
HAL Id: hal-04575173
https://hal.science/hal-04575173v2

Preprint submitted on 24 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Role of melting and solidification in the spreading of an
impacting water drop

Wladimir Sarlin, Rodolphe Grivet, Julien Xu, Axel Huerre, Thomas Séon,
Christophe Josserand

To cite this version:
Wladimir Sarlin, Rodolphe Grivet, Julien Xu, Axel Huerre, Thomas Séon, et al.. Role of melting and
solidification in the spreading of an impacting water drop. 2024. �hal-04575173v2�

https://hal.science/hal-04575173v2
https://hal.archives-ouvertes.fr


Under consideration for publication in J. Fluid Mech. 1

Banner appropriate to article type will appear here in typeset article

Role of melting and solidification in the spreading of
an impacting water drop
Wladimir Sarlin1†, Rodolphe Grivet1, Julien Xu1, Axel Huerre2, Thomas Séon3,
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The present study reports experiments of water droplets impacting on ice or on a cold metal
substrate, with the aim of understanding the effects of liquid solidification or substrate melting
on the impingement process. Both liquid and substrate temperatures are varied, as well as the
height of fall of the droplet. The dimensionless maximum spreading diameter, 𝛽𝑚, is found to
increase with both temperatures as well as with the impact velocity. Here 𝛽𝑚 is reduced when
liquid solidification, which enhances dissipation, is present, whereas fusion, i.e., substrate
melting, favours the spreading of the impacting droplet. These observations are rationalized
by extending an existing model of effective viscosity, in which phase change alters the size
and shape of the developing viscous boundary layer, thereby modifying the value of 𝛽𝑚.
The use of this correction allows us to adapt a scaling recently developed in the context of
isothermal drop impacts to propose a law giving the maximum diameter of an impacting
water droplet in the presence of melting or solidification. Finally, additional experiments of
dimethyl sulfoxide drop impacts onto a cold brass substrate have been performed and are
also captured by the proposed modelling, generalizing our results to other fluids.

Key words:

1. Introduction
In his poem De Rerum Natura, Lucretius asks: “don’t you see, besides, how drops of water
falling down against the stones at last bore through the stones?”. This sentence, dating back
to the first-century BC, is a testament to the long research interest for the problem of drop
impacts on a substrate, which is always of topicality nowadays (Josserand & Thoroddsen
2016; Blanken et al. 2021; Cheng et al. 2022). A better understanding of the droplet dynamics
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and maximum spreading diameter after impact is motivated by the wide range of industrial
and natural applications such as, amongst others, spray deposition (Pasandideh-Fard et al.
2002), aerosol generation (Joung & Buie 2015), or raindrop erosion (Zhao et al. 2015). This
led to the elaboration of models describing single drop impacts in the capillary and viscous
limits (Eggers et al. 2010), or in the transition between these two asymptotic regimes (Laan
et al. 2014; Lee et al. 2016), in an isothermal context (i.e., when no thermal effects are
involved).

The particular configuration of drop impact involving phase change also received a
significant attention due to its relevance for three-dimensional or inkjet printing (Wang
et al. 2016; Lohse 2022), spray coating or cooling processes (Shukla & Kumar 2015;
Breitenbach et al. 2018), or aircraft icing problematics (Baumert et al. 2018), for instance.
Several studies focused on droplets impinging on heated walls (Moita et al. 2010; Liang &
Mudawar 2017; Quéré 2013), and identified different regimes for the spreading dynamics.
In particular, Chandra & Avedisian (1991) explored experimentally the case of 𝑛-heptane
droplets impinging at a low impact velocity on a stainless steel substrate whose surface
temperature could be varied from 24 ℃ to 250 ℃, encompassing both the liquid boiling
point and the Leidenfrost point. This allowed these authors to describe the spreading process
below and above the Leidenfrost point. In the second situation, the impacting droplet levitates
above the substrate, due to the formation of a vapour layer under the expanding liquid film.
From there, Tran et al. (2012) investigated water drop impacts on hot surfaces, and provided
a comprehensive phase diagram highlighting the existence of three regimes: contact boiling,
gentle film boiling, and spraying film boiling. Staat et al. (2015) studied the impact of ethanol
droplets on a hot surface, varying both the Weber number and the substrate temperature, to
determine the transition towards splashing and the dynamic Leidenfrost point (onset of
the Leidenfrost effect). They evidenced a strong dependency of the splashing threshold
with the substrate temperature. The transition regime between contact boiling and film
boiling has been investigated by Shirota et al. (2016) using total internal reflection imaging.
Another experimental contribution from Antonini et al. (2013) revealed that the Leidenfrost
effect, superhydrophobicity, and sublimation of the substrate have a similar influence on the
dynamics of an impinging drop, with droplet rebound being observed in each situation. Liu
et al. (2020) recently studied drop impacts on heated nanostructures, and highlighted that
hot nanotextures can enhance jetting and splashing during the impact process.

Although the case of drop impact on a hot wall has been the subject of important scientific
literature, fewer experimental studies have been dedicated to situations featuring liquid
solidification or substrate melting. In a seminal contribution, Madejski (1976) derived a
theoretical analysis of the spreading dynamics of a liquid droplet impinging onto a solid
substrate cold enough to trigger solidification, based on energy conservation, alongside
experiments of metal drop impacts performed on different substrates. Numerous studies
have since been dedicated to the case of a metal drop impinging on a cold substrate,
providing estimates for the maximum spreading diameter (Pasandideh-Fard et al. 1998;
Gielen et al. 2020), or evidencing the intriguing self-peeling phenomenon occurring for a
cold enough surface temperature (de Ruiter et al. 2018). When studying the outcome of
water droplet impacts on a cold substrate, Ghabache et al. (2016) observed different crack
patterns developing in the resulting frozen puddle, depending on the surface temperature, and
proposed a model to estimate the thresholds towards the fragmentation and the hierarchical
regimes. Schremb et al. (2018) studied the impact of supercooled water droplets on a smooth
ice target, and developed an analytical framework to describe the lamella thinning as well as
the final ice thickness. Recently, Thiévenaz et al. (2020) studied the influence of solidification
(or freezing) on the maximum spreading of a water droplet impacting on a cold surface, at
rather large impact velocities. These authors proposed a model of effective viscosity which
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allowed them to successfully describe their experiments. If these studies focused on the
sole case of solidification during a drop impact, recent experimental works investigated the
thermodynamic configuration in which the droplet is able to melt the solid surface it impacts
(Jin et al. 2017; Ju et al. 2019; Lolla et al. 2022), but a model describing the effect of substrate
melting on the impact outcome is currently missing.

Therefore, a unified description of the influence of phase change on the maximum spreading
diameter resulting from a drop impact remains elusive. In particular, although these situations
are conceptually close, no modelling describes the effects of substrate melting and liquid
solidification on the impact outcome in a common framework. These aspects motivated the
present experimental study, which aims at investigating the case of a temperature-controlled
water droplet falling onto a cold substrate, made either of ice or of cold brass, in order
to understand the effects of substrate melting and liquid solidification on the maximum
spreading diameter.

2. Experimental set-up and methods
The experimental set-up designed to this end is schematized in Figure 1(a). It consists of
a 2.2 m high vertical beam, that holds an aluminium block that can be set at an adjustable
height. A vertical needle of outer diameter 1.83 mm passes through the block, which was
hollowed out to host a heating cartridge placed in contact with the needle and connected
to a generator. At the bottom of the beam, a cooling unit can be used as is, or to generate
an ice layer: it is made of a thin brass plate, cooled by a Peltier heat sink that is in turn
connected to a cold bath operating with a mixture of water and ethylene glycol. Drop impacts
can then be made directly onto cold brass, to study the role of liquid solidification during
the impingement process, or onto an ice layer, which is produced by depositing a certain
amount of water on the plate before freezing it rapidly with the help of the Peltier modulus.
When conducting experiments with the brass substrate, a perspex plate is placed on top of
it to limit the formation of frost, without altering much its surface temperature due to the
low thermal effusivity of plastic. This protection is removed just before performing a drop
impact. A thermocouple, placed on top of the substrate, allows us to adjust the heat flux
imposed by the Peltier so that the brass or ice layer is set at an initial surface temperature
𝑇𝑠. At the beginning of an experiment, the needle is positioned so that its tip is located at
a distance 𝐻 from the substrate (with a 4 mm accuracy). Then, the liquid is gently pushed
into the needle using a syringe pump, and a pendant drop is formed. The droplet temperature
is set and maintained at a controlled value 𝑇𝑑 using a regulation loop, based on a tension
generator connected to the heating cartridge and to two thermocouples, that are respectively
placed inside the needle and in contact with the cartridge. As long as the temperature in the
needle is lower than 𝑇𝑑 , the cartridge is powered and heats the liquid up, but it is switched off
when the measured temperature becomes greater than or equal to 𝑇𝑑 . This regulation system
allows us to quickly obtain a very stable initial temperature for the pendant drop, which is
measured with a ±2 ℃ accuracy. The syringe pump is then activated anew to slowly inject
liquid inside the drop so that it eventually reaches its critical volume and detaches from the
needle under the action of gravity. As a result, a droplet of initial diameter 𝐷0 starts its fall
over the vertical distance 𝐻 before impacting and spreading over the ice or brass substrate.
This process is recorded from above by a high-speed camera, which operates at 5000 fps.

In most experiments reported in the present study, the liquid used is pure water, whose
initial temperature has been varied between 18 ℃ and 80 ℃, while the substrate temperature
𝑇𝑠 ranged between −33 ℃ and −2 ℃ for both the ice or brass surface. The height 𝐻 has
been explored in the range [0.04 − 2.2] m so that the resultant impact velocity𝑈 of the water
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Figure 1: (a) Schematic representation of the experimental set-up. The initial diameter of the liquid droplet is
𝐷0, and the distance between its original position and the substrate is 𝐻. (b)-(e) Photographs of a transparent
water droplet spreading on melting tinted ice, with 𝑇𝑠 = −5 ℃, 𝑇𝑑 = 25 ℃, and 𝐻 = 0.4 m, at times (b)
𝑡 = 0, (c) 𝑡 = 3.5 ms, (d) 𝑡 = 10 ms, and (e) 𝑡 = 35 ms after impact. (f)-(i) Pictures of a tinted water droplet
spreading on cold brass, with 𝑇𝑠 = −32.2 ℃, 𝑇𝑑 = 19.3 ℃, and 𝐻 = 1.5 m, at times (f) 𝑡 = 0, (g) 𝑡 = 1 ms,
(h) 𝑡 = 3.6 ms and (i) 𝑡 = 35 ms after impact. In (b)-(e) and (f)-(i), melting and solidification are evidenced
by the increase or decrease of the brightness with time, respectively, which reveals that more and more ice
melts (respectively, an increasing amount of water solidifies). In (d), the red line is the extracted contour of
the liquid film when it reaches its maximum radial extent. Circles of diameter 𝐷min (yellow dashed line)
and 𝐷max (white dash-dotted line) corresponding to the averaged minimum and maximum droplet diameter,
respectively, are also represented. Horizontal bars in (b) and (f) give the scales for each corresponding image
sequence.

droplet, which is evaluated by a home-made code accounting for the air resistance, is varied
between 0.9 m.s−1 and 5.9 m.s−1.

A complementary set of experiments of dimethyl sulfoxide (DMSO) drop impacts on cold
brass have also been performed, as this fluid has significantly different thermal properties than
water, and also a reduced surface tension. For these particular tests, the droplet temperature
was kept constant (at 𝑇𝑑 = 25 ℃), whereas three substrate temperatures (𝑇𝑠 = −30 ℃,
𝑇𝑠 = 10 ℃, and 𝑇𝑠 = 30 ℃) and four initial heights (𝐻 = 10 cm, 𝐻 = 50 cm, 𝐻 = 128
cm, and 𝐻 = 170 cm) have been investigated. The explored surface temperatures have been
chosen so as to have one temperature above the DMSO freezing point (which is 𝑇 𝑓 ≃ 18.6
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℃), and two below. As a result, these experiments solely involve no phase change or liquid
solidification.

For each initial condition, experiments are repeated three times to ensure reproducibility.
Using standard correlations for the convective heat transfer of a sphere moving in a fluid (Yuge
1960), the maximum temperature drop during the fall of a water droplet can be estimated to
be less than 2 ℃ at worst, i.e., when 𝑇𝑑 = 80 ℃ and 𝐻 = 2.2 m, as described in Appendix
B. In the case of experiments with DMSO, for which 𝑇𝑑 is very close to the ambient air
temperature, the estimated change is below 1 ℃. As a result, we choose to neglect this effect
so that the droplet temperature at the time of impact is considered to be equal to 𝑇𝑑 . Finally,
the initial droplet diameter 𝐷0 has been measured for all experiments from the last image
showing the drop before collision with the substrate: it is found to be 𝐷0 ≃ 4.0 ± 0.15 mm
for water and 𝐷0 ≃ 3.2 ± 0.15 mm for DMSO.

3. Qualitative and quantitative results
In the present experiments, when a liquid droplet impacts the substrate, it starts spreading
radially on top of it. This dynamics happens on the characteristic kinetic time scale 𝐷0/𝑈,
of the order of milliseconds in the present experiments, until the drop reaches its maximum
spreading diameter. After this moment, there is no significant retraction of the contact line
on the substrate.

An important aspect is to determine whether the ice effectively melts on the same time
scale when a hot water droplet impacts on its surface, or if the liquid (water or DMSO)
solidifies when impinging a cold brass substrate. To this end, two kinds of preliminary
experiments are performed with water droplets, where either the solid or liquid phase is
dyed with fluorescein. The spreading is illuminated from above using a UV-blue light (with
a wavelength of 470 nm), and the camera lens is covered by a green optical filter (with
cutting wavelength of 495 nm), so that only fluorescent regions appear bright on the obtained
images. In the first situation, an ice layer is dyed during its formation, whereas the impinging
drop remains translucent. As fluorescence does not happen when fluorescein molecules are
diluted in solid water due to a self-quenching phenomenon (Huerre et al. 2021), its detection
is a signature of melted water originating from the ice layer. The pictures in Figure 1(b)-(e),
corresponding to an experiment for which 𝑇𝑠 = −5 ℃, 𝑇𝑑 = 25 ℃, and 𝐻 = 0.4 m, show
(b) the drop prior to the collision with the substrate, (c) the liquid film during the spreading
process, (d) the moment the maximum diameter is reached, and (e) the final footprint left
by the impact. If the initial droplet is almost not visible due to its transparency, the liquid
phase becomes increasingly luminous as time goes by: this demonstrates the melting of the
ice during the whole impact process. Conversely, in the second case corresponding to a
water drop impact onto cold brass, only the impinging liquid has been dyed. Figure 1(f)-(i)
presents a typical image sequence of this configuration for an experiment where 𝑇𝑠 = −32.2
℃, 𝑇𝑑 = 19.3 ℃, and 𝐻 = 1.5 m, with (f) the tinted droplet just before the first contact
with the substrate and (i) the resulting imprint long after the spreading phase. The fact that
the intensity in the liquid decreases with time, with some part of the expanding droplet
becoming increasingly dark, reveals that solidification of the liquid layer is at play. It should
be underlined that these phenomena are also visible during spreading: this suggests that the
two typical times of radial expansion and of phase change are of the same order, so that there
is no scale separation between the two processes. Another comment arises from the images
of Figure 1: the centre of the spreading water droplet pictured in Figure 1(h), photographed
at the moment the maximum diameter has been reached for the corresponding experiment,
remains fluorescent (hence, some liquid remains) and not completely dark (hence, solid) as
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in Figure 1(i). This shows that the arrest criterion does not correspond to the moment the
liquid-solid interface is reached by the droplet free surface.

In order to study quantitatively the impact outcome, we performed drop impact experiments
on ice or cold brass, in which only the liquid (water or DMSO) has been tinted with fluorescein
and the parameters 𝑇𝑑 , 𝑇𝑠, and 𝐻 have been varied systematically in the ranges indicated
in section 2. In what follows, we specifically focus on the maximum diameter reached by
the spreading liquid film that, under the presence of solidification or substrate melting, has
received little attention so far in the literature. It should be mentioned, though, that the
transient dynamics has already been addressed by several previous studies (Jin et al. 2017;
Ju et al. 2019; Thiévenaz et al. 2020), showing that the spreading dynamics itself was only
smoothly affected by the phase change.

The final contour of the contact line, obtained when the liquid film reaches its maximum
radial extent, can then be extracted as illustrated by the red solid line in Figure 1(d). Image
processing allows us to locate the positions of the local maxima (i.e., the tip of the digitations)
and minima (located between two fingers), relative to the centre of mass of the contour
(𝑂). From the corresponding radial distances to 𝑂, the minimum and maximum droplet
diameters, noted respectively as 𝐷min and 𝐷max, are defined as the averaged positions of
the local minima and maxima, respectively. From all our experiments, we observe a linear
relationship between 𝐷max with 𝐷min regardless of the droplet or substrate temperatures,
which reads 𝐷max = 1.07𝐷min for water and 𝐷max = 1.04𝐷min for DMSO. As a result, the
more the spreading, the more the fingers’ elongation. The proportionality between the two
diameters is an intriguing result, which suggests, for instance, that for water, the typical size
of the digitations 𝐷max−𝐷min is about 7% of the spreading diameter 𝐷min, and that 𝐷max can
be described in a similar way as 𝐷min. As a result, the maximum spreading ratio is defined
as 𝛽𝑚 ≡ 𝐷min/𝐷0, with 𝐷0 the initial diameter of the droplet.

In Figure 2, 𝛽𝑚 is presented as a function of the impact velocity 𝑈 for experiments
involving water with a fixed (a)-(c) droplet temperature 𝑇𝑑 or (d)-(f) substrate temperature
𝑇𝑠, which are indicated above each plot. The markers correspond to experiments involving
water, and for which (♦) solidification or (�) fusion (substrate melting) occurs, respectively.
As it was not always straightforward to distinguish which kind of phase change was at play for
a given experiment, the marker to assign is determined by the sign of the moving ice-liquid
front position, which is calculated from the results presented in section 4. In all cases, the
spreading ratio clearly increases with 𝑈. Furthermore, for a fixed value of 𝑇𝑑 , increasing 𝑇𝑠
results in larger 𝛽𝑚: the higher the substrate temperature, the larger the spreading ratio. This
is illustrated for ice in (b) and (c) where 𝑇𝑑 = 50 ℃ and 𝑇𝑑 = 80 ℃, respectively: in these
situations, experiments conducted at 𝑇𝑠 = −2 ℃ (light grey) are significantly above those
performed at 𝑇𝑠 = −25 ℃ (blue). To a lesser extent, at a given value of 𝑇𝑠, 𝛽𝑚 is larger
when 𝑇𝑑 is increased. This is especially visible in (f) for 𝑇𝑠 = −2 ℃, where a gentle order
exists with the value of the droplet temperature 𝑇𝑑 . These observations agree with the results
gathered by Jin et al. (2017) and Ju et al. (2019) for drop impacts on ice, and by Thiévenaz
et al. (2020) for droplet impingement on a cold metal substrate. Experiments with DMSO
present a similar evolution as the water drop impact tests presented in figure 2(a). They are
not included here, as they feature a slightly larger initial droplet temperature (𝑇𝑑 = 25 ℃).

4. Discussion and modelling
Building upon previous studies dedicated to drop impacts (Madejski 1976; Eggers et al. 2010;
Lagubeau et al. 2012; Laan et al. 2014; Lee et al. 2016; Josserand & Thoroddsen 2016), two
dimensionless numbers can be defined to describe the outcome of the impact process. On
one hand, the Weber number We ≡ 𝜌U2D0/𝛾 compares inertia to capillarity, with 𝜌 and 𝛾
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Figure 2: Evolution of the maximum spreading ratio, 𝛽𝑚 ≡ 𝐷min/𝐷0, as a function of the impact velocity
𝑈, for water drop impacts on (a) brass and (b)-(f) on ice. In (a)-(c), the droplet temperature is fixed at (a)
𝑇𝑑 = 19 ℃, (b) 𝑇𝑑 = 50 ℃, and (c) 𝑇𝑑 = 80 ℃, while the colourbar denotes the substrate temperature
𝑇𝑠 . Contrariwise, in (d)-(f) the substrate temperature is fixed at (d) 𝑇𝑠 = −25 ℃, (e) 𝑇𝑠 = −15 ℃, and
(f) 𝑇𝑠 = −2 ℃, while the markers’ colours represent this time the droplet temperature 𝑇𝑑 . The symbols
correspond to experiments with water where (♦) solidification or (�) fusion occurs, respectively. The nature
of the substrate is indicated above each plot.

the density and surface tension of the drop, respectively. The values for 𝜌 and 𝛾 involved in
the expression of We are taken here at 𝑇𝑑 using standard correlations (see Appendix A). This
choice was made as both the initial kinetic energy of the droplet and the surface energy once
the maximum diameter has been reached are expected to involve liquid volume (respectively,
surface) set at that temperature. Indeed, one can show that the thermal boundary layer in
the liquid is always much smaller than the liquid film thickness when the maximal diameter
is reached. On the other hand, the Reynolds number, defined here as Re ≡ UD0/𝜈f , with
𝜈 𝑓 the kinematic viscosity, compares inertia to viscous effects. This time, 𝜈 𝑓 is evaluated
at the melting point 𝑇 𝑓 since, in the spreading dynamics, this is the viscosity close to the
substrate (thus, near 𝑇 𝑓 ) that is relevant. Although this might seem surprising, at first glance,
as the fluid properties for We have been evaluated at 𝑇𝑑 , taking the kinematic viscosity at the
initial temperature of the droplet, 𝑇𝑑 , resulted in a significantly enhanced scattering of our
results, which clearly suggests that the melting point is more relevant to describe the typical
temperature of the dissipative layer for our experiments.

Except for a few tests that have a small falling distance 𝐻, most of the impact velocities in
the present experiments are greater than or equal to 2 m.s−1. For these data 230 < We < 2000
and 4500 < Re < 13100: as Re ≫ 100, the impact outcome is thus expected to be closer
to the inertial-viscous regime provided by Madejski (1976) than to the inertial-capillary
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experiencing freezing, (�) water droplets causing ice melting, and (9) DMSO droplets. (b)-(c) Schematic
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viscous boundary layer, ℎ is the position of the substrate, and 𝛿eff the size of the effective boundary layer.
𝑢𝑟 is the radial velocity field.

regime, and hence, our data to be relatively well parameterised by the Reynolds number. The
evolution of 𝛽𝑚 with Re is illustrated in Figure 3(a). Overall, the spreading ratio is found
to increase with the Reynolds number, but it can be noted that the data are scattered in this
representation. Indeed, an order appears with 𝑇𝑠, which is visible, for instance, for water drop
impacts in which ice melts (�), as illustrated by the inset of Figure 3(a). In addition, for a
given Reynolds number, experiments featuring water solidification (♦) have a systematically
smaller value for 𝛽𝑚 than data involving ice melting (�). Last but not least, DMSO drop
impacts (9), featuring either no phase change or liquid solidification, lie systematically above
experiments with water solidification (♦).

The poor collapse of the data in this representation is, in fact, expected as the spreading
dynamics is affected by the presence of phase change. In the case of isothermal drop
impacts belonging to the inertial-viscous regime, it has been shown that the arrest criterion
corresponds to the moment the viscous boundary layer reaches the free surface of the
expanding liquid film (Eggers et al. 2010). Building upon this, Thiévenaz et al. (2020)
evidenced the fact that, for experiments involving solidification, spreading appears to stop
when the sum of the growing ice thickness and the developing viscous boundary layer reaches
the free-surface elevation of the expanding droplet. Further possible evidence of such an arrest
criterion may be found in the study performed by Pasandideh-Fard et al. (1998), who studied
tin drop impacts onto a cold stainless steel substrate. Indeed, in the numerical simulations
conducted by these authors, it can be observed that spreading stops when the solidified layer
at the centre of the splat approaches the free surface, whereas other regions of the spreading
film remain in the liquid state.

These results from previous studies shed light on the relevance to predict the moment
the viscous boundary layer reaches the free surface of the liquid film when solidification
or substrate melting occurs. In such a situation, the ice grows or melts at the base of the
expanding liquid film, as illustrated in Figure 3(b)-(c), thus changing the position of the solid
surface on which the viscous boundary layer of thickness 𝛿𝜈 develops, thereby modifying the
value of 𝛽𝑚. The position of the moving interface can, at first order, be modelled by solving
the classical Stefan problem, if one assumes that the influence of advection is negligible. The
importance of this latter effect is known to depend on the Prandtl number Pr, which compares
the typical sizes of the thermal and viscous boundary layers (Roisman 2010). As in the case
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of water close to its melting point this number is quite large (Pr ∼ 14 at 0.01℃), advection
can safely be neglected in the absence of phase change (Moita et al. 2010). We assume that
the presence of solidification or melting does not change much this result much. Then, the
position of the moving interface can be estimated by solving the heat diffusion equations
in all phases (liquid, ice, and possible substrate) alongside the so-called “Stefan condition”,
which states that the velocity of the phase change front is directly related to the thermal flux
difference at the boundary. The calculation leads to the derivation of a self-similar solution
for the temperature field and the liquid-ice front position (see Appendix C for more details).
To put it in a nutshell, under these assumptions the front of the ice layer ℎ follows a diffusive
law of the form ℎ(𝑡) = 𝑠

√
𝛼eff𝑡, where 𝑠 = −1 in the case of melting (respectively, 𝑠 = 1

for solidification), and 𝛼eff is an effective thermal diffusivity (𝛼eff ⩾ 0). By introducing
𝜒 = 𝑠

√︁
𝛼eff/𝛼𝑖 , with 𝛼𝑖 the ice thermal diffusivity, 𝛼eff and 𝑠 are found numerically by

solving the transcendental equation on 𝜒,

𝜒
√
𝜋

2St
=

𝑒−𝜒
2/4

𝑟𝑖/𝑟𝑠 + erf (𝜒/2) +
𝑟𝑑

𝑟𝑖

𝑒−𝜒
2/(4𝜔𝑑 )

1 − erf
(
𝜒/(2√𝜔𝑑)

) 𝑇 𝑓 − 𝑇𝑑

𝑇 𝑓 − 𝑇𝑠
, (4.1)

with 𝑟𝑑 , 𝑟𝑖 and 𝑟𝑠 the thermal effusivities of the liquid, the ice, and the possible substrate,
respectively; 𝜔𝑑 = 𝛼𝑑/𝛼𝑖 , with 𝛼𝑑 the liquid thermal diffusivity; and St = 𝑐𝑝,𝑖 (𝑇 𝑓 −𝑇𝑠)/L 𝑓

the Stefan number, with 𝑐𝑝,𝑖 the ice thermal capacity and L 𝑓 the latent heat of fusion (for
the definitions of these quantities, see also Appendix A). For drop impacts on ice, it should
be noted that 𝑟𝑠 = 𝑟𝑖 . For each experiment, the value for 𝑠 obtained when solving equation
(4.1) indicates whether freezing (𝑠 = 1) or melting (𝑠 = −1) occurred, so that the symbols
used in Figures 2, 3(a), and 5 are chosen accordingly.

From there, following the approaches developed by Eggers et al. (2010), Roisman (2010)
and later by Thiévenaz et al. (2020), it is possible to estimate the size of the viscous boundary
layer relative to the initial position of the substrate, which is expected to eventually dictate
the arrest. This is done by considering the 𝑟 component of the axisymmetric Navier-Stokes
equations, in the Prandtl boundary layer framework for an incompressible flow:

𝜕𝑡𝑢𝑟 + 𝑢𝑟𝜕𝑟𝑢𝑟 + 𝑢𝑧𝜕𝑧𝑢𝑟 = 𝜈 𝑓 𝜕
2
𝑧𝑢𝑟 . (4.2)

Here 𝑢𝑟 and 𝑢𝑧 are the radial and vertical components of the velocity field, respectively, and
𝜕𝑎 stands for partial differentiation with respect to variable 𝑎. In the inviscid case and in
the absence of phase change, using the streamfunction 𝜓 defined from 𝑢𝑟 ≡ −𝜕𝑧𝜓/𝑟 and
𝑢𝑧 ≡ 𝜕𝑟𝜓/𝑟, the solution describing the impact can be taken as 𝜓 = −𝑟2𝑧/𝑡, corresponding
to a time decreasing arrest point flow with 𝑢𝑟 = 𝑟/𝑡 and 𝑢𝑧 = −2𝑧/𝑡. Then, in the situation of
a viscous flow subjected to solidification or melting, since both the viscous boundary layer,
growing from 𝑧 = ℎ(𝑡), and the solid-liquid front position ℎ(𝑡) follow a diffusive-in-time
evolution, we can consider the following ansatz for the streamfunction:

𝜓 ≡ √
𝜈 𝑓

𝑟2
√
𝑡
𝑓 (𝜁), (4.3)

where 𝜁 = [𝑧 − ℎ(𝑡)]/√𝜈 𝑓 𝑡 is the self-similar variable and 𝑓 an unknown function of 𝜁 . As
𝑢𝑟 = −(𝑟/𝑡) 𝑓 ′ (𝜁), 𝑓 ′ provides an insightful description of the shape of the boundary layer.
Following Thiévenaz et al. (2020), we inject the expression of 𝜓 into equation (4.2), which
leads to
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Figure 4: (a) Evolution of the self-similar variable 𝜁 = [𝑧 − ℎ(𝑡)]/
√︁
𝜈 𝑓 𝑡 as a function of − 𝑓 ′ (“velocity

profile” representation). Each curve corresponds to a given value of 𝜎 ≡ 𝑠
√︁
𝛼eff/𝜈 𝑓 . (b) Evolution of the

form factor 𝜉 = −1/ 𝑓 ′′ (0) of the viscous boundary layer as a function of 𝜎. The dashed and dash-dotted
lines highlight the upper and lower limits for 𝜉 covered in the present experiments, respectively.

𝑓 ′′′ = − 𝑓 ′ − 1
2

(
𝜁 + 𝑠

√︂
𝛼eff
𝜈 𝑓

)
𝑓 ′′ − 𝑓 ′2 + 2 𝑓 𝑓 ′′. (4.4)

The boundary conditions are a zero velocity at the solid-liquid interface 𝜁 = 0, and the
recovery of the inviscid profile at infinity: this translates into 𝑓 (0) = 0, 𝑓 ′ (0) = 0, and
𝑓 ′ (+∞) = −1, respectively. The resolution of equation (4.4) for these boundary conditions
is achieved numerically, by using a shooting method algorithm. The evolution of 𝜁 as a
function of − 𝑓 ′ (i.e., in a “velocity profile”-like representation) is illustrated in Figure 4(a),
for several representative values of 𝜎 ≡ 𝑠

√︁
𝛼eff/𝜈 𝑓 . For each case, − 𝑓 ′ increases from 0 at

the contact with the substrate to 1 for 𝜁 ≃ 2, where the inviscid flow solution is thereby
recovered. Furthermore, the curves for different values of 𝜎 depart from each other, with
those for large values of this parameter reaching the asymptotic behaviour earlier, meaning
that the viscous boundary layer in this case is reduced in size when compared with lower
𝜎. Therefore, this shows that the typical form factor of the viscous boundary layer, which
can roughly be estimated as 𝜉 ≃ −1/ 𝑓 ′′ (0), is a function of 𝜎. In other terms, the present
modelling predicts a coupling between the flow and the phase change dynamics. This fact
can be verified in Figure 4(b), where 𝜉 decreases with 𝜎 in a weakly nonlinear manner. In
the present experiments, 𝜉 ranges from 0.86 (for 𝜎 ≃ 0.35) to 1.04 (for 𝜎 ≃ −0.2). These
values are highlighted in Figure 4(b) by the dash-dotted and dashed lines, respectively.

It should be mentioned that a zero velocity condition has been imposed at the phase change
front in the above analysis, although a volume-change flow actually exists at the liquid-ice
interface during solidification or melting. However, a rough estimate of the induced velocity
𝑣pc gives 𝑣pc ≃ (Δ𝜌/𝜌𝑑) dℎ

d𝑡 , with Δ𝜌 = 𝜌𝑑 − 𝜌𝑖 (𝜌𝑑 and 𝜌𝑖 being the liquid and ice densities
taken at the melting point, respectively). Given that Δ𝜌 < 𝜌𝑑 and that 𝛼eff ≪ 𝜈 𝑓 , 𝑣pc can
reasonably be neglected in comparison to other velocities such as, for instance, 𝑢𝑧 evaluated
at 𝑧 = √

𝜈 𝑓 𝑡, which explains the choice to take 𝑓 (0) = 𝑓 ′ (0) = 0.
From this analysis, it then becomes possible to evaluate the vertical height 𝛿eff reached

by the viscous boundary layer compared with the initial substrate position from 𝜉 = [𝛿eff −
ℎ(𝑡)]/√𝜈 𝑓 𝑡. This yields
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Figure 5: (a) Evolution of 𝛽𝑚 with the effective Reynolds number Reeff ≡ UD0/𝜈eff , with 𝜈eff the effective
kinematic viscosity defined in equation (4.6). The solid line indicates 𝛽𝑚 = 0.82 Reeff

1/5. (b) 𝛽𝑚Reeff
−1/5

as a function of the impact parameter Peff ≡ We Reeff
−2/5. The data (△) as well as the universal law (solid

black line) obtained by Laan et al. (2014) for isothermal drop impacts are also reported. The colourbar
indicates the substrate temperature, whereas the symbols correspond to experiments involving (♦) water
droplets freezing, (�) water droplets causing ice melting, and (9) DMSO droplets.

𝛿eff = 𝜉
√︁
𝜈 𝑓 𝑡 + 𝑠

√
𝛼eff𝑡. (4.5)

Noticeably, this height displays an overall diffusive-like behaviour. Therefore, we introduce
an effective water kinematic viscosity, 𝜈eff , which is defined as 𝛿eff ≡ 𝜉

√
𝜈eff𝑡, so that

𝜈eff =

(
√
𝜈 𝑓 +

𝑠

𝜉

√
𝛼eff

)2
. (4.6)

In the case of solidification, one obtains 𝜈eff > 𝜈 𝑓 , which means that the viscous boundary
layer will reach the liquid free surface sooner than for an isothermal drop impact. Freezing
thus enhances dissipation, and reduces the spreading diameter. Conversely, when substrate
melting occurs 𝜈eff < 𝜈 𝑓 : the boundary layer will meet the free surface later than for the
isothermal case, so that dissipation appears to be reduced while spreading is favoured. For
some experiments, the effective kinematic viscosity that is predicted differs significantly
from 𝜈 𝑓 : for instance, for drop impacts on ice where 𝑇𝑠 = −2 ℃ and 𝑇𝑑 = 80 ℃, one obtains
𝜈eff ≃ 0.65𝜈 𝑓 . We stress that, in this model, the two cases of liquid solidification and substrate
melting during the impact of a droplet onto its solid phase are encompassed into the same
framework, which generalizes the approach followed by Thiévenaz et al. (2020).

As a result of this analysis, we define an effective Reynolds number as Reeff ≡ UD0/𝜈eff ,
i.e., based on the effective viscosity 𝜈eff that is evaluated by means of equation (4.6). Thus,
Reeff takes into account the influence of phase change on the development of the viscous
boundary layer. The spreading ratio 𝛽𝑚 is shown as a function of Reeff in Figure 5(a). This
representation reveals a collapse of our experimental data for water onto a master curve,
regardless of the nature of the initial substrate (brass or ice) and the dynamics of the ice-
water interface (melting or solidification). This shows that the effective Reynolds number
better captures the physics at play than the Reynolds number, as highlighted by a comparison
with Figure 3(a).

Nevertheless, a significant number of the present experiments are not compatible with
an inertial-viscous scaling of the form 𝛽𝑚 ∝ Reeff

1/5, as highlighted by the comparison
between the measured values of 𝛽𝑚 and the solid line reported in Figure 5(a). In addition,
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data at low Reeff appear to be slightly more scattered, and experiments corresponding to
DMSO drop impacts (9) remain above those featuring water droplets freezing (♦). Such a
behaviour is reminiscent of the transition from the inertial-viscous regime to the inertial-
capillary regime, which has been thoroughly discussed in previous studies (Laan et al. 2014;
Lee et al. 2016). In the capillary limit, the initial kinetic energy of the drop, which scales as
𝜌𝑈2𝐷0

3, is completely converted into surface energy that scales as 𝛾𝐷min
2 (with 𝜌 and 𝛾 the

density and surface tension of the drop evaluated at 𝑇𝑑 , respectively). As a result, one obtains
the scaling 𝛽𝑚 ∼ We1/2, with We = 𝜌U2D0/𝛾 the Weber number (Eggers et al. 2010).
Contrariwise, in the viscous regime, the kinetic energy is balanced by viscous dissipation,
which leads this time to the scaling 𝛽𝑚 ∼ Re1/5 (Eggers et al. 2010). To bridge between these
two asymptotic scenarios, a universal rescaling has been proposed by Laan et al. (2014) in
the context of isothermal drop impacts, in which 𝛽𝑚Re−1/5 is a function of a sole impact
parameter, P ≡ We Re−2/5. Adopting this approach, and using Reeff instead of Re, we plot
in Figure 5(b) the evolution of the rescaled spreading ratio 𝛽𝑚Reeff

−1/5 as a function of the
impact parameter Peff ≡ We Reeff

−2/5, for all our experiments. In addition, the data from
Laan et al. (2014) (△) corresponding to isothermal drop impacts, are reported in Figure 5(b)
with Reeff = Re and Peff = P. Very noticeably, drop impacts involving water solidification
(♦), DMSO (9), as well as most experiments with water featuring substrate melting (�)
superimpose with the data of Laan et al. (2014), and are captured by the universal empirical
law

𝛽𝑚Reeff
−1/5 =

√
Peff

1.24 +
√

Peff
, (4.7)

evidenced by these authors for the isothermal case (solid black line). The typical deviation
of these experiments from equation (4.7) is less than 10%, similar to the dispersion of the
original data from Laan et al. (2014). However, a closer inspection reveals that water drop
impacts on an ice substrate at 𝑇𝑠 = −2 ℃ (grey circles) slightly deviate from relation (4.7).
As these experiments belong to the transition region (Peff ∼ 10), and as their initial substrate
temperature is close to the melting point, this suggests that wettability effects could start to
play a role here (Lee et al. 2016). Nevertheless, as the wetting of water on ice is still a subject
of active research, it is not straightforward to conclude on that aspect within the present
analysis.

5. Conclusion
In the present investigation, experiments of water drop impacts onto ice and cold brass were
performed, in which both liquid and substrate temperatures were varied, alongside with the
falling height, in order to reach a deeper understanding of the influence of melting and
solidification on the impact outcome. The maximum spreading ratio is found to increase
with both temperatures as well as with the impact velocity, and the typical size of the
corrugations, when present, is proportional to the final radial extent of the main liquid film.
Phase change results in a modification of the viscous boundary layer, thereby affecting the
overall viscous dissipation occurring within the spreading droplet. Modelling this effect
through the use of an effective viscosity allows us to capture the physics at play, and to relate
it to a universal law developed for the isothermal configuration. Additional experiments of
dimethyl sulfoxide drop impacts onto a cold brass substrate also show promising agreement
with the proposed modelling, which suggests that the approach can be generalized to other
fluids. These results pave the way for a comparison with experiments of molten metal drop
impacts on a cold substrate or in the presence of evaporation, which could further validate or
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Substrate 𝜌𝑠 (kg.m−3) 𝑐𝑝,𝑠 (J.K−1.kg−1) 𝑘𝑠 (W.m−1.K−1)
Brass 8560 377 121

Solid state 𝜌𝑖 (kg.m−3) 𝑐𝑝,𝑖 (J.K−1.kg−1) 𝑘𝑖 (W.m−1.K−1)
Water (ice) 916 2050 2.22
DMSO 1104.7 1912 0.174

Liquid state 𝑇 𝑓 (K) L 𝑓 (kJ.kg−1) 𝜌𝑑 (kg.m−3) 𝑐𝑝,𝑑 (J.K−1.kg−1) 𝑘𝑑 (W.m−1.K−1)
Water 273.15 333 999.8 4219.9 0.556
DMSO 291.65 172.9 1095.5 1960 0.174

Table 1: Thermal properties of the solid and liquid phases involved in the present study. 𝑇 𝑓 corresponds
to the melting point, L 𝑓 to the latent heat of fusion, and 𝜌, 𝑐𝑝 , and 𝑘 are the density, specific heat, and
thermal diffusivity, respectively (with their associated subscripts 𝑠, 𝑖, or 𝑑 denoting the substrate, the ice, or
the liquid, respectively.

enrich the approach followed here. A detailed study of the effects of frost on drop impacts,
using a controlled humidity set-up, would also be needed to reach a better understanding of
the environmental situation. Another configuration of interest, for practical applications as
well as to extend the results from the present work, would be to investigate the maximum
spreading diameter following non-isothermal drop impacts in the absence of phase change.
Indeed, in this scenario, varying the temperature of the initial droplet or the substrate will
change the value of the contact temperature, and is thus expected to affect the behaviour of
both the thermal and viscous boundary layers. This should, in turn, modify the maximum
spreading diameter of the liquid film.
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Appendix A. Thermophysical properties of the solid and liquid phases
Table 1 reports the thermal properties of the different solids and liquids involved in the present
study. The values of densities, specific heats, and thermal conductivities indicated are those
used when solving the Stefan problem (see Appendix C) to obtain equation (4.1) in the main
text. From these quantities, one can readily obtain the thermal diffusivity 𝛼𝑛 = 𝑘𝑛/(𝜌𝑛𝑐𝑝,𝑛)
and effusivity 𝑟𝑛 =

√︁
𝑘𝑛𝜌𝑛𝑐𝑝,𝑛, where subscript 𝑛 corresponds either to 𝑠, 𝑖, or 𝑑 depending

on whether the substrate, the ice, or the liquid is to be considered, respectively.
As stated in the main text, some quantities are also evaluated at the melting point or at the

droplet temperature, 𝑇𝑑 . To this end, and for water, standard correlations have been used to
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estimate densities (Pátek et al. 2009), viscosities (Pátek et al. 2009; Dehaoui et al. 2015), and
surface tensions (Pátek et al. 2016). For dimethyl sulfoxide, for which 𝑇𝑑 = 25℃, droplet
density was taken as 𝜌 = 1095.5 kg.m−3, kinematic viscosity as 𝜈 𝑓 = 1.83 × 10−6 m2.s−1,
and surface tension as 𝛾 = 43.53 mN.m−1.

Appendix B. Temperature loss during the droplet’s fall
For the purpose of this investigation, it is important to estimate the temperature loss of the
droplet over the course of its fall. To do so, assuming the droplet temperature 𝑇𝑤 to be
uniform spatially, we observe that its variation with time reads

𝑚𝑐𝑝,𝑑
𝑑𝑇𝑤

𝑑𝑡
= 𝜋𝐶 (𝑡)𝐷0

2 (𝑇𝑤 (𝑡) − 𝑇𝑎) ⩽ 𝜋𝐶 (𝑡)𝐷0
2 (𝑇𝑑 − 𝑇𝑎) , (B 1)

where 𝐷0 is the initial diameter of the drop, whose shape is assumed not to change with
time, 𝑚 is its mass, 𝑇𝑑 and 𝑇𝑎 are the initial temperatures of the liquid droplet and the air,
respectively, 𝑐𝑝,𝑑 is the specific heat of the liquid considered, and 𝐶 is the convective heat
exchange coefficient. The right-hand side of equation (B 1) constitutes an upper bound of
the actual temperature loss. Then, one may note that 𝐶 (𝑡) can be expressed as Nu 𝑘𝑎/𝐷0,
with 𝑘𝑎 the thermal conductivity of the air and Nu the Nusselt number. Integrating (B 1)
over time, and making the conservative assumption of a pure free fall thereby leads to the
following inequality for the global temperature loss Δ𝑇

Δ𝑇 ⩽
6 (𝑇𝑑 − 𝑇𝑎) 𝑘𝑎
𝜌𝑐𝑝,𝑑𝐷0

2

∫ 𝑡 𝑓

0
Nu(𝑡) d𝑡, (B 2)

where 𝑡 𝑓 =
√︁

2𝐻/𝑔 corresponds to the free-fall time over a vertical distance 𝐻 (with 𝑔 the
gravitational acceleration), and 𝜌 to the liquid density at 𝑇𝑤 = 𝑇𝑑 . From there, it is possible
to use classical correlations to express the Nusselt number, such as those established by Yuge
(1960) for a sphere in forced convection, yielding

Nu = 2 + 0.493 Re𝑎0.5
(
10 < Re𝑎 < 1.8 × 103

)
, (B 3)

Nu = 2 + 0.3 Re𝑎0.5664
(
1.8 × 103 < Re𝑎 < 1.5 × 105

)
, (B 4)

where Re𝑎 = 𝑈 (𝑡)𝐷0/𝜈𝑎 is the Reynolds number associated to the air motion, with𝑈 (𝑡) and
𝜈𝑎 the droplet velocity at time 𝑡 and the air kinematic viscosity, respectively.
Finally, by defining Re𝑐 = 1.8 × 103 and 𝑡𝑐 = 𝜈𝑎Re𝑐/(𝑔𝐷0), one gets the following upper
bound for the temperature loss Δ𝑇 during the droplet’s fall

Δ𝑇 ⩽
6 (𝑇𝑑 − 𝑇𝑎) 𝑘𝑎
𝜌𝑤𝑐𝑝,𝑑𝐷0

2

{
2 𝑡 𝑓 +

0.986
3

(
𝑔𝐷0
𝜈𝑎

)0.5
𝑡𝑐

3/2

+ 0.3
1.5664

(
𝑔𝐷0
𝜈𝑎

)0.5664 (
𝑡 𝑓

1.5664 − 𝑡𝑐
1.5664

) }
. (B 5)

If, then, the left-hand side of equation (B 5) is evaluated for water and for the various initial
parameters explored in the present investigation, it is found that the maximal temperature
loss (occurring for 𝑇𝑑 = 80 ℃ and 𝐻 = 2.2 m) is less than 2 ℃. In the case of DMSO drop
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Figure 6: Model equations and boundary conditions for the three phase Stefan problem involving the liquid
phase (expanding droplet), the growing ice layer, and the solid substrate.

impacts, for which 𝑇𝑑 is very close to 𝑇𝑎, the estimated change is below 1 ℃. To evaluate
equation (B 5), the following values for 𝑇𝑎 have been taken: 𝑇𝑎 = 25 ℃ in the case of water
and 𝑇𝑎 = 18 ℃ for DMSO. Consequently, we choose to neglect this temperature change over
the course of the present study for the sake of simplicity.

Appendix C. The three phase Stefan Problem
The Stefan problem consists of solving the heat diffusion equation in several phases, in the
presence of a moving interface of phase change (Rubinshteĭn 1971). In the present study,
we are interested in the one-dimensional formulation of this problem involving either three
phases for solidification (the liquid state, its corresponding ice, and the solid substrate),
or two for melting (the liquid state and its ice). The first situation is detailed below, and
is strongly inspired by the self-similar analysis performed by Thiévenaz et al. (2019). The
model equations and boundary conditions are summarized in figure 6 for the three phase
Stefan problem involving the liquid phase (droplet), the growing ice layer, and the solid
substrate. The properties for each phase are respectively denoted by the subscript letters 𝑑, 𝑖,
and 𝑠. Assuming that advection can be neglected in the problem (see main text), the equations
to be solved in the different phases are

𝜕𝑡𝑇 = 𝛼𝑑𝜕
2
𝑧𝑇 𝑧 > ℎ(𝑡), (C 1)

𝜕𝑡𝑇 = 𝛼𝑖𝜕
2
𝑧𝑇 0 < 𝑧 < ℎ(𝑡), (C 2)

𝜕𝑡𝑇 = 𝛼𝑠𝜕
2
𝑧𝑇 𝑧 < 0, (C 3)

where 𝑇 is the temperature field, and 𝛼𝑑 , 𝛼𝑖 , and 𝛼𝑠 the thermal diffusivities of the different
phases (𝛼𝑛 = 𝑘𝑛/(𝜌𝑛𝑐𝑝,𝑛), where subscript 𝑛 corresponds either to 𝑠, 𝑖, or 𝑑 depending on
whether the substrate, the ice, or the liquid is to be considered, respectively). In addition, the
relevant boundary conditions to apply read
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lim
𝑧→+∞

𝑇 = 𝑇𝑑 , (C 4)

𝑇 (ℎ−) = 𝑇 (ℎ+) = 𝑇 𝑓 , (C 5)
𝜌𝑖L 𝑓 dth = 𝑘𝑖 𝜕𝑧𝑇 |ℎ− − 𝑘𝑑 𝜕𝑧𝑇 |ℎ+ , (C 6)
𝑇 (0−) = 𝑇 (0+), (C 7)

𝑘𝑠 𝜕𝑧𝑇 |0− = 𝑘𝑖 𝜕𝑧𝑇 |0+ , (C 8)
lim

𝑧→−∞
𝑇 = 𝑇𝑠, (C 9)

with 𝑇𝑑 and 𝑇𝑠 the droplet and substrate temperatures, respectively, 𝑇 𝑓 the melting point,
and ℎ the position of the moving liquid-ice interface. In addition, 𝑘𝑠, 𝑘𝑖 , and 𝑘𝑑 stand for
the thermal conductivities of the substrate, the ice and of the liquid phase, respectively, 𝜌𝑖 is
the ice density, and L 𝑓 the latent heat of fusion. In particular, condition (C 5) ensures that
the temperature at the liquid-ice interface corresponds to the melting point, equation (C 8)
establishes the equality of thermal fluxes at the ice-substrate interface (𝑧 = 0), and expression
(C 6) is the so-called Stefan condition. It expresses that the growth of the liquid-ice interface
is dictated by the local difference of thermal fluxes (at 𝑧 = ℎ).

One may then apply the transformations 𝑧 ≡ 𝐻 𝑧, ℎ ≡ 𝐻 ℎ, 𝑡 ≡ (𝐻2/𝛼𝑖) 𝑡 and 𝑇 ≡
𝑇𝑠 + (𝑇 𝑓 −𝑇𝑠) 𝑇 to equations (C 1)-(C 3) and (C 4)-(C 9) to obtain the dimensionless problem

𝜕𝑡𝑇 = 𝜔𝑑𝜕
2
𝑧
𝑇 𝑧 > ℎ(𝑡), (C 10)

𝜕𝑡𝑇 = 𝜕2
𝑧
𝑇 0 < 𝑧 < ℎ(𝑡), (C 11)

𝜕𝑡𝑇 = 𝜔𝑠𝜕
2
𝑧
𝑇 𝑧 < 0, (C 12)

with 𝜔𝑑 = 𝛼𝑑/𝛼𝑖 , 𝜔𝑠 = 𝛼𝑠/𝛼𝑖 , and with the associated boundary conditions

lim
𝑧→+∞

𝑇 = 𝑇𝑑 =
𝑇𝑑 − 𝑇𝑠

𝑇 𝑓 − 𝑇𝑠
, (C 13)

𝑇 (ℎ−) = 𝑇 (ℎ+) = 1, (C 14)
1
St

dth = 𝜕𝑧𝑇

���
ℎ
− − 𝜅 𝜕𝑧𝑇

���
ℎ
+ , (C 15)

𝑇 (0−) = 𝑇 (0+), (C 16)

𝑘𝑠 𝜕𝑧𝑇

���
0−

= 𝑘𝑖 𝜕𝑧𝑇

���
0+
, (C 17)

lim
𝑧→−∞

𝑇 = 0, (C 18)

with St = 𝑐𝑝,𝑖 (𝑇 𝑓 − 𝑇𝑠)/L 𝑓 the Stefan number, whose definition involves the heat capacity
𝑐𝑝,𝑖 = 𝑘𝑖/(𝜌𝑖𝛼𝑖) of the ice, and 𝜅 = 𝑘𝑑/𝑘𝑖 . The Stefan number is a dimensionless quantity
that compares the energy needed to decrease the ice temperature from 𝑇 𝑓 to 𝑇𝑠 to the energy
released by phase change, both energies being considered per unit mass.

It is possible to obtain a self-similar solution for equations (C 10)-(C 12) that satisfies
boundary conditions (C 13)-(C 18) by conducting a similar analysis to that presented in
Thiévenaz (2019). By doing so, a self-similar temperature field can be found only if it solely
depends on the variable 𝜂 = 𝑧/

√
𝑡, whereas the liquid-ice front position ℎ is proportional to√

𝑡. This solution reads
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𝑇 (𝜂) = 𝑇𝑑 + 𝑇𝑑 − 1
1 − erf

(
𝜒/(2√𝜔𝑑)

) (erf
(
𝜂/(2√𝜔𝑑)

)
− 1

)
𝑧 > ℎ(𝑡), (C 19)

𝑇 (𝜂) = 1
𝑟𝑖/𝑟𝑠 + erf (𝜒/2)

(
𝑟𝑖

𝑟𝑠
+ erf (𝜂/2)

)
0 < 𝑧 < ℎ(𝑡), (C 20)

𝑇 (𝜂) = 𝑟𝑖/𝑟𝑠
𝑟𝑖/𝑟𝑠 + erf (𝜒/2)

(
1 + erf

(
𝜂/

(
2
√
𝜔𝑠

) ) )
𝑧 < 0, (C 21)

where 𝑟𝑖 = 𝑘𝑖/
√
𝛼𝑖 and 𝑟𝑠 = 𝑘𝑠/

√
𝛼𝑠 are the thermal effusivities of the ice and the substrate,

respectively, while 𝜒 is related to the position of the liquid-solid moving interface through
ℎ(𝑡) = 𝜒

√
𝑡 and is solution to the following transcendental equation

𝜒
√
𝜋

2St
=

𝑒−𝜒
2/4

𝑟𝑖/𝑟𝑠 + erf (𝜒/2) +
𝑟𝑑

𝑟𝑖

𝑒−𝜒
2/(4𝜔𝑑 )

1 − erf
(
𝜒/(2√𝜔𝑑)

) 𝑇 𝑓 − 𝑇𝑑

𝑇 𝑓 − 𝑇𝑠
, (C 22)

with 𝑟𝑑 = 𝑘𝑑/
√
𝛼𝑑 the thermal effusivity of water.
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