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Stabilization of Integral Delay Equations by
solving Fredholm equations

Jean Auriol1,

Abstract— In this paper, we design a stabilizing state-
feedback control law for a system represented by a general
class of integral delay equations subject to a pointwise
and distributed input delay. The proposed controller is
defined in terms of integrals of the state and input his-
tory over a fixed-length time window. We show that the
closed-loop stability is guaranteed, provided the controller
integral kernels are solutions to a set of Fredholm equa-
tions. The existence of solutions is guaranteed under an
appropriate spectral controllability assumption, resulting
in an implementable stabilizing control law. The proposed
methodology appears simpler and more general compared
to existing results in the literature. In particular, under
additional regularity assumptions, the proposed approach
can be expanded to address the degenerate case where
only a distributed control term is present.

Index Terms— Integral Delay Equations, distributed input
delay, stabilization, Fredholm integral equations,

I. INTRODUCTION

INTEGRAL Delay Equations (IDEs) are a class of linear
difference equations with both pointwise and distributed

delays. They naturally appear when modeling engineering
or biological systems involving transport, communication, or
measurement delays [21]. Among examples of interest, we
can cite sampled-data systems [15], population dynamics, or
biomedical systems as epidemics [10]. Interestingly, linear
first-order hyperbolic Partial Differential Equations (PDEs),
which are widely used in the modeling of systems of balance
laws [5], can also be rewritten as IDEs [3].

In this paper, we consider such a linear IDE subject to a
pointwise and distributed input delay. This specific config-
uration naturally emerges when addressing the stabilization
of under-actuated hyperbolic systems [1], or networks of
hyperbolic PDEs with actuators located at arbitrary nodes of
the network [25], [24]. For instance, this class of problems
arises when developing traffic control strategies on vast road
networks, where the actuator (ramp metering) can be located
at a crossroad (junction of two roads) [14].

When designing stabilizing controllers for such systems, one
of the difficulties to consider is that they combine pointwise
and distributed delays on the state and the actuator. In many in-
stances, such delays can lead to closed-loop system instability
or result in suboptimal performance of the proposed output-
feedback control laws. Furthermore, with the presence of a dis-
tributed delayed term in the control input, the stabilizability of
the system is not guaranteed. Hence, necessary and sufficient
stabilizability and controllability conditions [16], [7], [20] have
been derived in the literature using complex analysis.
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Recently, a constructive approach has been introduced
in [25], [24] to stabilize the aforementioned class of IDEs.
The proposed methodology involved employing a PDE system
as a comparison system [21] with equivalent stability proper-
ties. Subsequently, this PDE system was stabilized using the
backstepping approach, incorporating a Fredholm transforma-
tion [26]. Notably, the invertibility of such a transformation,
usually not guaranteed except under specific structural as-
sumptions [12], [9], was related to a spectral controllability
condition. Although such a result was a breakthrough and
could be seen as a possible generalization of the backstepping
approach for underactuated systems, it has thus far only been
developed for a scalar IDE featuring a single delay in the
state and in the actuation. We believe it suffers from several
limitations that may impede its generalizability to non-scalar
systems with multiple delays. 1) First, it requires introducing a
comparison system, adding potentially unnecessary complex-
ity to the design process. 2) Then, demonstrating the existence
and invertibility of the proposed Fredholm transformation
entails intricate computations (such as integration along char-
acteristic lines and rewriting of kernel equations as Fredholm
integral equations), which could become exceedingly challeng-
ing for non-scalar systems with multiple delays. 3) Finally, the
proposed methodology requires a non-zero pointwise delayed
actuation term to avoid degenerate configurations.

In this paper, we overcome the aforementioned limitations
of [25] by introducing a novel methodology for stabilizing
IDEs with pointwise and distributed actuation. The proposed
approach can be summarized as follows. We begin by con-
sidering a potential candidate for the controller, which is
expressed in terms of integrals of the state and input history
over a fixed-length time window. We demonstrate that to
guarantee closed-loop stability, the corresponding controller
integral kernels need to satisfy a set of Fredholm integral
equations. The existence of solutions to these equations is
directly linked to a spectral controllability condition and
is established using an operator framework [11]. Compared
to [25], the proposed approach features several advantages.
It is simpler as it does not require introducing a comparison
system to design the controller, and the stabilization problem
boils down to the existence of a solution to simple integral
equations with a convolution structure. Then, we believe it
easily extends to non-scalar systems with multiple delays.
Lastly, under additional regularity assumptions, our approach
can be expanded to address the degenerate case identified
by [25].

Notations: Consider (a0, a1) ∈ R2 such that a0 ≤ a1.
For all positive integer n, we denote L2([a0, a1],Rn) the
space of Rn-valued functions that are square integrable on
[a0, a1]. We denote Cpw

τ = Cpw([−τ, 0],Rn) the Banach
space of piecewise continuous functions mapping the in-
terval [−τ, 0] into Rn and denote its associated norm as



||ϕ[t]||Cpw
τ

= sups∈[−τ,0]

√
ϕT (t+ s)ϕ(t+ s). For a function

ϕ : [−τ,∞) 7→ Rn, its partial trajectory ϕ[t] is defined by
ϕ[t](θ) = ϕ(t + θ),−τ ≤ θ ≤ 0. The identity matrix of size
n ∈ N is denoted Idn. The index n will be omitted if no
confusion arises. We use s for the Laplace variable.

II. PROBLEM UNDER CONSIDERATION

A. Time-delay formulation
Consider two known positive delays τ0 > 0 and τ1 > 0 and

the initial data x0 = x0 ∈ Cpw
τ0 . Let us introduce the following

integral delay equation (IDE)

x(t) = ax(t− τ0) +

∫ τ0

0

N(ν)x(t− ν)dν

+ bU(t− τ1) +

∫ τ1

0

M(ν)U(t− ν)dν, t ≥ 0, (1)

where a ∈ (−1, 1), b ∈ R, and N,M are two piecewise
continuously differentiable functions, respectively defined on
the intervals [0, τ0] and [0, τ1]. The function U(t) is the input
function and has values in R. Its initial condition belongs to
Cpw

τ1 and is denoted U0. A function x : [−τ0,∞) → R is called
a solution of the initial value problem (1) if x0 = x0 and if
equation (1) is satisfied for t ≥ 0. Since we have |a| < 1, the
open-loop system only has a finite number of unstable roots
[16]. More precisely, the principal part of the system has to
be exponentially stable. If such a condition is not fulfilled,
then it is impossible to delay-robustly stabilize the system (1)
(see [19, Theorem 1.1]). Due to the distributed delay term
(
∫ τ0
0
N(ν)x(t− ν)dν), the open-loop system may however be

unstable. The objective of this paper is to design a control
law U(t) that exponentially stabilizes the system in the sense
of the Cpw

τ0 -norm. Moreover, we want this control law to also
be exponentially stable. More precisely, we want to design a
control law such that ∃ ν > 0, C0 > 0, ∀x0 ∈ Cpw

τ0 , all
solutions of the closed-loop (1) satisfy

||x[t]||Cpw
τ0

+ ||U[t]||Cpw
τ1

≤ C0e
−νt(||x0||Cpw

τ0
+ ||U0||Cpw

τ1
).

The actuation term in (1) appears through pointwise and
distributed delay terms. It has been seldom studied in the
literature [6], [23], and is a major difference compared to
existing results. When we assume that there is at least a
pointwise delay on the actuation (i.e., b ̸= 0), a stabilizing
controller was proposed in [24], [25] using a PDE comparison
system that induced intricate computations and the use of
Fredholm integral transformations. We will show in this paper
that such a comparison system is not required in the design.
Moreover, the approach we propose in this paper extends to
the case b = 0 under additional regularity conditions.

B. Design assumptions
Besides the assumption |a| < 1 that is required to avoid

having an infinite number of unstable poles, we consider that
τ1 ≥ τ0, i.e., the delay acting on the control input is larger than
the state delay. Although our approach could straightforwardly
be extended to cover the case τ0 > τ1, we could also deal
with this case by picking U(t) = Û(t + τ1 − τ0). Let us
formally take the Laplace transform of equation (1) (with zero
initial condition). We have F0(s)x(s) = F1(s)U(s), where the
holomorphic function F0 and F1 are defined by

F0(s) = 1− ae−τ0s −
∫ τ0

0

N(ν)e−νsdν, (2)

F1(s) = be−τ1s +

∫ τ1

0

M(ν)e−νsdν. (3)

To guarantee the possibility of stabilizing system (1), we
make the following (spectral) controllability assumption that
guarantees that F0 and F1 cannot simultaneously vanish.

Assumption 1: Spectral controllability [20], [22]
For all s ∈ C, rank[F0(s), F1(s)] = 1.
We emphasize that Assumption 1 is not a necessary condition
to stabilize the system (1). It should be possible to use
a weaker stabilizability condition, as “for all s ∈ C, s.t.
ℜ(s) ≥ 0 rank[F0(s), F1(s)] = 1”. However, with this weaker
assumption, the analysis would become more intricate as it is
not directly possible to show the invertibility of the Fredholm
integral operator introduced in Section III.

C. A first result of Fredholm integral operator

In this paper, we consider potential candidates for the
controller expressed in terms of integrals of the state and input
history over a fixed-length time window. We will show that
the corresponding controller integral kernels have to satisfy
a set of Fredholm integral equations to guarantee closed-
loop stability. To facilitate our analysis and establish the
existence of solutions for these integral equations, we first
present a result guaranteeing the invertibility of a Fredholm
integral operator. Consider the Fredholm integral operator
T : L2([a1, a2],Rn) → L2([a1, a2],Rn) defined by

T (h(·)) =M0h(·)−
∫ b

a

K(·, y)h(y)dy, (4)

where a1 < a2 are two real, n > 0 is an integer, M0 is an in-
vertible matrix that belongs to Rn×n, K is bounded piecewise
continuous function defined on the square {(ξ, y) ∈ [a1, a2]

2}.
Note that the integral part of the operator has a regularizing
effect, such that ∀h ∈ L2([a1, a2],Rn),

∫ b

a
K(x, y)h(y)dy ∈

H1([a1, a2],Rn).
Lemma 1: Consider two linear operators A,B, such that

D(A) = D(B) ⊂ L2([a1, a2],Rn). Consider the Fredholm
integral operator T : L2([a1, a2],Rn) → L2([a1, a2],Rn) as
defined by equation (4). Assume that

1) ker(T ) ⊂ D(A),
2) ker(T ) ⊂ ker(B),
3) ∀h ∈ ker(T ), T Ah = 0,
4) ∀s ∈ C, ker(sId −A) ∩ ker(B) = {0}.

Then, the operator T is invertible, and its inverse is a Fredholm
integral operator whose kernels inherit the same regularity
properties.

Proof: The proof can be found in [11, Lemma 2.2].
As it will appear in the paper, condition 4) of Lemma 1 relates
to the controllability condition given in Assumption 1.

III. DESIGN OF A STABILIZING CONTROLLER WHEN b ̸= 0

In this section, we present our methodology to stabilize
the system (1) in the case b ̸= 0. We will show that the
stabilization problem boils down to the existence of a solution
to simple integral equations with a convolution structure. The
proposed approach appears to be simpler than the one pro-
posed in [25] as it does not require introducing a comparison
system and involves less intricate computations.



A. Candidate control law and characteristic equation
We look for the desired control law under the form

U(t) =

∫ τ0

0

f(ν)x(t− ν)dν +

∫ τ1

0

g(ν)U(t− ν)dν, (5)

where f and g are piecewise continuously differentiable func-
tions to be defined. Let us consider the extended variable
z(t) = (x(t), U(t))T . For all t > 0, the state z(t) verifies

z(t) =

(
a 0
0 0

)
z(t− τ0) +

∫ τ0

0

(
N(ν) 0
f(ν) 0

)
z(t− ν)dν

+

(
0 b
0 0

)
z(t− τ1) +

∫ τ1

0

(
0 M(ν)
0 g(ν)

)
z(t− ν)dν. (6)

Taking the Laplace transform of equation (6), we obtain
z(s) = A(s)z(s), where A(s) is defined as

A(s) =

(
ae−τ0s +

∫ τ0
0 e−νsN(ν)dν be−τ1s +

∫ τ1
0 e−νsM(ν)dν∫ τ0

0 e−νsf(ν)dν
∫ τ1
0 e−νsg(ν)dν

)
Therefore, the characteristic equation associated with the
closed-loop system (6) verifies for all s ∈ C

0 = det(Id −A(s)) = 1− ae−τ0s −
∫ τ0

0

e−νsN(ν)dν

−
∫ τ1

0

e−νsg(ν)dν −
∫ τ1

0

(

∫ τ0

0

e−(ν+η)sf(ν)dν)M(η)dη

+ a

∫ τ1

0

e−(ν+τ0)sg(ν)dν − b

∫ τ0

0

e−(ν+τ1)sf(ν)dν

+

∫ τ0

0

(

∫ τ1

0

e−(ν+η)sg(ν)dν)N(η)dη. (7)

To analyze the closed-loop stability of equation (6), it is
equivalent to analyze the root location of equation (7), as stated
in the following lemma

Lemma 2: The closed-loop system (6) is exponentially sta-
ble if and only if there exists η0 > 0 such that all solutions
of the characteristic equation (7) satisfy Re(s) < −η0.

Proof: The proof is in [16, Theorem 3.5] and [17].
To analyze the root location of equation (7), we first simplify
it. Using Fubini’s theorem, we can rewrite the double integrals.
We have∫ τ0

0

(

∫ τ1

0

e−(r+η)sg(η)dη)N(r)dr =

∫ τ1

0

g(η)

(

∫ η+τ0

η

e−νsN(ν − η)dν)dη =

∫ τ0

0

(

∫ ν

0

g(η)N(ν

− η)dη)e−νsdν +

∫ τ1

τ0

(

∫ ν

ν−τ0

g(η)N(ν − η)dη)e−νsdν

+

∫ τ1+τ0

τ1

(

∫ τ1

ν−τ0

g(η)N(ν − η)dη)e−νsdν.

We then Perform similar computations for the second integral.
For all s ∈ C, the characteristic equation (7) then rewrites

0 = 1− ae−τ0s −
∫ τ0

0

e−νsI1(ν)dν −
∫ τ1

τ0

e−νsI2(ν)dν

−
∫ τ0+τ1

τ1

e−νsI3(ν)dν, (8)

where

I1(ν) =g(ν) +N(ν) +

∫ ν

0

f(η)M(ν − η)dη

−
∫ ν

0

g(η)N(ν − η)dη, (9)

I2(ν) =g(ν)− ag(ν − τ0) +

∫ τ0

0

f(η)M(ν − η)dη

−
∫ ν

ν−τ0

g(η)N(ν − η)dη, (10)

I3(ν) =bf(ν − τ1) +

∫ τ0

ν−τ1

f(η)M(ν − η)dη

− ag(ν − τ0)−
∫ τ1

ν−τ0

g(η)N(ν − η)dη, (11)

Provided that we can choose f and g such that I1 ≡ 0, I2 ≡ 0,
and I3 ≡ 0 on their respective domain of definition, we would
obtain the characteristic equation 1 = ae−τ0s, which implies
the exponential stability of z since |a| < 1.

Remark 1: Our control approach consists of canceling the
integral term

∫ τ0
0
N(ν)x(t− ν)dν to obtain the exponentially

stable system x(t) = ax(t−τ0). Note that it should be possible
to adjust the control strategy to modify the convergence rate.
For instance, when τ1 = τ0, we can first define the intermedi-
ate control input Û(t) = U(t) + a−ā

b x(t), which will replace
the coefficient a by ā (while also modifying the function N ),
before applying the integral cancellation procedure. However,
we emphasize that this improvement in terms of convergence
rate would be done at the cost of degraded robustness margins
as shown in [4]. In the rest of the paper, we only focus on the
cancellation of the integral term

∫ τ0
0
N(ν)x(t− ν)dν.

B. Existence of the functions f and g

In this section, we prove that there exist f and g piecewise
continuously differentiable functions such that the functions
I1, I2 and I3 defined in equations (9)-(11) are identically equal
to zero. More precisely, we have the following lemma.

Lemma 3: Consider the functions I1, I2, and I3 defined
in equations (9)-(11). If b ̸= 0, and if Assumption 1 is
verified, then there exist two unique piecewise continuously
differentiable functions (f, g) s.t. I1(ν) = 0 for ν ∈ [0, τ0[,
I2(ν) = 0 for ν ∈ [τ0, τ1[, and I3(ν) = 0 for ν ∈ [τ1, τ1+τ0].

Proof: We first rewrite the delay τ1 as τ1 = (n0+1)τ0−
γ, where n0 ∈ N and γ ∈ [0, τ0). Let us now introduce, for
all integer 1 ≤ k ≤ n0, the intermediate functions gk defined
for all ν ∈ (0, τ0] by gk(ν) =g(ν + kτ0 − γ). We also define
the function g0, for all ν ∈ (0, τ0], by

g0(ν) =

{
g(ν − γ) if ν ≥ γ
0 if ν < γ.

We extend the functions N (respectively M ) by the value 0
outside of the interval [0, τ0] (respectively [0, τ1]). The system
I1(ν) = 0, I2(ν) = 0, I3(ν) = 0 rewrites as

−N(ν − γ) = g0(ν)−
∫ ν

0

g0(η)N(ν − η)dη

+

∫ ν

0

f(η)M(ν − γ − η)dη, (12)

−N(ν + kτ0 − γ) = gk(ν)−
∫ ν

0

gk(η)N(ν − η)dη

− agk−1(ν)−
∫ τ0

ν

gk−1(η)N(ν − η + τ0)dη

+

∫ τ0

0

f(η)M(ν + kτ0 − γ − η)dη, (13)



0 = bf(ν)− agn0
(ν)−

∫ τ0

ν

gn0
(η)N(ν + τ0 − η)dη

+

∫ τ0

ν

f(η)M(ν + τ1 − η)dη, (14)

where 1 < k ≤ n0 and ν ∈ (0, τ0]. More precisely, equation
I3(ν) = 0 is equivalent to equation (14). Equation (12) (for
ν ∈ [0, τ0]) is equivalent to I1(ν) = 0 (for ν ∈ [0, τ0 − γ]),
while equation (13) (for k = 1, ν ∈ [0, γ]) is equivalent to
I1(ν) = 0 (for ν ∈ (τ0−γ, τ0]). Finally, equation (13) (except
for k = 1, ν ∈ [0, γ]) is equivalent to I2 = 0. This shift
between the two systems is due to the parameter γ.

We now define the operator T : (L2([0, τ0],Rn0+2)) →
(L2([0, τ0],Rn0+2)) in equation (15) (given in the next page).
Note that the operator T is a Fredholm operator as it satisfies
equation (4). We want to show that equations (12)-(14) admit
a unique solution. This will result from the invertibility of the
operator T . To show this latter property, let us introduce the
operators AT defined by

AT : D(AT ) → L2([0, τ0],R
n0+2)

ψ0

...
ψn0

ϕ

 7−→


∂xψ0 + ϕ(0)M(· − γ)

...
∂xψn0

+ ϕ(0)M(·+ n0τ0 − γ)
∂xϕ+ ϕ(0)N(·)

 , (16)

where D(AT ) = {(ψ0, . . . , ψn0 , ϕ) ∈
(H1([0, τ0],Rn0+2)), ϕ(τ0) = aϕ(0), ψn0

(τ0) =
bϕ(0), ψk(τ0) = ψk+1(0), 0 ≤ k < n0}. We define
the operator BT : D(AT ) → (L2([0, τ0],Rn0+2)), by

BT ((ψ0 · · · ψn0 ϕ)
⊤
) = ψ0(0).

To find the operators AT and BT , we modified the PDE
comparison system proposed in [24, eq. (13)-(14)] by adding
extra states so all equations have the same velocities.

We now show that the operators T , AT and BT ver-
ify the requirements of Lemma 1. Let us consider h =
(g0, . . . , gn0 , f) in ker(T ). We immediately get g0(0) = 0.
Consequently, we obtain g1(0) = g0(τ0). We have for all
1 ≤ k < n0

gk+1(0)− gk(τ0) = a(gk(0)− gk−1(τ0)).

We can then recursively show that gk(τ0) = gk+1(0). Direct
computations give bf(0) = gn0(τ0) and f(τ0) = af(0) (since
b ̸= 0). Consequently h ∈ D(AT ). Since g0(0) = 0, we also
have h ∈ ker(BT ). We now need to show the third condition
of Lemma 1, i.e., for any h ∈ ker(T ), we want to show
that T (AT (h)) = 0. Due to space restriction, we consider
the case of continuously differentiable functions N and M ,
but the proof can easily be adjusted to the case of a finite
number of discontinuities. Let us compute the last component
of T (AT (h)). We have for all ν ∈ [0, τ0]

bf ′(ν) + bf(0)N(ν)− ag′n0
(ν)− af(0)M(ν + n0τ0 − γ)

−
∫ τ0

ν

((g′n0
(η) + f(0)M(η + n0τ0 − γ))N(ν + τ0 − η)dη

+

∫ τ0

ν

(f ′(η) + f(0)N(η))M(ν + τ1 − η))dη. (17)

After integration by parts, this term rewrites

bf ′(ν)− ag′n0
(ν) + gn0

(ν)N(τ0)− f(ν)M(τ1)

+

∫ τ0

ν

(f(η)M ′(ν + τ1 − η)− gn0
(η)N ′(ν + τ0 − η))dη,

where we have used that gn0(τ0) = bf(0) and f(τ0) = af(0),
since g ∈ D(AT ). In the meantime, since h ∈ ker(T ), we
also have

0 = bf ′(ν)− ag′n0
(ν) + gn0(ν)N(τ0)− f(ν)M(τ1)

+

∫ τ0

ν

(f(η)M ′(ν + τ1 − η)− gn0(η)N
′(ν + τ0 − η))dη.

Therefore, we obtain that the last component of T (AT (h))
equals 0. Performing analogous computations, for all the lines
of T (AT (h)), we obtain that AT (h) ∈ ker(T ). We now need
to prove the last requirement of Lemma 1. Consider s ∈ C and
h = (g0, gn0

, · · · , f) ∈ ker(sId−AT )∩ker(BT ). We have for
all 0 ≤ k ≤ n0 and all ν ∈ [0, τ0], sf(ν) = f ′(ν)+f(0)N(ν),
and sgk(ν) = g′k(ν)+f(0)M(ν+kτ0−γ). Consequently, we
obtain

gk(ν) = esνgk(0)− f(0)

∫ ν

0

M(η + kτ0 − γ)es(ν−η)dη,

f(ν) = (esν −
∫ ν

0

N(η)es(ν−η)dη)f(0), (18)

Since f(τ0) = af(0), we obtain af(0) = (esτ0 −∫ τ0
0
N(η)es(τ0−η)dη)f(0), which gives F0(s)f(0) = 0, where

F0 is defined in equation (2). In the meantime, we obtain

bf(0) = gn0(τ0)

= esτ0gn0(0)− f(0)

∫ τ0

0
M(η + n0τ0 − γ)es(τ0−η)dη

= esτ0gn0−1(τ0)− f(0)

∫ τ1

n0τ0−γ
M(η)es(τ1−η)dη.

Iterating the procedure, we obtain F1(s)f(0), where F1 is
defined in equation (3). Due to Assumption 1, we obtain
that f(0) = 0. Consequently, using equation (18), we have
h(ν) = 0 for all ν ∈ [0, τ0], and the last requirement
of Lemma 1 is verified. Consequently, the operator T is
invertible and equations (12)-(14) admit a unique solution in
(L2([0, τ0],Rn0+2)). These solutions are piecewise continu-
ously differentiable due to the regularity of the functions M
and N and to the regularizing effect of the integral.

Remark 2: The functions f and g are bounded piecewise
continuously differentiable functions that can be expressed in
terms of the kernels M and N and the coefficients a and
b, using the operator T −1. However, their bounds can be
significantly large if we are close to the critical case b = 0.

Remark 3: We emphasize that Assumption 1 is necessary to
prove Lemma 3 (and in particular the last point of Lemma 1)
The proposed proof does not hold if the controllability condi-
tion is replaced by a weaker stabilizability condition.

C. Stabilizing control law
Using Lemma 3, we can now write the following theorem.
Theorem 1: Assume that b ̸= 0 and that Assumption 1 is

verified. Consider the functions I1, I2 and I3 defined in (9)-
(11) and let f and g be the unique piecewise continuously
differentiable functions that lead to I1(ν) = 0 for all ν ∈
[0, τ0], I2(ν) = 0 for all ν ∈]τ0, τ1], and I3(ν) = 0 for ν ∈
[τ1, τ0 + τ1] (as stated in Lemma 3). Then the closed-loop
system consisting of the plant (1) and the control law (5) is
exponentially stable.

Proof: The existence of f and g is implied by Lemma 3.
For this choice of f and g, the closed-loop characteristic



(T



g0
...
gk

...
f


)(ν) =



g0(ν)−
∫ ν

0
g0(η)N(ν − η)dη +

∫ ν

0
f(η)M(ν − γ − η)dη

...
gk(ν)− agk−1(ν)−

∫ τ0
ν
gk−1(η)N(ν − η + τ0)dη −

∫ ν

0
gk(η)N(ν − η)dη

+
∫ τ0
0
f(η)M(ν + kτ0 − γ − η)dη

...
bf(ν)− agn0

(ν)−
∫ τ0
ν
gn0

(η)N(ν + τ0 − η)dη +
∫ τ0
ν
f(η)M(ν + τ1 − η)dη


. (15)

equation rewrites 1 = ae−τ0s which implies the exponential
stability of the state and the control law since |a| < 1.
Taking the Laplace transform of equation (5), we obtain
U(s) =

∫ τ0
0 f(ν)e−νsdν

1−
∫ τ1
0 g(ν)e−νsdν

, which defines a strictly proper
transfer function due to Riemann Lebesgues’ lemma. Having
a strictly proper control law guarantees the w-stability of the
closed-loop system (see [13, Th. 9.5.4]) and, consequently, the
robustness to input delays and uncertainties on the parameters.
It is also robust to admissible additive and multiplicative
perturbations [2, Theorem 13].

IV. SOME INSIGHTS TO DESIGN A STABILIZING
CONTROLLER WHEN b = 0

In this section, we consider the degenerate case b = 0.Due
to space restrictions, we simplify our framework and assume
τ0 = τ1 = 1. We will need the following additional assumption

Assumption 2: The kernels M and N are two times contin-
uously differentiable on [0, 1]. Moreover, aM(0)−M(1) ̸= 0
and F0(0) ̸= 0 (where F0 is defined in eq. (2)).
This assumption is conservative and is a current limitation of
our approach in this critical configuration. Let us now consider
a stabilizing control law under the following form

U(t) =

∫ 1

0

f ′(ν)x(t− ν) + g(ν)U(t− ν)dν

+ x(t)f(0)− x(t− 1)f(1), (19)

where f and g are piecewise continuously differentiable func-
tions. Performing analogous computations to the ones done in
Section III-A, we obtain the characteristic equation (8) with
I2 = 0 (since τ1 = τ0 = 1) and where

I1(ν) =g(ν) +M(0)f(ν) +N(ν) +

∫ ν

0

f(η)M ′(ν − η)dη

−
∫ ν

0

g(η)N(ν − η)dη, (20)

I3(ν) =−M(1)f(ν − 1) +

∫ 1

ν−1

f(η)M ′(ν − η)dη

− ag(ν − 1)−
∫ 1

ν−1

g(η)N(ν − η)dη. (21)

Again, we would like to find f and g such that the integral
equations I1(ν) = 0 and I3(ν) = 0 admit a solution. As shown
in the proof of Lemma 3, this can be done by showing that
the operator T1 defined by equation (22) (given in the next
page) is invertible. The operator T1 rewrites T1 = KId + I
where I is the (compact) integral component of the operator

T1 and K =

(
1 M(0)
−a −M(1)

)
. The determinant of K is equal

to −M(1)+ aM(0) ̸= 0 due to Assumption 2. Therefore, the
matrix M is invertible, and T1 is a Fredholm integral operator.

We can then easily adjust the proof of Lemma 3 to show its
invertibility.

Lemma 4: Consider the functions I1 and I3 defined in
equations (20)-(21). If Assumption 1 and Assumption 2 are
satisfied, then there exist two unique continuously differen-
tiable functions (f, g) such that I1(ν) = 0 for ν ∈ [0, 1[,
I3(ν) = 0 for ν ∈ [1, 2].

Proof: The proof follows the same steps as those of the
proof of Lemma 3. Therefore, we only give a sketch of the
proof. Let us introduce the operator AT1

defined on D(AT1
) ⊂

L2([0, τ0],R2) by

AT1
: D(AT1

) → L2([0, τ0],R
2)(

ψ
ϕ

)
7−→

(
∂xψ + ϕ(0)M ′(·)
∂xϕ+ ϕ(0)N(·)

)
, (23)

where D(AT1
) = {(ψ, ϕ) ∈ (H1([0, 1],R2)), ϕ(1) =

aϕ(0), ψ(1) = −M(1)ϕ(0)}. We define the operator
BT1 : D(AT1) → (L2([0, τ0],R2)), by BT1((ψ ϕ)

⊤
) =

M(0)ϕ(0) + ψ(0). We can then show that the operators T1,
AT1

and BT1
verify the requirements of Lemma 1 (using

the fact that aM(0) − M(1) ̸= 0). Note that Assump-
tion 1 implies (using integration by parts) that for all s ∈
C\{0}, rank[F0(s),M(0)−M(1)e−s+

∫ 1

0
M ′(ν)e−νsdν] = 1,

and Assumption 2 implies the property for s = 0.
Theorem 2: Assume that Assumption 1 and Assumption 2

are verified. Consider the functions I1, and I3 defined in (20)-
(21) and let f and g be functions that lead to I1(ν) = 0 for all
ν ∈ [0, 1], and I3(ν) = 0 for ν ∈ [1, 2]. Then, the closed-loop
system consisting of the plant (1) and the control law (19) is
exponentially stable.
The proposed control strategy can be adjusted to deal with
rationally dependent delays τ0 and τ1. For instance, when τ1 =
(n0 + 1)τ1, the condition M(1) ̸= aM(0) in Assumption 2
rewrites M(1) ̸= an0+1M(0). Although we believe it is
possible to adjust the approach to deal with non-rationally
dependent delays, we have not been able to solve this case.

V. SIMULATION RESULTS

In this section, we give some simulation results to illustrate
our approach. We consider the system (1), with the coefficients
τ0 = 1, τ1 = 1, a = 0.3, b = 0, and the integral coupling
terms N(ν) = 0.6 + sin(π ∗ ν)/5 and M(ν) = cos(ν). The
initial condition of the control input (on [−τ1, 0]) is chosen
as 0. Assumption 1 is verified using a zero-location algorithm
adjusted from the one presented in [8], while Assumption 2
can be directly verified. The control strategy is implemented
using Matlab. The initial condition is a constant function
x0 = 1. The functions f and g are obtained by solving the
Fredholm integral equations using a successive approximations
approach (method of iterations). Although the convergence of
this numerical approach is only guaranteed when the integral



(T1
(
g
f

)
)(ν) =

(
g(ν) +M(0)f(ν) +

∫ ν
0 f(η)M ′(ν − η)− g(η)N(ν − η)dη

−ag(ν)−M(1)f(ν) +
∫ 1
ν f(η)M ′(1 + ν − η)dη −

∫ 1
ν g(η)N(1 + ν − η)dη

)
. (22)

part of the Fredholm operator has a spectral radius smaller than
one [18, Theorem 10.13], we verified that for the considered
example, the functions we numerically obtained were solutions
of the system I1 = I3 = 0. Among other possible numerical
approaches to solve Fredholm integral equations, we can cite
projection methods, collocation methods, Galerkin methods,
or quadrature methods [18]. These methods can possibly be
numerically more efficient than the successive approximation
approach. Moreover, we may obtain guarantees of conver-
gence. In future work, we should investigate the properties
of the kernels f and g better and focus on their numerical
computation. We have pictured in Figure 1 the evolution of
the state in open-loop and closed-loop. We also pictured the
time evolution of the control input U(t). It can be seen that the
proposed controller stabilizes the unstable open-loop system
and that the control dynamics is also exponentially stable.
Finally, we have plotted the kernels f and g in Figure 2.
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Fig. 1. Evolution of the state of system (1) in open-loop and closed-loop
(with the corresponding control effort).
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Fig. 2. Representation of the kernels f and g.

VI. CONCLUDING REMARKS

We have proposed a new approach to stabilize a general
class of integral delay equations. We introduced a candidate
controller expressed as a distributed delayed feedback of the
state and itself. We showed that such a control law stabilizes
the system if a set of Fredholm equations admitted a solution.
Interestingly, spectral controllability conditions implied the ex-
istence of solutions for these integral equations. The proposed

approach overcomes the limitations of [25] by proposing a
simpler and more generalizable methodology. In future works,
we will consider non-scalar systems with multiple delays. We
will also endeavor to remove the conservative Assumption 2.
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