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Abstract

Deploying large language models (LLMs) of
several billion parameters can be impractical
in most industrial use cases due to constraints
such as cost, latency limitations, and hardware
accessibility. Knowledge distillation (KD) of-
fers a solution by compressing knowledge from
resource-intensive large models to smaller ones.
Various strategies exist, some relying on the
text generated by the teacher model and op-
tionally utilizing his logits to enhance learning.
However, these methods based on logits of-
ten require both teacher and student models to
share the same tokenizer, limiting their appli-
cability across different LLM families. In this
paper, we introduce Universal Logit Distilla-
tion (ULD) loss, grounded in optimal transport,
to address this limitation. Our experimental
results demonstrate the effectiveness of ULD
loss in enabling distillation across models with
different architectures and tokenizers, paving
the way to a more widespread use of distillation
techniques.

1 Introduction

A noticeable trend has emerged in NLP with the
prevalence of large language models (LLMs) such
as LLama (Touvron et al., 2023a), Mistral (Jiang
et al., 2023), Falcon (Almazrouei et al., 2023), GPT-
NeoX (Black et al., 2022), or Mixtral (Jiang et al.,
2024). Despite the high performance of LLMs
(Bubeck et al., 2023), the challenges associated
with resource consumption and deployment com-
plexity have become increasingly prominent due
to hardware availability, cost, and latency bottle-
necks. Several methods, including efficient decod-
ing (Leviathan et al., 2023; Ye et al., 2023), model
recycling (Lester et al., 2022), and size reduction
(Dettmers et al., 2023; Ma et al., 2023), have been
proposed to address the need for faster and more
efficient deployment of these models. In this pa-
per, we concentrate on knowledge distillation (KD)
(Buciluundefined et al., 2006; Hinton et al., 2015),

Figure 1: Ratio of student vocabulary contained in
teacher tokenizer. (e.g., Bloomz tokenizer has 30.03%
of Mistral’s vocabulary). For student and teacher model
information see Sec. 4.2

a widely adopted technique (Sanh et al., 2020; Jiao
et al., 2020; Mohammadshahi et al., 2022; He et al.,
2023; Raman et al., 2023; Dasgupta et al., 2023),
utilized by practitioners to distill the expertise of a
larger teacher model into a compact student model,
preserving maximum performance while reducing
latency and memory footprint.

Over the past years, NLP researchers have ex-
tensively explored and applied knowledge distil-
lation mostly on smaller student models derived
from BERT (Sanh et al., 2020; Jiao et al., 2020;
Sun et al., 2020). These smaller student models
maintain a similar architecture to the teacher, mir-
roring some of its blocks, hidden sizes, or rely-
ing on the same tokenizer. Two approaches can
generally be considered: the white box approach,
where researchers propose loss functions that di-
rectly compute similarities across layers, and the
black box approach, offering flexibility, agnostic to
teacher latent states. This black box approach can
be readily implemented by practitioners through
libraries and APIs, simplifying its adoption.

However, KD for generative models, those rely-
ing on encoder-decoder or decoder architectures,
has received less attention. Recent research, pre-
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dominantly focuses on synthetic data fine-tuning
(He et al., 2022; Kramchaninova and Defauw,
2022; Ouyang et al., 2022), with less emphasis on
refining loss functions in the black box approach.
Thus far, the primary method for KD involves us-
ing text generated by the teacher model (He et al.,
2023; Hsieh et al., 2023), and optionally, augment-
ing it with logits, employing Kullback–Leibler di-
vergence between the teacher logits distribution and
student ones (Mohammadshahi et al., 2022; Raman
et al., 2023; Wang et al., 2020a). Although the
logit distillation method yields significant improve-
ments, it has been underutilized in recent studies
due to its requirement for the student model to
share the same tokenizer as the teacher (Sec. 2.4
and Fig. 2). Indeed, even when encoder-decoder or
decoder-only models of varying sizes are available,
they often do not share the same architecture nor
the same tokenizer (Fig. 1), rendering Logit Distil-
lation loss inapplicable. This raises the following
research question:

How can we craft a Universal knowledge distil-
lation loss within the black box approach, that is
inherently versatile to teacher/student architectures
and agnostic on tokenizers?

Contributions: In this paper, we make the fol-
lowing contributions:

1. A universal logit distillation loss. We intro-
duce a new loss, Universal Logit Distillation
Loss (ULD loss), with virtually no assump-
tions on the teacher and student architectures.
Our approach harnesses a closed-form solu-
tion of optimal transport, rendering it ideal for
large-scale fine-tuning due to its fast compu-
tation.

2. Experimental Results. To showcase the con-
sistent effectiveness of our loss, we rely on var-
ious tasks: extractive question answering, gen-
erative question answering, and summariza-
tion. Our evaluation spans multiple widely-
used teacher-student pairs, with diverse vocab-
ularies and model architectures.

3. Contributing to future research. We make
our code12, model weights, and generated
datasets3 openly available to facilitate future

1https://github.com/Nicolas-BZRD/llm-recipes
2https://github.com/Nicolas-BZRD/

llm-distillation
3https://huggingface.co/Nicolas-BZRD

research, minimizing computational overhead
and lowering entry barriers.

2 Problem Formulation & Related Work

2.1 Notations

We define Ω a model vocabulary set, |Ω| his size,
and Ω∗ signifies its Kleene closure4. Let P(Ω) de-
note the probability distributions set defined over
the sample space Ω. It is defined as P(Ω) =
p ∈ [0, 1]Ω with

∑Ω
j=1 pj = 1. Consider D as

a non-empty set with independent and identically
distributed samples (xi)

N
i=1 ∈ Ω∗. Each xi is

a sequence of tokens, where xij ∈ Ω represents
the jth token of the ith sequence. The notation
xi
<t = (xit−1, . . . , x

i
0) ∈ Ω∗ denotes the prefix of

length t. In this paper, we will denote by ΩS the
student vocabulary and by ΩT the teacher’s vocab-
ulary.

Remark. In general ΩT ̸= ΩS and |ΩT | ̸= |ΩS |
but ΩT ∩ ΩS ̸= ∅.

Conditional textual generation: Conditional
textual generation aims to model the probability dis-
tribution p⋆(x) over variable-length text sequence
x by approximating pθ(x) parameterized by θ ∈ Θ
to p⋆(x) for any x. In this work, we assume the
presence of a teacher (fθT ) and student (fθS ), two
pre-trained conditional language models with a
general form applicable to both fθ : Ω∗ → R|Ω|,
where the output is provided in unnormalized logit
score. The function fθ parameterizes pθ (fθT
and fθS respectively parameterize pθS and qθT ),

i.e., for any sentence x, pθ(x)= softmax
(
fθ(x)
τ

)
,

where τ ∈ R+ denotes the temperature set as de-
fault to 1. Given an input sequence x, the pre-
trained language model fθ can iteratively generate
an output sequence x̂ during inference by sampling
x̂t+1 ∼ pθ(.|x̂<t) with x̂t a generate token.

2.2 Knowledge Distillation Framework

In knowledge distillation (KD), the objective is to
guide the learning of a student model using a more
complex teacher model (Buciluundefined et al.,
2006; Hinton et al., 2015). Generally, this paradigm
comprises two key components: a cross-entropy
loss (LCE), which guides the student model to pre-
dict gold tokens accurately, and a secondary loss
tasked to align the probability distributions of the

4The Kleene closure corresponds to sequences of arbitrary
size written with words in Ω. Formally: Ω∗ =

⋃∞
i=0 Ω

i.

https://github.com/Nicolas-BZRD/llm-recipes
https://github.com/Nicolas-BZRD/llm-distillation
https://github.com/Nicolas-BZRD/llm-distillation
https://huggingface.co/Nicolas-BZRD


student model with those of the teacher model to
facilitate the transfer of general knowledge (LKD).
Formally, the goal of the student is to minimize L:

L = LCE + λ× LKD (1)

where λ ∈ R+ can be used to control the trade-off
between learning exclusively from text and knowl-
edge coming from the teacher.

2.3 Knowledge Distillation Related Work
Building on Eq. 1, various cases have been exam-
ined.

Distillation from teacher-generated text: Dis-
tillation from teacher-generated text occurs when
λ = 0. This strategy is particularly advantageous
when dealing with synthetic data (Kramchaninova
and Defauw, 2022; Du et al., 2023; Ushio et al.,
2023), a fact highlighted by the effectiveness of in-
structing large language models such as GPT-3.5/4
(Wu et al., 2023; Bubeck et al., 2023). Distillation
from teacher-generated text (Kim and Rush, 2016;
He et al., 2023; Hsieh et al., 2023; Zhou and Chiam,
2023) will be considered as a baseline throughout
the paper. The primary drawback of these methods
lies in their failure to fully leverage all the informa-
tion that can be provided by the teacher.

White-box approach: A further refinement of
Eq. 1 occurs when LKD relies on the internal fea-
tures of the teacher to transfer knowledge(Jiao et al.,
2020; Sun et al., 2020). Popular features include
transformer attention and internal layers within
both encoder-only and encoder-decoder models
(Raman et al., 2023; Wang et al., 2020a, 2021).
A main drawback is that these methods demand
access to the models’ internal mechanisms, which
is typically unavailable through API access. More-
over, they often assume similarities in architectural
patterns between the teacher and the student.

Black-box approach: In the black-box approach,
practitioners are limited to accessing only the out-
put probabilities or logits of the model. They
use these logits to align the student’s output prob-
abilities with those of the teacher through Kull-
back–Leibler divergence (KL) (Sanh et al., 2020).
This method has emerged as one of the most widely
adopted approaches, successfully distilling encoder,
decoder, or encoder-decoder models (Timiryasov
and Tastet, 2023; Mohammadshahi et al., 2022;
Zhao et al., 2023a). However, employing KL di-
vergence necessitates that both student and teacher

share the same vocabulary, a requirement impracti-
cal with current large language models (LLMs) as
reported in Fig. 1. We dig into the limitations of
this method in the next section.

2.4 KL Distillation loss

When distilling using the KL (Li et al., 2021), the
goal is to force the student to learn the teacher’s
output probability distribution at each generation
step. The formal definition of the objective function
is provided in Eq. 2.

L=

|x|∑
t=1

CE(t) + λKL [qθT(·|x<t),pθS (·|x<t)]

(2)
where |x| the length of the tokenized sentence x,
qθT (·|x<t) and pθS (·|x<t) are the probability dis-
tribution for the Teacher and Student models at the
tth steps. CE (t) denotes the cross-entropy loss at
each generation time step t, expressed as: CE (t) =
− log (pθS (xt|x<t)) with xt the gold token for
the tth steps and KL the Kullback–Leibler diver-
gence defined as: KL [qθT (·|x<t) ,pθS (·|x<t)] =∑
x∈Ω

qθT (x|x<t) × log
(
qθT

(x|x<t)

pθS
(x|x<t)

)
where λ ∈

R+ controls the trade-off between the two terms.

Remark. Eq. 2 relies on equality across the vocab-
ulary of the student and the teacher, i.e. Ω = ΩS =
ΩT , enabling us to compute the KL divergence by
ensuring similar support of probabilities.

Remark. Eq. 2 also suppose absolute continuity
for the distributions pθS(·|x<t) ≪ qθT(·|x<t) at
each generation step t, making the use of padding
impractical.

Our examination of Eq. 2 illustrating in Fig. 2
highlights that both vocabulary and absolute conti-
nuity constraints pose challenges to distilling two
distinct LLM families with logits using KL loss.
In the following section, we introduce our ULD
loss, providing a flexible framework for knowledge
distillation across a wide range of LLMs.

3 Universal Logit Distillation

3.1 Background on Optimal Transport

Optimal transport mathematically transfers mass
between distributions, minimizing cost (Villani
et al., 2009; Peyré et al., 2019). In this context,
Wasserstein distance, or Earth Mover Distance, ro-
bustly measures dissimilarities between distribu-
tions. This distance metric has gained popularity



Figure 2: Distillation using ULD loss. In block 4, the KL divergence cannot be defined as the two distributions do
not have the same support, breaking the absolute continuity of the quotient in the KL logarithmic term. To alleviate
this we rely on the ULD loss which leverages a closed form of the Wasserstein distance.

in NLP applications such as hallucination detec-
tion (Guerreiro et al., 2022; Shuster et al., 2021),
clustering (Zhuang et al., 2022; Ye et al., 2017; Xu
et al., 2018) or sentence similarity:(Colombo et al.,
2021; Xu et al., 2018; Bahuleyan et al., 2018).

Wasserstein distance: The Wasserstein distance
minimizes transport costs between sampled points
from all possible couplings. Let us consider
two sets of probability distributions, P (ΩS) and
P (ΩT ), respectively containing discrete distribu-
tions over spaces ΩS and ΩT . We denote p ∈
P (ΩS) and q ∈ P (ΩT ) as two discrete prob-
ability distributions with

∑|ΩS |
i=1 piδxS

i
= 1 and∑|ΩT |

i=1 qiδxT
i

= 1, where δxS
i

and δxT
i

represent
probability mass points at xSi , xTi with xSi ∈ ΩS

and xTi ∈ ΩT for distributions p and q. The values
pi and qi are weight factors ensuring that the sum
of weights is equal to 1. Under this discrete setting,
computing the Wasserstein distance is defined as:

Wp(p,q) = min
T∈Π(p,q)

|ΩS |∑
i=1

|ΩT |∑
j=1

TijC
p
ij (3)

where Π(p,q) is the set of joint distributions with
marginals p and q, Cp

ij represents the cost matrix,
and T is the transport plan. For the rest of the
work, we focus on the Wasserstein distance related
to p = 1. Consequently, the Wasserstein distance
seeks the optimal approach to transfer probability

mass from p to q, minimizing the transportation
cost defined by the absolute norm.

Remark. Note that the Wasserstein distance (see
Eq. 3) makes no assumptions about the support
of p or q, unlike the KL divergence, making it a
natural choice for distillation.

3.2 Universal Logit Distillation loss
The Universal Logit Distillation loss (ULD loss)
is a novel distillation technique designed to virtu-
ally distill any generative model teacher into any
student. It aims to overcome the limitations of KL
divergence, as discussed in Sec. 2.4 and Fig. 2.

Intuition. The ULD loss retains the CE loss term
to guide the model in generating the target token
and introduces a Wasserstein Distance term to trans-
fer knowledge from the teacher to the student. By
minimizing the distance between the soft probabil-
ities of the teacher and the student, our goal is to
reproduce not only the predictions for the golden to-
ken but also the near-zero labels, which are crucial
for performance and generalization.

ULD loss: Formally, the ULD loss function is
formulated as:

LULD =

|x|∑
t=1

CE(t)+λ×W1

[
pθS

(
·|xS

<t

)
,qθT

(
·|xT

<t

)]
(4)

where |x|=min
(
|xS |, |xT |

)
the minimum length

between the sentences tokenized with the teacher



or student tokenizers. Respectively qθT

(
·|xT

<t

)
and pθS

(
·|xS

<t

)
are the probability distribution for

the Teacher and Student models at the tth steps,
CE(t) the cross-entropy loss defined in Sec. 2.4 and
W1 represents the discrete Wasserstein distance
defined in Eq. 3 where λ ∈ R+ controls the trade-
off between the two terms and set to 1.5 in the rest
of this paper.

Explanation. Similar to the KL loss, the discrete
Wasserstein distance ensures that the confidence
of the student at each time step is close to the one
from the teacher.

3.3 Fast Computation & Approximations

To the best of our knowledge, we are the first to
motivate and propose the Wasserstein distance as
a learning loss for distillation in the scope of the
LLM decoder. Prior efforts focus on Sinkhorn regu-
larization (Cuturi, 2013) with encoder-decoder for
classification (Bhardwaj et al., 2022), while our
focus diverges as we concentrate on the generative
setting. This shift presents inherent challenges, as
the naive computation of the Wasserstein loss in
Eq. 3 exhibits a complexity of O(n3 log n), where
n signifies the size of the larger support. While
manageable in small classification scenarios with
encoders, the magnitude of the vocabulary, which
can extend to 100K tokens in generative tasks, ren-
ders this approach intractable, particularly for long
sequences.

Closed form solution for ULD loss: To achieve
efficient computation of the Wasserstein distance
in Eq. 4, we introduce two additional refinements:
Uniform Support Length: We augment either the
student or teacher vocabulary size through distribu-
tion padding (with 0 value), ensuring equal support
size for both (i.e., |Ωt| = |Ωs| = |Ω|).
Uniform Cost: As teacher and student supports
differ, and no vocabulary relationship is established,
we assert that each transport cost is equal to 1.
While this may seem a strong assumption, we will
demonstrate that the approximation we draw still
achieves better results in our case.
Under this assumption the Wasserstein distance
used in the LULD loss becomes (Peyré et al., 2019):

W1 =

|x|∑
t=1

|Ω|∑
i=1

∣∣∣p(xSσS(i)|x
S
<t)− q(xTσT (i)|x

T
<t)

∣∣∣
(5)

where σS and σT as the permutation that sorts the
decreasing probability of student and teacher soft
probability vectors.

Intuition. The final version of Eq. 5 is straight-
forward: with each generation, we pad and sort
the probability vectors of both student and teacher,
then compute the absolute difference. This ensures
that no matter the token, the confidence levels of
the sorted teacher and student are close.

4 Experimental Setting

4.1 Evaluation Scenarios

To align with the black-box approach where train-
ing models may not be available, we abstain from
fine-tuning teacher models. In this way, we enable
ULD Loss to operate in an unsupervised environ-
ment by generating all answers text with teacher
models. For repeatability and fair comparison be-
tween experiments, we opted to retain original an-
swers for the test set split. We investigated various
scenarios to evaluate the ULD loss performance
across different datasets and tasks. These com-
prised 2 Extractive QA (Ext.), 2 Generative QA
(Gen.), and 1 Summary (Sum.) tasks:

SQuAD (Ext.): The Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016) is a
reading comprehension dataset with 87,600 ques-
tions generated by crowdworkers from Wikipedia
articles. Answers are text portions from the rele-
vant sections of the articles.

QED (Ext.): The QED (Lamm et al., 2020)
dataset, expertly annotated, extends from a subset
of the Google Natural Questions dataset, compris-
ing 7,640 question-answering pairs with explana-
tions. Our focus is exclusively on extracted answers
(spans).

FairytaleQA (Gen.): The FairytaleQA Dataset
(Xu et al., 2022), created by educational experts,
consists of 10,580 questions from 278 children-
friendly stories. Questions may be explicit or im-
plicit.

PubMedQA (Gen.): The PubMedQA (Jin et al.,
2019) dataset contains question-answer pairs ex-
tracted from medical papers. Questions are based
on titles, context on abstracts, and responses on
conclusions. Due to the dataset size and context
length of our student models, we subset the dataset
by selecting the first 50,000 smaller items.



DIALOGSum (Sum.): DialogSum (Chen et al.,
2021) is a large-scale dialogue summarization
dataset, consisting of 13,460 spoken dialogues with
corresponding summaries and topics.

4.2 Experimental Choices

Baseline: As far as we know, the only method
currently capable of distilling any pair of teacher
and student LLM models in a black-box approach
is distillation from teacher-generated text seen in
Sec. 2.3. Throughout the remainder of this paper,
distillation from teacher-generated text will serve
as the baseline for evaluating the distillation pro-
cess using the ULD loss across different teacher-
student pairs, tasks, and datasets.

Teacher Models: We employed two teacher de-
coder models, each with 7 billion parameters:
LLama 2 7b Chat (LLama) (Touvron et al., 2023b)
and Mistral 7b Instruct (Mistral) (Jiang et al., 2023).
These instruct models were chosen for their ability
to generate few-shot answers (Brown et al., 2020;
Wang et al., 2020b) across diverse tasks and their
distinct vocabulary set as shown in Figure 1.

Student Models: We chose student models from
various LLM families and architectures with param-
eters ranging between 160 million to 1 billion: OPT
350m (Zhang et al., 2022), Pythia 160m, Pythia
410m, Pythia 1b (Biderman et al., 2023), Bloomz
560m (Muennighoff et al., 2023) all decoder mod-
els and MT0 580m (Muennighoff et al., 2023) an
encoder-decoder. It’s important to note that models
can have been already pre-trained on some datasets
such as SQuAD for Bloomz and MT0.

Training process: ULD loss distillation and
teacher-generated text distillation were processed
uniformly. The two teacher models generate an-
swers in inference mode for the five datasets. These
answers are then utilized to train student models.
During training, student models are trained exclu-
sively to predict answers, in teacher forcing config-
uration. Logits used for the ULD loss are calculated
by applying teacher models to the same data points
they generated. Teacher’s weights were frozen, en-
suring consistency in teacher-generated sentences
during inference and training. Additional param-
eter details (learning rate, batch size, etc.) can be
found in the Appendix Sec. 11.

4.3 Teacher Performances

Distilling using synthetic teacher-generated an-
swers might restrict student performance on
teacher’s ones. To measure distillation efficiency
accurately, we report the average native perfor-
mances across tasks for both teachers Tab. 1 (details
in Appendix Sec. 9). We chose a primary metric
for each task reflecting associate performances: F1
score for Extractive QA (Sokolova et al., 2006),
BERTScore for Generative QA (Zhang* et al.,
2020), and Rouge-Lsum for summary task (Lin,
2004). Comprehensive evaluation methods and
outcomes, encompassing prompts and few-shot ex-
amples, are provided in the Appendix Sec. 10.

Model Extractive
(F1)

Generative
(BERTScore)

Summary
(Rouge-Lsum)

LLama 69.51 36.11 23.90
Mistral 64.66 33.47 34.71

Table 1: Average performance of teacher models
across tasks with their main metrics. It is important
to note a relative difference of 30% in performance be-
tween teacher models on the summary task.

5 Empirical Results

5.1 General Results

We empirically validate the effectiveness of the
ULD loss step-by-step. First, we report in Tab. 2
the aggregated key metrics performance over the
different datasets and teacher/student pairs. ULD
loss achieves the best overall results, which in-
dicates that the proposed ULD loss effectively im-
proves the performances of every student model on
a variety of downstream tasks using any Teacher.
Notably, ULD loss exhibits an average improve-
ment of 2.30 points over models trained on teacher-
generated text for extractive QA tasks and Bloomz
outperforms his teacher Mistral on the QED
datasets. Furthermore, concerning summariza-
tion tasks, the 30% performance disparity between
LLama/Mistral (Tab. 1) persists in their distilled
counterparts (Tab. 2), underscoring the critical role
of teacher performances.

5.2 Student Size Ablation Study

General results in Tab. 2 show a consistent pattern
regarding the model size and the gain achieved with
the ULD loss, especially for challenging tasks such
as generative QA. To understand the impact of stu-
dent size on distillation capability, we performed



Teacher Model Method SQUAD
(F1)

QED
(F1)

FairytaleQA
(BERTScore)

PubMedQA
(BERTScore)

DIALOGSum
(Rouge-Lsum)

Teacher
LLama - 81.30 57.72 41.59 30.62 23.90
Mistral - 76.31 53.01 36.01 30.93 34.71

LLama

OPT-350m
Raw Text 70.78 48.64 33.78 27.99 20.58
ULD Loss 72.97 49.06 33.03 30.01 20.11

Pythia-410m
Raw Text 71.39 47.04 33.02 29.86 20.94
ULD Loss 74.14 49.15 34.83 29.89 22.19

Bloomz-560m
Raw Text 73.54 50.99 36.70 29.14 20.01
ULD Loss 75.90 55.33 37.86 30.01 22.67

Mistral

OPT-350m
Raw Text 71.64 50.13 30.09 27.91 31.44
ULD Loss 73.35 50.88 30.44 30.30 32.17

Pythia-410m
Raw Text 71.50 47.07 31.44 28.25 31.64
ULD Loss 73.64 50.38 31.79 29.55 33.10

Bloomz-560m
Raw Text 73.34 52.15 32.64 28.87 31.95
ULD Loss 76.00 55.79 33.93 30.60 32.58

Average
- Raw Text 72.03 49.34 32.94 28.67 26.09
- ULD Loss 74.33 51.77 33.65 30.06 27.14

Table 2: Overall performance of Teacher/Student pair models trained with ULD Loss and teacher-generated text
(Raw Text) across tasks with their main metrics. Evaluations are performed over respective test splits.

Figure 3: Student model size ablation with the Pythia
family trained by a LLama teacher. Trainings are con-
ducted with ULD loss and teacher-generated text (raw
text). Evaluation scores on test sets are depicted on the
Y-axis, while Pythia model sizes are on the X-axis.

an ablation study over the Pythia family. We hold
the training dataset size fixed at 100% and compare
the performance of models from 160m, 410m to 1b
parameters and report results in Fig. 3. We observe
that incorporating ULD loss consistently enhances
student models across various tasks. The enhance-
ments are particularly noticeable for smaller mod-
els on simpler tasks, while ULD loss requires larger
models for effectively distilling teacher logits on

harder tasks. This is especially evident in tasks
requiring reasoning, such as FairytaleQA. While
using logits teacher improves training, deep rea-
soning tasks still require appropriate model sizes
to process complex relationships taught by teach-
ers. Generally, we observe a significant increase
in capacity transfer from teacher to student mod-
els through the use of ULD, enabling student
models to match models twice bigger trained
with the teacher-generated text method. For ex-
ample, Pythia 410m with ULD loss matches the
performance of the Pythia 1b distilled with teacher-
generated text on QED and DIALOGSum.

5.3 Dataset Size Ablation Study

Figure 4: Dataset size ablation with a LLama/Pythia-
410m pair of models trained with ULD loss or teacher-
generated text (raw text). The X-axis indicates the % of
data used during training while the y-axis represents the
test set score for respective datasets.

In this section, we investigate and report in Fig. 3
the influence of the dataset size for models trained



with ULD Loss or teacher-generated text. We per-
form ablations with respectively 25%, 50%, 75%,
and 100% of dataset size while keeping training pa-
rameters constants. For every ablation ratio, mod-
els trained with ULD loss achieved better perfor-
mance than models trained on teacher-generated
text. Specifically, with 50% of a dataset, ULD
loss models overpass the performance of teacher-
generated text models trained with full dataset.

5.4 Training Regularization

To understand the impact of the ULD loss dur-
ing training we decide to compute the validation
ULD and Cross-entropy loss values for two pairs
of teacher/student on the SQuAD dataset every 200
steps during 5 epochs. We report the curves formed
by this point in Fig. 5. It appears that using the

Figure 5: Evolution of validation ULD and Cross-
entropy loss curves during training on SQuAD dataset
for a LLama/Pythia-410m and LLama/Bloomz-560m
Teacher/Student pair of model. For teacher-generated
text models (raw text), the ULD loss was only computed
during validation and did not impact the training pro-
cess.

ULD loss contributes to stabilizing the distilla-
tion process over training and mitigates overfit-
ting issues, enabling the model to train more ef-
fectively across multiple epochs. It’s worth noting
that incorporating the ULD loss during training
stabilizes both ULD and Cross-entropy loss.

Remark. Higher Cross-entropy loss validation val-
ues observed with ULD loss are a direct result of
the training process. ULD loss trained model to
predict soft labels from the teacher model instead of

the one-hot vectors used for computing the Cross-
entropy loss.

6 Distillation of Decoder Teacher to
Encoder-Decoder Student

As shown in Sec. 5, ULD loss effectively trans-
fers knowledge from any pair of teacher/student
decoders. Moreover, by leveraging solely on
logit information and adopting a black-box ap-
proach, ULD loss should be able to extend its ver-
satility and improve cross-architecture distillation.
To validate this, we distill a teacher/student pair
LLama/MT0-580m and focus our experimentation
on PubMedQA, DIALOGSum, and QED to avoid
any data seen during the pre-training of MT0 with
the xP3 dataset (Muennighoff et al., 2023; Sanh
et al., 2022).

ULD loss QED
(F1)

PubMedQA
(BERTScore)

DIALOGSum
(Rouge-Lsum)

Raw Labels 55.63 27.56 23.22
ULD Loss 56.01 30.19 23.92

Table 3: Distillation of a LLama teacher (decoder)
to an MT0-580m (encoder-decoder) with ULD Loss
and teacher-generated text on three data sets and their
primary metric associate.

The results presented in Tab. 3 demonstrate that
incorporating logit information from a decoder
teacher using ULD loss can enhance the perfor-
mance of an encoder-decoder student model. No-
tably, the inherent ability of the encoder-decoder
in the summary task seems to be limited by the
synthetic answers as teacher-generated text distil-
lation matches the teacher’s performance. How-
ever, by using the logit information with the ULD
loss, the student model still leads to improved re-
sults, suggesting a successful knowledge transfer
through logits. With this additional knowledge,
the student model slightly outperforms the teacher
one. Furthermore, in generative tasks where de-
coder architectures perform, the encoder-decoder
student model gained 2.63 points over distillation
with teacher-generated text.

7 Conclusions

In this work, we introduce the Universal Logit Dis-
tillation (ULD) loss, a novel method for distilling
any decoder teacher model into any student model
for LLM generative tasks. ULD achieves better
overall results and matches the performance of



teacher-generated text distillation with only half of
the training dataset or student size, while effectively
preventing overfitting. Our extensive experiments
validate the efficacy of the ULD loss across diverse
tasks,- datasets, and architectures, demonstrating
its superiority over standard teacher-generated text
distillation methods.

Limitations

One unexplored avenue related to our work is the
study of the ULD loss in non-English languages, in-
cluding ones with vastly different token representa-
tions (Chinese, Korean, etc). However, we believe
that our findings can still be applied to other lan-
guages, especially if teacher-student model pairs
are pre-trained in the same language or achieve
multilingual capacity. Additionally, in line with
previous work, we evaluate task performance with
standard reference-based metrics (ROUGE, F1,
BERTScore) which can be limited in their assess-
ment of what constitutes a correct generative model
prediction (Faysse et al., 2023). An extension of
the work could be to go beyond mono-task distil-
lation, and assess the transferability of generalist
assistant abilities from larger to smaller models.

Ethics Statement

Knowledge distillation aims to reduce the size,
cost, and energy consumed by a model at infer-
ence time. Our work opens new perspectives in
this area, aligned with the desire for sobriety, no-
tably for environmental reasons. Although KD
allows partial transfer of larger model performance,
smaller models remain limited in their reasoning
capacity and are more susceptible to hallucinatory
behavior (Rawte et al., 2023), especially in open-
ended generation tasks. This phenomenon has not
been extensively studied in this work. Furthermore,
by distilling knowledge from existing models, if
a bias is already present in the teacher model, it
may be transferred to the student model. This is
not unique to our method, but it’s a common risk
for all knowledge distillation.
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8 Appendix - General Results

8.1 Summary

Teacher Model Method Dataset Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

Llama Bloomz-560m Raw Text DIALOGSum 24.71 10.06 19.99 20.01
Llama Bloomz-560m ULD Loss DIALOGSum 28.08 11.68 22.64 22.67
Mistral Bloomz-560m Raw Text DIALOGSum 39.85 15.36 31.92 31.95
Mistral Bloomz-560m ULD Loss DIALOGSum 40.57 15.94 32.6 32.58
Llama OPT-350m Raw Text DIALOGSum 25.4 10.48 20.57 20.58
Llama OPT-350m ULD Loss DIALOGSum 23.69 9.76 20.13 20.11
Mistral OPT-350m Raw Text DIALOGSum 39.33 14.97 31.49 31.44
Mistral OPT-350m ULD Loss DIALOGSum 39.8 15.76 32.19 32.17
Llama Pythia-410m Raw Text DIALOGSum 26.28 10.52 20.92 20.94
Llama Pythia-410m ULD Loss DIALOGSum 27.29 11.2 22.17 22.19
Mistral Pythia-410m Raw Text DIALOGSum 39.69 15.0 31.62 31.64
Mistral Pythia-410m ULD Loss DIALOGSum 41.39 15.93 33.08 33.1
Llama Pythia-160m Raw Text DIALOGSum 20.34 7.46 16.81 16.81
Llama Pythia-160m ULD Loss DIALOGSum 22.94 8.39 19.56 19.55
Llama Pythia-1b Raw Text DIALOGSum 27.71 11.08 21.86 21.88
Llama Pythia-1b ULD Loss DIALOGSum 28.48 12.16 23.04 23.04

Table 4: Details performance of Teacher/Student pair models trained with ULD Loss and teacher-generated
text (Raw Text) for the Summary task. Evaluations are performed over respective test splits.

8.2 Extractive QA

Teacher Model Method Dataset F1 Precision Recall

Llama Bloomz-560m Raw Text SQuAD 73.54 75.35 75.19
Llama Bloomz-560m ULD Loss SQuAD 75.9 77.37 77.88
Llama Bloomz-560m Raw Text QED 50.99 58.9 52.38
Llama Bloomz-560m ULD Loss QED 55.33 63.22 56.47
Mistral Bloomz-560m Raw Text SQuAD 73.34 73.31 78.52
Mistral Bloomz-560m ULD Loss SQuAD 76.0 76.1 81.1
Mistral Bloomz-560m Raw Text QED 52.15 57.49 56.28
Mistral Bloomz-560m ULD Loss QED 55.79 61.98 58.8
Llama OPT-350m Raw Text SQuAD 70.78 72.52 72.78
Llama OPT-350m ULD Loss SQuAD 72.97 74.61 74.99
Llama OPT-350m Raw Text QED 48.64 54.74 51.84
Llama OPT-350m ULD Loss QED 49.06 55.38 51.74
Mistral OPT-350m Raw Text SQuAD 71.64 71.67 77.28
Mistral OPT-350m ULD Loss SQuAD 73.35 73.25 78.91
Mistral OPT-350m Raw Text QED 50.13 55.36 54.56
Mistral OPT-350m ULD Loss QED 50.88 56.61 54.53
Llama Pythia-410m Raw Text SQuAD 71.39 73.76 72.85
Llama Pythia-410m ULD Loss SQuAD 74.14 75.88 76.31
Llama Pythia-410m Raw Text QED 47.04 54.31 48.87
Llama Pythia-410m ULD Loss QED 49.15 54.75 53.13
Mistral Pythia-410m Raw Text SQuAD 71.5 71.33 77.54
Mistral Pythia-410m ULD Loss SQuAD 73.64 73.34 79.71
Mistral Pythia-410m Raw Text QED 47.07 50.2 54.67
Mistral Pythia-410m ULD Loss QED 50.38 54.19 56.62
Llama Pythia-160m Raw Text SQuAD 52.83 53.68 56.67
Llama Pythia-160m ULD Loss SQuAD 53.86 54.57 58.19
Llama Pythia-160m Raw Text QED 21.11 21.69 34.46
Llama Pythia-160m ULD Loss QED 27.48 30.3 33.8
Llama Pythia-1b Raw Text SQuAD 75.89 77.36 78.28
Llama Pythia-1b ULD Loss SQuAD 77.1 78.57 79.55
Llama Pythia-1b Raw Text QED 48.59 51.05 60.41
Llama Pythia-1b ULD Loss QED 51.22 55.3 59.7

Table 5: Details performance of Teacher/Student pair models trained with ULD Loss and teacher-generated
text (Raw Text) for Extractive QA task. Evaluations are performed over respective test splits.



8.3 Generative QA

Teacher Model Method Dataset BERTScore PBERT RBERT

Llama Bloomz-560m Raw Text FairytaleQA 36.7 45.42 28.46
Llama Bloomz-560m ULD Loss FairytaleQA 37.86 46.93 29.36
Llama Bloomz-560m Raw Text PubMedQA 29.14 29.45 28.86
Llama Bloomz-560m ULD Loss PubMedQA 30.01 32.5 27.65
Mistral Bloomz-560m Raw Text FairytaleQA 32.64 39.46 26.09
Mistral Bloomz-560m ULD Loss FairytaleQA 33.93 42.45 25.8
Mistral Bloomz-560m Raw Text PubMedQA 28.87 28.59 29.14
Mistral Bloomz-560m ULD Loss PubMedQA 30.6 32.08 29.13
Llama OPT-350m Raw Text FairytaleQA 33.78 41.46 26.57
Llama OPT-350m ULD Loss FairytaleQA 33.03 41.16 25.32
Llama OPT-350m Raw Text PubMedQA 27.99 28.46 27.56
Llama OPT-350m ULD Loss PubMedQA 30.01 36.11 24.14
Mistral OPT-350m Raw Text FairytaleQA 30.09 35.47 24.91
Mistral OPT-350m ULD Loss FairytaleQA 30.44 37.38 23.81
Mistral OPT-350m Raw Text PubMedQA 27.91 27.06 28.75
Mistral OPT-350m ULD Loss PubMedQA 30.3 36.99 23.82
Llama Pythia-410m Raw Text FairytaleQA 33.02 41.31 25.26
Llama Pythia-410m ULD Loss FairytaleQA 34.83 42.61 27.49
Llama Pythia-410m Raw Text PubMedQA 29.86 31.06 28.72
Llama Pythia-410m ULD Loss PubMedQA 29.89 31.23 28.62
Mistral Pythia-410m Raw Text FairytaleQA 31.44 37.97 25.18
Mistral Pythia-410m ULD Loss FairytaleQA 31.79 38.17 25.71
Mistral Pythia-410m Raw Text PubMedQA 28.25 25.91 30.56
Mistral Pythia-410m ULD Loss PubMedQA 29.55 30.09 29.01
Llama Pythia-160m Raw Text FairytaleQA 22.03 30.05 14.5
Llama Pythia-160m ULD Loss FairytaleQA 22.58 31.61 14.08
Llama Pythia-160m Raw Text PubMedQA 26.54 26.26 26.85
Llama Pythia-160m ULD Loss PubMedQA 29.78 36.4 23.36
Llama Pythia-1b Raw Text FairytaleQA 36.13 46.11 26.74
Llama Pythia-1b ULD Loss FairytaleQA 37.34 46.93 28.33
Llama Pythia-1b Raw Text PubMedQA 30.12 31.67 28.64
Llama Pythia-1b ULD Loss PubMedQA 29.88 30.4 29.44

Table 6: Details performance of Teacher/Student pair models trained with ULD Loss and teacher-generated
text (Raw Text) for generative tasks. Evaluations are performed over respective test splits.



9 Appendix - Native Performances

Base models used as teacher and student can be respectively download on HuggingFace: LLama 2 7b
Chat5, Mistral 7b Instruct6, Pythia 160m, Pythia 410m, Pythia 1b7, Bloomz 560m, MT0 580m8.

9.1 Summary

Model Dataset Number Few-Shot Few-Shot Titled Rouge-1 Rouge-2 Rouge-L Rouge-Lsum

Bloomz-560m DIALOGSum 3 False 15.36 1.47 11.92 11.9
OPT-350m DIALOGSum 2 False 22.06 3.31 17.86 17.84
Pythia-410m DIALOGSum 3 False 23.38 6.4 20.12 20.13
Pythia-160m DIALOGSum 3 False 16.0 4.72 13.88 13.88
Pythia-1b DIALOGSum 3 False 33.95 11.85 29.06 29.1
Llama DIALOGSum 3 False 0.3 0.13 0.24 0.24
Mistral DIALOGSum 2 False 0.43 0.18 0.35 0.35

Table 7: Native performance details of Teacher/Student pair models benchmark in few-shot setting for the
Summary task. Evaluations are performed over respective test splits.

9.2 Extractive QA

Model Dataset Number Few-Shot Few-Shot Titled F1 Precision Recall

Bloomz-560m SQuAD 3 False 66.05 68.6 66.09
Bloomz-560m QED 3 False 41.01 51.55 38.83
OPT-350m SQuAD 3 False 30.01 29.34 41.04
OPT-350m QED 3 False 30.21 32.82 37.6
Pythia-410m SQuAD 3 False 37.4 36.58 47.55
Pythia-410m QED 3 False 33.35 38.05 37.02
Pythia-160m SQuAD 3 False 15.05 16.39 18.83
Pythia-160m QED 3 False 15.48 20.15 17.31
Pythia-1b SQuAD 3 False 48.41 48.52 55.55
Pythia-1b QED 3 False 41.72 47.18 45.76
Llama SQuAD 1 False 0.81 0.83 0.84
Llama QED 5 False 0.58 0.64 0.63
Mistral SQuAD 3 True 0.76 0.74 0.89
Mistral QED 5 True 0.53 0.55 0.68

Table 8: Native performance details of Teacher/Student pair models benchmark in few-shot setting for
extractive QA tasks. Evaluations are performed over respective test splits.

9.3 Generative QA

Model Dataset Number Few-Shot Few-Shot Titled BERTScore PBERT RBERT

Bloomz-560m FairytaleQA 3 False 27.43 31.42 23.67
Bloomz-560m PubMedQA 3 False -20.3 -9.43 -30.97
OPT-350m FairytaleQA 3 False 3.82 -4.33 13.1
OPT-350m PubMedQA 3 False 19.98 23.29 16.94
Pythia-410m FairytaleQA 3 False 6.76 1.82 12.43
Pythia-410m PubMedQA 3 False 25.65 30.13 21.42
Pythia-160m FairytaleQA 3 False -0.96 -6.87 6.3
Pythia-160m PubMedQA 3 False 21.35 27.14 15.93
Pythia-1b FairytaleQA 3 False 20.59 22.4 19.23
Pythia-1b PubMedQA 3 False 26.13 29.29 23.24
Llama FairytaleQA 2 False 0.42 0.48 0.36
Llama PubMedQA 3 False 0.31 0.3 0.32
Mistral FairytaleQA 5 True 0.41 0.38 0.45
Mistral PubMedQA 3 False 0.31 0.28 0.34

Table 9: Native performance details of Teacher/Student pair models benchmark in few-shot setting for
generative QA tasks. Evaluations are performed over respective test splits.

5https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
6https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
7https://huggingface.co/EleutherAI
8https://huggingface.co/bigscience

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/EleutherAI
https://huggingface.co/bigscience


10 Appendix - Few-Shot examples and Prompt Systems

The few-shot technique was used to generate synthetic data with the teacher. The number of few-shots
reported for evaluating teacher models in Sec. 9 are the same numbers used to generate the synthetic
answers. It’s also important to note that the few-shot method was only used to determine the native
performance of the teacher and student, not the distilled versions.

10.1 Prompt Systems
List of prompt system used with teacher templates. The default templates for chat models provided with
the huggingface tokenizer have been retained:

• Extractive QA: You are an agent answering questions as part of a reading comprehension activity.
You must read and understand the context text step by step. Answers are brief and consist exclusively
of continuous words taken from the context text provided.

• Generative QA: You are an expert agent in reading comprehension (question answering). You must
read and understand the contextual text step by step, then answer the question. The answer must be
brief.

• Summary: You’re an expert at summarizing dialogues. You have to read the dialogue between two
people and summarize it in no more than one sentence. The summary should be as short as possible,
not re-explaining the dialogue in detail and using the person’s name when implicitly mentioned.

10.2 Few-Shot examples

Title Context Question Answer
Christine’s
boyfriend

Patrick Harris (Tim DeKay), Old Christine’s new boyfriend, who she meets in a video
store and starts dating.

Who played patrick on new
adventures of old christine? Tim DeKay

June 14, 2018:
Death Row In-
mates

As of June 14, 2018, there were 2,718 death row inmates in the United States. Total number of death row in-
mates in the us? 2,718

Modern Commu-
nism

Most modern forms of communism are grounded at least nominally in Marxism, an
ideology conceived by noted sociologist Karl Marx during the mid nineteenth century.

Who came up with the idea
of communism? Karl Marx

Napoleon’s Defeat
by Seventh Coali-
tion

A French army under the command of Napoleon Bonaparte was defeated by two of the
armies of the Seventh Coalition : a British-led Allied army under the command of the
Duke of Wellington, and a Prussian army under the command of Gebhard Leberecht
von Blücher, Prince of Wahlstatt.

Who commanded british
forces at the battle of water-
loo?

The Duke of
Wellington

Canine character Astro is a canine character on the Hanna-Barbera cartoon, The Jetsons. What was the dog’s name on
the jetsons? Astro

Table 10: Few-shot examples for extractive QA used to benchmark models and generate synthetic answers from
teachers.

Context Summary
#Person1#: John, shall we go to Sun Store? I have decided to buy that Murrberry handbag. Anyway, I’m not carrying this one to Mary’s wedding.
#Person2#: But, Jane, why not rent one with Handbag Hire? Instead of 990, pay 50, and you have it for a whole week. #Person1#: Sounds
great, but I never knew I can rent a handbag. #Person2#: Handbag Hire is a new business. It was founded two months ago. Its collection covers
many designer handbags. #Person1#: So... for the price of one Murrberry, I can use a different bag each week for twenty weeks? #Person2#:
Absolutely. And if you like one of them, you can choose to buy it at a discounted rate. Of course, the price varies by age and condition. For
example, a $ 1500 Murrberry bag can sell for just $750. #Person1#: Great, but how do I rent? By telephone? Or in person? #Person2#: Either.
And more conveniently, it accepts online orders. #Person1#: I’ll do it online now. I still have one more question. Mary’s wedding is next
Saturday. There are only five days left. Do I have enough time? #Person2#: Don’t worry. It promises that customers receive their orders by post
within two days. Three more days to go. #Person1#: Oh, I’d better order one right now.

Jane wants to buy that Mur-
rberry handbag to carry to
Mary’s wedding, but John
suggests renting one with
Handbag Hire and tells her
about the service in detail.
Jane is pleased to have a try.

#Person1#: The summers are so great here! Not hot at all. I love the cooling breezes, the clear air, all the greenery. #Person2#: This really has
been a wonderful holiday for us. Shall we take a walk around the pond or into those woods for a while? #Person1#: Let’s do both! Are we in a
rush or anything? #Person2#: No, not really. I had thought we’d stay in Hamburg tonight, but we can’t unless we rush it. Let’s stay in Bremen
instead. Tomorrow we can have lunch in Hamburg, then check into a hostel in Copenhagen and have dinner there. #Person1#: Sounds fine to me.
Whatever, let’s enjoy this pond first. #Person2#: Sure. We can walk around to that path that leads into the woods there. Hey, look! There are
some wild ducks over there in the reeds. #Person1#: I see them! Wow! How do you know they’re wild? #Person2#: I used to go hunting with my
uncle, that’s how. #Person1#: They’re neat. Now let’s take that path into the woods and see what we can see...

#Person1# and #Person2#
are enjoying a pond. #Per-
son1# and #Person2# had
planned to stay in Hamburg
tonight, but they decide to
stay in Bremen since they are
not in a rush.

#Person1#: Well, Rebecca, is there anything else you need to know for now? #Person2#: I don’t think so, Mr. Parsons. I think you have covered
all the main points for me. #Person1#: Okay well listen, here is my business card with my mobile number. If any other questions spring to
mind don’t hesitate to contact me. Of course, you can also call Miss Childs too. #Person2#: Great. Rmm, when can I expect to hear from you?
#Person1#: Well, we are finishing the shortlist interviews tomorrow, so we will certainly have a decision made by early next week. Miss Childs
will call you to discuss more on Monday or Tuesday. How does that sound? #Person2#: That sounds perfect. Thank you very much for taking
the time to speak to me Mr. Parsons. #Person1#: The pleasure’s all mine, Rebecca. #Person2#: I hope to hear from you very soon. #Person1#:
Absolutely. Thanks for coming Rebecca. Goodbye.

Mr. Parsons gives Rebecca
his business card after the
interview and tells Rebecca
the decision will be made
by early next week and Miss
Childs will contact Rebecca.

Table 11: Few-shot examples for summary used to benchmark models and generate synthetic summary from
teachers.



Title Context Question Answer

The Wee Bannock

So, she jumped up with her lint and her lint cards, and the tailor jumped up with his great
shears, and one apprentice grasped the line measure, while another took up the saucer full of
pins; and they all tried to catch the wee bannock. But it dodged them round and round the
fire, and at last it got safely out of the door and ran down the road, with one of the apprentices
after it, who tried to snip it in two with his shears. It ran too quickly for him, however, and at
last he stopped and went back to the house, while the wee bannock ran on until it came to a
tiny cottage by the roadside. it trundled in at the door, and there was a weaver sitting at his
loom, with his wife beside him, winding a clue of yarn.

How did the bannock escape
from the tailor’s wife and the
three tailors?

Dodged them
round and round
the fire, and at last
it got safely out of
the door and ran
down the road.

Princess Glass
Mountain

Then he took the prince by the hand, led him deep down in the earth into his cave, and there
on the wall hung a suit of armor altogether forged of the clearest silver, and so bright that it
shone afar. Right beside it stood a snow-white steed, saddled and bridled, pawing the earth
with his silver hoofs, and champing his bit till the foam dropped to the ground. The wild
man said: ’now get quickly into your armor, ride out and try your luck! in the meantime I
will tend your oxen.’ The prince did not wait to be told a second time; but put on his helmet
and armor in all haste, securely buckled on his spurs, hung his sword at his side, and felt as
light in his silver armor as a bird in the air. Then he leaped into the saddle so that every clasp
and buckle rang, laid his reins on the neck of his steed, and rode hastily toward the glass
mountain.

What was the suit of armor
given by the wild man forged
from?

The clearest silver.

Money Box

He knew very well that he had enough inside him to buy up all the other toys, and this
gave him a very good opinion of his own value. The rest thought of this fact also, although
they did not express it, for there were so many other things to talk about. A large doll, still
handsome, though rather old, for her neck had been mended, lay inside one of the drawers
which was partly open. She called out to the others, ’let us have a game at being men and
women, that is something worth playing at.’

Why didn’t the other toys
talk about how valuable the
pig was?

There were so
many other things
to talk about.

A Legend of Con-
fucius

When confucius came to the earth, the kilin, that strange beast which is the prince of all
four-footed animals, and only appears when there is a great man on earth, sought the child
and spat out a jade whereon was written: ’son of the watercrystal you are destined to become
an uncrowned king!’ and confucius grew up, studied diligently, learned wisdom and came to
be a saint. He did much good on earth, and ever since his death has been reverenced as the
greatest of teachers and masters. He had foreknowledge of many things and even after he
had died, he gave evidence of this.

Why was confucius’s death
reverenced as the greatest of
teachers and masters?

He did much good
on earth.

Naughty Boy

’Oh, let me in! Let me in! I’m cold, and I’m so wet!’ Exclaimed suddenly a child that stood
crying at the door and knocking for admittance, while the rain poured down, and the wind
made all the windows rattle. ’Poor thing!’ said the old poet, as he went to open the door.
there stood a little boy, quite naked, and the water ran down from his long golden hair. He
trembled with cold, and had he not come into a warm room he would most certainly have
perished in the frightful tempest.

Why did the boy ask to come
inside?

He was cold and
wet.

Table 12: Few-shot examples for generative QA used to benchmark models and generate synthetic answers from
teachers.

Context Question Answer
Injury severity score (ISS), Glasgow coma score (GCS), and revised trauma score (RTS) are the
most frequently used methods to evaluate the severity of injury in blunt trauma patients. ISS is
too complicated to assess easily and GCS and RTS are easy to assess but somewhat subjective.
White blood cell count (WBC) is an easy, quick and objective test. This study was performed
to evaluate the significance of the WBC count at presentation in the blunt trauma patients. 713
blunt trauma patients, who were admitted to the Uludag University Medical Center Emergency
Department between 01.04.2000-31.12.2000, were retrospectively evaluated in terms of ISS,
GCS, RTS and white blood cell count at presentation. Statistical analysis revealed that WBC
was correlated positively with ISS, but negatively with GCS and RTS.

Does the leukocyte count cor-
relate with the severity of in-
jury

The leukocyte count at presentation
can be used as an adjunct in the evalu-
ation of the severity of injury in blunt
trauma patients.

The aim of this study was to assess the diagnostic value of articular sounds, standardized clinical
examination, and standardized articular ultrasound in the detection of internal derangements
of the temporomandibular joint. Forty patients and 20 asymptomatic volunteers underwent
a standardized interview, physical examination, and static and dynamic articular ultrasound.
Sensitivity, specificity, and predictive values were calculated using magnetic resonance as
the reference test. A total of 120 temporomandibular joints were examined. Based on our
findings, the presence of articular sounds and physical signs are often insufficient to detect
disk displacement. Imaging by static and dynamic high-resolution ultrasound demonstrates
considerably lower sensitivity when compared with magnetic resonance. Some of the technical
difficulties resulted from a limited access because of the presence of surrounding bone structures.

Internal derangement of the
temporomandibular joint: is
there still a place for ultra-
sound?

The present study does not support
the recommendation of ultrasound as a
conclusive diagnostic tool for internal
derangements of the temporomandibu-
lar joint.

Figures from the British Defence Dental Services reveal that serving personnel in the British
Army have a persistently lower level of dental fitness than those in the Royal Navy or the
Royal Air Force. No research had been undertaken to ascertain if this reflects the oral health
of recruits joining each Service. This study aimed to pilot a process for collecting dental and
sociodemographic data from new recruits to each Service and examine the null hypothesis that no
differences in dental health existed. Diagnostic criteria were developed, a sample size calculated
and data collected at the initial training establishments of each Service. Data for 432 participants
were entered into the analysis. Recruits in the Army sample had a significantly greater prevalence
of dental decay and greater treatment resource need than either of the other two Services. Army
recruits had a mean number of 2.59 (2.08, 3.09) decayed teeth per recruit, compared to 1.93
(1.49, 2.39 p<0.01) in Royal Navy recruits and 1.26 (0.98, 1.53 p<0.001) in Royal Air Force
recruits. Among Army recruits 62.7% were from the two most deprived quintiles of the Index of
Multiple Deprivation compared to 42.5% of Royal Naval recruits and 36.6% of Royal Air Force
recruits.

Is there a differential in the
dental health of new recruits
to the British Armed Forces?

A significant difference in dental
health between recruits to each Service
does exist and is a likely to be a re-
flection of the sociodemographic back-
ground from which they are drawn.

Table 13: Few-shot examples for generative QA used to benchmark models and generate synthetic answers from
teachers for medical topic.



11 Appendix - Training Information

During training, all distillation processes were performed over 5 epochs with a batch size of 8 for the
SQuAD dataset and 4 for the others. A one-cycle learning rate scheduler was used with the following
configuration for decoder models: max_lr = 1e − 6, initial_lr = max_lr/2, min_lr = initial_lr/5. For
mt0 (encoder-decoder), the max learning rate parameter varied according to datasets: DIALOGSum: 1e-4,
PubMedQA: 3e-4, and QED: 7e-6. Finally, distillation was performed in BFLOAT16 mode (Kalamkar
et al., 2019), on 4*NVIDIA A100-SXM4-80GB with the Fully Sharded Data Parallel (FSDP) technique
(Zhao et al., 2023b). In total 4.923 GPU hours were used (i.e. consumption for the entire project in tonnes
of CO2: 0.268).


