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Abstract

Automatic evaluation metrics capable of re-
placing human judgments are critical to allow-
ing fast development of new methods. Thus,
numerous research efforts have focused on
crafting such metrics. In this work, we take
a step back and analyze recent progress by
comparing the body of existing automatic met-
rics and human metrics altogether. As met-
rics are used based on how they rank systems,
we compare metrics in the space of system
rankings. Our extensive statistical analysis re-
veals surprising findings: automatic metrics –
old and new – are much more similar to each
other than to humans. Automatic metrics are
not complementary and rank systems similarly.
Strikingly, human metrics predict each other
much better than the combination of all auto-
matic metrics used to predict a human metric.
It is surprising because human metrics are of-
ten designed to be independent, to capture dif-
ferent aspects of quality, e.g. content fidelity or
readability. We provide a discussion of these
findings and recommendations for future work
in the field of evaluation.

1 Introduction

Crafting automatic evaluation metrics (AEM) able
to replace human judgments is critical to guide
progress in natural language generation (NLG),
as such automatic metrics allow for cheap, fast,
and large-scale development of new ideas. The
NLG fields are then heavily influenced by the set
of AEM used to decide which systems are valuable.
Therefore, a large body of work has focused on
improving the ability of AEM to predict human
judgments.

Human judgment data is typically employed to
decide which metric to select based on correla-
tion analysis with human annotations (?Owczarzak
et al., 2012; Graham, 2015). In this work, we take a
step back and investigate the relationship between
existing AEM and human judgments globally. We
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Figure 1: Correlation with humans over time con-
sidering all existing metrics combined. On the x-axis:
evaluation metrics ordered by their release time; y-axis:
utterance-level Kendall’s τ with human when training
a model to fit human judgments with all metrics avail-
able at the time (5-Fold cross-validation with XGBoost
regressor). The dotted lines represent different human
annotations and datasets. Different variants of the same
metrics (like ROUGE-1 and ROUGE-2) are averaged.
The datasets and metrics are described in Sec. 2.

do not make metric recommendation but reflect
upon the global progress in the field of automatic
evaluation. Our work is motivated by the find-
ings of Fig. 1. It depicts the improvement over
time, when new metrics were introduced, in the
ability to fit human judgments when using all ex-
isting metrics as features. The fit is measured by
the correlation with humans of a trained classifier
in a 5-fold cross-validation setup. Surprisingly,
we observe small marginal improvement and little
progress over the years.

Recent works emphasized the importance of
viewing metrics in terms of how they rank systems
instead of just comparing score values (Novikova
et al., 2018; Peyrard et al., 2021; Colombo et al.,
2022a). Indeed, not only ranking is a more robust
framework of comparison, it is also more aligned
with the way metrics are used: identifying and
extracting the "best system". Thus, we perform
our analysis in the space of rankings. i.e., how
do metrics rank systems? By analyzing 9 datasets
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covering 4 tasks and 270k scores, we made the
following observations:

Findings. (i) Automatic metrics are much more
similar to each other, in terms of how they rank sys-
tems, than they are to human metrics. It means that
AEM, even the more recent transformer-based ones
are similar to the older ones when used in practice
(ROUGE and BLEU). (ii) This lack of complemen-
tarity results in the inability to fit human judgments
even when all these metrics are taken together as
features for a classifier predicting humans. (iii)
Quite surprisingly, different human dimensions –
different annotations guidelines such as readabil-
ity, or content fidelity – are very predictive of each
other, whereas AEM are much less predictive of
humans. This finding is striking because human
metrics are designed to capture different and inde-
pendent aspects of quality whereas AEM have been
selected precisely for their ability to match humans.
We would expect human metrics to be uncorrelated
and automatic metric to be highly correlated with
humans but we observe the opposite. First, it casts
serious doubt about the ability of AEM to replace
human judgments. Then, the correlation between
independent human annotations of quality hints at
some latent inherent goodness of systems: good
systems are good in different aspect whereas bad
systems are bad across all aspects.

Our findings have several consequences that can
inform future research. Newly introduced metrics
are not complementary to previous ones, resulting
in small global improvements. As a way forward,
we propose that research, instead of crafting met-
rics that maximize correlation with humans, focus
on making metrics that also aim to be explicitly
complementary to the set of existing metrics. This
would enforce maximal marginal gain and ensure
that the field, as a whole, makes progress towards
capturing the complexity of human annotations.

For practitioners, it is common practice to report
several AEM in the hope to get a better view of
system performances. However, reporting several
metrics that all produce similar rankings does not
bring useful additional information. With our pro-
posal, reporting a set of complementary metrics
would better serve the intended purpose.

To help research build upon our work and use
our measure of complementarity, we make our code
available at github.

2 Methodology

Terminology. Let X be the space of possible out-
puts for an NLG task. An NLG metric is a function
m : X ×X →R+ which, from a given textual can-
didate C ∈X and corresponding reference R∈X ,
computes a score m(C,R) reflecting the properties
that C should satisfy (e.g. fluency, fidelity...). Of
course, it is illusory to summarize subtle seman-
tic properties by a single scalar and one is rather
seeking for metrics that are able to discriminate
between different systems. In fact, crafted AEM
are evaluated by comparison to human judgments:
one usually computes ranking correlations such as
the Kendall’s τ . Higher correlations indicating that
the AEM is a better replacement for the human
metrics.

Encoding metrics with rankings. Since the usage
of NLG metrics is to rank systems, we choose to
represent an NLG metric, automatic or human, by
the ranking it induces on a set of systems or of
utterances. More formally, for N ≥ 1 NLG systems
evaluated on a dataset made of K ≥ 1 utterances,
there exists a natural ranking representations of m:

Each utterance k ∈ {1, . . . ,K} induces a ranking
σm

k ∈ RN of the N systems seen as a vector σm
k ,

where σm
k (S) is the rank of system S ∈ {1, . . . ,N}.

For a system S, the representation of a metric m,
noted σm,S, is sum of rankings over the utterances:

σm,S :=
K∑

k=1

σm
k (S) ∈ RN . (1)

We call this System level representation.
Symmetrically, each system k ∈ {1, . . . ,N} induces
a ranking σm

n ∈ RK of the K utterances, where
σm

n (k) is the rank of utterance k. The Utterance
level representation of m is sum of rankings over
the systems:

σm
utt :=

N∑
n=1

σn
k ∈ RK . (2)

Using the space of rankings has been shown to
be more robust than the raw scores as it is less sensi-
tive to outliers and statistical variations (Novikova
et al., 2017; Peyrard et al., 2021; Colombo et al.,
2022a). Furthermore, this representation is closely
tied to Borda counts, which enjoys theoretical
properties: the ranking induced by σm,S is a 5-
approximation of the Kemeny-consensus which
is a good notion of average in the symmetric group
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(Kemeny, 1959; Young and Levenglick, 1978; Cop-
persmith et al., 2006). It is moreover the fastest
approximation of the Kemeny-consensus whose
computation is NP-hard (Ali and Meilă, 2012).

Complementarity. We measure the complemen-
tarity between two metrics – humans or automatic
– by the average over utterances of the distance be-
tween their rankings of systems. Formally, for two
metrics m0 and m1, complementarity is given by:

C(m0,m1) :=
1
K

K∑
k=1

dτ (σ
m0
k ,σm1

k ), (3)

where dτ is the normalized Kendall’s distance be-
tween the vectors of rank. It is related to the
Kendall’s rank correlation τ by: τ = 1−2dτ .

Similarly, we define the complementarity be-
tween a metric m0 and a set of other metrics
m := {mi}i=1,...,l , as the average pairwise comple-
mentarity:

C(m0,m) =
1
l

∑
i=1,...,l

C(m0,mi). (4)

Complementarity measures the extent to which a
metric ranks systems differently than another met-
rics or a set of other metrics. Whether comparing
two metrics or a metric with set, it is a number
between 0 and 1 where 0 indicates that the met-
rics rank systems in the exact same order and 1
indicates the exact opposite order. In between, it
counts the number of inversions between the two
rank lists normalized by the number of possible
pairs of systems.

2.1 Dataset description
To ensure a wide coverage of NLG we focus on
four different problems i.e., dialogue generation
(using PersonaChat (PC) and TopicalChat (TC)
(Mehri and Eskenazi, 2020)), image description
(relying on FLICKR (Young et al., 2014)), sum-
mary evaluation (via TAC08 (Dang and Owczarzak,
2008), TAC10, TAC11 (Owczarzak and Dang,
2011), RSUM (Bhandari et al., 2020) and SEVAL
(Fabbri et al., 2021)), and translation (focusing
on multilingual quality estimation (MLQE) Ranas-
inghe et al. (2021)).
For each task, we gather datasets and rely on AEM
such as JS [1-2] (Lin et al., 2006), BLEU (Papineni
et al., 2002; Post, 2018), Chrfpp (Popović, 2017),
S3 (both variant pyr/resp) (Peyrard et al., 2017),
ROUGE (Lin, 2004) (including 5 of its variants
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Figure 2: Complementarity: For each dataset, the pair-
wise complementarity between each pair of metrics as
computed by Eq. 3 both human and automatic. In these
matrix plot, symmetric by design, we ordered metrics
to have the human one first and the automatic ones af-
ter, the red lines trace the limit between humans and
AEM.

(Ng and Abrecht, 2015)), BERTScore (Zhang et al.,
2019), MoverScore (Zhao et al., 2019). For MLQE
we solely consider several version of BERTScore,
MoverScore and ContrastScore. The human evalu-
tions criterion are specific to each dataset and will
be identified by starting with an H:. Overall, our
final datasets gather over 270k scores.

3 Experiments

Finding 1: Automatic metrics are similar to
each other much more than they are to human
metric. In Fig. 2, we report the pairwise comple-
mentarity between each pair of metrics as com-
puted by Eq. 3 for both human and AEM. When ag-
gregated over pairs and over datasets, we obtain an
average complementarity between: (i) two human
metrics of .16± .01, (ii) two AEM of .20± .01 and
(iii) a human and an automatic metric of .35± .02.

Importantly, we observe across datasets low com-
plementarity, i.e., strong similarity, between AEM,
low complementarity between human metrics but
high complementarity, i.e., low similarity, between
automatic and human metrics.

We draw two conclusions from this analysis:
(i) AEM rank systems similarly but (ii) differ-
ently than humans. There is some nuances across
datasets. The effect described above is particu-
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Figure 3: Human metrics are significantly more pre-
dictive of each other than AEM. On this plot, we re-
port the 5-fold cross-validated result of fitting an XG-
Boost regressor on various feature sets: (i) all available
AEM, (ii) other human metrics when available, and (iii)
both automatic and human metrics. The fit is measured
as the average instance-level correlation in the test set.

larly strong in the Dialog, MLQE and SUM-Eval
datasets. In particular, we notice that TAC datasets,
from the summarization task, have lower comple-
mentarity in general, meaning that all metrics, hu-
man and automatic, are more similar. Indeed, a lot
of works have relied on these datasets to develop
new metrics. Interestingly, the more recent REAL-
SUM and SUM-Eval reveal much lower metric
similarity.

Finding 2: Automatic metrics even all com-
bined do not explain human metrics. If AEM
are rather different than human metrics, we might
wonder whether it is possible to get a good approxi-
mation of human judgments by combining existing
AEM together. To account for possible correlations,
we rely on XGBoost regressors with 5-fold cross-
validation to predict human judgments. The train-
ing is performed on three different features space:
(i) AEM only, (ii) other human metrics only and
(iii) both sets of metrics combined. We compute
the Kendall’s τ between predictions and ground
truths and report the results in Fig. 3.
The plot confirms that AEM struggle to capture hu-
man judgment subtlety: correlation rarely exceeds
.4 on held-out data. In contrast, human metrics are
much more predictive of each others, even if they
are often supposed to capture different concepts.
Finally, it is worth noting that adding AEM to hu-
man ones do not marginally improve the prediction
power.

These findings cast shadows over recent progress
in the field. In next section, we discuss the implica-
tions and make a proposition for future work.

4 Discussion

Our analysis reveals that automatic metrics are not
complementary, and recent automatic metrics ac-
tually capture the same properties of human judg-
ments as older ones. Furthermore, the existing
metrics are not strong predictors of human judg-
ments. Quite surprisingly, other human metrics
which are often designed to be independent of each
other end-up being more predictive of each other
than automatic metrics. This predictability of hu-
man metrics from one another can be explained due
to the available datasets: when a system is good at
extracting content, it is also often good at making
the content readable, when a system is bad it is
often bad across the board in all human metrics.
However, the fact that automatic metrics are less
predictive than other human dimensions casts some
shadow over recent progress in the field. It shows
that the current strategy of crafting metrics with
slightly better correlation than baselines with one
of the human metrics has reached its limit and some
qualitative change would be needed.

A promising strategy to address the limitations
of automatic metrics is to report several of them,
hoping that they will together give a more robust
overview of system performance. However, this
makes sense only if automatic metrics measure
different aspects of human judgments, i.e., if they
are complementary. In this work, we have seen
that metrics are in fact not complementary, as they
produce similar rankings of systems.

Proposition for future work To foster meaning-
ful progress in the field of automatic evaluation,
we propose that future research craft new metrics
not only to maximize correlation with human judg-
ments but also to minimize the similarity with the
body of existing automatic metrics. This would en-
sure that the field progresses as whole by focusing
on capturing aspects of human judgments that are
not already captured by existing metrics. Further-
more, the reporting of several metrics that have
been demonstrated to be complementary could
become again a valid heuristic to get a robust
overview of model performance. In practice, re-
searchers could re-use our code and analysis to
enforce complementarity by, for example, enforc-
ing new metrics to have low complementarity as
measured by Eq. 3.



5 Limitations

Even though we have considered a representative
set of automatic evaluation metrics, new ones are
constantly introduced and could be added to such
an analysis. Similarly, new datasets could be added
to the analysis and impact the results. In an effort
to make our findings relevant in the long run, we
release an easy-to-use code base to replicate our
analysis with new metrics and datasets.

Like the majority of analysis on automatic eval-
uation metrics, ours rely on the assumption that
human judgments are valid and meaningful. How-
ever, some works have questioned the quality of
human judgments in standard datasets.
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A Extended Methodology

A.1 Utterance level Representation
In the main paper, we focus on System level representation. Each utterance k ∈ {1, . . . ,K} induces a
ranking σm

k ∈ RN of the N systems, where σm
k (n) is the rank of system n. The system level representation

of m is the sum of rankings over the utterances:

σm
sys :=

K∑
k=1

σm
k ∈ RN . (5)

In the supplementary, we also provide an analysis at Utterance level representation. Each system
k ∈ {1, . . . ,N} induces a ranking σm

n ∈ RK of the K utterances, where σm
n (k) is the rank of utterance k.

The utterance level representation of m is the sum of rankings over the systems:

σm
utt :=

N∑
n=1

σn
k ∈ RK . (6)

A.2 A remark on the rank representations
For a given family of l ≥ 1 objects, the formal mathematical object describing a ranking is a permutation
σ ∈Sl which describes how the objects must be interchanged to be ordered. The set of permutations is
a group where the notion of mean is not straightforward since the addition of two permutations is not a
well defined object. For a given family σ1, . . . ,σp, the classical surrogate is called a Kemeny consensus,
defined by:

σ∗ ∈ argmin
σ∈Sl

p∑
i=1

d(σi,σ), (7)

where d the Kendall distance, given by:

d(η,τ) :=
∑

1≤i, j≤N

1(ηi−η j)(τi−τ j)<0. (8)

However, computing a Kemeny consensus is a NP hard problem (Bartholdi et al., 1989; Dwork et al.,
2001). It turns out that the Borda count, defined as the sum of ranks induced by the permutations, is a very
good approximation of the Kemeny consensus (Ali and Meilă, 2012), justifying our choices (5) and (6).

B Extending Finding 1 using clustering analysis

In this section, we want to obtain a visual and interpretable representation of both automatic and human
metrics to understand their relationships better. Formally, we study the abstract space of metrics when
encoded at the System or Utterance level. We ask the two following questions:

• What is the effective dimension of this space?

• Does it exist clusters of metrics?

B.1 Representing the metrics in a 2D space
In Figure 4a and Figure 4b, we report the variance analysis given by a PCA (Jolliffe and Cadima, 2016)
for each dataset at the System and Utterance levels, respectively.
Analysis: We observe that only a few components (less than 6) are needed to explain over 80 % of the
variance. This behavior is typical to all considered datasets and can be observed when studying the ranks
at the System and Instance levels.
Takeaways: Automatic and human metrics present in our datasets can be represented in a low-
dimensional space. This confirms the low complementarity already observed in the main paper: the
effective dimension of metrics is small. We will use the two first components in the next experiments to
represent the metrics in a 2D space.



3 6 9 12 15 18
Component

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ex
pl

ai
ne

d 
Va

ria
nc

e
DIALOG_pc
DIALOG_tc
FLICKR
REAL_SUM
SUM_EVAL
TAC_08
TAC_09
TAC_11
MLQE

(a) PCA Sys level

3 6 9 12 15 18
Component

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ex
pl

ai
ne

d 
Va

ria
nc

e

DIALOG_pc
DIALOG_tc
FLICKR
REAL_SUM
SUM_EVAL
TAC_08
TAC_09
TAC_11

(b) PCA utt level

Figure 4: Few components are need to explain the variance

B.2 Finding similar groups of metrics

In Figure 5 and Figure 6, we represent all the considered metrics (both human and automatic) on the
2D-dimensional space corresponding to the two first components of the PCA. We cluster the metrics with
the Louvain Algorithm (Blondel et al., 2008) performed on the similarity matrix between metrics.
Analysis: From the figure, we observe a low number of clusters, i.e., two in most cases and at most
three in the case of utterance level representations. When using system-level representation, the Human
metrics have their cluster in all the configurations except for FLICKR, where H:overall is in the same
cluster as JS2. We observe a similar trend when studying the utterance level representation: human metrics
often belong to the same cluster, which contains a low number of automatic metrics. It is also worth
noting that in most figures, human metrics are isolated.
Takeaways: This experiment further validates Findings 1: Automatic metrics are similar to each other
much more than they are to human metric. The proposed procedure could be used in the future to find
properties of newly introduced metrics and obtain visual representations of the metrics.

B.3 Extension to other types of tasks

In the futur we would like to incoporate more metrics such as BaryScore (Colombo et al., 2021e),
InfoLM (Colombo et al., 2021b), DepthScore (Staerman et al., 2021) and apply our methodology
to other tasks such as affect driven sentence generation (Colombo et al., 2019, 2021c; Colombo, 2021;
Colombo et al., 2021d, 2020, 2021a; Witon et al., 2018; Colombo et al., 2022b; Chapuis et al., 2020,
2021) or story generation (Chhun et al., 2022).

C Further results for Findings 2

In this section, we provide further experiments that validate Findings 2 and provide a method for future
research to understand newly introduced metrics better. Specifically, we aim to answer the following
research question:

• In Findings 1 we showcase that human metrics carry different information than automatic metrics.
How to measure the amount of information missing between the automatic and human metrics?

• What metric or group of metrics are the most useful to predict a given human metric?

C.1 Measuring the information missing in automatic metrics

In this subsection, we extend the result provided by Figure 3. We measure the ratio between the MSE-error
of a linear regression trained with automatic metrics together with human metrics and a linear regression
trained only with automatic metrics for varying regularization coefficient. For each dataset, we provide
mean and variance corresponding to the prediction of available human metrics. When solely one human
metric is available, the dataset is not considered.
Observations: From the Figure 7, we observe a strong decrease in error when adding human metrics
to predict another human metric. When α increases, all the coefficients are set to 0, and the relative MSE
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Figure 5: Metric visualization at the System Level in a 2D space with clustering analysis. For each dataset,
the metric representations are obtained by considering the two first components of the PCA. To get the cluster of
similar metrics, the Louvain Algorithm is applied.
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Figure 6: Metric visualization at the utterance level in a 2D space with clustering analysis. For each dataset,
the metric representations are obtained by considering the two first components of the PCA. To get the cluster of
similar metrics, the Louvain Algorithm is applied.



(a) Aggregated score for each task when using System
Level Representation.

(b) Aggregated score for each task when using System
Level Representation

10 1 100 101 102
0

10

20

30

40

50

60

70

Re
l-M

SE
 (%

)

DIALOG_pc_Hnatural
DIALOG_pc_Huseknowledge
DIALOG_pc_Hunderstandable
DIALOG_pc_Hoverall
DIALOG_pc_Hengaging
DIALOG_pc_Hcontext
DIALOG_tc_Hnatural
DIALOG_tc_Huseknowledge
DIALOG_tc_Hunderstandable
DIALOG_tc_Hoverall
DIALOG_tc_Hengaging
DIALOG_tc_Hcontext
SUM_EVAL_Hcoherence
SUM_EVAL_Hrelevance
SUM_EVAL_Hconsistency
SUM_EVAL_Hfluency
TAC_08_Hpyr
TAC_08_Hresp
TAC_09_Hpyr
TAC_09_Hresp
TAC_11_Hpyr
TAC_11_Hresp

(c) Detailed for each dataset when using System Level
Representation

10 1 100 101 102
0

10

20

30

40

50

60

70

Re
l-M

SE
 (%

)

DIALOG_pc_Hnatural
DIALOG_pc_Huseknowledge
DIALOG_pc_Hunderstandable
DIALOG_pc_Hoverall
DIALOG_pc_Hengaging
DIALOG_pc_Hcontext
DIALOG_tc_Hnatural
DIALOG_tc_Huseknowledge
DIALOG_tc_Hunderstandable
DIALOG_tc_Hoverall
DIALOG_tc_Hengaging
DIALOG_tc_Hcontext
SUM_EVAL_Hcoherence
SUM_EVAL_Hrelevance
SUM_EVAL_Hconsistency
SUM_EVAL_Hfluency
TAC_08_Hpyr
TAC_08_Hresp
TAC_09_Hpyr
TAC_09_Hresp
TAC_11_Hpyr
TAC_11_Hresp

(d) Detailed for each dataset when using utterance level
Representation

Figure 7: Human metrics contain useful information that is not in automatic metrics for predicting other
human metrics. On this plot, we report the ratio between the MSE-error of a linear regression trained with
automatic metrics together with human metrics and a linear regression trained only with automatic metrics. For
each dataset, we provide mean and variance corresponding to the prediction of available human metrics.

is thus 0. It is worth noting that these observations hold for both system and utterance level representation.
When observing the details per dataset, we observe a similar trend for all human metrics.
Takeaways: When predicting a specific human metric, other human metrics contain useful predictive
information that is not present in the automatic metric.

C.2 Which metrics are the most useful to predict human judgment at the System level?
For this experiment we will rely on a Lasso Regression and denote the multiplier of the L1 term α. For
several values of α (x-axis), we report each metric’s weights (y-axis) in Figures 8 and 9.
Observations: When increasing the weights given to the L1 penalization term, we observe that the
regression weights of the human metrics are the ones that are the last to be set to 0. Human metrics contain
the most relevant information. It is worth noting that this phenomenon is generic across the datasets and
human criteria.
Takeaways: Human metrics are the most useful metrics when predicting other metrics.
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Figure 8: Human metrics are the most useful metrics when predicting other metrics. Regression weights
(y-axis) obtained by each metric when training a Lasso Regression to predict a human metric for different regular-
ization coefficients (x-axis) on the system level representation of the metrics.
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(g) TAC9 Pyr
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(h) TAC9 Responsiveness
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(i) TAC11 Pyramide
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(j) TAC11 Responsiveness

Figure 9: Human metrics are the most useful metrics when predicting other metrics. Regression weights
(y-axis) obtained by each metric when training a Lasso Regression to predict a human metric for different regular-
ization coefficients (x-axis) on the system level representation of the metrics.


