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A B S T R A C T   

Irrigation is the most water consuming activity in the world. Knowing the timing and amount of irrigation that is 
actually applied is therefore fundamental for water managers. However, this information is rarely available at all 
scales and is subject to large uncertainties due to the wide variety of existing agricultural practices and associated 
irrigation regimes (full irrigation, deficit irrigation, or over-irrigation). To fill this gap, we propose a two-step 
approach based on 15 m resolution Sentinel-1 (S1) surface soil moisture (SSM) data to retrieve the actual irri
gation at the weekly scale over an entire irrigation district. In a first step, the S1-derived SSM is assimilated into a 
FAO-56-based crop water balance model (SAMIR) to retrieve for each crop type both the irrigation amount (Idose) 
and the soil moisture threshold (SMthreshold) at which irrigation is triggered. To do this, a particle filter method is 
implemented, with particles reset each month to provide time-varying SMthreshold and Idose. In a second step, the 
retrieved SMthreshold and Idose values are used as input to SAMIR to estimate the weekly irrigation and its un
certainty. The assimilation approach (SSM-ASSIM) is tested over the 8000 hectare Algerri-Balaguer irrigation 
district located in northeastern Spain, where in situ irrigation data integrating the whole district are available at 
the weekly scale during 2019. For evaluation, the performance of SSM-ASSIM is compared with that of the 
default FAO-56 irrigation module (called FAO56-DEF), which sets the SMthreshold to the critical soil moisture 
value and systematically fills the soil reservoir for each irrigation event. In 2019, with an observed annual 
irrigation of 687 mm, SSM-ASSIM (FAO56-DEF) shows a root mean square deviation between retrieved and in 
situ irrigation of 6.7 (8.8) mm week-1, a bias of +0.3 (− 1.4) mm week-1, and a Pearson correlation coefficient of 
0.88 (0.78). The SSM-ASSIM approach shows great potential for retrieving the weekly water use over extended 
areas for any irrigation regime, including over-irrigation.   

1. Introduction 

Irrigation is the most water-intensive human activity, consuming 
more than 70% of the freshwater used worldwide (Foley et al., 2011; Qin 
et al., 2019). Pressure on water resources already exists in many regions 
and is expected to increase in the future (Wada et al., 2011, 2013; 
Campbell et al., 2017; FAO, 2021). This is largely due to the combined 
effect of increased food demand associated with economic and 

population growth (Tilman and Clark, 2015), and the impact of climate 
change on hydrometeorological response (Ferguson et al., 2018; Malek 
et al., 2018; Williams et al., 2020). To best manage this situation, de
cision makers, including water resource managers need to know how 
much water is being used for irrigation, at regional (irrigation district, 
catchment), national and global scales (OECD, 2015). However, access 
to reliable information on irrigation water use is currently lacking. It 
either does not exist, or is subject to large uncertainties inherent in 
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national or international databases, such as the AQUASTAT dataset (htt 
p://www.fao.org/aquastat/en/; accessed 16 June 2023) (Ajaz et al., 
2020; Puy et al., 2022a), or in the predictions of hydrological models 
(Wada et al., 2016; Huang et al., 2018; Puy et al., 2022b). Indeed, 
models generally simulate irrigation based on empirically defined soil 
moisture thresholds, which are highly variable in space and time and 
therefore highly uncertain (Olivera-Guerra et al., 2023). In addition, 
irrigation modeling is affected by other sources of uncertainty, such as 
irrigated area or irrigation efficiency (Puy et al., 2021, 2022a, 2022b). 

While the need for knowledge of irrigation water use is growing, and 
the irrigation models are still too uncertain to meet the challenge, more 
and more remote sensing observations relevant to irrigation retrieval are 
becoming freely available. Over the last two decades, the number of 
satellites carrying solar and thermal spectrum sensors (e.g., Moderate 
resolution Imaging Spectroradiometer (MODIS), Landsat, Sentinel-2 
(S2), Sentinel-3) from which evapotranspiration (ET) products can be 
derived (such as SEN-ET; Guzinski et al., 2020), and passive (e.g., Soil 
Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive 
(SMAP)) and active microwave (e.g., Advanced SCATterometer 
(ASCAT), Sentinel-1 (S1)) sensors, from which soil moisture products 
can be derived (e.g., El Hajj et al., 2017; Ojha et al., 2019; Paolini et al., 
2022), has steadily increased. This opens up increasingly interesting 
possibilities in terms of spatial and temporal resolution (Peng et al., 
2021). The wealth of information available from remote sensing has led 
to the emergence of a community of researchers focused on irrigation 
estimation from satellite observations. Massari et al. (2021) recently 
provided an overview of the various existing approaches based on sat
ellite observations. 

Some of these works have attempted to retrieve irrigation by 
comparing the remotely sensed ET of two (one irrigated and one rainfed) 
neighboring crops (e.g., Romaguera et al., 2014; Vogels et al., 2020) or 
by assuming that it corresponds to the difference between simulated and 
remotely sensed ET (e.g., Anderson et al., 2015; López Valencia et al., 
2020). In the same vein, Zhang and Long (2021) have retrieved monthly 
irrigation at the scale of US states by exploiting the difference between 
simulated and remotely sensed ET, by relying on a linear relationship 
between ET and root zone soil moisture. However, all these ET-based 
methods suffer from the same pitfall. The information contained in ET 
observations is limited to the water actually consumed by the crop fields, 
thus neglecting any excess water applied intentionally (e.g., to allow soil 
leaching) or unintentionally (due to suboptimal practices). Assuming 
that ET data can be used to determine the irrigation actually applied is 
equivalent to assuming that farmers never irrigate more than the crop 
can consume. However, over-irrigation may occur. This can be 
observed, for example, in the Algerri-Balaguer (AB) irrigation district in 
northeastern Spain, where the observed drainage (related to excess 
water in the soil) occurs mainly in summer, when irrigation is intensive 
and rainfall is low (Altès et al., 2022; Laluet et al., 2023b). 

Many other recently published approaches propose to estimate irri
gation using the surface soil moisture (SSM) data derived from micro
wave observations. Remotely sensed SSM can detect the irrigation signal 
(Le Page et al., 2020; Jalilvand et al., 2021; Lawston et al., 2017) and 
theoretically both under-irrigation (below the amount of water needed 
to avoid crop stress) and over-irrigation (above the amount of water the 
soil can hold, resulting in drainage). An irrigation retrieval model based 
on SSM data was proposed by Brocca et al. (2018) using the SM2RAIN 
approach. It has since been used in various works (e.g., Jalilvand et al., 
2019; Dari et al., 2020; Dari et al., 2022, 2022; Dari et al., 2023; Fili
ppucci et al., 2020). SM2RAIN relies on a simple water balance equation 
whose terms depend on observed SSM and empirical parameters, which 
are previously calibrated over rainfed areas or during periods when 
there is no irrigation. Jalilvand et al. (2019) applied this method using 
SSM data from the Advanced Microwave Scanning Radiometer 2 
(AMSR2; ~25 km resolution) over an irrigation district in Iran. Although 
the overall irrigation dynamics was well reproduced, irrigation was 
systematically overestimated. By applying a bias correction obtained 

from the application of SM2RAIN over rainfed areas, the results were 
significantly improved with a root mean square deviation (RMSD) of 13 
mm month-1. They highlighted the sensitivity of irrigation to the ET 
formalism and emphasized the need to use SSM observations at higher 
spatial resolution. Later, Dari et al. (2020) and (2022) applied the same 
approach to semi-arid irrigation districts in Spain at a finer spatial res
olution using the SMOS and SMAP SSM data disaggregated at 1 km 
resolution (DISPATCH SSM datasets; Merlin et al., 2013). They showed 
that an improved formulation of ET (particularly using the FAO-56 
approach of Allen et al., 1998) significantly improves irrigation re
trievals. This highlights the importance of properly representing the 
processes involved in the crop water balance. 

Recently, Dari et al. (2023) used SM2RAIN with S1 and Cyclone 
Global Navigation Satellite System (CYGNSS) derived SSM products (1 
km and 6 km spatial resolution, respectively) on ten irrigation districts 
in Spain, Italy, and Australia. The retrieved irrigation reproduces in situ 
observations well, but with sometimes significant biases, especially for 
small irrigation districts. In fact, all the papers involving SM2RAIN have 
emphasized the importance of using a high-resolution SSM product to 
detect processes occurring at the field scale. In parallel with these works, 
Zappa et al. (2021) proposed an approach close to SM2RAIN, called 
SM_Delta, based on the comparison of SSM variation between an irri
gated pixel and the rainfed pixels surrounding it. Zappa et al. (2022) 
evaluated the performance of this approach on synthetic data and 
showed that it is highly sensitive to both spatial resolution and obser
vation frequency. Performance declines sharply for periods of more than 
three days between two consecutive SSM observations, and when the 
irrigated fraction of a pixel falls below 70%. This illustrates the impor
tance of high-resolution observations capable of providing pixels with a 
high irrigation fraction. 

In addition to the issues of spatial resolution and revisit time of SSM 
datasets, another limitation of current SSM-based approaches such as 
SM2RAIN is that they neglect the issue of uncertainty, whether caused 
by the model (uncertainty in model parameters and formalism) or by 
satellite observations (uncertainty in input data). However, all models 
are sensitive to the choices made in the calibration step, to the model 
formalism and parameterization, and to the uncertainty of its input data 
(Foster et al., 2020; Beven et al., 2019; Puy et al., 2022b). Knowledge of 
the uncertainty in the model estimate is actually as important as the 
modeled value to provide reliable information to decision makers and 
managers (Saltelli et al., 2020). 

Other approaches based on the assimilation of satellite SSM data into 
land surface models (LSMs) have recently been developed, enabling 
uncertainty to be taken into account in irrigation simulations. Assimi
lation methods are based on the prior distributions of both model and 
observational errors. Felfelani et al. (2018) assimilated SMAP (36 km 
spatial resolution) SSM data into the Community Land Model 
version-4.5 LSM (Lawrence et al., 2011; Oleson et al., 2013) over a large 
irrigated area in the USA, using the one-dimensional Kalman filter 
method. The goal was to constrain the so-called "target soil moisture" 
parameter, which determines the irrigation triggering and amount. They 
obtained a significant improvement in the simulated annual irrigation 
compared to the baseline simulation performed using the default 
parameter value. In the same vein, Abolafia-Rosenzweig et al. (2019) 
inverted irrigation amounts by assimilating (synthetic) SSM data into 
the variable infiltration capacity LSM using the particle batch smoother 
data assimilation approach. The results of the twin experiment indicated 
that the assimilation approach is better when the timing of irrigation is 
known, and when the revisit time of the SSM observation is less than 
three days. They also highlighted the importance of addressing the issue 
of persistent biases between simulated and observed SSM. Jalilvand 
et al. (2023) applied the same approach but using the 1 km resolution 
SMAP-S1 SSM data (Das et al., 2019) over an irrigation district in Iran. 
They confirmed the importance of an a priori knowledge of irrigation 
frequencies in their approach and obtained an underestimation of sea
sonal cumulative irrigation at the irrigated pixels by an average of 19%, 
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explained by the loss of irrigation signal due to the mismatch between 
the spatial resolution (1 km) of the SSM data and the scale of irrigation 
practices. 

Modanesi et al. (2022) assimilated the S1 backscatter (aggregated to 
1 km resolution) to improve the performance of the Noah-MP.v.3.6 LSM 
(Niu et al., 2011) coupled with an irrigation module (Ozdogan et al., 
2010), using an ensemble Kalman filter. The assimilation resulted in an 
improvement of the simulated irrigation, but to a limited extent. In 
particular, they emphasized the importance of dealing with observations 
and simulations at higher spatial resolution (with low performance 
when pixel had low irrigation fraction), as well as the need for more 
frequent SSM observations and improvement of the Noah-MP.v.3.6 
irrigation module formalism. At a finer spatial scale, Ouaadi et al. 
(2021) estimated the timing and amount of irrigation for five wheat 
plots in Morocco. They assimilated a high-resolution (15 m, revisit time 
of six days) SSM product derived from S1 into a model based on the 
FAO-56 method, using the particle filter (PF) approach (Vrugt et al., 
2013). PF is one of the most efficient assimilation methods, able to take 
into account for model and observational uncertainties without the need 
for any assumptions about prior density functions or likelihoods and is 
adapted to nonlinear problems (unlike 4DVar or Kalman filter-based 
methods) (van Leeuwen et al., 2019; Alonso-González et al., 2022). 
For all five plots, Ouaadi et al. (2021) obtained a Pearson correlation 
coefficient r of 0.64 and an RMSD of 28.7 mm/15 days and were able to 
detect 50–70% of irrigation events. They also showed, using in situ data, 
that their approach performed better with a shorter revisit time (three 
days). 

A recurring issue in assimilation approaches is the management of 
persistent differences between modeled and observed SSM. To reduce 
model or observation biases, one possible solution is to use a rescaling 
approach such as cumulative distribution function matching (Reichle 
and Koster, 2004) to fit the observed SSM to the simulated SSM. How
ever, this approach has the disadvantage of potentially deleting signals 
when the observations contain some information that is not modeled, 
such as irrigation (Kumar et al., 2015; Nair and Indu, 2019). Another 
way to minimize such a bias is to calibrate model parameters on rainfed 
pixels (e.g., Dari et al., 2020, 2022; Jalilvand et al., 2023), although this 
implies the strong (and unverified) assumption that optimal parameters 
for rainfed pixels are also optimal for irrigated pixels. Another approach 
is to remove a systematic bias (calculated on rainfed pixels) from the 
simulated irrigations (Jalilvand et al., 2019), although part of the signal 
may be lost due to the difference in climatology or soil properties be
tween both pixel types (Brombacher et al., 2022). 

The above literature review of SSM-based irrigation retrieval 
methods indicates that state-of-the-art approaches are currently limited 
by (one or several of the following factors): 1) the coarse resolution of 
SSM remote sensing products used as input, 2) the impact of data gaps in 
SSM time series due to low revisit, 3) the non-explicit representation of 
irrigation-related (e.g., ET, deep percolation, etc.) processes which 
makes the calibration steps difficult and uncertain, and 4) the lack of 
consideration (by the irrigation retrieval methods that are not based on 
data assimilation) of uncertainties in both model parameterization and 
input data. 

In this context, this study proposes a new assimilation scheme of a 
high (15 m) resolution S1-derived SSM product (Ouaadi et al., 2020) 
into the FAO-56-based crop water balance model SAtellite Monitoring 
for IRrigation (SAMIR; Simonneaux et al., 2009), using the PF method. 
The SAMIR model, implemented at the field scale, allows for a robust 
and explicit representation of crop ET from the crop coefficient values 
available for all common crops for different climates in the FAO-56 
look-up tables. It can therefore be spatialized over large areas from 
readily available data (Laluet et al., 2023b). In addition, the assimilation 
approach developed by Olivera-Guerra et al. (2023) is used here to 
invert two parameters of the SAMIR irrigation module: the irrigation 
amount (Idose) and the soil moisture threshold (SMthreshold) at which 
irrigation is triggered. Both parameters are retrieved over successive 

monthly assimilation windows integrating several (up to five indepen
dent) S1-derived SSM observations. Such a strategy helps to reduce the 
impact of possible data gaps in SSM time series and allows for repre
senting weekly district-scale water use in any (deficit, full or excess) 
irrigation regime (Olivera-Guerra et al., 2023). 

The proposed approach is implemented over the 8000 hectare AB 
irrigation district located in northeastern Spain. It is evaluated at the 
field and AB scales using in situ irrigation measurements available at 
both scales. The paper is organized as follows: Section 2 presents the 
study area and the data used, Section 3 introduces the SAMIR model and 
its irrigation module (Section 3.1), as well as the assimilation scheme 
(Section 3.2), the strategy for performing plot-scale simulations (Section 
3.3), and the evaluation step (Section 3.4). Section 4 presents and dis
cusses the results obtained first at the field scale using in situ SSM data as 
input (Section 4.1), and then at the AB district scale using S1-derived 
SSM data as input (Section 4.2). Section 5 presents conclusions and 
perspectives of this work. 

2. Study area and data 

2.1. Study area 

The study area is the 8000 hectare AB irrigation district located in 
northeastern Spain, 20 km north of the city of Lleida. The climate is 
continental Mediterranean with an average annual reference evapo
transpiration (ET0) of 1027 mm and rainfall of 380 mm (2000–2021). 
For the year 2019, 6140 ha were irrigated, of which 94% were covered 
by five main crop types: double crops (62% of the irrigated area; mainly 
barley or wheat in winter-spring season and maize in summer-fall), 
summer cereals (9%; maize), winter cereals (8%; mainly barley or 
wheat), forages (8%; mainly alfalfa), and fruit trees (7%). The remaining 
6% are composed of leguminous, oleaginous, horticultural and protein 
crops, as well as vineyards and olive trees. All the plots are irrigated by 
sprinklers (in summer the daily doses range from 5 to 15 mm), except for 
the fruit trees, which are irrigated by drip irrigation. The land use in
formation used in this study comes from the Geographic Information 
System for Agricultural Parcels (SIGPAC), provided by the Department 
of Climate Action, Food, and Rural Agenda of the Region of Catalonia, 
and is available at https://agricultura.gencat.cat/ca/ambits/dese 
nvolupamentrural/sigpac/descarregues (accessed 16 June 2023).  
Fig. 1.a shows the AB district with the land cover for the year 2019 from 
the SIGPAC database. 

2.2. In situ data 

2.2.1. District-scale in situ irrigation data 
The district-scale irrigation data consists of the water flow pumped in 

the river Noguera Ribagorçana just next to the AB district (see Fig. 1.a 
for the location of the pumping station). This water, flowing through a 
canal and stored in a reservoir before reaching the plots, is the only 
resource used for irrigation in AB. It takes around 1 to 2 days from the 
pumping station to irrigation, so the dynamics of the pumped water are 
close to the irrigation dynamics. Flow measurements were made on a 
daily basis by the SAIH (Automatic Hydrological Information System of 
the Ebro Basin; available at http://www.saihebro.com/saihebro/index. 
php; accessed 16 June 2023) and were aggregated on a weekly basis to 
account for the time lag between pumping and actual irrigation (Oli
vera-Guerra et al., 2023). In addition, 5.8% of the pumped volume is 
removed to account for evaporative losses and leakage, based on a 
comparison made in 2021 between the annual pumped water and 
annual irrigation measured with flowmeters at the district level (Oli
vera-Guerra et al., 2023). The consistency of agricultural systems and 
practices from one year to the next means that the loss coefficient ob
tained in 2021 can be used for another year such as 2019. Moreover, this 
coefficient provides a less uncertain estimate of irrigation losses than 
those defined ad hoc (e.g., 10% for a modern irrigation district such as 
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AB in Dari et al., 2020, 2023). Note that the 5.8% does not take into 
account evaporation losses of water intercepted from the leaves that 
may occur during irrigation, as this takes place mainly at night in AB, 
when evaporation demand is low. In situ weekly irrigation data for the 
year 2019 are shown in Fig. 1.b. 

2.2.2. Field-scale in situ data 
The instrumented fields Castello and Albesa are two double-cropped 

plots of 35 and 21 ha respectively, located in the AB district (see Fig. 1.a 
for the location of the two instrumented fields). At Castello, SSM data 
every 15 min are available for a five-month period in summer-fall 2021. 
At Albesa, SSM data every 15 min are available for three periods: six 
months in summer-fall 2021, five months in winter-spring 2022, and 
five months in summer-fall 2022. For Castello, SSM data are obtained 
from the average of SSM measurements of two TEROS 10 sensors 
(METER group) installed at a depth of 5 cm and separated by about 
100 m. For Albesa, they are derived from three sensors (two TEROS 10 
and one EC-5; METER group) also about 100 m apart. For the periods 
mentioned, daily irrigation data from flowmeters are available at both 
Castello and Albesa fields. Note that no loss coefficient has been applied 
to the measured irrigation volumes, since the meters are located on the 
plots themselves (implying no significant leakage due to water trans
port), and irrigation takes place mainly at night, implying that evapo
ration losses due to interception by leaves can be considered negligible. 
These in situ data are used to test and evaluate the SSM-ASSIM approach 
on a simple case (crop type and irrigation practices spatially uniform), at 
the plot scale, and with in situ SSM data being more frequent and less 
error prone than satellite observations. The in situ SSM measurements 
were averaged on a daily basis and one day out of three was kept, 
resulting in an observation every three days. This provides a frequency 
higher than that of S1-derived SSM (the latter is six days), but low 
enough to mimic the frequency of satellite observations (2–3 days being 
the frequency of SMOS or SMAP). 

2.2.3. In situ meteorological data 
The meteorological data are obtained from five stations belonging to 

the Catalan meteorological station network (available at https:// 
ruralcat.gencat.cat/agrometeo.estacions; accessed 16 June 2023). Two 
of them are located within the AB district, and three at a maximum 
distance of 5 km. The average standard deviation of both precipitation 

and ET0 measurements from the five stations is low (29 mm year-1 for 
precipitation and 18 mm year-1 for ET0). Therefore, their spatial aver
ages (simple averages) were used as forcing in the SAMIR model. 

2.3. Remote sensing data 

2.3.1. S2-derived vegetation index 
The Normalized Difference Vegetation Index (NDVI) is used in this 

study to drive the modeled crop development in SAMIR. It is derived 
from the S2 multispectral satellite constellation consisting of two sat
ellites S2A and S2B, with a global revisit frequency of five days. S2A and 
S2B were launched by the European Space Agency (ESA) in 2015 and 
2017, respectively. We used the level 2 surface reflectance data at 10 m 
spatial resolution from band 4 (red) and band 8 (near-infrared) to 
compute NDVI, and cloud masks (QA60 and band 10) were applied. 
When more than 25% of the pixels falling in a plot are affected by the 
cloud masks, all the pixels in that plot are removed to avoid cloud 
contamination. When less than 25% of the plot is affected by the masks, 
the average of the remaining NDVI values within the crop field is 
calculated. Finally, the field-scale NDVI data are interpolated to the 
daily scale using a piecewise cubic Hermite interpolation polynomial 
method (Fritsch and Carlson, 1980). 

2.3.2. S1-derived SSM 
The remotely sensed SSM data used in this study are derived from the 

S1C-band synthetic aperture radar satellite constellation, consisting of 
two satellites S1A and S1B, with a global revisit frequency of six days. 
S1A and S1B were launched by ESA in 2014 and 2016, respectively, and 
both provide dual acquisitions in VV (vertically transmitted, vertically 
received) and VH (vertically transmitted, horizontally received) polar
izations. To invert the SSM from S1 microwave observations, the 
approach proposed by Ouaadi et al. (2020) is used. The retrieval method 
is based on the inversion of the water cloud model from the S1 VV po
larization backscattering coefficient and the S1 interferometric coher
ence. The vegetation descriptor used in the water cloud model is the 
above ground biomass derived from the interferometric coherence. SSM 
is thus obtained at each S1 acquisition and for each pixel by minimizing 
the distance between the backscattering coefficient observed by S1 and 
that simulated by the Water Cloud model, using a brute-force approach. 
For more details on the S1-derived SSM product, the reader is referred to 

Fig. 1. The AB irrigation district with the land cover for the year 2019, the location of the pumping station and of the two instrumented plots (Albesa and Castello) 
(a), and the weekly irrigation data measured at the pumping station in 2019 (b) (coordinates of the pumping station: 797157/4636983.4 ETRS89/UTM zone 31 N). 
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the original paper by Ouaadi et al. (2020). 

2.4. Ancillary soil data 

The soil texture is relatively uniform over AB and corresponds to a 
silty clay soil (Jahn et al., 2006). It is derived from the SoilGrids product 
(available at https://maps.isric.org; accessed 15 May 2023) at 250 m 
resolution (Hengl et al., 2017; Poggio et al., 2021). Soil texture infor
mation is used in SAMIR to derive soil hydraulic properties, which 
control the amount of water the soil can hold and the evaporation dy
namics of the surface soil layer. 

3. Method 

The overall methodology for retrieving the weekly irrigation at the 
district scale is presented in the flowchart of Fig. 2. First, the SAMIR 
model is described with its irrigation module (3.1). Then, the SSM- 
ASSIM approach to retrieve the daily irrigation parameters (SMthreshold 
and Idose) (3.2.1) and the strategy to simulate the weekly irrigation using 
the retrieved SMthreshold and Idose as input parameters in SAMIR are 

presented (3.2.2). Finally, the strategy for applying the SSM-ASSIM 
approach at the plot scale (Section 3.3) and for evaluating irrigation 
retrievals at both field and district scale (Section 3.4) are described. 

3.1. SAMIR model 

SAMIR is a FAO-56 double-crop coefficient-based model (Allen et al., 
1998) originally designed to simulate the crop water balance compo
nents for estimating daily ET and optimal irrigation requirements, by 
considering the water status of plant and soil. It uses meteorological 
forcing variables to calculate ET0 (using the Penman-Monteith equa
tion), precipitation, crop and soil parameters, and NDVI to drive plant 
development. 

3.1.1. SAMIR main equations 
SAMIR simulates the daily water balance equation as: 

Dr(t) = Dr(t − 1)+ET(t) − P(t) − I(t)+DP(t) (1)  

where Dr is the root zone depletion, ET the actual evapotranspiration, P 
the precipitation, I the irrigation and DP the deep percolation. Each term 

Fig. 2. Flowchart of the methodology to retrieve the weekly irrigation at district scale by assimilating SSM data into the SAMIR model.  
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is expressed in mm for day t (and t-1 for Dr) and ET is obtained by 
multiplying two crop coefficients to ET0 as follows: 

ET(t) = [Kcb(t)・Ks(t)+Ke(t) ]・ET0(t) (2)  

where ET0・Kcb・Ks is the water transpired by plants (T, mm), and 
ET0・Ke the soil evaporation (E, mm). Kcb (-) is the basal crop coeffi
cient controlling potential crop transpiration, computed from a linear 
relationship with NDVI (bounded between 0 and the crop-specific 
parameter Kcbmax), Ks (-) is the crop water stress coefficient reducing 
potential transpiration, and Ke (-) is the potential soil evaporation 
coefficient. 

The calculation of Ks is based on the daily water balance calculation 
in the root zone layer, and can be written as: 

Ks(t) =
TAW(t) − Dr(t)
TAW(t)・(1 − p)

(3)  

where Dr is calculated from the daily water balance according to Eq. (1), 
and TAW (mm) is the total (maximum) available water in the root zone. 
p is a crop-specific parameter provided in the literature (Allen et al., 
1998; Pereira et al., 2021), ranging between 0.4 and 0.6 for most crops 
and being corrected daily for weather conditions. Allen et al. (1998) 
suggest that p controls the water depth threshold below which irrigation 
should be triggered to avoid crop water stress (and irrigate optimally) by 
keeping Dr below TAW・p. In other words, p triggers irrigation when 
soil moisture reaches a critical level (below which the crop experiences 
water stress) called SMcritical, provided in the literature. p can then be 
written as follows: 

p = 1 −
(
SMcritical − SMWP

SMFC − SMWP

)

(4)  

where SMFC (m3 m-3) is the soil moisture at field capacity and SMWP (m3 

m-3) the soil moisture at wilting point, which are both derived from soil 
texture using the pedotransfer function proposed by Román Dobarco 
et al. (2019). In the AB district, SMFC and SMWP derived from SoilGrids 
are fairly homogeneous with values of 0.330 ( ± 0.005) m3 m-3 and 
0.207 ( ± 0.006) m3 m-3, respectively. For the Castello instrumented 
plot, SMFC and SMWP are 0.339 m3 m-3 and 0.186 m3 m-3, respectively, 
and for Albesa 0.336 m3 m-3 and 0.191 m3 m-3. 

Olivera-Guerra et al. (2023) proposed an alternative to the p 
parameter for triggering irrigation, called ptrigger. Unlike p, ptrigger does 
not trigger irrigation when SMcritical is reached, but when SMthreshold is. 
SMthreshold is time-varying and can be different from SMcritical, allowing 
to reproduce farmers’ current practices. ptrigger is written as follows: 

ptrigger(t) = 1 −
(
SMthreshold(t) − SMWP

SMFC − SMWP

)

(5) 

TAW of Eq. (3) is computed as follows: 

TAW(t) = (SMFC − SMWP)・Zr(t) (6)  

where Zr (mm) is the rooting depth, varying between a minimum value 
(set at 100 mm for annual crops) and a crop-dependent maximum value 
(reached at the maximum NDVI of the simulated field). 

Ke, the potential soil evaporation coefficient, is computed as follows: 

Ke(t) = Kr (Kcmax − Kcb) ≤ few Kcmax (7)  

Where Kcmax is the maximum value that Kc (equal to Kcb+Ke) can reach, 
Kr is the evaporation reduction coefficient, and few is the fraction of the 
soil that is both exposed and wet (where evaporation occurs). 

Kr is written as follow: 

Kr(t) =
[

0.5 − 0.5・cos
(
π・SSM(t)
SMsaturation

)]P

(8)  

where SMsaturation is the soil moisture at saturation derived from the soil 

texture using a pedotransfer function, and P is a semi-empirical 
parameter also derived from the soil texture (Amazirh et al., 2021; 
Merlin et al., 2016). Since SSM is not explicitly represented in SAMIR, it 
is derived from the soil surface water depletion (De, mm; residue of the 
surface soil water balance) and the soil evaporation layer depth (Ze, 
fixed at 150 mm), as follows: 

SSM(t) = SMFC −
De
Ze

(9)  

3.1.2. Default irrigation simulation with SAMIR (FAO56-DEF approach) 
SAMIR simulates irrigation using two irrigation parameters: 

SMthreshold and Idose. SMthreshold is the soil moisture level at which irri
gation is automatically triggered and is used to calculate ptrigger (see Eq. 
5). Idose is the irrigation dose applied when irrigation is triggered. By 
default, SAMIR uses SMthreshold and Idose values that produce a theoret
ically optimal irrigation regime. We call this default irrigation mode 
FAO56-DEF. In the FAO56-DEF approach, irrigation is triggered when 
SMthreshold equals SMcritical (see Eq. 5) and Idose is calculated as the 
amount of water required to completely fill the root reservoir, without 
exceeding SMFC. With this approach, irrigation is triggered as soon as the 
simulated soil moisture reaches SMcritical, thus avoiding crop water 
stress. Excess irrigation (generating drainage loss) is also avoided as Idose 
fills the root reservoir up to the SMFC and not beyond. 

3.1.3. Irrigation simulation in any irrigation regime with SAMIR 
To represent real agricultural practices and associated irrigation re

gimes, Olivera-Guerra et al. (2023) proposed a time-varying SMthreshold 
and Idose able to simulate actual irrigation. With time-varying values 
different from those used by FAO56-DEF, it is possible to simulate 
time-varying irrigation water use in irrigation regime any (optimal, 
deficit or even over). When SMthreshold is lower than SMcritical, this cor
responds to a deficit irrigation regime, whereas when it is higher, it 
corresponds to an over irrigation regime. Fig. 3 illustrates for a hypo
thetical double-cropped plot, the relative difference between SMthreshold 
values for an ideal (SMthreshold set at SMcritical) and real (time-varying 
SMthreshold) case. We use herein the term “real case” as opposed to “ideal 
case” here but note that the variable SMthreshold in Fig. 3 is hypothetical, 
shown for explanatory purposes, and does not correspond to a real 
experiment. The green line represents the ideal case where irrigation is 
triggered at the onset of crop water stress (FAO56-DEF approach). The 
red line represents the hypothetical real case, with a variable SMthreshold 
(e.g., inverted from SSM data). In Fig. 3, SMthreshold values below 
SMcritical in winter-spring would result in a deficit irrigation regime (cf. 
red shaded area), as the theoretical irrigator waits for the soil moisture 
level to be low before irrigating. Conversely, SMthreshold values above 
SMcritical in summer-fall lead to over-irrigation (cf. blue area), as the 
theoretical irrigator irrigates while the soil moisture is still high. 

3.2. Retrieving irrigation from the assimilation of SSM observations 
(SSM-ASSIM) 

3.2.1. Inverting the SMthreshold and Idose parameters 
To retrieve the variable SMthreshold and Idose, SSM observations are 

assimilated into SAMIR using the PF method. The first step of the PF 
method consists of randomly draw N initial samples (particles) with 
different parameter values. In our case, 300 particles with different 
(SMthreshold, Idose) pairs are generated following a uniform distribution 
between SMWP and SMFC for SMthreshold, and between 0 and 20 mm d-1 

for Idose. Next, simulations are performed for each particle and for each 
day, until an observation is available (every six days for S1-derived SSM, 
every three days for in situ SSM). On the day of the SSM observation, the 
N simulated variables (here the 300 SSM simulated by SAMIR) are 
confronted with the observation. During this evaluation step, each 
particle (SMthreshold and Idose pairs, resulting in SSM simulation) is 
assigned a weight according to its likelihood with the observed SSM. The 
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best particles are duplicated a number of times relative to their likeli
hood, and the worst ones are discarded. 

In order to calculate the weight of the particles, and also to prevent 
their degeneracy, the PF method takes into account the model and 
observational errors. For the observed SSM errors, a standard deviation 
of 20% of the observed SSM value is set for both S1-derived SSM and in 
situ SSM, this value being in line with the errors of the existing SSM 
satellite products (Das et al., 2019; Kerr et al., 2010). For the model 
error, a standard deviation of 10% of the parameter value is applied to 
the three most sensitive SAMIR parameters (two parameters related to 
the NDVI-Kcb relationship and Zrmax; Laluet et al., 2023a), as well as to 
the surface and root compartment depletions (De and Dr). To avoid 
particle degeneracy as much as possible, their weights are reset when
ever the effective sample size Neff reaches a threshold of one third of the 
initial particle size number (for details see Moradkhani et al., 2005; van 
Leeuwen et al., 2019). 

In addition, the 300 particles are reset to their initial values every 30 
days, i.e. every five consecutive S1-derived SSM observations and ten in 
situ SSM observations. This results in monthly mean and standard de
viation SMthreshold and Idose values which are calculated using the par
ticle weights obtained at the end of the month. The monthly timescale 
allows accounting for changes in irrigation regime throughout the year, 
while ensuring a certain number of observations required for the PF 
method to converge with satisfactory uncertainty. To obtain smoother 
SMthreshold and Idose values, the entire assimilation scheme is then 
repeated five times, shifting the start date by six days each time. Sub
sequently, SMthreshold and Idose are then obtained on a daily basis (mean 
and standard deviation) by averaging the five time series of monthly 
retrieved SMthreshold and Idose. Fig. 4 shows a flowchart describing the 
PF-based approach used in this study. 

3.2.2. Simulating irrigation from the retrieved SMthreshold and Idose 
parameters 

Once daily SMthreshold and Idose have been retrieved with the PF- 
based assimilation approach, they are used as input in SAMIR to simu
late irrigation. For this, 1000 time series of SMthreshold and Idose are 
randomly sampled following a normal distribution with their retrieved 
daily mean and standard deviation, and are then used as input param
eters in SAMIR to simulate 1000 time series of daily irrigation. Daily 
irrigations are then aggregated at the weekly scale, and the mean and 
standard deviation of weekly irrigation are obtained from the 1000 
simulated weekly irrigation time series. During this step, we excluded 
simulated irrigation values below 3 mm/week, deemed too low to be 
realistic. 

3.3. Aggregation at the crop type scale 

To simplify our approach as much as possible, and to minimize its 
computational cost, we selected the five main crop types (double crops, 
summer cereals, winter cereals, forages, and fruit trees) representing 
94% of the irrigated area in 2019, and computed the average of their 
inputs (NDVI, SSM, and soil texture) weighted by their total surface 
area. This results in five average plots representing 94% of the irrigated 
part of AB. The remaining 6% is represented by the average of the five 
main crop types. Averaging the plots by crop type is justified by the fact 
that the soil texture is fairly homogeneous over the area (in addition to 
having a low sensitivity in SAMIR; Laluet et al., 2023a). Fig. 5 shows the 
mean and standard deviation of the S1-derived SSM and the S2-derived 
NDVI time series for the five average plots. The dynamics of NDVI and 
SSM time series observed for plots belonging to a given crop type are not 
strongly scattered (Fig. 5) reflecting homogeneity in terms of farming 
practices (sowing date, irrigation practices). At the end of the 
SSM-ASSIM process, the simulated irrigations for each of the five 
average plots are averaged and weighted by their total area within AB to 
obtain an irrigation amount representative of the entire AB district. 

3.4. Evaluation of retrieved irrigation 

The Root Mean Square Deviation (RMSD), the Pearson correlation 
coefficient (r) and the bias between retrieved and in situ weekly irri
gation are calculated. At the district scale, this is done for both SSM- 
ASSIM and FAO56-DEF approaches, and the uncertainty simulated 
with SSM-ASSIM is assessed. At the plot scale, only SSM-ASSIM is 
evaluated. 

4. Results and discussion 

In this section, we first present the irrigation results obtained by 
applying the SSM-ASSIM approach at the scale of the Albesa and Castello 
plots, using in situ SSM data every three days for assimilation (Section 
4.1). Then, the irrigation results obtained with the SSM-ASSIM and 
FAO56-DEF approaches at the district scale using S1-derived SSM data 
are presented and discussed (4.2.1). Finally, the results of the SSM- 
ASSIM approach are put into perspective with other work (4.2.2) and 
limitations and perspectives are highlighted (4.2.3). 

4.1. Field-scale experiment using in situ SSM 

This section aims to assess the performance of SSM-ASSIM at the field 
scale where the crop type and irrigation practices can be considered 
spatially uniform. In situ SSM data from the double-cropped fields 
Albesa and Castello are used. Fig. 6 shows the results for the two plots 

Fig. 3. Schematic dynamics of SMthreshold for a hypothetical double-cropped plot for an ideal (FAO56-DEF; green line) and real (red line) case. The red shaded area 
represents deficit irrigation due to SMthreshold values lower than SMcritical (during winter-spring in this theoretical example) and the blue shaded area represents excess 
irrigation due to SMthreshold values higher than SMcritical (during summer-fall in this theoretical example). 
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and the four periods studied: Castello summer-fall 2021 (a), Albesa 
summer-fall 2021 (b), Albesa winter-spring 2022 (c), and Albesa 
summer-fall 2022 (d). Each plot shows, in addition to rainfall, the in situ 
SSM (purple line), the SMthreshold (dark blue line) and the Idose (light blue 
line) retrieved with SSM-ASSIM, and the simulated irrigation using the 
retrieved SMthreshold and Idose as forcing in SAMIR (green line) along with 
the observed irrigation (black line). Standard deviation of the input SSM 
data set (used for assimilation; 20% of the observed value), SMthreshold, 
Idose and simulated irrigation are shown. Bias and RMSD values are given 
in the chart titles. Note that no bias correction between simulated and 
observed SSM was applied. 

Fig. 6 should be read as follows: the assimilation of in situ SSM data 
in SAMIR results in a daily SMthreshold and a daily Idose which, given as 

forcing to SAMIR, provides the irrigation retrieved by the SSM-ASSIM 
approach. For example, in Fig. 6.b we can observe that the relatively 
low in situ SSM values at the beginning of the season (about 0.20 m3 m- 

3) suddenly increase to about 0.28 m3 m-3 when the irrigation season 
starts. This results in a retrieved SMthreshold that rapidly increases from 
0.23 to 0.27 m3 m-3, and an Idose that rises from about 10 mm d-1 to over 
15 mm d-1 when the irrigation season begins. By using these SMthreshold 
and Idose pairs as forcing in SAMIR, the simulated irrigation reproduces 
pretty well the start of the irrigation season. 

Fig. 6 shows that our approach correctly reproduces the irrigation 
start and end dates for each season. It also indicates that SSM-ASSIM 
slightly overestimates irrigation during the winter-spring season 
(mostly in June; Fig. 6.c), while underestimating it during the three 

Fig. 4. Flowchart of the PF-based assimilation approach of SSM data into SAMIR every six days for S1-derived SSM (every three days for in situ SSM), within 1- 
month periods. 
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summer-fall seasons (Fig. 6.a, 6.b, and 6.d). This results in a bias of 
+ 4.6 mm week-1 for Albesa winter-spring 2022, − 2.3 mm week-1 for 
Castello summer-fall 2021, − 5.4 mm week-1 for Albesa summer-fall 
2021, and − 9.4 mm week-1 for Albesa summer-fall 2022. The RMSD 
for Albesa winter-spring 2022 is 9.3 mm week-1, while it is slightly 
larger for Castello summer-fall 2021 (12.2 mm week-1), Albesa summer- 
fall 2021 (14.6 mm week-1) and Albesa summer-fall 2022 (14.7 mm 
week-1). Note that the irrigation amounts are much higher during 
summer-fall (between 40 and 70 mm week-1 for the most intensive 
irrigation period in August-September) than during the winter-spring 
season (between 0 and 40 mm week-1), hence explaining the higher 
RMSD values obtained in summer-fall. 

For the three summer-fall seasons, SSM-ASSIM generally un
derestimates irrigation (− 12% for Castello summer-fall 2021, − 20% for 
Albesa summer-fall 2021, and − 32% for Albesa summer-fall 2022). For 
these three seasons, simulated weekly irrigation never exceeds 50 mm 
week-1. During the most intensive irrigation period, simulated weekly 
irrigation is generally between 25 and 40 mm week-1, while the 
observed irrigation is between 40 and 60 mm week-1. This means that 
the weekly simulated irrigation, although too low, is sufficient for the 
simulated SSM to match the observed SSM. Indeed, SMthreshold and Idose 
are inverted from the observed SSM. Therefore, if more irrigation would 
have been needed to better match the simulated and observed SSM, the 
inverted SMthreshold would have been larger during the intensive irri
gation seasons (to trigger more frequent irrigation events), as well as the 
inverted Idose (to irrigate with a larger amount of water). We hypothesize 
that one of the reasons for this is the nonlinearity in the relationship 
between SSM and irrigation. Let’s consider a farmer who irrigates a field 
heavily with sprinklers (e.g., 10 mm d-1). During the first hour of irri
gation, the SSM can vary rapidly from low (dry soil) to high values (wet 
soil). As the irrigation event continues, the water applied will generate a 
weaker response in terms of SSM variation than at the start of irrigation, 
due in particular to infiltration into the underlying soil layer. This is 
illustrated in Fig. 6, where we can see that the underestimation in 
summer generally occurs when the in situ SSM is at high values, close to 
SMFC (~0.34 m3 m-3). 

4.2. District-scale experiment using satellite SSM 

4.2.1. Evaluation of the SSM-ASSIM and FAO56-DEF approaches 
Fig. 7 shows the retrieved weekly irrigation at AB in 2019 with SSM- 

ASSIM (green line) and FAO56-DEF (orange line), together with in situ 
irrigation data (black line). SSM-ASSIM reproduces the beginning and 
end of irrigation season and the general irrigation dynamics quite well 
(RMSD of 6.7 mm week-1, bias of +0.3 mm week-1, and r of 0.88;  
Table 1). FAO56-DEF also manages to reproduce the beginning and end 
of the irrigation season but does not reproduce irrigation dynamics as 
well as SSM-ASSIM, particularly in summer when irrigation is most 
important (RMSD of 8.8 mm week-1, bias of − 1.4 mm week-1, and r of 
0.78). Cumulative in situ irrigation for 2019 is 687 mm year-1, while 
that simulated by SSM-ASSIM is 706 mm year-1 and that of FAO56-DEF 
is 611 mm year-1. Note that, as with the field experiment, no bias 
correction between simulated SSM and observed S1-derived SSM was 
applied. 

In line with the results for the field-scale experiment using in situ 
data (Section 4.1), SSM-ASSIM underestimates irrigation for the 
summer-fall period (bias of − 2.6 mm week-1). However, the underesti
mation in summer is less pronounced at the district scale than at the field 
scale (Albesa summer-fall 2021 has a bias of − 5.4 mm week-1 and 
Albesa summer-fall 2021 of − 9.4 mm week-1). In contrast to the latter, 
at the AB district scale, SSM-ASSIM is able to simulate summer irrigation 
values close to the observed maxima (41 mm week-1 simulated in mid- 
August 2019, for an in situ irrigation of 46 mm week-1; cf. Fig. 7). 
This may be due to the lower values of observed irrigation during the 
intensive summer irrigation period at the AB scale (around 40 mm week- 

1), where there are different types of crops, compared to the Albesa and 
Castello fields (around 50 to 60 mm week-1), where there is only maize. 
Consequently, the limitation mentioned in Section 4.1 regarding the 
difficulty of simulating high weekly irrigation amounts, even with high 
observed SSM values, is less of a problem at the AB scale. This suggests 
that the SSM-ASSIM approach is particularly suited to the district scale: 
different crop types with different irrigation regimes are considered 
together at the district scale, and the weighted (by crop type) average of 

Fig. 5. Mean and standard deviation of S1-derived SSM (left) and S2-derived NDVI (right) for each of the five main crop types for 2019.  

P. Laluet et al.                                                                                                                                                                                                                                   



Agricultural Water Management 293 (2024) 108704

10

the observed irrigation in summer is lower than on highly irrigated 
(100% maize) plots such as Albesa and Castello. 

The irrigation simulated by FAO56-DEF corresponds to theoretical 
crop water requirements. On the basis of this optimal irrigation, we can 
determine whether the weekly in situ irrigation or the one retrieved with 
SSM-ASSIM corresponds to an optimal irrigation regime (irrigation 
equal to the irrigation simulated by FAO56-DEF), to an under-irrigation 
regime (irrigation lower than the irrigation simulated by FAO56-DEF) or 
to an over-irrigation regime (irrigation larger than the irrigation simu
lated by FAO56-DEF). During the winter-spring season, in situ irrigation 

is lower than that simulated with FAO56-DEF, indicating an under- 
irrigation regime over AB during this period. During the summer-fall 
season, in situ irrigation is considerably larger than that simulated 
with FAO56-DEF, indicating significant over-irrigation at this time. 
During this season, the irrigation retrieved with SSM-ASSIM is also 
larger than that simulated with FAO56-DEF, indicating that the SSM- 
ASSIM approach is capable of simulating over-irrigation. 

SSM-ASSIM tends to overestimate irrigation during the winter-spring 
season (bias of +3.7 mm week-1), consistent with the field scale results 
(Section 4.1). While irrigation amounts and dynamics are well 

Fig. 6. Daily rainfall (black bars), in situ SSM every three days (purple line), daily SMthreshold (dark blue line), daily Idose (light blue line), and weekly irrigation 
retrieved with the SSM-ASSIM approach (green line) and weekly in situ irrigation (black line), for Castello summer-fall 2021 (a), Albesa summer-fall 2021 (b), Albesa 
winter-spring 2022 (c), and Albesa summer-fall 2022 (d) separately. 
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reproduced for the months of January to April, an overestimation occurs 
in May-June. To understand why, Fig. 8 shows the time series of pre
cipitation (a), S1-derived SSM (b), as well as the retrieved SMthreshold (c), 
Idose (d), and irrigation (e) with SSM-ASSIM for the main crop type 
(double crop) in the area. From May to mid-June 2019, S1-derived SSM 
detects irrigation, with the SSM increasing from 0.11 m3 m-3 at the 
beginning of May to 0.28 m3 m-3 at the end of May. This large difference 
in SSM generates a significant increase in both retrieved SMthreshold and 
Idose, leading to important weekly irrigation in May for the double- 
cropped plots, which in turn led to an overestimation of irrigation at 
the AB scale at that time. In fact, the moments of strong SSM growth 
correspond to those when simulated irrigation is largest. Furthermore, 
although the average weekly irrigation simulated with SSM-ASSIM for 
all AB performs satisfactorily, the associated uncertainty is significant 
( ± 53%, 706 ± 375 mm year-1; shaded green area in Fig. 7). 

4.2.2. Comparison of SSM-ASSIM results with other works 
This section aims to put the results obtained with SSM-ASSIM into 

perspective by comparing them with other results obtained for the same 
irrigation district using a different approach. The latter is that proposed 
by Dari et al. (2023), which, to our knowledge, is the only work to date 
that has dealt with the estimation of irrigation from satellite-based SSM 
data on the AB district for the year 2019 (their study covers the years 
2016 to 2019). This comparison is made possible by the fact that Dari 
et al. (2023) provided that the weekly irrigation they simulated at the 
1 km pixel scale for several irrigation districts, including AB (http 
s://zenodo.org/record/7341284; accessed 20 June 2023). 

Dari et al. (2023) used an approach based on the SM2RAIN algorithm 
described in the introduction (Section 1), which differs significantly 
from SSM-ASSIM, in particular because of its simpler formalism which 
relies heavily on observed SSM data and empirical parameters that 
require calibration. The spatial resolution of the S1-derived SSM product 
they use is 1 km, as are the irrigation simulations. In contrast, our 
approach is based on a finer scale simulation of crop water consumption, 
taking into account model and observational errors. Furthermore, 
SSM-ASSIM uses an S1-derived SSM product with a resolution of 15 m. 

Another point distinguishes the two approaches. SSM-ASSIM simu
lates only the plots in AB that were actually irrigated during the study 
year, representing 61.4 km2 in 2019. On the other hand, Dari et al. 
(2023) simulated all AB plots equipped for irrigation, regardless of 
whether or not they were actually irrigated during the study year, i.e., 
70.9 km2. In this section, in order to compare the results obtained with 
the two approaches, the irrigation (in mm) simulated with SSM-ASSIM 
(and in situ) were adjusted to represent the irrigation applied on the 
70.9 km2, consistent with the irrigation simulated by Dari et al. (2023). 
In addition, Dari et al. (2023) removed 10% of the in situ irrigation data 
to account for losses, while only 5.8% was removed in this study as 
explained in Section 2.2.1. 

Fig. 9 shows for the year 2019 the weekly irrigation obtained with 
SM2RAIN (red line), the one obtained with SSM-ASSIM (green line), and 
the in situ irrigation (black line). Although both approaches are able to 
capture the irrigation signal, SM2RAIN underperforms SSM-ASSIM, with 
a more pronounced underestimation of irrigation and an RMSD of 
9.7 mm week-1 (6.7 mm week-1 for SSM-ASSIM), a bias of − 3.3 mm 
week-1 (+0.3 mm week-1), and an r of 0.65 (and 0.88) for the year 2019 
(Table 2). While SM2RAIN manages to reproduce relatively well the 
dynamics at the start of the 2019 summer-fall irrigation season in July, it 
significantly underestimates irrigation during the months of August and 
September, when irrigation is particularly intense (Fig. 9). 

Such differences in terms of performance may be a consequence of 
certain features of the SSM-ASSIM approach. In particular, we believe 
that the implementation of the approach at the plot scale, which allows 
to capture the plot-level processes governing crop consumption, is key to 
simulating irrigation dynamics. This plot-scale approach is made 
possible by the quality and the fine spatial resolution of the S1-derived 
SSM product used in this study, which provides a distinct SSM signature 
for each plot and thus an irrigation signature for each plot. 

4.2.3. Quality of S1-derived SSM product and its impact on the SSM- 
ASSIM irrigation retrieval 

Fig. 7 shows that most of the irrigation underestimation with the 
SSM-ASSIM approach using S1-derived SSM occurs in July (at the 

Fig. 7. Top: daily rainfall at AB. Below: weekly irrigation simulated at the AB scale with the SSM-ASSIM approach (green line), with the FAO56-DEF approach 
(orange line), and observed irrigation (black line) for 2019. The vertical dotted line divides the winter-spring and summer-fall irrigation seasons. 

Table 1 
RMSD, bias, and r between retrieved and in situ irrigation for SSM-ASSIM and 
FAO56-DEF at the AB scale for 2019, as well as for the winter-spring and the 
summer-fall seasons separately.   

SSM-ASSIM FAO56-DEF 

RMSD 
[mm 
week-1] 

Bias 
[mm 
week-1] 

r [-] RMSD 
[mm 
week-1] 

Bias 
[mm 
week-1] 

r [-] 

All 2019  6.6  -0.06  0.88  8.8  -1.4  0.78 
Winter-spring 

[01/01/2019 
to 18/06/ 
2019]  

6.1  +3.3  0.90  6.2  +4.0  0.81 

Summer-fall 
[19/06/2019 
to 31/12/ 
2019]  

7.0  -3.1  0.94  10.4  -6.3  0.90  
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beginning of the summer-fall irrigation season). We believe that these 
underestimates are related to the difficulty of the S1-derived SSM 
product in detecting the actual SSM at the beginning of the second 
irrigation season (when vegetation is poorly developed) for double- 
cropped fields. 

This assumption is supported by two elements:  

1) Fig. 8.b shows low S1-derived SSM values for double-cropped plots in 
late June and early July, at the beginning of the summer-fall irri
gation season. However, in situ irrigation at the AB scale (black line 
in Fig. 7) shows that the summer irrigation season has already started 
by then. There is a difference of about one month between the start of 
the summer-fall irrigation season at the AB scale and the increase in 
S1-derived SSM for the double-cropped plots. However, we would 
expect the reanalyzed SSM to increase more rapidly after the start of 
the irrigation season, since the double-cropped plots represent 62% 
of the irrigated AB area.  

2) At the plot level, the time lag between the first irrigation events of the 
second growing season and the first significant increase in S1-derived 
SSM is also observed. Fig. 10.a shows rainfall (black bar) and in situ 
irrigation (orange area) for the summer-fall 2021 season at the 
Albesa instrumented plot. Fig. 10.b shows the daily in situ SSM (red 
line) and the S1-derived SSM (blue line) for the same plot. Note that 
the in situ and S1-derived SSMs have been normalized between their 
minimum and maximum values to facilitate their comparison. It 
appears that when the irrigation season starts at the end of June, in 
situ SSM increases almost immediately, while the S1-derived SSM 
starts to increase a month later, around the end of July. 

Figure A1 was added to the Appendix to explain why low S1-derived 
SSM values are observed over the double-cropped plots at the beginning 
of the summer season. Figure A1 shows time series of S1 backscattering 
coefficient, S1-derived interferometric coherence (used as vegetation 
descriptor), S1-derived SSM and S2-derived NDVI (related to vegetation 
development) over the Albesa field for 2019. During the intercrop 

Fig. 8. For double crop plots: daily rain (black bars) (a), S1-derived SSM (purple line) (b), SMthreshold (dark blue line) (c), Idose (light blue line) (d), and irrigation 
(green line) retrieved with SSM-ASSIM (e). 
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period in early summer, the maximum coherence is 0.6 while in winter it 
is above 0.7 (as in Ouaadi et al., 2021; Santoro et al., 2011). This low 
level of interferometric coherence in early summer indicates that the 
scatterer structure is different between the winter and summer 
inter-seasons. This is probably due to the fact that in AB maize is directly 
sown without tillage in summer, leaving the soil partially covered by the 
remaining stalks, unlike in winter. However, the relationship between 
coherence and above-ground biomass used in the inversion process is 
calibrated assuming that the growing season begins with bare soil (and 
therefore with a coherence value assumed to be greater than 0.7). With a 
coherence of 0.6 observed in AB during early summer, a bias appears in 
the SSM retrieved at that time. This is explained by the fact that the 
radiative transfer model used for the inversion process reaches the 
observed level of backscatter with the contribution of the canopy only 
with dry soil underneath. Furthermore, this phenomenon seems to occur 
only in the case of double-cropped plots; other crop types with a single 

crop per year (winter cereals and summer cereals) don’t seem to be 
affected by this problem. 

Identifying this difficulty in detecting SSM in early summer (when 
two crops are grown consecutively in the same year) in the SSM inver
sion algorithm proposed by Ouaadi et al. (2020) represents an important 
avenue for improving the quality of S1-derived SSM on double crop 
fields, and consequently the performance of the SSM-ASSIM approach. 
With a higher S1-derived SSM value at the beginning of the summer 
irrigation season, more irrigation would be retrieved by SSM-ASSIM, 
thus reducing the summer underestimation issue, and improving the 
assimilation performance. 

It should be noted that S1 may have difficulty detecting SSM on drip- 
irrigated plots (since drip irrigation only moistens limited parts of the 
fields), which may reduce the performance of SSM-ASSIM in such con
ditions. Although data collected on drip-irrigated plots were not avail
able in AB, future study should further assess the performance of SSM- 
ASSIM for various irrigation types. 

4.2.4. Impact of a lower observation frequency on the performance of SSM- 
ASSIM 

In December 2021, the Sentinel-1B satellite failed, reducing the 
temporal observation frequency of S1 from 6 to 12 days. To assess the 
impact of such a reduced frequency on SSM-ASSIM performance, irri
gation was retrieved by assimilating SSM observations every 12 days 
(keeping one date out of two). Fig. 11 shows the retrieved irrigation with 

Fig. 9. Top: daily rainfall in AB. Bottom: weekly irrigation simulated at the AB scale with the SM2RAIN approach (Dari et al., 2023) (red line), with the SSM-ASSIM 
approach (green line), and observed irrigation (black line), for 2019. 

Table 2 
RMSD, bias, and r between retrieved and in situ irrigation for SM2RAIN and 
SSM-ASSIM at the AB scale for all 2019.   

RMSD [mm week-1] Bias [mm week-1] r [-] 

SM2RAIN (Dari et al., 2023)  9.7  -3.3  0.65 
SSM-ASSIM  6.6  -0.06  0.88  

Fig. 10. For the Albesa (21 ha) double crop plot: daily in situ rain (black bars) and irrigation (orange line) (a), daily in situ SSM (red line) and S1-derived SSM every 
six days (blue line) normalized between their minimum and maximum values (b), for the period from June 2021 to November 2021. 
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SSM-ASSIM (blue line) and the in situ irrigation data (black line). The 
performance obtained by assimilating SSM data every 12 days (RMSD of 
6.4 mm week-1, bias of +0.84, and r of 0.90) is close to that obtained by 
assimilating SSM data every 6 days (RMSD of 6.7 mm week-1, bias of 
+0.3, and r of 0.88). 

However, halving the frequency of observations has two effects. First 
the uncertainty in retrieved irrigation is larger (731 +− 421 mm year-1) 
with an observation frequency of 12 days than with an observation 
frequency of 6 days (706 +− 375 mm year-1), regardless of the irrigation 
period. Second, the largest irrigations observed at AB in August are less 
well reproduced with an observation frequency of 12 days than with an 
observation frequency of 6 days. Indeed, the larger the time window 
between two observations, the less SSM (and therefore irrigation) sim
ulations are constrained by the assimilation scheme. However, the 
observed SSM is high and varies very little throughout the summer. This 
discrepancy between an important variability of simulated SSM due to 
the low observation frequency (e.g., 12 days), and the quite constant and 
high observed SSM, leads to an underestimation of irrigation in summer. 

5. Summary and conclusion 

With increasing pressure on water resources, managers and decision 
makers need to know how much water is being used for irrigation. 
However, there is a lack of reliable information on these quantities at all 
spatial scales. To address this need, a growing number of studies have 
proposed approaches combining models and satellite observations, in 
particular SSM. Although encouraging results have been obtained, state- 
of-the-art SSM-based irrigation retrieval methods have been limited by 
the spatio-temporal resolution of available SSM data, and the difficulty 
of representing irrigation-related processes over large areas and to 
explicitly account for uncertainties in irrigation estimates. 

To fill this gap, we propose a new approach (SSM-ASSIM) to assim
ilate high spatial resolution (15 m) SSM data into the FAO-56-based 
SAMIR model at the plot scale using a PF assimilation method that 
address the above-mentioned challenges. The output of SSM-ASSIM is 
the mean and standard deviation of two smoothed monthly parameters 
of the SAMIR irrigation module, namely SMthreshold and Idose, which 
control the irrigation trigger and dose, respectively. The retrieved irri
gation and its uncertainty are obtained at weekly scale by running 
SAMIR with the retrieved distribution of SMthreshold and Idose as forcing. 
For validation, the approach is applied to two instrumented fields for 
which in situ SSM and irrigation data are available, and to the 8000 ha 
AB irrigation district for which in situ irrigation data are available. At 
the district scale, irrigation is also simulated with the FAO-56 default 
configuration (FAO56-DEF) as a benchmark to assess the performance of 

SSM-ASSIM. 
Results at the plot scale using in situ SSM data show that SSM-ASSIM 

reproduces the irrigation dynamics very well throughout the agricul
tural season. However, an underestimation occurs during periods of 
intense irrigation for the three summer-fall seasons. This can be 
explained by the large amounts of irrigation applied to these plots in 
summer, which are not fully captured in the SSM signal as they exceed 
~50 mm week-1. A slight overestimation is also observed for the winter- 
spring season. When applied at the district scale using S1-derived SSM 
data, SSM-ASSIM clearly outperforms FAO56-DEF and can reproduce 
the observed weekly irrigation quite well, with an r of 0.88 and an RMSD 
of 6.7 mm week-1 for the year 2019. However, as with the field-scale 
experiments, SSM-ASSIM tends to overestimate irrigation in winter- 
spring (bias of +3.7 mm week-1) and underestimate it in summer-fall 
(− 2.6 mm week-1). The overestimation in winter-spring is related to 
the discrepancy between very low SSM values at the start of the season, 
followed by a sudden increase in SSM (observed for the double-cropped 
plots representing 62% of the AB area), resulting in high levels of 
simulated irrigation. The underestimation in summer is attributed to the 
degraded quality of the S1-derived SSM in early summer for the double- 
cropped plots. 

The performance of SSM-ASSIM depends on the quality of the SSM 
product. Therefore, any improvement in the accuracy and precision of 
field-scale SSM estimates would improve the quality of irrigation re
trievals. In addition, the relationship between SSM and irrigation is 
highly non-linear due to the shallow depth (~0–5 cm) sensed by mi
crowave sensors. Saturation of SSM sensitivity to large amounts of 
irrigation is an intrinsic limitation of SSM-based assimilation ap
proaches. This problem could eventually be solved by the joint assimi
lation of thermal-derived ET data, which, in hydric stress conditions are 
directly linked to the soil moisture accumulated in the root zone. This 
prospect is all the more encouraging as new thermal missions will soon 
be launched with Land Surface Temperature Monitoring (LSTM; Koetz 
et al., 2018) and Thermal infraRed Imaging Satellite for High-resolution 
Natural resource Assessment (TRISHNA; Lagouarde et al., 2018), which 
will provide ET and crop stress index products with unprecedented high 
spatial and temporal resolution in the near-future. Finally, the 
SSM-ASSIM approach could be integrated into large scale LSM to take 
more realistically account for irrigation and its impact on the hydro
logical cycle. 
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Auclair (CESBIO) for their help in optimizing the SAMIR code. 

Software Availability 

SAMIR is an open-source software implemented in Python 3 and is 
available at the following address: https://gitlab.cesbio.omp.eu/modeli 
sation/modspa/. The assimilation scheme introduced in this work will 
be implemented soon and made available on the same link. Contact 
information: vincent.rivalland@univ-tlse3.fr.  

Appendix

Fig. A1. Time series of the S1 backscattering coefficient at VV polarization (σ0
VV) (orange line), S1-derived interferometric coherence (black line), S2-derived NDVI 

(green line), and S1-derived SSM (blue line) over the Albesa field for 2019. 
. 
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