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Introduction: Preoperative three-dimensional (3D) reconstruction using
sectional imaging is increasingly used in challenging pediatric cases to aid in
surgical planning. Many case series have described various teams’ experiences,
discussing feasibility and realism, while emphasizing the technological
potential for children. Nonetheless, general knowledge on this topic remains
limited compared to the broader research landscape. The aim of this review
was to explore the current devices and new opportunities provided by
preoperative Computed Tomography (CT) scans or Magnetic Resonance
Imaging (MRI).
Methods: A systematic review was conducted to screen pediatric cases of
abdominal and pelvic tumors with preoperative 3D reconstruction published
between 2000 and 2023.
Discussion: Surgical planning was facilitated through virtual reconstruction or
3D printing. Virtual reconstruction of complex tumors enables precise
delineation of solid masses, formulation of dissection plans, and suggests
dedicated vessel ligation, optimizing tissue preservation. Vascular mapping is
particularly relevant for liver surgery, large neuroblastoma with imaging-
defined risk factors (IDRFs), and tumors encasing major vessels, such as
complex median retroperitoneal malignant masses. 3D printing can facilitate
specific tissue preservation, now accessible with minimally invasive procedures
like partial nephrectomy. The latest advancements enable neural plexus
reconstruction to guide surgical nerve sparing, for example, hypogastric nerve
modelling, typically adjacent to large pelvic tumors. New insights will
soon incorporate nerve plexus images into anatomical segmentation
reconstructions, facilitated by non-irradiating imaging modalities like MRI.
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Conclusion: Although not yet published in pediatric surgical procedures, the next
anticipated advancement is augmented reality, enhancing real-time intraoperative
guidance: the surgeon will use a robotic console overlaying functional and
anatomical data onto a magnified surgical field, enhancing robotic precision in
confined spaces.

KEYWORDS

pediatric oncology, three-dimensional printing, virtual reality, augmented reality, minimally

invasive surgery
Introduction

Pediatric oncologic surgery is often considered the pinnacle for

pediatric surgeons, given its critical impact on clinical outcomes,

particularly patient survival and quality of life (1, 2). Advances in

minimally invasive surgery have led to promising improvements

in safety and precision, thanks to emerging techniques such as

robotic platforms (3) and fluorescence-guided surgery (4).

Surgical planning remains crucial to assess the feasibility of

adhering to oncologic principles, such as achieving en-bloc

macroscopically complete resection or preserving neighboring

organs, while also avoiding injury to adjacent vital structures.

3D technology proves to be a valuable tool, as evidenced in

cases series, providing additional information and reducing

surgical complications compared to relying solely on 2D

information (5, 6). Although 3D modelling and printing are not

yet standardized in clinical practice, their popularity is on the

rise, given their demonstrated positive impact on clinical

outcomes in the adult population (7). For pediatric cases,

particularly complex ones like neuroblastoma with IDRFs, they

are deemed indispensable, because they offer intraoperative

tumor anatomy reconstruction and facilitate guidance during

procedures (8).

The delineation of tumors and adjacent organs enables a

comprehensive understanding of the region of interest through a

3D physical or virtual model. This enhances comprehension of

the underlying structures, facilitates simulation of the resection

line, and aids in procedure planning.

The initial phase of 3D surgical planning involves the

acquisition of images by radiologists. Computed Tomography

(CT scan) and Magnetic Resonance Imaging (MRI) images are

converted to Digital Imaging and Communications in Medicine

(DICOM) format. Specific post-processing medical imaging

techniques, such as Multiplanar Reconstruction, Volume

Rendering (VolR), and Cinematic Rendering (CR), are then

utilized to automatically convert the standardized 2D images into

3D images for projection on a screen (9).

Following image conversion, DICOM data segmentation is

performed through collaboration among radiologists, surgeons

and bioengineers. This segmentation process involves the use of

specific software to reconstruct the DICOM data into 3D models,

which can be further utilized for techniques like 3D printing,

virtual reality (VR), and augmented reality (AR). Since 2004 (10),

numerous surgical practitioners have documented their

experiences in surgical planning for abdominal pediatric tumors,

utilizing 3D modelling, 3D printing, and VR technologies.
02
The aim of this review was to describe the various 3D surgical

planning techniques and to highlight their respective benefits,

limitations, and potential applications.
Material and methods

Search strategy

Two authors (PL and QB) independently conducted a literature

search of the MEDLINE/PubMed/Cochrane online databases using

the following terms: Term 1—“pediatric oncology” OR “Wilms

tumor” OR “pediatric abdominal tumor” OR “pediatric

abdominal tumor” OR “Neuroblastoma” OR “retroperitoneal

tumor” OR “Hepatoblastoma” OR “Germ cell tumor” AND

Term 2—“3D reconstruction” OR “3D modelling” OR “3D

printing” OR “augmented reality” OR “virtual reality” or “mixed

reality”. All relevant studies published between 2000 and 2023

were retrieved, and duplicates were removed upon identification.

Filters were applied to limit results to the English language,

human research, and publications from the year 2000 onwards.
Publication selection

The inclusion criteria for the search were as follows: (i) mean

participant age under 18 years; (ii) patient population

undergoing a surgical procedure; (iii) 3D reconstruction focusing

on preoperative tumor visualization; (iv) tumor located in the

abdominal or pelvic region.

Exclusion criteria included review articles and conference

abstracts, studies related to thoracic, limb, or brain tumors, as

well as those concerning protheses and tissue constructs.

Duplicates were removed upon identification. Publications

written in languages other than English or without full paper

available were excluded based on the abstract.
Data extraction

Two reviewers (PL, QB) conducted independent searches and

compared results after assessing all identified abstracts for

compliance with the review criteria. In cases where agreement

could not be reached, a third independent reviewer (AB) was

consulted. Reasons for exclusion were documented.
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The following data were extracted from the eligible studies:

sample size, mean age, country of origin of the study population,

study design, type of imaging performed, tumor and tumor

location, type of surgery performed, and complications.
Results

Our search across the various databases yielded 86 articles, with

3 duplicates. Of these, 71 were assessed for eligibility, but only 13

met our criteria (Figure 1). No cases involving virtual or mixed

reality were found in the literature. We did not uncover any

instances of surgical resection using robotic laparoscopic

assistance or cases of augmented reality applied to abdominal

tumor resection in children. There were no documented cases of

fetal tumor 3D exploration using MRI. Among the 13 articles

identified, 4 pertained to virtual reconstruction (5, 10–12), and

10 articles focused on 3D printing, potentially in conjunction

with virtual reconstruction (13–22). In the first group of studies,
FIGURE 1

PRISMA flow diagram of the literature review.

Frontiers in Pediatrics 03
the surgical team did not have access to physical models of the

tumor or anatomical structures. In the second group, no

standardized printing systems were recommended. These

pediatric studies are detailed in Table 1, comprising retrospective

cases series with over 20 patients, totaling 87 cases with a mean

age of 40.5 (±27.2) months. Three patients from our centers were

included in this series to illustrate the discussion (Figures 2–4),

bringing the total number of patients to 90. Four main groups of

abdominal tumors were identified: neuroblastoma, Wilms Tumor,

liver tumors, and others such as germ cell tumors and

myofibroblastic inflammatory tumors.

All authors reached the consensus that the utilization of

both virtual reconstruction technology and physical model

printing proved to be beneficial tools for enhancing surgical

planning and improving patient outcomes in cases of complex

tumors. However, to date, there is a lack of evidence-based

medicine arguments to substantiate these conclusions or to

support the funding of such technologies and the selection of

candidate patients.
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TABLE 1 3D support for abdominal tumors in children.

Indications Studies Years Number of
patients

Age (months) Imaging 3D
application

Surgical
technique

Complication

Mean (%)
Neuroblastoma Günther et al. (10) 2004 8 22 MRI VR Laparotomy No

Günther et al. (5) 2008 6 27 MRI VR Laparotomy No

Souzaki et al. (13) 2015 3 14 CT PM LS No

Krauel et al. (14) 2016 2 48 CT and MRI PM Laparotomy

Sanchez-Sanchez et al. (15) 2018 2 36 MRI PM Laparotomy Renal artery
thrombosis

Irtan et al. (11) 2020 7 68 CT VR Laparotomy
and LS

Extensive blood
loss

Tejo et al. (16) 2021 1 NS CT PM Laparotomy NS

Tejo-Otero et al. (17) 2021 1 36 CT PM Laparotomy NS

Current study-Figure 2 2024 1 42 CT VR Laparotomy NS

Total and median (IQR) 29 36 (range 13–66) 7%

Wilms tumors Günther et al. (10) 2004 6 34 MRI VR Laparotomy Opening of the
tumor

Günther et al. (5) 2008 5 30 MRI VR Laparotomy No

Giron-Vallejo et al. (18) 2018 1 NS MRI PM No

Sanchez-Sanchez et al. (15) 2018 1 7 MRI PM Laparotomy No

Wellens et al. (19) 2019 10 43 CT and MRI PM LS No

Irtan et al. (11) 2020 7 68 CT VR Laparotomy
and LS

No

Current study-Figure 3 2024 1 64 CT VR Robotic LS No

Total and Median (IQR) 31 36 (range 18–68) 3.2%

Souzaki et al. (20) 2015 1 36 CT PM Laparotomy NS

Liver tumors Yang et al. (21) 2018 1 NS CT PM Laparotomy NS

Su et al. (12) 2016 16 11 CT VR Laparotomy No

Tejo-Otero et al. (22) 2020 1 NS CT PM Laparotomy NS

Irtan et al. (11) 2020 4 68 CT VR Laparotomy
and LS

No

Total and Median (IQR) 23 10 (range 4–34) 0%

Others Irtan et al. (11) 2020 6 68 CT VR Laparotomy
and LS

Incomplete
resection

Current study-Figure 1 2024 1 148 CT VR Laparotomy NS

Total and Median (IQR) 14 studies 90 36 (range 12–148) 4 exclusive VR 4.4%

Summary of imaging modalities and 3D applications used in various studies.

NS, not specified; LS, laparoscopy; VR, virtual reconstruction; PM, printed model.

Age is expressed in median (range IQR1, IQR3).
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Discussion

3D modelling

3D virtual reconstruction offers numerous applications,

including monitoring tumor volume during chemotherapy

(11), adjusting the target irradiation volume (23), and

providing precise preoperative visualization of the tumor for

the surgical team. This process can be performed “in situ” by

radiologists, resulting in the projection of 3D images on the

screen (9). The primary technology used for this propose is

VolR, available with conventional software (24). It serves as an

effective tool, as demonstrated in pelvic region analysis for

adults, where it provides additional information beyond

standard MRI (25). However, the limitation of this pseudo-3D

technology lies in the lack of accurate tissue differentiation,

such as distinguishing between normal tissue and tumors.

It often necessitates cross-referencing with CT or MRI

images (Figure 2).
Frontiers in Pediatrics 04
A more comprehensive process is offered by engineering

companies providing remote modeling services like “Visible

Patient°” (11). Technicians delineate various anatomical

structures and return files with reconstructed tumors and

surrounding anatomical features. This service offers a precise

vascularization map, providing valuable information about

potential encasement of large vessels encasement that is crucial

for surgical planning and the mental preparation of the surgical

team. Figure 3 illustrates the segmentation of a median

neuroblastoma with IDRFs.

Vessels can be delineated within the application, allowing

identification of the feeding artery corresponding to the tumor.

Simulations of vessel clamping with tissue ischemia can be

performed. This technology has been reported to prevent cold

intraoperative ischemia in adult patients (26) and can also

estimate the resultant organ volume for hepatectomy (27). More

recently, the IMAG2 laboratory (Imagine Institute, Necker

Enfants Malades Hospital, APHP and Université Paris Cité-

France) has developed semi-automatic segmentation methods,
frontiersin.org
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FIGURE 2

Abdominal inflammatory myofibroblastic tumor and 3D modelling. (A) Computed tomography acquisition of a retroperitoneal mass in a 12-year-old
boy. (B) Segmentation of the tumor (arrow) using Medical Imaging Interaction Toolkit (MITK°-free open source software-German Cancer Research-
Germany) showing close contact with abdominal aorta (C).

FIGURE 3

Abdominal neuroblastoma and 3D modelling. (A) Computed tomography acquisition of an abdominal median neuroblastoma (*) in a 4-year-old boy.
(B) Segmentation of the tumor (*) using Medical Imaging Interaction Toolkit (MITK°-free open source software-German Cancer Research-Germany)
located between vertebra and aorta. (C) Segmentation of the neuroblastoma (*) and surrounding structures by Visible Patient° software (Visible
Patient°-Strasbourg-France).

Lopez et al. 10.3389/fped.2024.1386280
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FIGURE 4

Left renal tumor and 3D modelling. (A) Computed tomography acquisition of a cystic nephroma in a 5-year-old boy with DICER1 syndrome. (B)
Segmentation of the tumor (arrow) using semi-automatic methods in the IMAG2 laboratory-Paris-France.
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combining artificial intelligence methods (knowledge

representation, spatial reasoning and deep learning) making it

possible to obtain automatic 3D modeling of bones, bladder,

colon, vessels, pelvic muscles (obturator, levator ani, piriformis),

genital tract in adolescents (ovaries, vagina, uterus), and nerves

in a few clicks. This methodology also applied to renal tumor CT

scan images making it possible to quickly model 3D structures

which cannot benefit from automatic learning due to their

excessive inter-individual variations, like tumors (Figure 4)

(24, 28, 29). All the aforementioned points contribute to the

preoperative liver 3D evaluation being covered by universal

health care insurance in Japan since 2012 (30).

Some masses are embryonal abdominal tumors and can be

detected prenatally. Fetal MRI is more precise than sonography,

and while T2 sequences are well-developed for placental research,

they are not superficially outlined for fetal applications.

Consequently, even though MRI is the most efficient tool for

describing prenatal malformations and providing accurate

anatomical delineation of cystic lesions (31), 3D fetal tumor

reconstruction is not commonly performed.

3D printing
Physical model printing is an additional option after 3D

reconstruction. Initially developed for bones tissues and prothesis

implantation, it is now common in adult surgeries such as

orthopedics (32). The first surgical 3D printing pediatric case
Frontiers in Pediatrics 06
involved a heart model before transplantation (33) and has since

expanded to utilize multiple materials. In case of tissue lesions,

segmentation allows for precise delineation from other soft

tissues like vascular structures. It has been reported as useful in

enhancing partial nephrectomy in adults (34), with volumetric

precision sufficient for distinguishing between nephron sparing

surgery or total nephrectomy (15, 19). Real-scale models can

facilitate familial preoperative counseling and, from an

educational perspective, can be manipulated by the entire

surgical team to improve understanding of abdominal anatomy

(35). Most importantly, it can be used for realistic surgical

laparoscopic simulation (13) through the assembly of several

semi- transparent materials.

The main limitations include its difficulty in use during the

intraoperative process without the distracting intervention of a

non-sterile person, the lack of reusability, its availability

including printing duration (ranging from 4 h to 5 days), and its

cost (ranging from $30 to $900) (36). Although a recent study

proposed a recommendation guide for sterilization methods of

3D-printed materials (37), its advantages compared to 3D virtual

reconstruction are expected to be proven with large series.

Augmented reality
AR involves integrating information about the surgical field

into the surgeon’s mind to assist with the procedure, while

allowing the surgeon to maintain direct contact with the
frontiersin.org
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FIGURE 5

Augmented reality. Illustration of a potential operating room equipped with augmented reality for a pediatric surgery case in the future.

Lopez et al. 10.3389/fped.2024.1386280
environment. On the other hand, VR remains a futuristic concept

for open surgical processes, as it requires full immersion with a

headset (Figure 5). To the best of our knowledge, this approach

has not yet been published for pediatric patients, but it could

have potential applications in open surgery. AR allows for

overlaying digital information onto the physical real world,

making it useful for surgical navigation (38) and education.

Before AR was generated by specific software, blending the

surgical field with additional information was done

intraoperatively by the surgeon’s brain. Robotic gamma detection
FIGURE 6

Mixed reality. Illustration depicting a potential scenario of mixed reality supp

Frontiers in Pediatrics 07
of neuroblastoma was reported for intraoperative resection

support before the laparoscopic era (39). Some methods are now

available using the laparoscopy screen. Fluorescence-guided

surgery (4) using indocyanine green enhances perception of

vascularization in the operative field, and a dedicated robotic

interface for near-infrared fluorescence-guided surgery has been

reported to be effective for partial nephrectomy and tumor

excision guidance (40). Intraoperative use of an ultrasound probe

has been reported for pancreatic surgery, providing both visual

and ultrasound images (41) integrated into the robotic console.
ort for a pediatric surgery case in the future.
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In a conference paper, Stafman et al. reported that intraoperative

ultrasound guidance facilitates laparoscopic resection of smaller,

non-visible tumors and optimizes negative margins (42). Others

technologies like photodynamic therapy and near-infrared

photoimmunotherapy show promising results (43). However,

integrating these devices into standard laparoscopy seems less

pertinent due to the lack of 3D visualization and precision of

movements compared to robotic surgery. In the only case

included in this review that was operated with the robot, AR was

not available at the console.

Mixed reality combines AR and VR to create a new operating

field (Figure 6). Its integration into the robotic console would allow

blending anatomical structures and simulated digital elements like

nervous plexi, tumor delineation, and vascularization,

synchronized with respiratory movements. The concept of

cybernetic surgery was first proposed in a robotic liver

segmentectomy using augmented reality (44). Machine learning

has been demonstrated to be relevant to human expertise for

real-time anatomy segmentation during laparoscopy (45),

particularly for nervous structures (46). All these supportive

devices will enhance the level of assistance for the procedure.

The next step will be the integration of artificial intelligence in

near-real-time surgery (47), enabling semi-autonomous robotic

surgery under human supervision.
Conclusion

While there is currently no evidence to suggest that 3D

technology offers a positive impact on clinical outcomes for

pediatric oncology, it is widely recognized by most pediatric

surgeons as a key future tool, especially when used in

conjunction with dedicated small instruments and robotic

platforms. In the near future, pediatric patients are expected to

benefit from systematic surgical planning, which may include 3

modeling prior to minimally invasive resection procedures under

mixed reality, facilitated by artificial intelligence algorithms.
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