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Highlights
GNN-based structural information to improve DNN-based basal ganglia segmentation in
children following early brain lesion
Patty Coupeau,Jean-Baptiste Fasquel,Lucie Hertz-Pannier,Mickaël Dinomais

• Due to their key role in brain function, the basal ganglia are often studied in children. However, they are difficult
to study, especially after early brain injury, because current deep neural networks (DNN) cannot accurately
segment them on MRI.

• A graph neural network is applied on top of a DNN to enhance the segmentation of the basal ganglia in
healthy children and children suffering from neonatal arterial ischemic stroke (NAIS), using both the structural
information and the preliminary segmentation map generated by the DNN.

• The structural information conveyed by graph edges (spatial relationships between regions detected by the DNN)
and nodes (region probabilities from the DNN) can help to correct spatial inconsistencies produced by the DNN
in its segmentation of injured brains.

• The method is generic regarding the nature of the deep neural network under consideration for preliminary
segmentation.

• The method is efficient on small training datasets, addressing the issue of limited medical imaging data.
Furthermore, it outperforms recent deep learning methods for basal ganglia segmentation on larger datasets,
specifically in injured children.



GNN-based structural information to improve DNN-based basal
ganglia segmentation in children following early brain lesion
Patty Coupeaua,∗, Jean-Baptiste Fasquela, Lucie Hertz-Pannierb and Mickaël Dinomaisa,c

aUniversite d’Angers, LARIS, SFR MATHSTIC, F-49000 Angers, France
bUNIACT/Neurospin/JOLIOT/DRF/CEA-Saclay, and U1141 NeuroDiderot/Inserm, CEA, Paris University, France
cDepartement de medecine physique et de readaptation, Centre Hospitalier Universitaire d’Angers, France

A R T I C L E I N F O
Keywords:
basal ganglia
early brain lesion
semantic segmentation
structural information
graph neural network

A B S T R A C T
Analyzing the basal ganglia following an early brain lesion is crucial due to their noteworthy
role in sensory-motor functions. However, the segmentation of these subcortical structures on
MRI is challenging in children and is further complicated by the presence of a lesion. Although
current deep neural networks (DNN) perform well in segmenting subcortical brain structures
in healthy brains, they lack robustness when faced with lesion variability, leading to structural
inconsistencies. Given the established spatial organization of the basal ganglia, we propose
enhancing the DNN-based segmentation through post-processing with a graph neural network
(GNN). The GNN conducts node classification on graphs encoding both class probabilities and
spatial information regarding the regions segmented by the DNN. In this study, we focus on
neonatal arterial ischemic stroke (NAIS) in children. The approach is evaluated on both healthy
children and children after NAIS using three DNN backbones: U-Net, UNETr, and MSGSE-
Net. The results show an improvement in segmentation performance, with an increase in the
median Dice score by up to 4% and a reduction in the median Hausdorff distance (HD) by up to
93% for healthy children (from 36.45 to 2.57) and up to 91% for children suffering from NAIS
(from 40.64 to 3.50). The performance of the method is compared with atlas-based methods.
Severe cases of neonatal stroke result in a decline in performance in the injured hemisphere,
without negatively affecting the segmentation of the contra-injured hemisphere. Furthermore,
the approach demonstrates resilience to small training datasets, a widespread challenge in the
medical field, particularly in pediatrics and for rare pathologies.

1. Introduction
The basal ganglia are a set of deep gray matter nuclei that include the globus pallidus (or pallidum) and the striatum,
subdivided into three subnuclei: the caudate, the putamen and the nucleus accumbens [1]. The caudate and putamen
receive corticostriatal inputs related to the motor pathway, whereas the nucleus accumbens receives inputs from the
emotional and reward pathways [2]. The pallidum is part of the subcortical nervous circuitry that is involved in motor
control. It transmits information from the striatum, which originates in the motor cortex, to the thalamus [3]. Research
on the cortico-basal ganglia-thalamic loop has largely viewed the thalamus as a relay that conveys basal ganglia output
to the cerebral cortex, thereby enabling the control of movement [4]. In the context of the study of motor development
in children, the basal ganglia (especially the caudate, putamen, and pallidum) and thalamus therefore play a crucial
role in neuroimaging studies and clinical practice. This includes the diagnosis of brain diseases [5] and the planning of
surgery [6]. Therefore, examining the basal ganglia and thalami in young children is especially important, given their
key role in brain function [1] and growth after birth [7]. Consequently, these subcortical brain structures are frequently
studied [5, 8], yet the challenge persists in automatically segmenting them from MRI. This is due to the difficulty
of distinguishing ambiguous voxels near the boundaries of brain structures, which is further compounded by the low
tissue contrast of brain MRI [9]. This difficulty is particularly pronounced in young children [10].
In recent years, deep learning techniques have achieved remarkable success in different tasks of image segmentation
[11]. In the field of brain MRI segmentation, deep neural networks (DNN) have proven to be an effective alternative
to atlas-based segmentation methods. As a result, several DNN-based algorithms [9, 12, 13] as well as automated
software [14, 15] have been developed to segment subcortical brain structures. Although these algorithms have
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enhanced the accuracy of basal ganglia segmentation, they are not efficient enough to handle injured brains. In
fact, a brain lesion induces alterations, such as variations in intensity and changes in the overall brain structure,
causing artifacts and misclassifications when using existing DNN-based techniques. Recent work has focused on the
segmentation of pathological and damaged brains. Thus, the patch-based method MONSTR [16], involving atlases
of different MR acquisition protocols (e.g., T1-w, T2-w), is proposed to automatically skull-strip adult brains with
mild to severe traumatic brain injury or brain tumors. Other works have suggested the use of a modified 3D U-Net
to perform ventricular parcellation from MRI in adult brains with hydrocephalus, a disease which causes dementia
[17]. Some methods have focused on the segmentation of brain structures in brains with traumatic brain injury, such as
hippocampus segmentation in adult rats [18] or ROI parcellation in adult humans with a multi-atlas-based method [19].
However, no effective method has been proposed for the segmentation of the basal ganglia and thalamus in children
with a cortical and localized lesion. Some studies for brain structures segmentation have addressed white matter lesions
[15], even in children, but they have not proven their effectiveness for cortical lesions such as strokes. Therefore, manual
segmentation of the basal ganglia is currently required in cases of brain injury (especially stroke), as evidenced by the
work of Kirton et al. [8]. This task is time-consuming and tedious.
This paper proposes a method to improve basal ganglia segmentation in healthy and injured brains, complementing
existing DNN-based algorithms. The study focuses on a population of 7-year-old children, some of whom suffer from
neonatal arterial ischemic stroke (NAIS), the most common type of perinatal ischemic stroke [20]. The population
selection is motivated by the aim to illustrate the method on a relatively complex and representative example (children
with perinatal stroke). The subsequent stage of the study will examine the method’s generalizability to older subjects
and other types of early brain lesion.
The proposed method is based on the established uniform spatial organization of the basal ganglia and thalamus [1].
In fact, the basal ganglia are in the center of the brain. The caudate is characterized by its curved shape, with the
head, body and tail moving from front to back. The putamen and pallidum are at the junction of the diencephalon and
telencephalon and are characteristically banana-shaped in horizontal section. The two substructures together have been
given the name lenticular core because of their triangular shape on a frontal section. It is also recognized that there is
a substantial reduction in the volume of structures moving from the cortex (e.g., putamen) towards the deepest nuclei
(e.g., pallidum) [21]. These structures are symmetrical in each hemisphere. The thalamus is a large, oval-shaped nucleus
that is paired and symmetrical on either side of the third ventricle. It is connected to the caudate nucleus above, the head
of the caudate nucleus in front, and the tail of the caudate nucleus behind. The current DNNs do not make explicit
use of the structural organization of the basal ganglia and thalamus. In fact, the structural information assimilated
by DNN is restricted to the receptive field dimension during convolution, despite attempts by recent models such as
transformers [22] to extend beyond this constraint. Thus, segmenting injured brains using current DNN-based methods
can sometimes lead to spatial inconsistencies. We propose the use of high-level structural information, which in our
context corresponds to spatial relationships between regions (e.g., distances, relative directional position [23, 24]), to
improve DNN-based segmentation of the basal ganglia by correcting for these spatial inconsistencies.
This type of high-level information is commonly represented with graphs, where nodes correspond to regions and edges
carry the structural information between regions. The aim is to match each node of the graph with the corresponding
class, i.e., the brain structure in our context. In a recent work, the combination of high-level structural information with
the DNN output was proposed as a means of improving segmentation performance [25]. However, the approach relied
on standard graph matching techniques (e.g., quadratic assignment problems [26]), which can be highly combinatorial
in nature. To address this limitation, we propose using a graph neural network (GNN) to perform a node classification
task [27] (i.e., classification of regions detected by the DNN) instead of graph matching approaches. When combining
DNN and GNN for semantic image segmentation, there are numerous options available. Some proposals exploit
superpixel information for graph construction, requiring additional over-segmentation algorithms such as SLIC [28]
to generate superpixels [29, 30]. Other recent studies have attempted to incorporate spatial relationships through the
use of a GNN in the feature space of neural networks [31, 32, 33, 34] to capture long-range spatial dependencies.
We opted for an alternative approach, whereby the GNN acts as a post-processing layer that can be applied to any
DNN that generates a segmentation map, without requiring a specific DNN-based architecture (as in [31, 32, 33, 34])
or the integration of additional over-segmentation algorithms to generate superpixels (as in [29, 30]). In a previous
study, we demonstrated the enhancement of DNN-based segmentation by a GNN-based post-processing approach that
combines DNN probabilities with structural information [23]. However, this was in a different context, namely face
segmentation, and in a nonmedical domain.
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The efficacy of the GNN for node classification is contingent upon the nature of the convolution operator considered.
In recent years, numerous operators have been developed [35]. Graphs embed structural information both in the graph
structure and in the edge attributes. Regarding edge attributes, n-dimensional information management is important
[36, 37]. Thus, we have decided to consider the ECConv operator [36], which handles both n-dimensional node and
edge attributes. In addition to edge attributes, graph architecture is an essential aspect [38]. Due to the permutation-
invariant nature of convolution operators during the message passing (neighborhood aggregation), it may not be
optimal to work on complete graphs (resulting from using all relations between all regions) to distinguish nodes
for classification purposes. To tackle this problem while still considering complete graphs that regroup all available
structural information between regions, we propose a function within the convolution operator itself to modify the
weight of each edge attribute in the calculation of the new node attributes, in comparison to our previous work [23].
Moreover, our proposal aims to enhance the semantic segmentation of the basal ganglia based on DNN, particularly
when the training dataset is sparse. The lack of medical imaging data is particularly important in pediatrics, where
the frequent movement of the child during the MRI scan makes analysis impossible. Data is even more limited when
addressing infrequent pathologies such as early brain lesion. Thus, this study also partly addresses a key limitation
of deep learning: the need for a large and representative dataset for training purposes. The objective is to propose a
method based on a GNN with few trainable parameters. This method should be efficient despite a limited amount of
training data and capable of correcting DNN errors that are associated with the lack of training data. To evaluate this,
we aim to investigate the performance of our method as the size of the training dataset decreases. It should be noted
that a data augmentation strategy [39] is used, in addition to the proposed method, when training DNNs to address the
lack of data. Other approaches, such as transfer learning [40] or few-shot learning [41], could have been considered.
However, they require the definition of a suitable source domain with sufficient data available to pre-train the model,
or the definition of the right examples to provide to the model.
After detailing the proposal in Section 2, the experiments are described in Section 3 and discussed in Section 4.

2. Method
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Figure 1: Overview of the proposed approach. For the sake of clarity, not all edges of the complete graphs are shown, nor
are the biases of the convolution operator. DNN: Deep neural network, GNN: Graph neural network.
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Figure 1 presents an overview of the proposed approach. A deep neural network (DNN) is trained to segment the basal
ganglia using an annotated dataset (Figure 1-A) consisting of healthy and injured brains. Any deep neural network can
be considered for this initial segmentation, as long as it provides a segmentation map (𝑀). Regardless of the DNN
under consideration, a data augmentation strategy is employed during the training phase (detailed in section 3.3). A
complete graph is constructed from the segmentation map of the training data, as detailed in section 2.1. Each node in
the graph corresponds to a region segmented by the DNN. The annotated dataset is used to train a graph neural network
(GNN) to correctly assign the class associated with each graph node (i.e., each region segmented by the DNN) of the
graphs constructed from the segmented training images. Further details regarding the GNN considered are provided
in section 2.2.
Upon analysis of a novel MRI scan (Figure 1-B), the DNN provides a segmentation proposal 𝑀 , which may contain
errors (e.g., left thalamus within right thalamus). From this segmentation map 𝑀 , a set of connected components is
generated. A 33 median kernel filter is applied to eliminate small, connected components that are distant from the
basal ganglia, leading to the updated set of connected components 𝑅. A complete graph is constructed based on this
set of connected components 𝑅, as described in section 2.1. Subsequently, the trained graph neural network is used to
perform node classification relying on the attributes of both nodes and edges, by using the ECConv graph convolution
operator described in section 2.2 (Figure 1-C). Based on this node classification, spatially consistent regions are finally
identified.
In section 2.1, the construction of the graphs from the MRI is detailed, while section 2.2 outlines the architecture of
the considered GNN.
2.1. Image and graph
When segmenting an image, the deep neural network generates a segmentation map represented as a tensor𝑀 ∈ ℝ𝑃×𝐶 ,
where 𝑃 is the dimensionality of the 3D image and 𝐶 is the total number of classes. At each voxel location 𝑝, the value
𝑀(𝑝, 𝑐) ∈ [0, 1] denotes the probability that the voxel 𝑝 belongs to class 𝑐 ∈ {1,… , 𝐶}. These probabilities enable the
creation of a set 𝑅 comprising all resulting connected components (i.e., the set of connected voxels that a priori belong
to the same class based on 𝑀(𝑝, 𝑐), as illustrated in Figure 1). From this set 𝑅, we construct a graph 𝐺 = (𝑉 ,𝐸,𝑋,𝐿),
where 𝑉 is the set of nodes (each 𝑣 ∈ 𝑉 corresponds to a region 𝑅𝑣 ∈ 𝑅) and 𝐸 is the set of edges. 𝑋 refers to the node
attribute assignment function (𝑋 ∶ 𝑉 → ℜ𝐶 ) related to the average membership probability vector over the set of
voxels 𝑝 ∈ 𝑅𝑣. 𝐿 is an edge attribute assignment function (𝐿 ∶ 𝐸 → ℜ3) assigning to edge (𝑖, 𝑗) the relative position
(in mm) of the barycenters of the connected regions 𝑅𝑖 and 𝑅𝑗 in the three dimensions (left-right, anterior-posterior,
inferior-superior), normalized by the child’s head circumference 𝐷 (in mm):

𝐿((𝑖, 𝑗)) = [
𝑑
𝑅𝑖,𝑅𝑗
𝑥
𝐷

,
𝑑
𝑅𝑖,𝑅𝑗
𝑦

𝐷
,
𝑑
𝑅𝑖,𝑅𝑗
𝑧
𝐷

] (1)
The normalization by 𝐷 in 𝐿((𝑖, 𝑗)) ensures that the edge attributes are of a comparable magnitude to the node
attributes, which typically range between 0 and 1. This normalization is crucial for the neighborhood aggregation later
performed by the GNN (eq.2). Normalizing the relative position (in mm) by the head circumference accommodates
MRIs of varying dimensions or resolutions while accounting for differences in brain size. The graph 𝐺 is directed with
𝐿(𝑗, 𝑖) = −𝐿(𝑖, 𝑗).
2.2. Graph neural network
As depicted in Figure 1, the GNN consists of two layers. The first layer performs convolution, while the second layer
assigns a membership probability vector to each node. Importantly, the number of nodes to be classified is a priori
unknown and exceeds the number of classes due to the multiple candidate regions generated by the DNN. This leads
to a realistic hypothesis of over-segmentation [42]. Consequently, graphs can have arbitrary sizes.
The first layer comprises a convolution (ℜ𝐶 → ℜ𝑑) aimed at aggregating the neighborhood information related to
each node (general notion of message passing [27]). The dimension 𝑑, which represents the attribute dimensions of
nodes after convolution (as shown in Figure 1 - C), is a hyperparameter of the method explored in our experiments.
We selected the ECConv convolution operator [36] due to its spatial-based nature, which allows it to handle graphs of
arbitrary sizes better than spectral approaches (spectral graph theory) [43]. Furthermore, ECConv considers both node
and edge attributes during neighborhood aggregation. Its efficacy in enhancing semantic segmentation tasks has been
demonstrated previously [23, 37]. For a given node 𝑖 ∈ 𝑉 , this layer computes a new attribute at layer 𝑙 + 1 (yielding
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𝑋𝑙+1(𝑖)), by combining different information from layer 𝑙 : the attribute 𝑋𝑙(𝑖) of node 𝑖, the attributes of the set 𝑁(𝑖) of
neighboring nodes (𝑁(𝑖) = {𝑗|(𝑗, 𝑖) ∈ 𝐸}), and the attributes of the set of related edges (i.e. set {𝐿((𝑗, 𝑖))|𝑗 ∈ 𝑁(𝑖)}).
It can be formulated as follows:

𝑋𝑙+1(𝑖) = 𝜎(𝑊 𝑙+1𝑋𝑙(𝑖) +
∑

𝑗∈𝑁(𝑖)
𝐹 𝑙+1(𝐿(𝑗, 𝑖))𝑋𝑙(𝑗) + 𝑏𝑙+1) (2)

where 𝜎 denotes a component-wise non-linear function (e.g. ReLU), 𝑏𝑙+1 is a bias, 𝑊 𝑙+1 ∈ ℜ𝑑×𝐶 represents a matrix
of trainable weights, and 𝐹 𝑙+1 is a differentiable function (a multi-layer perceptron, detailed in Figure 1-C). All of
these entities are learned through training.
The mapping function 𝐹 𝑙+1 ∶ ℜ3×|𝑁(𝑖)| → ℜ𝑑×𝐶 is the most important entity. This function consists of two
fully connected layers, each followed by a ReLU activation function. The first connected layer, denoted as 𝐹 𝑙+1

1 ∶
ℜ3×|𝑁(𝑖)| → ℜ3×|𝑁(𝑖)|, adjusts the weights of each attribute for every related edge in the computation of the new
node attribute. Subsequently, the second layer, 𝐹 𝑙+1

2 ∶ ℜ3×|𝑁(𝑖)| → ℜ𝑑×𝐶 , maps these edge-specific weights to the
node dimensions. Note that, while theoretically supporting any 𝐹 function, our preliminary work on ECConv [23]
has primarily focused on the 𝐹2 mapping function. This paper introduces the preliminary 𝐹1 NN-compliant function,
similar to that in [36], which acts as an edge-cutting operator [38] to mitigate the influence of irrelevant edges during the
mapping process (𝐹2). The structural information carried by the edges 𝐿((𝑖, 𝑗)) is thus harnessed by the differentiable
function 𝐹 𝑙 described earlier, leading to 𝐹 𝑙+1(𝐿(𝑗, 𝑖)) ∈ ℜ𝑑×𝐶 (Figure 1-C). Then, the edge-conditioned operator
handles the combination of the information embedded by neighboring nodes (weighted region properties) with that
embedded by edges (weighted relationships between regions), through the product 𝐹 𝑙+1(𝐿(𝑗, 𝑖))𝑋𝑙(𝑗). The resulting
matrix from the product is then combined with the information of the studied node 𝑋𝑙(𝑖). The sum operator, which is
a permutation-invariant operator (as required in this context [27]), is used to compute the new representation 𝑋𝑙+1(𝑖)
(Figure 1-C). The second layer of the GNN consists of a single layer perceptron (ℜ𝑑 → ℜ𝐶 ) that assigns a class
membership probability vector to each node in the graph.
The network parameters are optimized on the training dataset to maximize the node classification rate. This corresponds
to minimizing the negative log-likelihood loss function: Loss(𝑌 , �̂�) = −

∑𝑁
𝑛=1

∑𝐶
𝑐=1 𝑌𝑛,𝑐 × log(�̂�𝑛,𝑐) where 𝑁 is the

number of nodes, 𝐶 the number of classes, 𝑌𝑛,𝑐 the actual class of node 𝑛 (1 if node 𝑛 belongs to class 𝑐, 0 otherwise),
and �̂�𝑛,𝑐 the probability that node 𝑛 belongs to class 𝑐. Based on the node classification provided by the GNN, the voxels
corresponding to the region associated with each node are assigned the value of the predicted class. This updates the
tensor map 𝑀 , which is the output of the DNN.

3. Experiments
In this section, we introduce the dataset (Section 3.1), the evaluation protocol (Section 3.2), the DNNs utilized for
preliminary segmentation along with the graph construction (Section 3.3), and conclude with the results (Section 3.4).
3.1. Dataset
Our method is evaluated in a cohort of 69 children aged 7 years, comprising both healthy children and children after
NAIS with either right or left hemisphere unilateral injury. Each child underwent MRI scanning on a 3.0 Tesla scanner
(MAGNETOM Trio Tim system, Siemens, Erlangen, Germany, 12 channel head coil) at Neurospin, CEA-Saclay,
France. High-resolution 3D T1-weighted volumes were acquired using a magnetization-prepared rapid acquisition
gradient-echo sequence [176 slices, TR = 2300 msec, TE = 4.18 msec, FOV = 256 mm, flip angle = 9°, voxel size
1x1x1mm3]. Imaging sequences also included a high-resolution 3D FLAIR sequence, which was solely used to guide
manual segmentation of the basal ganglia in lesioned areas during ground truth definition. The head circumference of
all children was measured by clinicians at the time of MRI acquisition.
Major nuclei within the basal ganglia complex include the putamen, the caudate nucleus, and the pallidum. To generate
ground truths for segmenting these structures, along with the thalamus, on the 3D T1 MRI scans, we combined manual
segmentation with atlas-based segmentation using the Hammersmith atlas [44]. The Hammersmith atlas, available for
download1, has been widely used in publications and research studies focusing on children [45]. Statistical Parametric
Mapping version 12 (SPM12) software (Welcome Department of Imaging Neuroscience, University College, London,

1http://brain-development.org/brain-atlases/pediatric-brain-atlases/pediatric-brain-atlas-gousias/
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UK) was used to obtain the tissue probability map (TPM) for each control subject (T1 MRI) in the native space. A
group template for 7-year-old control children was constructed from their TPMs using the DARTEL tool. Basal ganglia
and thalamus segmentation in the MNI space was performed using the Hammersmith atlas. The T1-weighted volume
of each subject was registered to the DARTEL template of 7-year-old children using the Computational Anatomy
Toolbox CAT12 (version 12.7) [46]. This process yielded the deformation fields from each subject’s native space to
the DARTEL template space, which were necessary for obtaining basal ganglia and thalamus segmentations in each
child’s native space. The segmentation of each MRI was manually corrected slice-by-slice using ITKSnap [47], with
the aid of the FLAIR sequence to assist in identifying gliosis for segmenting the injured areas. Each segmentation was
visually checked and validated by consensus with a specialist. The segmentation comprised nine classes: thalamus,
caudate, putamen, pallidum (both left and right in all cases), and background.
One child was excluded from the study due to excessive movement during MRI acquisition, which compromised the
quality of the acquired 3D T1-weighted volume, making segmentation insufficiently reliable. Consequently, the final
dataset consists of 68 segmented T1 MRIs from 7-year-old children, comprising 31 healthy and 37 injured children as
detailed in Table 1 - data.
3.2. Evaluation protocol
All experiments were conducted in a Python environment using the PyTorch Geometric library [48]. The graph neural
network model was trained with the Adam optimizer for 600 epochs, with a dropout rate of 0.5. A learning rate reduction
strategy on plateau was employed, starting with an initial learning rate 𝐿𝑟0 = 0.01 and a reduction factor 𝜄 = 5𝑒−4. The
output dimension 𝑑 of the graph convolution operator was set to 12. The performance of the model was evaluated as
a function of this hyperparameter value.
To assess the segmentation quality, we computed the Dice score [49] and Hausdorff distance (HD) [50] for each
class. While the Dice provides a general measure of overlap between the segmented and reference regions, the HD
emphasizes cases where the segmented region may include small connected components located far from the reference
annotations. In addition to the Hausdorff distance, we computed the 95𝑡ℎ percentile of the Hausdorff distance, measured
in millimeters and denoted as HD95, using the MedPy library [51]. This metric was used to mitigate the impact of a
small subset of outliers. The reported results are the averages of these metrics across the nine classes considered.
Furthermore, substructure-wise performance was analyzed to assess the ability of the method to improve the semantic
segmentation of each individual structure, independent of the others.
We further evaluated the added value of our method by comparing the segmentation results from the GNN with those
obtained using only the DNN. To assess the efficiency of the method in accurately segmenting the basal ganglia in
both healthy and injured brains, we differentiated the results obtained for each population. Additionally, we measured
the segmentation quality per hemisphere in injured children, comparing the lesioned and contra-lesioned hemispheres.
Checking segmentation separately in each hemisphere is important for conducting subsequent inter-hemispheric studies
based on the segmentation results [8, 52].
To ensure robustness across different brain types, we trained and tested both the DNN and GNN on datasets comprising
both healthy and injured brains (Table 1). To evaluate the resilience of the method to small datasets, a challenging issue
in medical applications [53], we experimented with varying sizes of the training dataset. Specifically, we considered
four configurations outlined in Table 1, referring to the proportion of the training dataset used (100%, 50%, 25%, 12%).
For each training dataset size, the test set remained consistent (composed of 11 healthy subjects and 12 subjects with
neonatal stroke). However, the subjects used for training and validation were randomly drawn from the remaining 45
children (healthy and after NAIS). To evaluate the generalizability of the DNN, two independent random draws of
training and validation data were considered for each configuration (100%, 50%, 25% or 12%). The validation set is
used to provide an unbiased evaluation of the DNN’s performance while tuning hyperparameters. The reported results
in this paper are the average performance across these two random draws.
To evaluate the impact of the structural information carried by edges, we compared our performance with that obtained
without edge attributes (i.e. considering a unitary weight on edges). Additionally, we benchmarked our approach against
results obtained using the widely used graph convolution operator GraphConv [54], which handles only scalar edge
attributes (set to a unitary weight in our experiments).
In our experiments, we considered a 3D U-Net and two state-of-the-art DNNs (detailed hereafter), selected from
recent studies that provide available implementations suitable for 3D medical images. Furthermore, we compared the
performance of our proposal with two atlas-based methods: the fully automatic vol2Brain algorithm, which leverages
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Table 1
Dataset size and training (validation)/test configurations (Conf.). The number of healthy and injured subjects in the
training (validation) dataset is given for the two random selections of the training dataset.

data train (validation) test
Conf. 100% 50% 25% 12%
Total 68 35 (10) 17 (6) 8 (4) 4 (2) 23

Healthy 31 18 (2) 6 (3) 3 (1) 3 (0) 1116 (4) 10 (1) 1 (2) 2 (2)

Injured 37 17 (8) 11 (3) 5 (3) 1 (2) 1219 (6) 7 (5) 7 (2) 2 (0)

multi-atlas label fusion technology [15], and the atlas of 7-year-old children constructed from the control children of
our dataset.
3.3. Graph construction from DNN output
We evaluated the proposed post-processing method with various DNN architectures. The evaluation encompassed a
3D U-Net combined with CRF [55], the recently introduced UNETr using transformers [22], and the MSGSE-Net [9],
which has been shown to perform well in segmenting basal ganglia in healthy brains through multiscale image contexts
and attention mechanisms.
We chose U-Net as it is a benchmark deep neural network for medical image segmentation [56], and employed
a PyTorch implementation2. The network was trained over 60 epochs, with an early stopping strategy to prevent
overfitting. A CRF-based post-processing is considered, acting as a spatial regularization technique, to remove some
of the artifacts produced by the U-Net, particularly with limited training data (with 25% and 12%). The aim was to
demonstrate the ability of the method to correct segmentation errors not addressed by standard spatial regularization
methods such as CRF. For the CRF model, we considered the crfseg library3 in PyTorch, based on a Gaussian filter
of size 11. We set the number of iterations in mean field approximation to 5 and initialized the smoothness kernel
weight and bandwidths for each spatial feature in the Gaussian smoothness kernel to 1. The CRF model was placed
at the output of the pre-trained U-Net and trained with Adam over 30 epochs to fine tune the whole model. Given
the highly unbalanced classes (i.e., small target region sizes compared to other brain tissue and background), we
used a 3D patch-based technique [57]. Patches are volumes of size 323 voxels extracted around the centroid of each
label (random selection) using the Torchio library [58]. For each MR image, 64 patches were selected, with selection
frequency proportional to the inverse prior probability of the corresponding class. During inference, the segmentation
map for each MRI was generated using a grid sampler based on 323 voxels patches with an overlap of 43 voxels.
We also evaluated our method on the recent UNETr architecture, specifically designed for medical image segmentation.
UNETr incorporates attention mechanisms, enabling it to capture global context and model long-range dependencies
[22]. The hyperparameters were set according to [22], with patches of size 323 voxels. To reduce computational
time and memory requirements, the 256x256x176 voxel MRIs were downsampled to 128x128x128 voxel images.
During inference, each MRI was similarly downsampled to a 128x128x128 voxel image. We then followed the process
described in [22], adapting it for patches of size 323 voxels. The resulting segmentation map later used for graph
construction was thus a volume of 128x128x128 voxels. After segmentation with our method, the images were resized
back to their original dimensions using 3𝑟𝑑 order spline interpolation for segmentation evaluation.
Finally, we considered the MSGSE-Net network, recently proposed for MRI-based segmentation of subcortical brain
structures in healthy subjects. We chose this network due to its demonstrated superior performance in segmenting basal
ganglia in healthy adult brains [9] outperforming other state-of-the-art methods like Free Surfer [14], BrainSegNet [12],
and Ψ-Net [13]. MSGSE-Net, designed for 2D patches, leverages multiscale image contexts and attention mechanisms
to improve the ability of the network to learn discriminative feature representations for accurate segmentation. The
network was trained with Adam over 60 epochs, using the hyperparameters and the loss function (entropy-weighted
Dice loss function) described in [9], applied to the 256x256 pixels slices of the MRI. During inference, the whole
segmentation map was generated by aggregating the segmentation maps of each 256x256 pixel 2D slice constituting
the 3D MRI.

2https://doi.org/10.5281/zenodo.3522306
3https://github.com/mishgon/crfseg
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Table 2
Mean number of nodes for the different DNNs and training configurations.

Training data ratio 100% 50% 25% 12%
U-Net+CRF 11.57 15.39 20.39 18.78

UNETr 9.10 10.96 12.04 27.91
MSGSE-Net 12.04 15.43 16.26 23.78

Note that, in all cases, the whole volume was normalized during a pre-processing step. To compensate for the scarcity
of training data, we implemented a data augmentation strategy that included a random flip along the left-right axis
(probability of 0.2) and a random elastic deformation with five control points and linear image interpolation (probability
of 0.2) to generate "realistic" data. Data augmentation was also performed using the Torchio library.
From the DNN output, a graph 𝐺 was constructed as detailed in section 2. Prior to graph construction, a median filter
with a 33 voxel kernel was applied to the DNN output to perform a smoothing aimed at eliminating small connected
components and reducing the number of nodes in the graph. A 26-connectivity was considered to extract connected
components from the smoothed segmentation map generated by the DNN. Each node was associated with an attribute
of dimension 9, corresponding to the DNN-based probabilities of belonging to the 9 classes. Each edge has a three-
dimensional attribute that corresponds to the relative positions of the barycenters of the connected regions across the
three dimensions, as described in section 2.
3.4. Results
Table 2 reports the graph sizes for each neural network architecture across the four training configurations. As expected,
we face arbitrary graph sizes. Specifically, the number of nodes tends to increase as the training dataset size decreases
because the DNN becomes less efficient and identifies more candidate regions (i.e., nodes) per class.
Table 3 compares the segmentation performance with the DNN alone and with the proposed method. Bold values
highlight the best method. For instance, with 50% of the training data, our proposal with MSGSE-Net outperforms the
use of MSGSE-Net alone (shown in bold for our proposal). We present results for all three neural networks across the
four training configurations. Whatever the DNN and the training configuration, the proposal consistently improves both
the median Dice and the median Hausdorff distance (HD and HD95). Improvement with GNN, illustrated in Figure 2,
results in a slight enhancement in median Dice (up to 4% with MSGSE-Net for both healthy and injured children when
considering 12% of the training data). The improvement is particularly notable for the Hausdorff distance, (including
HD95). This underscores the ability of the method to remove artifacts generated by the DNN that are either distant from
or close to the target regions. Indeed, even with UNETr, which provides fewer artifacts due to its attention mechanisms
(capturing long-range spatial dependencies and thereby avoiding distant artifacts - Table 2), our proposal demonstrably
reduces the mean HD from 4.19 to 3.85 (average of healthy and injured children) when considering 100% of the training
dataset (a 9% reduction), from 5.39 to 4.45 (an 18% reduction) with 50% of the training dataset, from 11.41 to 8.33
(a 27% reduction) when considering 25% of the training dataset, and from 23.44 to 10.14 (a 57% reduction) with only
12% of the training dataset. Even when dealing with a large lesion close to the motor pathway, where basal ganglia
segmentation tends to be less accurate, our method outperforms the DNN in Dice, HD and HD95 (Figure 3 - correction
of spatial inconsistencies in the injured hemisphere).
In Table 3, we observe that the performance of the deep neural network decreases with the reduction of the number of
training data in terms of Dice and Hausdorff distance (visually observed in Figure 2). Nevertheless, our GNN-based
post-processing appears to mitigate this decline, maintaining a relatively consistent and small median HD95 across all
training configurations, as illustrated in Figure 4. As the number of training data decreases, the improvement provided
by our method becomes more pronounced (see Figure 2). This underscores the efficacy of our method in addressing
the challenges posed by limited training data: the relationships learned during training enable corrections of structural
mistakes made by the DNN.
We also evaluated the potential progress in GNN-based node classification by analyzing the maximum achievable
performance for each DNN across all configurations (Upp. B. in Table 3). This upper bound is determined by assigning
each region detected by the DNN to the class that maximizes the Dice score, using the ground truth to define appropriate
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Figure 2: Segmentation of basal ganglia in two injured children using several DNNs (U-Net+CRF, MSGSE-Net) across
different training data ratios. Results with and without our proposal are illustrated. GT: ground truth.

associations. We observe that our method often achieves performance very close to the maximum possible limit for
both healthy and injured subjects (e.g., for 50% of the training data with all DNNs when considering median results,
and for 12% of the training data with U-Net+CRF and UNETR). However, when the training dataset size is very small,
the outcomes occasionally deviate from optimal performance (e.g., injured subjects with MSGSE-Net - configurations
25% and 12%) due to some misclassifications. Importantly, even in these cases where our method falls short of the
optimal threshold, the median results still surpass those of the DNN alone, indicating that GNN-based post-processing
enhances DNN-based segmentation.
In Table 3, it is also evident that the results achieved for children after NAIS are inferior to those obtained for healthy
children, even with our post-processing method (e.g., with U-Net+CRF and 25% of the training data: Dice of 0.86 vs
0.94 for healthy brains, HD of 16.56 vs 2.93 and HD95 of 6.31 vs 0.91. This can be explained by substantial variations
in the brain, sometimes observed, due to the lesion that disrupts the DNN (Figure 3). This leads to a much higher
standard deviation in injured children for all metrics (standard deviation values are not indicated in Table 3 for sake of
clarity). For a few injured subjects, particularly when the training dataset is very small, our mean HD and HD95 (but
not the median HD and HD95) are lower than those of the DNN due to some outliers (e.g., MSGSE-Net with 25% and
12% of the training dataset, and the HD95 for UNETr with 25% of the training dataset).
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Table 3
Comparison of basal ganglia segmentation in healthy children and children after NAIS with DNN alone (U-Net+CRF,
UNETr, or MSGSE-Net) and with the proposed combination (Prop.) of DNN and GNN. Mean and median results across
the four training configurations are presented. An upper bound (Upp. B.), referring to a classification of the regions
identified by the DNN maximizing the Dice score, is provided to assess the potential enhancement of the proposed
method. Bold values indicate improvement by our method. Underlined values highlight when our proposal achieves perfect
node classification, reaching the maximum Dice performance achievable with DNN-based segmentation for all the test
subjects.

Conf. 100% 50%
Dice HD HD95 Dice HD HD95

Healthy Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Upp. B. U-Net+CRF 0.96 0.96 2.04 2.00 0.89 0.89 0.95 0.95 2.12 2.19 0.89 0.89

U-Net+CRF 0.96 0.96 8.14 5.72 1.78 0.89 0.95 0.95 17.72 17.77 3.21 0.89
Prop.+U-Net+CRF 0.96 0.96 2.80 2.13 0.89 0.89 0.95 0.95 3.34 2.19 0.89 0.89

Upp. B. UNETr 0.92 0.92 2.70 2.65 0.97 0.98 0.89 0.90 3.17 3.06 1.15 1.14
UNETr 0.92 0.92 3.18 2.86 0.97 0.98 0.89 0.90 3.95 3.35 1.15 1.14

Prop. + UNETr 0.92 0.92 2.99 2.66 0.97 0.98 0.89 0.90 3.78 3.06 1.15 1.14

Upp. B. MSGSE-Net 0.95 0.95 2.46 2.39 0.93 0.89 0.94 0.94 2.83 2.84 1.03 0.97
MSGSE-Net 0.95 0.95 4.25 2.64 0.93 0.89 0.91 0.92 7.20 6.62 2.54 1.85

Prop. + MSGSE-Net 0.95 0.95 3.26 2.51 0.93 0.89 0.93 0.94 3.99 3.04 1.45 1.02

Injured Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Upp. B. U-Net+CRF 0.89 0.95 5.77 2.46 2.36 0.89 0.88 0.94 5.92 2.76 2.63 0.97

U-Net+CRF 0.89 0.94 11.11 7.30 2.61 0.93 0.87 0.93 20.52 21.87 5.36 4.82
Prop.+U-Net+CRF 0.89 0.95 6.43 2.60 2.36 0.91 0.88 0.94 7.58 4.84 2.49 0.99

Upp. B. UNETr 0.85 0.89 3.60 3.14 1.51 1.13 0.82 0.86 4.24 3.70 2.00 1.43
UNETr 0.85 0.89 5.21 3.86 1.51 1.13 0.82 0.86 6.84 4.66 2.00 1.43

Prop. + UNETr 0.85 0.89 4.71 3.49 1.51 1.13 0.82 0.86 5.12 3.90 2.01 1.43

Upp. B. MSGSE-Net 0.88 0.92 3.57 3.01 1.74 1.02 0.86 0.92 11.64 3.12 4.30 1.07
MSGSE-Net 0.86 0.87 8.40 5.85 4.12 2.63 0.79 0.87 16.64 13.28 7.75 5.47

Prop. + MSGSE-Net 0.87 0.89 7.54 5.75 3.57 2.63 0.85 0.91 10.14 3.91 4.03 1.14
Conf. 25% 12%

Dice HD HD95 Dice HD HD95
Healthy Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

Upp. B. U-Net+CRF 0.94 0.94 2.46 2.51 0.91 0.89 0.94 0.94 2.67 2.64 1.00 1.00
U-Net+CRF 0.92 0.92 35.33 36.45 14.72 13.15 0.92 0.92 33.72 33.47 12.41 12.87

Prop.+U-Net+CRF 0.94 0.94 2.93 2.57 0.91 0.89 0.94 0.94 4.08 3.01 1.00 1.00

Upp. B. UNETr 0.80 0.81 5.04 5.22 2.06 2.04 0.75 0.77 5.82 5.94 2.75 2.54
UNETr 0.80 0.80 8.12 7.5 2.07 2.05 0.74 0.75 19.69 16.67 4.40 3.24

Prop. + UNETr 0.80 0.81 5.04 5.22 2.06 2.04 0.75 0.76 6.36 5.94 2.80 2.54

Upp. B. MSGSE-Net 0.90 0.91 4.08 4.06 2.13 2.26 0.90 0.90 3.78 3.90 1.51 1.24
MSGSE-Net 0.88 0.88 10.13 9.26 3.84 3.63 0.85 0.86 17.33 15.47 5.84 4.47

Prop. + MSGSE-Net 0.90 0.91 7.12 4.84 2.40 2.31 0.86 0.90 12.17 4.90 5.05 1.53

Injured Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median
Upp. B. U-Net+CRF 0.86 0.93 9.19 2.87 3.55 1.00 0.86 0.92 9.32 3.50 3.57 1.13

U-Net+CRF 0.85 0.91 35.80 34.13 13.75 14.18 0.84 0.90 37.52 40.64 14.98 14.25
Prop.+U-Net+CRF 0.86 0.93 16.56 5.46 6.31 1.03 0.86 0.92 10.45 3.50 3.70 1.13

Upp. B. UNETr 0.72 0.73 13.76 5.45 5.30 2.67 0.68 0.69 9.27 6.04 4.15 3.17
UNETr 0.72 0.73 14.71 10.15 5.00 2.81 0.67 0.68 27.20 25.23 9.32 6.80

Prop. + UNETr 0.72 0.73 11.63 5.43 7.07 2.71 0.68 0.69 13.92 7.15 6.81 3.37

Upp. B. MSGSE-Net 0.84 0.90 20.12 3.46 7.01 1.21 0.82 0.85 9.93 4.26 3.77 1.67
MSGSE-Net 0.75 0.80 22.42 14.42 10.69 7.81 0.74 0.72 18.27 18.25 7.87 7.83

Prop. + MSGSE-Net 0.78 0.81 20.83 12.31 11.54 1.93 0.76 0.76 20.66 7.95 8.78 4.43
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Figure 3: Examples of segmentation in subjects with a large lesion close to the basal ganglia. Results are obtained with
12% (left image) and 25% (right image) of the training dataset using MSGSE-Net. GT: ground truth. DNN: MSGSE-Net.

Figure 4: Evolution of the median Hausdorff distance 95 as a function of the number of training data for the three DNNs
(U-Net+CRF, UNETr and MSGSE-Net), both with (dotted lines) and without (solid lines) our proposal.

Our method enhances the median HD of the DNN by up to 93% in healthy children (decreasing from 36.45 to 2.57
in configuration 25% with U-Net+CRF) and by up to 91% in injured children (decreasing from 40.64 to 3.50 in
configuration 12% with U-Net+CRF). This demonstrates the ability of our post-processing method for segmenting
the basal ganglia in both healthy and injured brains, as depicted in Figure 2.

To better understand the lower segmentation performance in children with neonatal stroke, we detail in Table 4
the results per hemisphere obtained for children suffering from NAIS, across the four training configurations, when
applying our method to the U-Net+CRF output (the trend is similar for the other DNNs, but the results are not
reported for clarity). It is evident that the segmentation of the injured hemisphere degrades the results, even when
considering the whole training dataset (mean Dice of 0.83 for the injured hemisphere versus 0.96 for the contra-injured
Preprint submitted to Computerized Medical Imaging and Graphics Page 11 of 19



Table 4
Mean (median) performance of basal ganglia segmentation in injured children separated by hemisphere, using U-Net+CRF
across the 4 training configurations. A comparison without the proposed GNN-based post-processing is provided.

Dice HD HD95
Injured 100% 50% 25% 12% 100% 50% 25% 12% 100% 50% 25% 12%

Contra-injured 0.95 0.95 0.94 0.93 3.73 6.58 13.38 16.34 1.22 1.93 3.13 4.73
Hem. w/o GNN (0.96) (0.95) (0.94) (0.93) (2.31) (4.74) (13.42) (21.90) (0.80) (0.80) (1.02) (1.18)
Contra-injured 0.96 0.95 0.94 0.94 2.20 2.33 2.76 2.92 0.80 0.82 0.85 0.93

Hem. (0.96) (0.95) (0.94) (0.94) (2.34) (2.43) (2.77) (2.9) (0.80) (0.80) (0.81) (0.85)
Injured Hem. 0.82 0.80 0.79 0.81 11.01 9.00 24.16 29.19 4.33 4.65 11.73 14.09

w/o GNN (0.88) (0.89) (0.86) (0.90) (7.39) (9.04) (15.17) (23.42) (1.20) (4.19) (9.99) (15.22)
Injured Hem. 0.83 0.82 0.80 0.82 7.67 8.41 22.41 13.26 3.10 3.63 8.16 4.85

(0.91) (0.90) (0.91) (0.90) (2.67) (3.02) (2.97) (3.81) (0.99) (1.00) (1.05) (1.28)

Table 5
Mean performance of basal ganglia segmentation separated by sub-structures and study groups (healthy children, children
with a lesion in the left hemisphere, children with a lesion in the right hemisphere). Results are obtained with MSGSE-Net
(DNN) using 50% of the training dataset. A comparison without the proposed GNN-based post-processing is provided
(DNN).

Study group Healthy (11 children) Left injured (7 children) Right injured (5 children)
DNN Proposal DNN Proposal DNN Proposal

Structures Dice HD95 Dice HD95 Dice HD95 Dice HD95 Dice HD95 Dice HD95
Left thalamus 0.90 3.63 0.92 2.25 0.74 6.50 0.85 3.74 0.85 3.59 0.87 2.43
Right thalamus 0.90 2.68 0.92 2.42 0.85 6.49 0.91 1.39 0.85 5.00 0.86 5.00
Left caudate 0.88 2.62 0.95 1.00 0.54 10.41 0.69 5.83 0.70 5.09 0.91 3.43
Right caudate 0.91 7.57 0.95 1.00 0.88 9.70 0.94 1.00 0.68 16.80 0.83 2.51
Left putamen 0.94 1.00 0.94 1.00 0.63 16.73 0.65 16.55 0.92 1.08 0.94 1.00
Right putamen 0.94 1.00 0.95 1.00 0.93 6.50 0.94 1.00 0.72 13.47 0.74 5.10
Left pallidum 0.88 1.18 0.89 1.18 0.54 16.47 0.63 15.89 0.84 1.16 0.89 1.00
Right pallidum 0.87 3.22 0.87 3.22 0.84 5.56 0.88 1.04 0.73 11.46 0.77 1.56

hemisphere, mean HD of 7.67 versus 2.20, mean HD95 of 3.10 versus 0.80). This degradation can be attributed to the
poorer performance of the DNN in the injured hemisphere, as illustrated in Figure 3 and Table 4 (w/o GNN). Indeed,
segmentation errors are observed in the left hemisphere for the child with a left hemisphere injury (loss of the left
putamen and pallidum and part of the left caudate), while errors occur in the right hemisphere for the child with a
right hemisphere injury. Regions lost by the DNN (classified as background) cannot be recovered by the GNN-based
post-processing. However, Figure 3 and Table 4 show that the method improves the segmentation performance in both
hemispheres, as evidenced by both mean and median values, regardless of the number of training data. Moreover,
our method rebalances the performance of inter-hemispheric segmentation compared to DNN segmentation when
considering median values. For example, with 50% of the training dataset, our method slightly improves the median
HD of the contra-injured hemisphere (4.74 to 2.43), and more demonstrably improves the median HD of the injured
hemisphere (9.04 to 3.02).The proposed method yields a segmentation with a median HD95 of approximately 0.8 for
the contra-lesioned hemisphere and less than 1.3 for the lesioned hemisphere (compared to over 10 without GNN),
whatever the training configuration. Regardless of the training dataset size, our method reduces the median inter-
hemispheric performance difference to less than 1 for HD and less than 5% for the Dice score. Again, we notice that
the benefit of our proposal in each hemisphere increases as the number of training data decreases.
To evaluate the impact of our method on the delineation of individual structures, we present the performance for each
structure with and without our proposal when combined with MSGSE-Net (Table 5). The results were obtained by
training both the DNN and GNN with 50% of the training data. The trends observed are similar across other training
configurations. To analyze the contribution of our method to the segmentation of each structure, we decomposed the
results on the test dataset (see Table 1) into three study groups: healthy children (11 children), children after NAIS with
a lesion in the left hemisphere (7 children) and children after NAIS with a lesion in the right hemisphere (5 children).
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Table 6
Comparison of basal ganglia segmentation in healthy and injured children using MSGSE-Net trained on 50% of the training
dataset in several cases, assessing the influence of structural information on model performance. Reference: segmentation
performed by MSGSE-Net, GraphConv: MSGSE-Net combined with a GNN based on the graph convolution operator
GraphConv, No edge attr.: MSGSE-Net combined with our proposed GNN but ignoring attributes on edges, Proposal:
MSGSE-Net with our proposal.

Dice HD HD95
Mean Median Mean Median Mean Median

Reference 0.85 0.90 11.92 9.95 5.14 3.66
GraphConv 0.70 0.90 59.22 9.39 21.12 5.11

No edge attr. 0.85 0.90 13.81 7.70 7.03 2.74
Proposal 0.89 0.92 7.06 3.47 2.74 1.08

Regardless of the study group or structure considered, our method consistently improves average segmentation
performance in terms of Dice and HD95. Improvement with our method is more notable for children suffering from
NAIS. In fact, the proposed method effectively enhances the segmentation of structures in both contra-lesioned and
lesioned hemispheres. Notably, the caudate nucleus of the lesioned hemisphere exhibited substantial improvements
in segmentation: a 15% increase in Dice score and a 44% reduction in HD95 for the left caudate in left-lesioned
children, and a 15% increase in Dice score and an 85% reduction in HD95 for the right caudate in right-lesioned
children. Although improvements in segmentation of the putamen and pallidum are smaller, they are still notable
(left-injured children: +2% Dice and -1% HD95 for the left putamen, +9% Dice and -4% HD95 for the left pallidum;
right-injured children: +2% Dice and -62% HD95 for the right putamen, +4% Dice and -86% HD95 for the right
pallidum). Furthermore, the basal ganglia (caudate, putamen, and pallidum) pose greater segmentation challenges
compared to the thalamus. It is important to note that average segmentation results are lower in subjects with a lesion
in the left hemisphere compared to those with a lesion in the right hemisphere. This difference arises from a larger
number of children with a large lesion affecting the basal ganglia in the left lesioned group. A comparison of the
performance of our proposal for structures of the same type is now to be considered. In the control group, our method
segments structures of the same nature with equivalent performance, except for the pallidum, where results for the left
pallidum are slightly superior to those for the right pallidum. This observation does not hold for children after NAIS. In
fact, segmentation performance of structures on the contra-lesioned side is consistently superior to that of symmetrical
structures in the lesioned hemisphere, corroborating earlier inter-hemispheric studies (Table 4).
We studied the influence of n-dimensional structural information (i.e., edge attributes) on segmentation. Table 6
presents the mean and median performance achieved using MSGSE-Net (with 50% of the training dataset) in four cases:
MSGSE-Net only (Reference), MSGSE-Net+GNN with GraphConv (a graph convolution operator that doesn’t handle
multidimensional edge attributes), MSGSE-Net+ECConv without edge attributes, and MSGSE-Net combined with
our proposal. We first observe that the widely used convolution operator GraphConv is not suited for our segmentation
task, resulting in notable classification errors and thus poor average results. Comparing lines 3 (ECConv without
edge attributes) and 4 (Proposal), we clearly see the positive impact of structural information (i.e., edge attributes) on
classification accuracy, leading to improvements across all metrics, both median and mean. For clarity, results from the
other DNNs, although similar, are not reported. This study confirms our hypothesis that the specific spatial organization
of the basal ganglia can be used to improve its segmentation.
In Figure 5, we analyze the impact of the hyperparameter 𝑑 (dimension of the node attributes at the output of the graph
convolution operator) on segmentation quality (mean HD). Several values of 𝑑 are compared for the three DNNs and
when considering 50% and 12% of the training dataset. For conciseness, results with other training configurations
(100% and 25%) are not reported, but the influence of 𝑑 was found to be similar. The impact of 𝑑 on HD is generally
limited, with one exception: MSGSE-Net trained with only 12% of the training dataset. These results confirm that
setting 𝑑 to 12 is a reasonable choice, because this value strikes a balance by minimizing the number of trainable GNN
parameters, which increases with 𝑑, while optimizing model performance across most cases.
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Figure 5: Evolution of the average Hausdorff distance as a function of the hyperparameter 𝑑 (dimension of the node
attributes at the output of the graph convolution). Results are shown for the three DNN backbones and for the use of
50% and 12% of the training dataset

.

A major challenge in the medical field is to develop efficient methods when data is scarce due to limited availability.
Table 7 compares the results obtained by applying our proposal to U-Net+CRF considering only 6 images (4 for
training and 2 for validation - configuration 12%) against the best outcomes achieved by the three DNNs when using
the whole training dataset (100% - 35 images for training and 10 for validation). While UNETr and MSGSE-Net
demonstrate superior HD performance compared to U-Net+CRF, the latter marginally outperforms them in Dice
scores. Our post-processing method, adding a mere 345 trainable parameters, reduces the median HD of U-Net+CRF
becoming lower than with UNETr and MSGSE-Net alone, despite its considerably smaller training dataset and fewer
trainable parameters (15M vs. 94M for UNETr and 33M for MSGSE-Net). Additionally, Table 7 shows that that our
approach, when combined with a U-Net+CRF network, achieves performance comparable to that of the 7-year-old
atlas in terms of HD for both injured and healthy subjects using only 6 training subjects. This is a commendable
performance, as the atlas-based method requires more data to build the atlas. Furthermore, the 7-year-old atlas was
constructed using some of the healthy subjects included for evaluation. Hence, it is reasonable to assume that this
leads to overly optimistic values (Dice and HD), compared to the DNNs not trained on these healthy subjects. Thus,
while the HD is slightly inferior to that of the atlas, our method’s performance remains compelling. Further supporting
this, Table 7 demonstrates our method’s superiority over the recent online multi-atlas-based vol2Brain algorithm [15].
This highlights the relevance of considering high-level relationships, not only for segmentation efficiency, but also
concerning data requirements and trainable parameters, which is a challenging issue [59].

4. Discussion
In this paper, we introduce a graph neural network that leverages a DNN prediction and the spatial relationships
between the regions segmented by the DNN to improve the semantic segmentation of the basal ganglia and thalami,
key structures in motor function. Our proposal aims to automate the accurate segmentation of the basal ganglia and
thalamus, even in the presence of a cortical lesion, aiming to facilitate studies related to early brain lesion. We focused
on basal ganglia segmentation in both healthy children and children with neonatal arterial ischemic stroke (NAIS) to
demonstrate the method’s efficacy in a challenging situation (children with a perinatal stroke).
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Table 7
Comparison of the proposal with an atlas-based method and state-of-the-art methods for basal ganglia segmentation in
healthy and injured brains (the number of data for the deep neural networks corresponds to the configuration with the
best performance). M: million, N.A.: not available.

# required data # trainable param. Dice (median) HD (median)
Reference (atlas) 31 – 0.99 3.09
Vol2Brain [15] N.A. N.A. 0.84 5.02

U-Net+CRF [55] 45 (35+10) 15M 0.95 6.51
UNETr [22] 45 (35+10) 94M 0.91 3.36

MSGSE-Net [9] 45 (35+10) 33M 0.91 4.24
U-Net+CRF + Proposal 6 (4+2) 15M 0.93 3.25

In this way, we trained both the DNN and GNN on a dataset comprising healthy children as well as children with NAIS.
Our approach aims to rectify the segmentation errors generated by the DNN (artifacts and spatial inconsistencies often
related to lesion-induced structural differences) by relying on the known structural relationships between these brain
structures. We have shown that our GNN-based post-processing layer enhanced the segmentation performance (Dice,
Hausdorff distance and HD95) for both healthy subjects and those with NAIS (Table 3). Specifically, the proposal
corrected most segmentation errors produced by the DNN in the injured hemisphere, resulting in equivalent median
segmentation performance between hemispheres (Table 4). A comprehensive structure-by-structure performance
analysis demonstrated that our method effectively enhances the segmentation of each structure in both healthy children
and children with NAIS, including the injured cerebral hemisphere (Table 5). The thalamus was found to be more
easily segmented than the basal ganglia, likely due to its larger size and higher tissue contrast. We observed a clear
improvement in the segmentation of the caudate nucleus across all groups, with particularly noteworthy enhancements
for the caudate nucleus of the lesioned hemisphere.
Improvements were observed with various DNNs widely used in this domain, including the recently developed UNETr
and MSGSE-Net. We effectively leveraged all spatial information between regions by considering complete graphs to
enrich the prediction of each node. The incorporation of the 𝐹 𝑙

1 function into the mapping function 𝐹 𝑙 of ECConv
enabled easier distinction of the influence of each neighboring node and edge attribute during message passing.
Experiments reproduced considering only the 𝐹 𝑙

2 mapping function, as in [36], yielded inferior results. Moreover, we
demonstrated the beneficial effect of structural information, specifically edge attributes, on segmentation compared to
GNNs that rely only on node information (Table 6).
The proposed method also addresses a well-known challenge in the medical field, particularly in pediatric studies:
the lack of training data. To illustrate the strength of the proposal, we considered the example of a population of
children with a rare pathology (NAIS [60]). Despite having a small dataset, it is comparable in size to other studies
dealing with perinatal stroke (31 healthy and 37 injured children vs 20 healthy and 44 injured children in [8]). To
evaluate the efficiency of the method on smaller datasets, which is common in the medical field when dealing with rare
pathologies, we studied the influence of the size of the training dataset on the performance, ranging from 100% to 12%
of the training dataset. We managed to accurately segment (median HD ≤ 13, median HD95 ≤ 5) the basal ganglia and
thalamus in both healthy and injured children across all training configurations, even with a training dataset as small
as 6 images (Table 1). Our GNN-based post-processing demonstrably enhanced the segmentation results achieved by
any DNN trained on a small dataset (Table 3 and Figure 4 - training dataset ratio of 12%), by correcting the structural
inconsistencies introduced by the under-trained DNN (Figure 2). In addition, Table 7 shows that applying our method
to the output of a U-Net (+CRF) trained with only 6 images yielded superior results across the entire test dataset
(including healthy children and children after NAIS) compared to the multi-atlas based method vol2Brain and more
intricate deep learning networks like UNETr and MSGSE-Net, both trained with 45 images.
A limitation of our approach is its reliance on the connected components partitioning provided by the DNN. If the DNN
fails to detect a region, our proposal can’t locate it either (Figure 3). Likewise, if the DNN identifies a set of voxels
associated with distinct classes as a single region, our method will be unable to subdivide the identified region. The
GNN-based post-processing therefore relies on the DNN-based proposal, which is usually accurate, to classify each
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cluster of voxels. To reduce this reliance on the DNN segmentation and potentially increase the upper limit specified
in Table 3, we could exploit DNN uncertainty [61] to more finely subdivide the regions generated by the DNN.
Another limitation worth noting is that if the GNN misclassifies a region, it can affect numerous voxels and reduce
performance (Table 3: MSGSE-Net applied on injured children with 12% of the training dataset). However, this
situation is rarely encountered using our method and typically only arises when the training dataset is extremely limited.
Overall, our method outperforms the DNN in all cases (Table 3), with superior Dice, HD and HD95 scores in median.
We evaluated the potential for progress in GNN-based node classification by analyzing the upper bound of performance
achievable from the DNN output across all configurations (Table 3). Our method often reached this upper limit,
reflecting a high rate of correct classification. However, we also noticed that as the number of training data
decreases, especially in the case of injured children, the performance can deviate from this upper bound due to some
misclassifications (e.g., U-Net+CRF - 25%, MSGSE-Net - 12%). Note that DNN alone perform even further from this
upper limit. To increase the GNN classification rate, enriching the information carried by the graphs with additional
edge attributes (e.g., angles) and node attributes (e.g., volumes, elongations or other data from morphometric analyses)
would be interesting.
In the case of a large lesion close to basal ganglia, the brain structure is highly modified (Figure 3). In our sense,
any DNN-based approach will struggle to accurately segment brain structures without exhaustive and representative
examples in the training dataset (high variability of lesions in NAIS: localization, shape, and size). To face this issue,
one alternative could be, in such rare cases, to consider third-party techniques that focus on lesion segmentation (lesion
masking) [62]. While this approach could guide basal ganglia segmentation, it would introduce added complexity
to the segmentation process. Such a situation could also be addressed through manual correction of some basal
ganglia regions (semi-automatic segmentation) for use in clinical routines. Indeed, as observed in the experiments,
such instances were relatively rare in our dataset.
Although we have considered a dataset similar in size to those used in works related to NAIS, these results need to be
confirmed with more data. The method is currently tailored for 7-year-old children with a specific type of early brain
lesion (NAIS). If the approach is to be extended to adult populations, where MRI offers higher tissue contrast, it will
be necessary to test it in younger age groups to enable longitudinal studies of basal ganglia development, particularly
following early brain lesion. Additionally, the efficacy of the proposal should be confirmed with other types of early
brain lesions, such as white matter lesions or other forms of neonatal stroke, whether unilateral or bilateral.

5. Conclusion
To address the challenging but crucial task of segmenting basal ganglia and thalami in MRI scans of children, especially
following early brain lesion, we propose a GNN-based framework as a post-processing layer to improve DNN-based
segmentation. The proposal relies on the well-established spatial organization of the basal ganglia. The GNN we
employ can be applied to any deep neural network that provides a segmentation map. It performs node classification
based on both the vector probabilities from the DNN output (node attributes) and the spatial relationships between
structures (edge attributes) to correct structural inconsistencies provided by the DNN. The weights of the edge attributes
in the node classification task are fitted with a NN-compliant function prior to a mapping in the graph convolution
operator of the GNN. The proposed GNN post-processing enhances the segmentation of each structure, including
more complex delineations in the injured hemisphere resulting from the presence of a lesion. Our proposal shows
resilience against the lack of large, representative training datasets, which is a challenge in the medical field, especially
in pediatric studies and rare pathologies. It outperforms multi-atlas based methods as well as more complex deep
learning architectures (UNETr), including a state-of-the-art method for the segmentation of subcortical brain structures
(MSGSE-Net) trained on larger datasets. This study focuses on neonatal arterial ischemic stroke, the most common
type of perinatal ischemic stroke. Nonetheless, the method’s efficiency in both healthy children and children after
NAIS suggests potential applicability to brains affected with other types of early unilateral or bilateral brain lesions.
Future work will aim to improve segmentation across all subjects, with a particular focus on the injured hemisphere of
subjects with a large centrally located lesion altering the structural organization, based on DNN uncertainty and lesion
segmentation. We plan to extend the study to earlier stages of development and other types of early brain lesion.
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