)

)
| B 6= d

]

=
µ

2
√
2π

1

P(B 6= d)
E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]
(70)

− µ

2
√
2π

P(B = d)

P(B 6= d)

√
d

λmin(Σ)
. (71)

Looking at the expectation in (71), we obtain

E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]

= E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d

λmax(Σ)
+

√
d

λmax(Σ)
−
√

d−B

λmax(Σ)

)]

=
√
d

(
1√

λmin(Σ)
− 1√

λmax(Σ)

)
E

[
e−

µ2(d−B)
8λmax(Σ)

]

+
1√

λmax(Σ)
E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d−

√
d−B

)]

≤
√
d

(
1√

λmin(Σ)
− 1√

λmax(Σ)

)
E

[
e−

µ2(d−B)
8λmax(Σ)

]
+

1√
λmax(Σ)d

E

[
e−

µ2(d−B)
8λmax(Σ)B

]
,

since

√
d−

√
d− B =

d− d+B√
d+

√
d−B

≤ B√
d
. (72)

Simple calculation shows that

E

[
e−

µ2(d−B)
8λmax(Σ)

]
=

(
η + e−

µ2

8λmax(Σ) (1− η)

)d

.
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Besides,

E

[
e−

µ2(d−B)
8λmax(Σ)B

]
=

d∑

i=0

(
d

i

)
e−

µ2(d−i)
8λmax(Σ) iηi(1− η)d−i

= ηd

d∑

i=1

(d− 1)!

(i − 1)!(d− 1− (i − 1))!
ηi−1

(
e−

µ2

8λmax(Σ) (1− η)

)d−1−(i−1)

= ηd

(
η + e−

µ2

8λmax(Σ) (1 − η)

)d−1

. (73)

Therefore, letting A = e−
µ2

8λmax(Σ) (1 − η), we have that

E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]

≤
√
d

(
1√

λmin(Σ)
− 1√

λmax(Σ)

)
(η +A)

d
+

1√
λmax(Σ)d

ηd (η +A)
d−1

=

√
d√

λmin(Σ)
(η +A)

d −
√

d

λmax(Σ)
(η +A)

d−1
A. (74)

Gathering equations (67), (71) and (74), we obtain

L(h⋆)−Rcomp(h
⋆
comp)

=

(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd

+ E

[
Φ

(
−µ

2

√
d−B

λmax(Σ)

)
− Φ

(
µ

2

√
d

λmin(Σ)

)
| B 6= d

]
(1− ηd)

≤
(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd +

µ

2
√
2π

(1 − ηd)

×
(

1

P(B 6= d)
E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]
−
√

d

λmin(Σ)

P(B = d)

P(B 6= d)

)

=

(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd

+
µ

2
√
2π

(
E

[
e−

µ2(d−B)
8λmax(Σ)

(√
d

λmin(Σ)
−
√

d−B

λmax(Σ)

)]
−
√

d

λmin(Σ)
ηd

)

≤
(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd

+
µ

2
√
2π

(√
d

λmin(Σ)
(η +A)

d −
√

d

λmax(Σ)
(η +A)

d−1
A−

√
d

λmin(Σ)
ηd

)
.

An upper bound of this inequality is given by

L(h⋆)−Rcomp(h
⋆
comp) ≤

ηd

2
+

µη

2
√
2π

√
d

λmin(Σ)

(
(η +A)

d−1 − ηd−1
)
. (75)
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D.5 Proof of Corollary 5.4

Proof. Recall that, by Equation (56),

L(h⋆)−Rcomp(h
⋆
comp)

=
∑

m∈{0,1}d


Φ


−

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2


− Φ


−

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥
2




 pm

≥


Φ (0)− Φ


−

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥
2




 ηd,

using only m =1, since all terms in the above sum are positive. By Assumption 8, ‖Σ− 1
2 (µ1 −

µ−1)‖ ≥ dµ/
√
λmax(Σ). Hence


Φ (0)− Φ


−

∥∥∥Σ− 1
2 (µ1 − µ−1)

∥∥∥
2




 ηd ≥

(
Φ (0)− Φ

(
− dµ

2
√
λmax(Σ)

))
ηd

=

(
1

2
− Φ

(
−dλ

2

))
ηd.

Consequently,

L(h⋆)−Rcomp(h
⋆
comp) ≥

(
1

2
− Φ

(
−dλ

2

))
ηd −−−−→

λ→∞

ηd

2
. (76)

On the other hand, by Proposition 5.3, we have

L(h⋆)−Rcomp(h
⋆
comp) ≤

ηd

2
+

µ

2
√
2π

√
d

λmin(Σ)

(
(η +A)

d − ηd
)
. (77)

Note that ∣∣∣∣∣µ
√

d

λmin(Σ)

((
η + e−

µ2

8λmax(Σ) (1 − η)

)d

− ηd

)∣∣∣∣∣

= µ

√
d

λmin(Σ)

(
d∑

i=0

(
d

i

)
ηd−ie−

iλ2

8 (1− η)i − ηd

)

=
µ√

λmax(Σ)

√
dλmax(Σ)

λmin(Σ)

(
d∑

i=1

(
d

i

)
ηd−ie−

iλ2

8 (1− η)i

)

= λ

√
dλmax(Σ)

λmin(Σ)

(
d∑

i=1

(
d

i

)
ηd−ie−

iλ2

8 (1 − η)i

)
,

which tends to zero by assumption. This concludes the proof.

D.6 Proofs of Section 5.2

D.6.1 General lemmas for LDA misclassification control.

Lemma D.2 (µ̂ misclassification probability). Given a sample satisfying Assumptions 2 and 6, with
balanced classes, then

P

(
ĥm(Xobs(m)) = 1 | Y = −1,Dn

)

= Φ




(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ−1,obs(m) − µ̂1,obs(m)+µ̂−1,obs(m)

2

)

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥




(78)
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and symmetrically,

P

(
ĥm(Xobs(m)) = −1 | Y = 1,Dn

)

= Φ


−

(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ1,obs(m) − µ̂1,obs(m)+µ̂−1,obs(m)

2

)

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥




(79)

with Φ the standard Gaussian cumulative function.

Proof. We follow the same strategy as in the proof of Corollary D.1. We have

P

(
ĥm(Xobs(m)) = 1 | Y = −1,Dn

)

= P

((
µ̂1,obs(m) − µ̂−1,obs(m)

)⊤
Σ−1

obs(m)

(
Xobs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2

)
> 0 | Y = −1,Dn

)

Let N = Σ
− 1

2

obs(m)(Xobs(m) − µ−1,obs(m)). By Lemma F.6, N |Y = −1 ∼ N (0, Idd−‖m‖0
). Since

(Xobs(m), Y ) and Dn are independent

N |Y = −1,Dn ∼ N (0, Idd−‖m‖0
). (80)

Letting γ̂ = Σ
− 1

2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m)), we have

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1,Dn

)

= P

(
γ̂⊤N + γ̂⊤Σ

− 1
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(
µ−1,obs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2
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2
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2
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)

= Φ

(
γ̂⊤
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− 1

2

obs(m)

(
µ−1,obs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2

))
.

Now we prove the second statement. According to the proof of Corollary D.1, we have

P

(
ĥm(Xobs(m)) = −1 | Y = 1,Dn

)

= P

((
µ̂1,obs(m) − µ̂−1,obs(m)

)⊤
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(
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µ̂1,obs(m) + µ̂−1,obs(m)

2

)
< 0 | Y = 1

)
.

Let N = Σ
− 1

2

obs(m)(Xobs(m) − µ1,obs(m)). By Lemma F.6, and since (Xobs(m), Y ) and Dn are

independent,

N |Y = 1,Dn ∼ N (0, Idd−‖m‖0
). (81)

Letting γ̂ = Σ
− 1

2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m)), we have

P

(
ĥm(Xobs(m)) = −1 | Y = 1,Dn

)

= P

(
γ̂⊤N + γ̂⊤Σ

− 1
2

obs(m)

(
µ1,obs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2

)
< 0 | Y = 1,Dn

)

= P

(
γ̂⊤N

‖γ̂‖ < − γ̂⊤
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− 1

2

obs(m)

(
µ1,obs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2
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| Y = 1,Dn

)

= Φ

(
− γ̂⊤

‖γ̂‖Σ
− 1

2

obs(m)

(
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µ̂1,obs(m) + µ̂−1,obs(m)

2

))
.
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Lemma D.3. Grant Assumptions 2 and 6. Assume that we are given two estimators µ̂1 and µ̂−1 of

µ1 and µ−1. Then, the classifier ĥm defined in Equation (7) satisfies

∣∣P
(
ĥm(Xobs(m)) = 1 | Y = −1,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1

)∣∣

≤ 3

2
√
2π

∥∥∥Σ− 1
2

obs(m)(µ−1,obs(m) − µ̂−1,obs(m))
∥∥∥+ 1

2
√
2π

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ̂1,obs(m))
∥∥∥

(82)

and symmetrically,

∣∣P
(
ĥm(Xobs(m)) = −1 | Y = 1,Dn

)
− P

(
h⋆
m(Xobs(m)) = −1 | Y = 1

)∣∣

≤ 3

2
√
2π

∥∥∥Σ− 1
2

obs(m)(−µ̂1,obs(m) + µ1,obs(m))
∥∥∥+ 1

2
√
2π

∥∥∥Σ− 1
2

obs(m)(µ̂−1,obs(m) − µ−1,obs(m))
∥∥∥

(83)

Proof. We only prove the first inequality, the other one can be handled in the same manner. Accord-
ing to using Corollary D.1 and Lemma D.2,

∣∣P
(
ĥm(Xobs(m)) = 1 | Y = −1,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1

)∣∣

=

∣∣∣∣∣∣∣
Φ




(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ−1,obs(m) − µ̂1,obs(m)+µ̂−1,obs(m)

2

)

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥




−Φ


−

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2



∣∣∣∣∣∣

≤ 1√
2π

∣∣∣∣∣∣∣

(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ−1,obs(m) − µ̂1,obs(m)+µ̂−1,obs(m)

2

)

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥

+

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2

∣∣∣∣∣∣
,

since Φ is (1/
√
2π)-Lipschitz. Note that, by injecting ±µ̂−1,obs(m), the numerator of the first term

can be rewritten as

(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ−1,obs(m) −

µ̂1,obs(m) + µ̂−1,obs(m)

2

)
(84)

=
(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ−1,obs(m) − µ̂−1,obs(m)

)
(85)

+
1

2

(
Σ

− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
)⊤

Σ
− 1

2

obs(m)

(
µ̂−1,obs(m) − µ̂1,obs(m)

)
(86)

≤
∥∥∥Σ− 1

2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥
∥∥∥Σ− 1

2

obs(m)(µ−1,obs(m) − µ̂−1,obs(m))
∥∥∥ (87)

− 1

2

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥
2

, (88)
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where the last line results from Cauchy-Schwarz inequality. Thus, by the Triangle inequality, fol-
lowed by the reverse triangle inequality, we obtain

∣∣P
(
ĥm(Xobs(m)) = 1 | Y = −1,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1

)∣∣ (89)

≤ 1√
2π

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥
∥∥∥Σ− 1

2

obs(m)(µ−1,obs(m) − µ̂−1,obs(m))
∥∥∥

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥

(90)

+
1√
2π

∣∣∣∣∣∣
−

∥∥∥Σ− 1
2

obs(m)(µ̂1,obs(m) − µ̂−1,obs(m))
∥∥∥

2
+

∥∥∥Σ− 1
2

obs(m)(µ1,obs(m) − µ−1,obs(m))
∥∥∥

2

∣∣∣∣∣∣
(91)

≤ 1√
2π

∥∥∥Σ− 1
2

obs(m)(µ−1,obs(m) − µ̂−1,obs(m))
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+
1

2
√
2π

∥∥∥Σ− 1
2

obs(m)(−µ̂1,obs(m) + µ̂−1,obs(m) + µ1,obs(m) − µ−1,obs(m))
∥∥∥ (93)

≤ 1√
2π

∥∥∥Σ− 1
2

obs(m)(µ−1,obs(m) − µ̂−1,obs(m))
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2
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∥∥∥Σ− 1
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∥∥∥
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+
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2
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∥∥∥Σ− 1
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2
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2
√
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∥∥∥ .
(96)

The second statement of the Lemma can be proven in the same way.

Lemma D.4. Grant Assumptions 2, 6 and assume the classes are balanced. Assume that we are

given two estimators µ̂1 and µ̂−1 of µ1 and µ−1. Then, the classifier ĥ defined in Equation (7)
satisfies

Rmis(ĥ)−Rmis(h
⋆)

≤
∑

m∈M

(
E

[∥∥∥Σ− 1
2
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∥∥∥+

∥∥∥Σ− 1
2
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∥∥∥
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.

Proof. We have
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=
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(
P

(
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=
∑

m∈M
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4
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2
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∥∥∥
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+
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4
√
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(
E

[
3
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2

obs(m)(−µ̂1,obs(m) + µ1,obs(m))
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∥∥∥
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by Lemma D.3. Thus,

Rmis(ĥ)−Rmis(h
⋆)

=
∑

m∈M

pm√
2π

(
E

[∥∥∥Σ− 1
2

obs(m)(−µ̂1,obs(m) + µ1,obs(m))
∥∥∥+

∥∥∥Σ− 1
2

obs(m)(µ̂−1,obs(m) − µ−1,obs(m))
∥∥∥
])

.

It is worth noting that, at this juncture, neither the structure of the estimate nor the structure of the
covariance matrix have been incorporated.

D.6.2 Lemma for Theorem 5.5

Lemma D.5. For all m ∈ M and all k ∈ {−1, 1},

E

[∥∥∥Σ− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
∥∥∥
]
≤
((

1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+
4κ(d− ‖m‖0)
(n+ 1) (1− η)

) 1
2

,

with µ̂k,obs(m) defined in (6) and κ := maxi∈[n] Σi,i/λmin(Σ) the greatest value of the diagonal of
the covariance matrix divided by its smallest eigenvalue.

Proof. First, by Jensen’s inequality,

E

[∥∥∥Σ− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
∥∥∥
]
≤ E

[∥∥∥Σ− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
∥∥∥
2
] 1

2

(97)

= E

[(
Σ

− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)⊤ (

Σ
− 1

2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)] 1

2

(98)

= E

[
tr

((
Σ

− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)⊤ (

Σ
− 1

2

obs(m)(µ̂k,obs(m) − µk,obs(m))
))] 1

2

(99)

= E

[
tr

((
Σ

− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)(

Σ
− 1

2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)⊤)] 1

2

(100)

= tr

(
E

[(
Σ

− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)(

Σ
− 1

2

obs(m)(µ̂k,obs(m) − µk,obs(m))
)⊤]) 1

2

(101)

= tr
(
Σ

− 1
2

obs(m)E

[(
µ̂k,obs(m) − µk,obs(m)

) (
µ̂k,obs(m) − µk,obs(m)

)⊤]
Σ

− 1
2

obs(m)

) 1
2

(102)

= tr
(
Σ

− 1
2

obs(m)C(k,m)Σ
− 1

2

obs(m)

) 1
2

, (103)

where

C(k,m) := E

[(
µ̂k,obs(m) − µk,obs(m)

) (
µ̂k,obs(m) − µk,obs(m)

)⊤]
. (104)

Now, we compute the elements C(k,m)r,l =, for all r, l ∈ obs(m).

First case. We start by computing C(k,m)l,l for all l. Note that

C(k,m)l,l = E

[
(µ̂k,l − µk,l)

2
]
. (105)

The estimator µ̂k,l equals zero if all samples of class k have a missing l-th coordinate, which corre-
sponds to the event

Ak,l := {∀i ∈ {1, ...n}, Yi = −k or Mi,l = 1}, (106)

where

P(Ak,l) =

n∏

i=1

P (Yi = −k or Mi,l = 1) =

(
1 + η

2

)n

. (107)
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Thus,

E

[
(µ̂k,l − µk,l)

2
]

= E

[
(µ̂k,l − µk,l)

2 | Ak,l

]
P (Ak,l) + E

[
(µ̂k,l − µk,l)

2 | Ac
k,l

]
P
(
Ac

k,l

)

= µ2
k,l

(
1 + η

2

)n

+ E

[(∑n
i=1(Xi,l − µk,l)1Yi=k1Mi,l=0∑n

i=1 1Yi=k1Mi,l=0

)2

| Ac
k,l

](
1−

(
1 + η

2

)n)

The second term can be rewritten as

=

n∑

i=1

E

[
(Xi,l − µk,l)

2
1Yi=k1Mi,l=0(∑n

i=1 1Yi=k1Mi,l=0

)2 | Ac
k,l

](
1−

(
1 + η

2

)n)

=

n∑

i=1

E




(Xi,l − µk,l)
2

(
1 +

∑n
j 6=i 1Yj=k1Mj,l=0

)2 | Ac
k,l, Yi = k,Mi,l = 0




× P
(
Yi = k,Mi,l = 0 | Ac

k,l

)(
1−

(
1 + η

2

)n)

=

(
1− η

2

) n∑

i=1

E




(Xi,l − µk,l)
2

(
1 +

∑n
j 6=i 1Yj=k1Mj,l=0

)2 | Yi = k,Mi,l = 0




= n

(
1− η

2

)
E




(X1,l − µk,l)
2

(
1 +

∑
j 6=1

1Yj=k1Mj,l=0

)2 | Y1 = k




(using Assumption 2)

=

(
1− η

2

)
nE
[
(X1,l − µk,l)

2 | Y1 = k
]
E




1
(
1 +

∑n
j 6=1 1Yj=k1Mj,l=0

)2




(using the independence)

=

(
1− η

2

)
nΣl,lE




1
(
1 +

∑n
j 6=1 1Yj=k1Mj,l=0

)2


 .

In the sequel, we denote A(n, η) := E

[
1

(1+B)2

]
, where B ∼ B(n− 1, (1 − η)/2). Then, we have

that

C(k,m)l,l = µ2
k,l

(
1 + η

2

)n

+ n

(
1− η

2

)
Σl,lA(n, η). (108)

Second case. Now, we want to compute, for all r 6= l,

C(k,m)r,l = E [(µ̂k,r − µk,r) (µ̂k,l − µk,l)] . (109)

To this aim, we distinguish three cases, depending on the presence of available samples to compute
µ̂k,r and µ̂k,r. First, let us denote by

Ak,l,r := {∀i ∈ {1, ...n}, (Yi = −k or (Mi,r = 1 and Mi,l = 1))}, (110)
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the event in which there is no available samples to estimate any of the means µ̂k,r and µ̂k,r, that is
each sample either belongs to the other class or is missing at both coordinates. We have

P(Ak,l,r)

= P (∀i ∈ {1, ...n}, Yi = −k or (Mi,r = 1 and Mi,l = 1)) (111)

= (P(Yi = −k) + P(Mi,r = 1 and Mi,l = 1)− P(Yi = −k and Mi,r = 1 and Mi,l = 1))
n

=

(
η2 + 1

2

)n

. (112)

Besides, on the event Ak,l,r , we have

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) |Ak,l,r ] = µk,rµk,l. (113)

We now consider the second case and denote by

Bk,l,r := {∃i ∈ {1, ..., n}, (Yi = k ∧Mi,l = 0) = 1} ∩ {∃i ∈ {1, ...n}, (Yi = k ∧Mi,r = 0) = 1},
(114)

the event in which the there is at least one available sample to estimate both means µ̂k,r and µ̂k,r.
Observe that

P (Bk,l,r) = 1− P ({∀i ∈ {1, ..., n}, (Yi = −k or Mi,l = 1)}
or {∀i ∈ {1, ...n}, (Yi = −k or Mi,r = 1)})

= 1− P ({∀i ∈ {1, ..., n}, (Yi = −k or Mi,l = 1)})
− P ({∀i ∈ {1, ...n}, (Yi = −k or Mi,r = 1)})
+ P ({∀i ∈ {1, ..., n}, (Yi = −k or (Mi,l = 1 and Mi,r = 1))}) ,

where the last probability was already computed for Ak,l,r. On the other hand, remark that

P ({∀i ∈ {1, ...n}, (Yi = −k or Mi,r = 1)}) =
(
1 + η

2

)n

.

Then, we have that

P (Bk,l,r) = 1− 2

(
1 + η

2

)n

+

(
η2 + 1

2

)n

. (115)

Besides,

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) | Bk,l,r]

= E

[(∑n
i=1(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(∑n
i=1(Xi,l − µk,l)1Yi=k1Mi,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]

=

n∑

i=1

n∑

j=1

E

[(
(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(
(Xj,l − µk,l)1Yj=k1Mj,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]

=

n∑

i=1

E

[(
(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(
(Xi,l − µk,l)1Yi=k1Mi,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]

+

n∑

i=1

n∑

j 6=i

E

[(
(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(
(Xj,l − µk,l)1Yj=k1Mj,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]
.
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Observe that this second sum is null. Indeed,

E

[(
(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(
(Xj,l − µk,l)1Yj=k1Mj,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]

= E

[(
(Xi,r − µk,r)

1 + 1Mj,r=0 +
∑n

s6=i,j 1Ys=k1Ms,r=0

)(
(Xj,l − µk,l)

1 + 1Mi,l=0 +
∑n

s6=i,j 1Ys=k1Ms,l=0

)

| Yi = k,Mi,r = 0, Yj = k,Mj,l = 0]P (Yi = k,Mi,r = 0, Yj = k,Mj,l = 0 | Bk,l,r)

= E


 1(

1 + 1Mj,r=0 +
∑n

s6=i,j 1Ys=k1Ms,r=0

)(
1 + 1Mi,l=0 +

∑n
s6=i,j 1Ys=k1Ms,l=0

)




× E [(Xi,r − µk,r) | Yi = k]E [(Xj,l − µk,l) | Yj = k]

× P (Yi = k,Mi,r = 0, Yj = k,Mj,l = 0 | Bk,l,r)
(using Assumption 2 and independence)

= 0.

Then,

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) | Bk,l,r]

=

n∑

i=1

E

[(
(Xi,r − µk,r)1Yi=k1Mi,r=0∑n

i=1 1Yi=k1Mi,r=0

)(
(Xi,l − µk,l)1Yi=k1Mi,l=0∑n

i=1 1Yi=k1Mi,l=0

)
| Bk,l,r

]

=

n∑

i=1

E

[
(Xi,r − µk,r)

1 +
∑n

j 6=i 1Yj=k1Mj,r=0

(Xi,l − µk,l)

1 +
∑n

j 6=i 1Yj=k1Mj,l=0
| Yi = k,Mi,r = 0,Mi,l = 0

]

P (Yi = k,Mi,r = 0,Mi,l = 0 | Bk,l,r)

=

n∑

i=1

E [(Xi,r − µk,r)(Xi,l − µk,l) | Yi = k]

× E

[
1

1 +
∑n

j 6=i 1Yj=k1Mj,r=0

1

1 +
∑n

j 6=i 1Yj=k1Mj,l=0

]

× P (Yi = k,Mi,r = 0,Mi,l = 0 | Bk,l,r)

= nΣr,lB(n, η)
(1− η)2

2P (Bk,l,r)
, (116)

where B(n, η) := E

[
1

1+
∑

n
j=2 1Yj=k1Mj,r=0

1
1+

∑
n
j=2 1Yj=k1Mj,l=0

]
.

Now, we consider the last case, and denote by

Ck,l,r = (Bk,l,r ∪ Ak,l,r)
c

(117)

the event in which only one mean can be estimated. We have

P(Ck,l,r) = P ((Bk,l,r ∪ Ak,l,r)
c
) = 2

(
1 + η

2

)n

− 2

(
η2 + 1

2

)n

.

Let Ck,l,r = C1,k,l,r ∪C2,k,l,r, where C1,k,l,r is the event where the one that can be estimated is µ̂k,r.
Then,

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) | C1,k,l,r]

= −µk,lE

[∑n
i=1(Xi,r − µk,r)1Mi,r=01Yi=k∑n

i=1 1Mi,r=01Yi=k
| C1,k,l,r

]

= −µk,lnE

[
(X1,r − µk,r)

1 +
∑n

i=2 1Mi,r=01Yi=k
| M1,r = 0, Y1 = k

]
P(M1,r = 0, Y1 = k|C1,k,l,r)

= −µk,lnE [(X1,r − µk,r) | Y1 = k]E

[
1

1 +
∑n

i=2 1Mi,r=01Yi=k

]
P(M1,r = 0, Y1 = k|C1,k,l,r)

(using MCAR and independence)

= 0. (118)
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By symmetry, we also have

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) | C2,k,l,r] = 0. (119)

Thus,

E [(µ̂k,r − µk,r) (µ̂k,l − µk,l) | Ck,l,r] = 0. (120)

Gathering (113), (116) and (120), we are able to compute C(k,m)r,l as follows

C(k,m)r,l = E [(µ̂k,r − µk,r) (µ̂k,l − µk,l | Ak,l,r)]P (Ak,l,r)

+ E [(µ̂k,r − µk,r) (µ̂k,l − µk,l | Bk,l,r)]P (Bk,l,r)

+ E [(µ̂k,r − µk,r) (µ̂k,l − µk,l | C(k,m)k,l,r)]P (C(k,m)k,l,r)

= µk,rµk,l

(
η2 + 1

2

)n

+ nΣr,lB(n, η)
(1 − η)2

2
,

using (112) and (115). From (108), recall that

C(k,m)l,l = µ2
k,l

(
1 + η

2

)n

+ n

(
1− η

2

)
Σl,lA(n, η). (121)

Let J be the matrix composed of 1 in each entry, and let

F =

((
1 + η

2

)n

−
(
1 + η2

2

)n)
I +

(
1 + η2

2

)n

J (122)

G = (A(n, η)− (1− η)B(n, η)) I + (1− η)B(n, η)J. (123)

Thus,

C(k,m) = F ⊙ µk,obs(m)µ
⊤
k,obs(m) + n

1− η

2
G⊙ Σobs(m).

Then, according to inequality (103), we have that

E

[∥∥∥Σ− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
∥∥∥
]

≤ tr
(
Σ

− 1
2

obs(m)C(k,m)Σ
− 1

2

obs(m)

) 1
2

(124)

=

(
tr
(
Σ

− 1
2

obs(m)

(
F ⊙ µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)
+ n

1− η

2
tr
(
Σ

− 1
2

obs(m)

(
G⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)) 1
2

(125)

The first term equals

tr
(
Σ

− 1
2

obs(m)

(
F ⊙ µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)
(126)

=

(
1 + η2

2

)n

tr
(
Σ

− 1
2

obs(m)

(
J ⊙ µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)
(127)

+

((
1 + η

2

)n

−
(
1 + η2

2

)n)
tr
(
Σ

− 1
2

obs(m)

(
Id−‖m‖0

⊙ µk,obs(m)µ
⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)

(128)

=

(
1 + η2

2

)n

tr
(
Σ

− 1
2

obs(m)µk,obs(m)µ
⊤
k,obs(m)Σ

− 1
2

obs(m)

)
(129)

+

((
1 + η

2

)n

−
(
1 + η2

2

)n)
tr
(
Σ

− 1
2

obs(m)diag
(
µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)
. (130)
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Then, by Lemma F.4,

tr
(
Σ

− 1
2

obs(m)

(
F ⊙ µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)
(131)

≤
(
1 + η2

2

)n

tr

((
Σ

− 1
2

obs(m)µk,obs(m)

)(
Σ

− 1
2

obs(m)µk,obs(m)

)⊤)
(132)

+

((
1 + η

2

)n

−
(
1 + η2

2

)n)
‖µ‖2∞ tr

(
Σ−1

obs(m)

)
(133)

=

(
1 + η2

2

)n ∥∥∥Σ− 1
2

obs(m)µk,obs(m)

∥∥∥
2

+

((
1 + η

2

)n

−
(
1 + η2

2

)n) ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

(134)

≤
(
1 + η2

2

)n
∥∥µk,obs(m)

∥∥2

λmin (Σ)
+

((
1 + η

2

)n

−
(
1 + η2

2

)n) ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

(135)

≤
(
1 + η2

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+

((
1 + η

2

)n

−
(
1 + η2

2

)n) ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

(136)

≤
(
1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

. (137)

Regarding the second term in (125), note that A(n, η) − (1 − η)B(n, η) ≥ 0. Indeed, letting

Z :=
∑n−1

i=1 1Yi=k ∼ B(n− 1, 1/2),

B(n, η) := E

[
1

1 +
∑n−1

j=1 1Yj=k1Mj,r=0

1

1 +
∑n−1

j=1 1Yj=k1Mj,l=0

]

= E

[
E

[
1

1 +
∑Z

j=1 1Mj,r=0

1

1 +
∑Z

j=1 1Mj,l=0

| Z
]]

,

using the exchangeability as the samples are i.i.d. By leveraging the independence between the
missingness at coordinate r and coordinate l, as well as the independence of each sample from the
rest, we can conclude that

E

[
E

[
1

1 +
∑Z

j=1 1Mj,r=0

1

1 +
∑Z

j=1 1Mj,l=0

| Z
]]

= E

[
E

[
1

1 +
∑Z

j=1 1Mj,r=0

| Z
]
E

[
1

1 +
∑Z

j=1 1Mj,l=0

| Z
]]

= E


E
[

1

1 +
∑Z

j=1 1Mj,r=0

| Z
]2
 (using that Mj,r ∼ Mj,l)

≤ E


E




1
(
1 +

∑Z
j=1 1Mj,r=0

)2 | Z





 (using Jensen Inequality)

= A(n, η).

Thus, we have that

tr
(
Σ

− 1
2

obs(m)

(
G⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)
(138)

= (1 − η)B(n, η)tr
(
Σ

− 1
2

obs(m)

(
1 ⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)
(139)

+ (A(n, η) − (1− η)B(n, η))tr
(
Σ

− 1
2

obs(m)

(
Id−‖m‖0

⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)
(140)

= (1 − η)B(n, η)tr
(
Σ

− 1
2

obs(m)Σobs(m)Σ
− 1

2

obs(m)

)
(141)

+ (A(n, η) − (1− η)B(n, η))tr
(
Σ

− 1
2

obs(m)diag
(
Σobs(m)

)
Σ

− 1
2

obs(m)

)
. (142)
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Using Lemma F.4 and A(n, η) − (1− η)B(n, η) ≥ 0, we have

tr
(
Σ

− 1
2

obs(m)

(
G⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)
(143)

≤ (1− η)B(n, η)(d − ‖m‖0) (144)

+ (A(n, η)− (1− η)B(n, η))max
i∈[d]

(Σi,i) tr
(
Σ−1

obs(m)

)
(145)

≤ (1− η)B(n, η)(d − ‖m‖0) (146)

+ (A(n, η)− (1− η)B(n, η))
maxi∈[d] (Σi,i)

λmin (Σ)
(d− ‖m‖0) (147)

≤ κ(1− η)B(n, η)(d − ‖m‖0) + (A(n, η)− (1 − η)B(n, η))κ(d − ‖m‖0) (148)

= A(n, η)κ(d− ‖m‖0) (149)

≤ 2κ(d− ‖m‖0)
n(n+ 1)

(
1−η
2

)2 , (150)

where κ :=
maxi∈[d](Σi,i)

λmin(Σ) ≥ 1. Finally, combining (137) and (150) in (125), we have

E

[∥∥∥Σ− 1
2

obs(m)(µ̂k,obs(m) − µk,obs(m))
∥∥∥
]

≤
(
tr
(
Σ

− 1
2

obs(m)

(
F ⊙ µk,obs(m)µ

⊤
k,obs(m)

)
Σ

− 1
2

obs(m)

)

+ n
1− η

2
tr
(
Σ

− 1
2

obs(m)

(
G⊙ Σobs(m)

)
Σ

− 1
2

obs(m)

)) 1
2

≤
((

1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+ n
1− η

2

2κ(d− ‖m‖0)
n(n+ 1)

(
1−η
2

)2

) 1
2

≤
((

1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+
4κ(d− ‖m‖0)
(n+ 1) (1− η)

) 1
2

.

D.6.3 Proof of Theorem 5.5

Proof. By Lemma D.4,

Rmis(ĥ)−Rmis(h
⋆)

≤
∑

m∈M

1√
2π

(
E

[ ∥∥∥Σ− 1
2

obs(m)(−µ̂1,obs(m) + µ1,obs(m))
∥∥∥

+
∥∥∥Σ− 1

2

obs(m)(µ̂−1,obs(m) − µ−1,obs(m))
∥∥∥
])

pm

≤ 2√
2π

∑

m∈M

((
1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+
4κ(d− ‖m‖0)
(n+ 1) (1− η)

) 1
2

pm.

(using Lemma D.5)
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Now, using Assumption 7, we have that ‖M‖0 ∼ B(d, η), so that

2√
2π

∑

m∈M

((
1 + η

2

)n ‖µ‖2∞ (d− ‖m‖0)
λmin (Σ)

+
4κ(d− ‖m‖0)
(n+ 1) (1− η)

) 1
2

pm

=
2√
2π

E



((

1 + η

2

)n ‖µ‖2∞ (d−B)

λmin (Σ)
+

4κ(d−B)

(n+ 1) (1− η)

) 1
2


 (where B ∼ B(d, η))

≤ 2√
2π

E

[((
1 + η

2

)n ‖µ‖2∞ (d−B)

λmin (Σ)
+

4κ(d−B)

(n+ 1) (1− η)

)] 1
2

(using Jensen Inequality)

≤ 2√
2π

((
1 + η

2

)n ‖µ‖2∞ d(1 − η)

λmin (Σ)
+

4κd

n

) 1
2

.

D.6.4 Proof of Corollary 5.6

Proof. From Proposition 5.3 and Theorem 5.5 we have that

L(ĥ)−Rcomp(h
⋆
comp) = Rmis(ĥ)−Rmis(h

⋆) +Rmis(h
⋆)−Rcomp(h

⋆
comp)

≤ 2√
2π

((
1 + η

2

)n ‖µ‖2∞ d(1− η)

λmin (Σ)
+

4κd

n

) 1
2

+

(
1

2
− Φ

(
−µ

2

√
d

λmin(Σ)

))
ηd

+
µ

2
√
2π

(√
d

λmin(Σ)

((
η + e−

µ2

8λmax(Σ) (1− η)

)d

− ηd

)

−
√

d

λmax(Σ)

(
η + e−

µ2

8λmax(Σ) (1− η)

)d−1

e−
µ2

8λmax(Σ) (1− η)

)

=
2√
2π

((
1 + η

2

)n ‖µ‖2∞ d(1− η)

λmin (Σ)
+

4κd

n

) 1
2

+

(
1

2
− Φ

(
− µ

2σ

√
d
))

ηd

+
µ
√
d

2σ
√
2π

((
η + e−

µ2

8σ2 (1 − η)

)d

− ηd −
(
η + e−

µ2

8σ2 (1− η)

)d−1

e−
µ2

8σ2 (1− η)

)

=
2√
2π

((
1 + η

2

)n ‖µ‖2∞ d(1− η)

λmin (Σ)
+

4κd

n

) 1
2

+

(
1

2
− Φ

(
− µ

2σ

√
d
))

ηd

+
ηµ

√
d

2σ
√
2π

((
η + e−

µ2

8σ2 (1 − η)

)d−1

− ηd−1

)
.
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E (LDA + MNAR) Proofs of Section 5.2.1

E.1 Proof of Proposition 5.8

Proof. By definition of the Bayes classifier (see (20)),

h⋆
m(Xobs(m))

= sign(E
[
Y |Xobs(m),M = m

]
)

= sign
(
P
(
Y = 1 | Xobs(m),M = m

)
− P

(
Y = −1 | Xobs(m),M = m

))

= sign

(
P
(
Y = 1, Xobs(m),M = m

)

P(Xobs(m),M = m)
− P

(
Y = −1, Xobs(m),M = m

)

P(Xobs(m),M = m)

)

= sign
(
P
(
Xobs(m) | M = m,Y = 1

)
πm,1 − P

(
Xobs(m) | M = m,Y = −1

)
πm,−1

)
,

with πm,k = P (M = m,Y = k) . Thus, our objective is to study when

log

(
P
(
Xobs(m) | M = m,Y = 1

)

P
(
Xobs(m) | M = m,Y = −1

)
)

> log

(
πm,−1

πm,1

)
.

Note that by using Assumption 9, we have Xobs(m)|M = m,Y = k ∼ N (µm,k,Σm). Therefore,

log

(
fXobs(m)|M=m,Y =1(x)

fXobs(m)|M=m,Y =−1(x)

)

= log


 (

√
2π)−(d−‖m‖0)

√
det(Σ−1

m ) exp
(
− 1

2 (x− µ1,m)⊤Σ−1
m (x− µ1,m)

)

(
√
2π)−(d−‖m‖0)

√
det(Σ−1

m ) exp
(
− 1

2 (x − µ−1,m)⊤Σ−1
m (x− µ−1,m)

)




= −1

2
(x− µ1,m)⊤Σ−1

m (x− µ1,m) +
1

2
(x− µ−1,m)⊤Σ−1

m (x − µ−1,m)

= (µ1,m − µ−1,m)⊤Σ−1
m

(
x− µ1,m + µ−1,m

2

)
.

Consequently,

h⋆
m(x) = sign

(
(µ1,m − µ−1,m)⊤Σ−1

m

(
x− µ1,m + µ−1,m

2

)
− log

(
πm,−1

πm,1

))
, (151)

which concludes the proof.

E.2 General lemmas for LDA misclassification control under Assumption 9.

Lemma E.1 (µ̂m misclassification probability). Grant Assumption 9. Then,

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)
= Φ

(
−1

2

∥∥∥Σ− 1
2

m (µm,1 − µm,−1)
∥∥∥
)
, (152)

and

= Φ




(
Σ

− 1
2

m (µ̂m,1 − µ̂m,−1)
)⊤

Σ
− 1

2
m

(
µm,−1 − µ̂m,1+µ̂m,−1

2

)

∥∥∥Σ− 1
2

m (µ̂m,1 − µ̂m,−1)
∥∥∥


 (153)

Symmetrically,

P
(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)
= Φ

(
−1

2

∥∥∥Σ− 1
2

m (µm,1 − µm,−1)
∥∥∥
)
, (154)
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and

P

(
ĥm(Xobs(m)) = −1 | Y = 1,M = m,Dn

)

= Φ


−

(
Σ

− 1
2

m (µ̂m,1 − µ̂m,−1)
)⊤

Σ
− 1

2
m

(
µm,1 − µ̂m,1+µ̂m,−1

2

)

∥∥∥Σ− 1
2

m (µ̂m,1 − µ̂m,−1)
∥∥∥


 (155)

with Φ the c.d.f. of a standard Gaussian distribution.

Proof. Using Proposition 5.8, and recalling that the classes are balanced on each missing patterns
(πm,1 = πm,−1),

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)

= P

(
(µm,1 − µm,−1)

⊤ Σ−1
m

(
Xobs(m) −

µm,1 + µm,−1

2

)
> 0 | Y = −1,M = m

)
.

Let N = Σ
− 1

2
m (Xobs(m) − µm,−1). By Assumption 9,

N |Y = −1,M = m ∼ N (0, Idd−‖m‖0
). (156)

Letting γ = Σ
− 1

2
m (µm,1 − µm,−1), we have

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)
= P

(
γ⊤N − 1

2
‖γ‖2 > 0 | Y = −1,M = m

)

= P

(
γ⊤N

‖γ‖ >
1

2
‖γ‖ | Y = −1,M = m

)

= Φ

(
−1

2
‖γ‖
)
.

Similarly, using Proposition 5.8,

P
(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)

= P

(
(µm,1 − µm,−1)

⊤
Σ−1

m

(
Xobs(m) −

µm,1 + µm,−1

2

)
< 0 | Y = 1,M = m

)
.

Let N = Σ
− 1

2
m (Xobs(m) − µm,1). By Assumption 9,

N |Y = 1,M = m ∼ N (0, Idd−‖m‖0
). (157)

Letting γ = Σ
− 1

2
m (µm,1 − µm,−1), we have

P
(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)
= P

(
γ⊤N +

1

2
‖γ‖2 < 0 | Y = 1,M = m

)

= P

(
γ⊤N

‖γ‖ < −1

2
‖γ‖ | Y = 1,M = m

)

= Φ

(
−1

2
‖γ‖
)
.

This proves the first and third statements. Regarding the second and fourth statements, following the
same strategy as in the proof of Corollary D.1, we have

P

(
h̃m(Xobs(m)) = 1 | Y = −1,Dn

)

= P

(
(µ̃1,m − µ̃−1,m)

⊤
Σ−1

m

(
Xobs(m) −

µ̃1,m + µ̃−1,m

2

)
> 0 | Y = −1,Dn

)
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Let N = Σ
− 1

2
m (Xobs(m) − µ−1,m). By Lemma F.6, N |Y = −1 ∼ N (0, Idd−‖m‖0

). Since

(Xobs(m), Y ) and Dn are independent

N |Y = −1,Dn ∼ N (0, Idd−‖m‖0
). (158)

Letting γ̃ = Σ
− 1

2
m (µ̃1,m − µ̃−1,m), we have

P
(
h⋆
m(Xobs(m)) = 1 | Y = −1,Dn

)

= P

(
γ̃⊤N + γ̃⊤Σ

− 1
2

m

(
µ−1,m − µ̃1,m + µ̃−1,m

2

)
> 0 | Y = −1,Dn

)

= P

(
γ̃⊤N

‖γ̃‖ > − γ̃⊤

‖γ̃‖Σ
− 1

2
m

(
µ−1,m − µ̃1,m + µ̃−1,m

2

)
| Y = −1,Dn

)

= Φ

(
γ̃⊤

‖γ̃‖Σ
− 1

2
m

(
µ−1,m − µ̃1,m + µ̃−1,m

2

))
.

Regarding the fourth statement, the proof is similar. Indeed,

P

(
h̃m(Xobs(m)) = −1 | Y = 1,Dn

)

= P

(
(µ̃1,m − µ̃−1,m)⊤ Σ−1

m

(
Xobs(m) −

µ̃1,m + µ̃−1,m

2

)
< 0 | Y = 1

)
.

Let N = Σ
− 1

2
m (Xobs(m) − µ1,m). By Lemma F.6, and since (Xobs(m), Y ) and Dn are independent,

N |Y = 1,Dn ∼ N (0, Idd−‖m‖0
). (159)

Letting γ̃ = Σ
− 1

2
m (µ̃1,m − µ̃−1,m), we have

P

(
h̃m(Xobs(m)) = −1 | Y = 1,Dn

)

= P

(
γ̃⊤N + γ̃⊤Σ

− 1
2

m

(
µ1,m − µ̃1,m + µ̃−1,m

2

)
< 0 | Y = 1,Dn

)

= P

(
γ̃⊤N

‖γ̃‖ < − γ̃⊤

‖γ̃‖Σ
− 1

2
m

(
µ1,m − µ̃1,m + µ̃−1,m

2

)
| Y = 1,Dn

)

= Φ

(
− γ̃⊤

‖γ̃‖Σ
− 1

2
m

(
µ1,m − µ̃1,m + µ̃−1,m

2

))
.

Lemma E.2. Grant Assumption 9. Assume that we are given two estimates µ̃1 and µ̃−1. Then, for

all m ∈ M, the classifier h̃m defined in Equation (12) satisfies

∣∣P
(
h̃m(Xobs(m)) = 1 | Y = −1,M = m,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)∣∣

≤ 3

2
√
2π

∥∥∥Σ− 1
2

m (µ̃m,−1 − µm,−1)
∥∥∥+ 1

2
√
2π

∥∥∥Σ− 1
2

m (µ̃m,1 − µm,1)
∥∥∥ (160)

and symmetrically,

∣∣P
(
h̃m(Xobs(m)) = −1 | Y = 1,M = m,Dn

)
− P

(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)∣∣

≤ 3

2
√
2π

∥∥∥Σ− 1
2

m (µ̃m,1 − µm,1)
∥∥∥+ 1

2
√
2π

∥∥∥Σ− 1
2

m (µm,−1 − µ̃m,−1)
∥∥∥ (161)

39



Proof. To prove Inequality (160), notice that, by Lemma E.1,

∣∣P
(
h̃m(Xobs(m)) = 1 | Y = −1,M = m,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)∣∣

=

∣∣∣∣∣∣∣
Φ




(
Σ

− 1
2

m (µ̃m,1 − µ̃m,−1)
)⊤

Σ
− 1

2
m

(
µm,−1 − µ̃m,1+µ̃m,−1

2

)

∥∥∥Σ− 1
2

m (µ̃m,1) − µ̃m,−1)
∥∥∥




−Φ


−

∥∥∥Σ− 1
2

m (µm,1 − µm,−1)
∥∥∥

2



∣∣∣∣∣∣
.

We can then apply the same steps as in the proof of Lemma D.3, and the result follows. The proof
of Inequality (161) is similar.

Lemma E.3. Grant Assumption 9, with balanced classes. Assume that we are given two estimates

µ̃1 and µ̃−1. Then, for all m ∈ M, the classifier h̃m defined in Equation (7) satisfies

Rmis(h̃)−Rmis(h
⋆)

≤
∑

m∈M

1√
2π

(
E

[∥∥∥Σ− 1
2

m (−µ̃m,1 + µm,1)
∥∥∥+

∥∥∥Σ− 1
2

m (µ̃m,−1 − µm,−1)
∥∥∥
])

pm.

Proof.

Rmis(h̃)−Rmis(h
⋆)

= P

(
h̃(Xobs(M),M) 6= Y

)
− P

(
h⋆(Xobs(M),M) 6= Y

)

=
∑

m∈M

(
P

(
h̃(Xobs(M),M) 6= Y | M = m

)
− P

(
h⋆(Xobs(M),M) 6= Y | M = m

))
pm

=
∑

m∈M

(
P

(
h̃m(Xobs(m)) 6= Y | M = m

)
− P

(
h⋆
m(Xobs(m)) 6= Y | M = m

))
pm

(using (7))

=
∑

m∈M
πm,−1

(
P

(
h̃m(Xobs(m)) = 1 | Y = −1,M = m

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

))

+
∑

m∈M
πm,1

(
P

(
h̃m(Xobs(m)) = −1 | Y = 1,M = m

)
− P

(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

))
.

Note that

P

(
h̃m(Xobs(m)) = 1 | Y = −1,M = m

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)
(162)

= E

[
P

(
h̃m(Xobs(m)) = 1 | Y = −1,M = m,Dn

)
− P

(
h⋆
m(Xobs(m)) = 1 | Y = −1,M = m

)]

(163)

≤ 1

2
√
2π

E

[
3
∥∥∥Σ− 1

2
m (µm,−1 − µ̃m,−1)

∥∥∥+
∥∥∥Σ− 1

2
m (µm,1 − µ̃m,1)

∥∥∥
]
, (164)

according to Lemma E.2. Similarly,

P

(
h̃m(Xobs(m)) = −1 | Y = 1,M = m

)
− P

(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)
(165)

= E

[
P

(
h̃m(Xobs(m)) = −1 | Y = 1,M = m,Dn

)
− P

(
h⋆
m(Xobs(m)) = −1 | Y = 1,M = m

)]

(166)

≤ πm,−1

2
√
2π

(
E

[
3
∥∥∥Σ− 1

2
m (−µ̃m,1 + µm,1)

∥∥∥+
∥∥∥Σ− 1

2
m (µ̃m,−1 − µm,−1)

∥∥∥
])

. (167)
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Consequently, since for all m ∈ M, π1,m = π−1,m,

Rmis(h̃)−Rmis(h
⋆)

≤
∑

m∈M

1√
2π

(
E

[∥∥∥Σ− 1
2

m (−µ̃m,1 + µm,1)
∥∥∥+

∥∥∥Σ− 1
2

m (µ̃m,−1 − µm,−1)
∥∥∥
])

pm.

E.3 Lemmas for Theorem 5.9

Lemma E.4. Grant Assumption 9. Then, for all k ∈ {−1, 1},

E
[
(µ̃m,k − µm,k)(µ̃m,k − µm,k)

⊤] = E

[
1Nm,k

n
>τ

1

Nm,k

]
Σm + P

(
Nm,k

n
≤ τ

)
µm,kµ

⊤
m,k

where µ̃m,k is the estimate defined at (11).

Proof. We have

E
[
(µ̃m,k − µm,k)(µ̃m,k − µm,k)

⊤]

= E

[
(µ̂m,k1Nm,k

n
>τ

− µm,k1Nm,k
n

>τ
+ µm,k1Nm,k

n
>τ

− µm,k)

(µ̂m,k1Nm,k
n

>τ
− µm,k1Nm,k

n
>τ

+ µm,k1Nm,k
n

>τ
− µm,k)

⊤
]

= E

[
1Nm,k

n
>τ

(µ̂m,k − µm,k)(µ̂m,k − µm,k)
⊤ + 1Nm,k

n
>τ

(
1Nm,k

n
>τ

− 1
)
(µ̂m,k − µm,k)µ

⊤
m,k

+ 1Nm,k
n

>τ

(
1Nm,k

n
>τ

− 1
)
µm,k(µ̂m,k − µm,k)

⊤ +
(
1Nm,k

n
>τ

− 1
)2

µm,kµ
⊤
m,k

]
.

Since 1Nm,k
n

>τ

(
1Nm,k

n
>τ

− 1
)
= 0, we obtain

E

[
1Nm,k

n
>τ

(µ̂m,k − µm,k)(µ̂m,k − µm,k)
⊤ +

(
1− 1Nm,k

n
>τ

)
µm,kµ

⊤
m,k

]

= E

[
1Nm,k

n
>τ

(µ̂m,k − µm,k)(µ̂m,k − µm,k)
⊤
]
+ P

(
Nm,k

n
≤ τ

)
µm,kµ

⊤
m,k.

Finally, remark that µ̂m,k − µm,k|Nm,k ∼ N (0,Σm/Nm,k). Thus, we conclude, noticing that

E

[
1Nm,k

n
>τ

(µ̂m,k − µm,k)(µ̂m,k − µm,k)
⊤
]

= E

[
E

[
1Nm,k

n
>τ

(µ̂m,k − µm,k)(µ̂m,k − µm,k)
⊤ | Nm,k

]]

= E

[
1Nm,k

n
>τ

E
[
(µ̂m,k − µm,k)(µ̂m,k − µm,k)

⊤ | Nm,k

]]

= E

[
1Nm,k

n
>τ

Nm,k

]
Σm.

Lemma E.5. Grant Assumption 9. Then, for all k ∈ {−1, 1},

E

[∥∥∥Σ− 1
2

m (µ̃m,k − µm,k)
∥∥∥
]
≤
(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

,

where µ̃m,k is the estimate defined in (11).
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Proof. By Jensen’s inequality,

E

[∥∥∥Σ− 1
2

m (µ̃m,k − µm,k)
∥∥∥
]

≤ E

[∥∥∥Σ− 1
2

m (µ̃m,k − µm,k)
∥∥∥
2
] 1

2

= E

[
tr

(∥∥∥Σ− 1
2

m (µ̃m,k − µm,k)
∥∥∥
2
)] 1

2

= E

[
tr

((
Σ

− 1
2

m (µ̃m,k − µm,k)
)⊤

Σ
− 1

2
m (µ̃m,k − µm,k)

)] 1
2

= E

[
tr

(
Σ

− 1
2

m (µ̃m,k − µm,k)
(
Σ

− 1
2

m (µ̃m,k − µm,k)
)⊤)] 1

2

= E

[
tr
(
Σ

− 1
2

m (µ̃m,k − µm,k)(µ̃m,k − µm,k)
⊤Σ

− 1
2

m

)] 1
2

= tr
(
Σ

− 1
2

m E
[
(µ̃m,k − µm,k)(µ̃m,k − µm,k)

⊤]Σ− 1
2

m

) 1
2

= tr

(
Σ

− 1
2

m

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
Σm + P

(
Nm,k

n
≤ τ

)
µm,kµ

⊤
m,k

)
Σ

− 1
2

m

) 1
2

(using Lemma E.4)

=

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)
tr
(
Σ

− 1
2

m µm,kµ
⊤
m,kΣ

− 1
2

m

)) 1
2

=

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

.

E.4 Proof of Theorem 5.9

Proof. Let Aτ := {m ∈ {0, 1}d|pm < τ} be the set of missing pattern with occurrence probability
smaller than τ . According to Lemma E.3 and Lemma E.5, we have

Rmis(h̃)−Rmis(h
⋆)

≤
∑

m∈M

1√
2π

(
E

[∥∥∥Σ− 1
2

m (−µ̃m,1 + µm,1)
∥∥∥+

∥∥∥Σ− 1
2

m (µ̃m,−1 − µm,−1)
∥∥∥
])

pm

≤
∑

m∈M

∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm

=
∑

m∈Aτ

∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm<τ

+
∑

m/∈Aτ

∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm≥τ .
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Now, for all m ∈ Aτ , recalling that τ ≥
√
d/n,

∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm<τ

(168)

≤
∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

nτ

]
(d− ‖m‖0) +

∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm<τ (169)

≤
∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

]
τ +

∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm<τ (170)

≤ 2√
2π

(
1 +

‖µm‖2
λmin(Σm)

) 1
2

pm1pm<τ . (171)

On the other hand, for all m /∈ Aτ ,

P

(
Nm,k

n
≤ τ

)
= P (Nm,k ≤ nτ)

= P

(
1Nm,k>0

N2
m,k

≥ 1

n2τ2

)
+ P (Nm,k = 0)

≤ 32n2τ2

p2m(n+ 1)(n+ 2)
+ (1− pm)

n

≤ 32τ2

p2m
+ (1− pm)n ,

using Markov Inequality and Inequality (180). Then, for all m /∈ Aτ , we have

∑

k=±1

1√
2π

(
E

[
1Nm,k

n
>τ

1

Nm,k

]
(d− ‖m‖0) + P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

pm1pm≥τ

(172)

≤ pm1pm≥τ√
2π

∑

k=±1

[(
E

[
1Nm,k

n
>τ

Nm,k

]
(d− ‖m‖0)

) 1
2

+

(
P

(
Nm,k

n
≤ τ

)∥∥∥Σ− 1
2

m µm,k

∥∥∥
2
) 1

2

]

(173)

≤ 1√
2π

∑

k=±1

[(
4(d− ‖m‖0)
pm(n+ 1)

) 1
2

+

(
32τ2

p2m
+ (1− pm)n

)1/2 ∥∥∥Σ− 1
2

m µm,k

∥∥∥
]
pm1pm≥τ

(using Inequality (178))

≤ 4τ
√
pm1pm≥τ√
2π

+

(
4τ√
π
+

1√
2π

pm(1− pm)n/2
)
1pm≥τ

∑

k=±1

∥∥∥Σ− 1
2

m µm,k

∥∥∥ (174)

≤ 4τ
√
pm1pm≥τ√
2π

+

(
4τ√
π
+

1√
2π

pm(1− pm)n/2
)

2 ‖µm‖√
λmin(Σm)

1pm≥τ . (175)

Combining (171) and (175), we obtain

Rmis(h̃)−Rmis(h
⋆)

≤
∑

m∈{0,1}d

2√
2π

(
1 +

‖µm‖2
λmin(Σm)

) 1
2

pm1pm<τ +

(
4√
2π

+
8√
π

‖µm‖√
λmin(Σm)

)
τ1pm≥τ

+

√
2 ‖µm‖√

πλmin(Σm)
pm(1 − pm)n/21pm≥τ .
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Since

2√
2π

(
1 +

‖µm‖2
λmin(Σm)

) 1
2

≤ 2√
2π

+
2√
2π

‖µm‖√
λmin(Σm)

<
4√
2π

+
8√
π

‖µm‖√
λmin(Σm)

,

we have

Rmis(h̃)−Rmis(h
⋆) ≤

∑

m∈{0,1}d

(
4√
2π

+
8√
π

‖µm‖√
λmin(Σm)

)
τ ∧ pm

+
∑

m∈{0,1}d

√
2 ‖µm‖√

πλmin(Σm)
pm(1− pm)n/21pm≥τ . (176)

F Technical results

Lemma F.1 (Hoeffding’s inequality). Consider a sequence (Xk)1≤k≤n of independent real-valued
random variables satisfying, for two sequences (ak)1≤k≤n, (bk)1≤k≤n of real numbers such that
ak < bk for all k,

∀k, P(ak ≤ Xk ≤ bk) = 1.

Let

Sn =
n∑

i=1

Xi − E [Xi] .

Then, for all λ ∈ R,

E [exp(λSn)] ≤ exp

(
λ2

8

n∑

i=1

(bi − ai)
2

)
.

Lemma F.2. (Devroye et al., 2013, Lemma A2 p 587) Let B ∼ B(p, n), we have

1

1 + np
≤ E

[
1

1 +B

]
≤ 1

p(n+ 1)
(177)

and

E

[
1{B > 0}

B

]
≤ 2

p(n+ 1)
. (178)

Proof. • To prove the lower bound in (177), we use Jensen’s inequality as follows:

1

1 + np
=

1

1 + EB
≤ E

[
1

1 +B

]
.

• To prove the upper bound in (177), note that

E

[
1

1 +B

]
=

n∑

i=0

(
n

i

)
1

1 + i
pi(1− p)n−i

=

n∑

i=0

n!

i!(n− i)!(1 + i)
pi(1 − p)n−i

=
1

(n+ 1) p

n∑

i=0

(n+ 1)!

(i + 1)!(n+ 1− i− 1)!
pi+1(1− p)n−i

=
1

(n+ 1) p

n∑

i=0

(
n+ 1

i+ 1

)
pi+1(1− p)n+1−i−1

≤ 1

(n+ 1) p
,

using binomial formula.
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• For (178), we use 1/x ≤ 2/(x+ 1) for all x ≥ 1 together with the previous result.

Following the same idea, we can establish an upper bound on the square in the following lemma.

Lemma F.3. Given an B ∼ B(n, p), we have that

E

[
1

(1 +B)2

]
≤ 2

(n+ 1)(n+ 2)p2
(179)

and

E

[
1B>0

B2

]
≤ 8

(n+ 1)(n+ 2)p2
(180)

Proof. • In order to prove (179), note that

E
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1
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]
=
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i=0

(
n

i

)
1
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1

j + 1

j + 1

j
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1
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pk(1− p)n+2−k

≤ 2
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.

• Inequality (180) can be deduced using the fact that, for all x ≥ 1, 1/x ≤ 2/(x+ 1).

Lemma F.4 (Diagonal trace inequality). Given a symmetric matrix A ∈ Mn,n(R) and a diagonal
matrix B = (bi)i,i ∈ Mn,n(R) where all the terms are bounded by a constant C ∈ R, we have that

tr(ABA) ≤ Ctr(A2).
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Proof. Rewrite the product of the matrices block-by-block, where Ai ∈ Mn,1(R) are the columns
of A:

tr



[A1 A2 A3 · · · An]




b1 0 0 · · · 0
0 b2 0 · · · 0
0 0 b3 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn







A⊤
1

A⊤
2

A⊤
3
...

A⊤
n







= tr



[b1A1 b2A2 b3A3 · · · bnAn]




A⊤
1

A⊤
2

A⊤
3
...

A⊤
n







= tr

(
n∑

i=1

biAiA
⊤
i

)

=

n∑

i=1

bitr
(
AiA

⊤
i

)

≤ C

n∑

i=1

tr
(
AiA

⊤
i

)

= Ctr(A2)

The subsequent lemma, which provides a bound on the maximum of sub-Gaussian random variables,
has been derived from Section 8.2 of Arlot (2018).

Lemma F.5 (Maximum of sub-Gaussian variables). Given Z1, ..., Zk sub-Gaussian random vari-
ables with variance factor v, i.e.

∀k ∈ [K], E [Zk] = 0 and ∀λ ∈ R, log (E [expλZk]) ≤
vλ2

2
,

then

E

[
max
i∈[K]

Zk

]
≤
√
2v log(K).

Lemma F.6 (Projection of a Gaussian vector). Given a missing pattern m ∈ {0, 1}d and a Gaussian
vector X ∼ N (µ,Σ), then the vector with missing values Xobs(m) is still a Gaussian vector and

Xobs(m) ∼ N (µobs(m),Σobs(m)×obs(m)).

Proof. Since X is a Gaussian vector, every linear combination of its coordinates is a Gaussian
variable. In particular, every linear combination of the subset obs(m) of coordinates is a Gaussian
variable, then Xobs(m) is a Gaussian vector.

To prove the second statement, for a given u ∈ R
d−‖m‖0 , we will denote u′ ∈ R

d the imputed-by-0

vector, i.e. u′
j = 0 if mj = 1 and u′

j = ui with i = j −∑j
k=1 mk otherwise. Then,

∀u ∈ R
d−‖m‖0 , ΨXobs(m)

(u) = E
[
exp(iu⊤Xobs(m))

]

= E
[
exp(i(u′)⊤X)

]

= exp(i(u′)⊤µ− 1

2
(u′)⊤Σ(u′)) (X ∼ N (µ,Σ))

= exp(iu⊤µobs(m) −
1

2
u⊤Σobs(m)×obs(m)u)
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