STUDY OF WEIGHTED ELLIPTIC COMPOSITION OPERATORS ON THE UNIT BALL OF \mathbb{C}^{N}

L. OGER

Abstract

We study the general properties, point spectrum and spectrum of a weighted composition operator $W_{m, \varphi}$ with elliptic symbol φ on the unit ball \mathbb{B}_{N} of \mathbb{C}^{N}, and general weight $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. We give a complete description of the spectra in the vast majority of cases, and we provide inclusions in general.

Contents

1. Introduction 1
2. General properties 3
3. Vanishing weight at 0 5
4. Elliptic attractive symbols 6
4.1. Invertible Jacobian at 0 6
4.2. Non-invertible Jacobian at 0 , with 0 as unique eigenvalue 11
4.3. General results 13
5. Bijective periodic symbols 15
6. Other results 18
6.1. Symbol bijective, non-periodic 18
6.2. Symbol elliptic non-attractive 19
References 24

1. Introduction

Let $N \geq 2, \mathbb{B}_{N}=\left\{z \in \mathbb{C}^{N}:|z|<1\right\}$ be the unit ball of \mathbb{C}^{N} for the euclidean norm, and $\operatorname{Hol}\left(\mathbb{B}_{N}\right)$ be the set of all complex-valued holomorphic functions on \mathbb{B}_{N}. Consider $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ a holomorphic map, and $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. The weighted composition operator, with symbol φ and weight m, denoted by $W_{m, \varphi}$, is defined on $\operatorname{Hol}\left(\mathbb{B}_{N}\right)$ by

$$
W_{m, \varphi}(f)=m(f \circ \varphi) .
$$

It is a linear, multiplicative operator.
Theory of composition operators is a very popular subject. Most of the vast literature on this topic (see for example the monographs from Cowen, MacCluer in [9], Shapiro in

2020 Mathematics Subject Classification. 47B33, 32A10, 47A10.
Key words and phrases. weighted composition operator, spectrum, holomorphic functions in several variables, Fréchet space.
[20] or more recently, the articles [5, 7, 8]) considers these operators on Banach spaces of analytic functions, such as Hardy, Dirichlet, or Bergman spaces.

However, in recent years, W. Arendt et al. ([2, 3]) studied one-variable weighted composition operators directly on the Fréchet space $\operatorname{Hol}(\mathbb{D})$, where \mathbb{D} denotes the unit disc of \mathbb{C}. In this paper, we will only consider elliptic symbols, that is φ having a fixed point in the ball. Upon conjugating by some automorphism, we can assume that 0 is a fixed point of φ.

The results of [2,3] for elliptic symbols are summarized in the following theorem. Denote by \mathbb{N}_{0} the set of all non-negative integers, and $\mathbb{N}=\mathbb{N}_{0} \backslash\{0\}$.

Theorem 1.1. Let φ be an elliptic self-map of \mathbb{D} such that $\varphi(0)=0$, and $m \in \operatorname{Hol}(\mathbb{D})$.
(i) If $\varphi \equiv 0$, then

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\{0, m(0)\}=\sigma\left(W_{m, \varphi}\right)
$$

(ii) If $m(0)=0$ and $\varphi \not \equiv 0$, then

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\varnothing, \quad \sigma\left(W_{m, \varphi}\right)=\{0\}
$$

(iii) If $m(0) \neq 0, \varphi^{\prime}(0)=0$ and $\varphi \not \equiv 0$, then

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\{m(0)\}, \quad \sigma\left(W_{m, \varphi}\right)=\{0, m(0)\}
$$

(iv) If $m(0) \neq 0$ and $0<\left|\varphi^{\prime}(0)\right|<1$, then

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) \varphi^{\prime}(0)^{n}: n \in \mathbb{N}_{0}\right\}, \quad \sigma\left(W_{m, \varphi}\right)=\sigma_{p}\left(W_{m, \varphi}\right) \cup\{0\}
$$

(v) If $m(0) \neq 0$ and $\varphi(z)=\beta z,|\beta|=1, \beta^{p}=1$, then if we define the map m_{p} by $m_{p}(z)=m(z) m(\beta z) \cdots m\left(\beta^{p-1} z\right)$,
$\sigma_{p}\left(W_{m, \varphi}\right) \neq \varnothing \Longleftrightarrow \sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) \beta^{k}: k \in \mathbb{N}_{0}\right\} \Longleftrightarrow m_{p}$ is a nonzero constant.
Moreover, $\sigma\left(W_{m, \varphi}\right)=\left\{\lambda \in \mathbb{C}: \lambda^{p} \in m_{p}(\mathbb{D})\right\}$.
This article can be considered as a sequel to [2], [3] and [15]. The aim is to construct a similar theorem in the multidimensional case. Note that the behaviour of the point spectrum $\sigma_{p}\left(W_{m, \varphi}\right)$ and spectrum $\sigma\left(W_{m, \varphi}\right)$ of composition operators strongly depends on the properties of the maps m and φ.

In order to study this function, we need a generalization of Denjoy-Wolff's theorem, by B. MacCluer in [14] and Y. Kubota in [12], presented here as a single result. Let $\varphi^{[n]}$ be the n-th iteration of φ.

Theorem 1.2. Let φ be a self-map of \mathbb{B}_{N}, and assume that φ has a fixed point in \mathbb{B}_{N}.
(a) If a subsequence of $\left(\varphi^{[n]}\right)_{n \geq 0}$ converges to a constant map $f \equiv z_{0} \in \mathbb{B}_{N}$, then the whole sequence converges to z_{0}. In this case, z_{0} is the unique fixed point of φ.
(b) Otherwise, upon conjugating, there exists a subsequence of $\left(\varphi^{[n]}\right)$ that converges to a function h of the form

$$
h(z)=\left(z_{1}, \cdots, z_{r}, 0, \cdots, 0\right), \quad \text { with } \quad r \in\{1, \cdots, N\} .
$$

This theorem classifies the elliptic self-maps of \mathbb{B}_{N} into two categories.
Definition 1.3. Let φ be a self-map of \mathbb{B}_{N}. Assume that φ has a fixed point in \mathbb{B}_{N}.

- In the case (a) of Theorem 1.2, we say that φ is elliptic attractive, and the DenjoyWolff point of φ is defined as the z_{0}.
- In the case (b) of Theorem 1.2, we say that φ is elliptic non attractive.

The paper is organized as follows.
First, in Section 2, we consider the general properties of weighted composition operators on the unit ball: continuity (Proposition 2.1), invertibility (Proposition 2.2), and compactness (Proposition 2.3). We also give a formula about the partial derivatives of composition of functions.

Then, in Section 3, we study the spectral properties of $W_{m, \varphi}$ if $m(0)=0$. In particular, we prove that the point spectrum is empty (Proposition 3.1), and that the spectrum contains only 0 (Proposition 3.3).

Next, in Section 4, we focus on composition operators with non-vanishing weight at 0 and non-bijective symbol. We split the analysis into three cases. First, we consider symbols φ such that the Jacobian matrix at $0, \varphi^{\prime}(0)$, is invertible. In this case, the point spectrum is completely described (Proposition 4.5), as well as the spectrum if we assume moreover that $\varphi^{\prime}(0)$ is diagonal (Proposition 4.10). Then, we focus on Jacobian matrices such that 0 is their only eigenvalue. In such case, the point spectrum is $\{m(0)\}$ or $\{0, m(0)\}$ (Proposition 4.11), and the spectrum is $\{0, m(0)\}$ (Theorem 4.12). Finally, we give general inclusions for the spectra of $W_{m, \varphi}$ (Propositions 4.14 and 4.15).

In Section 5, we consider non-vanishing weights and bijective periodic symbols. We give a characterization of when the point spectrum is non-empty (Proposition 5.3), and a description of the spectrum of $W_{m, \varphi}$ (Theorem 5.5).

Finally, in Section 6, we give results about the point spectrum in two cases: when the weight vanishes at some point in \mathbb{B}_{N} and the symbol is bijective aperiodic (Lemma 6.1), and when the symbol is elliptic non-attractive (Proposition 6.2).

2. General properties

In this section, we go along the same lines as [2]. We first focus on continuity.
Proposition 2.1 (Continuity). The operator $W_{m, \varphi}$ is continuous on $\mathcal{L}\left(\operatorname{Hol}\left(\mathbb{B}_{N}\right)\right)$.
Proof. Let $k \in \mathbb{N}$. Denote by $\|\cdot\|_{\infty, k}$ the semi-norm on $\operatorname{Hol}\left(\mathbb{B}_{N}\right)$ defined by

$$
\|f\|_{\infty, k}=\sup _{z \in K_{k}}|f(z)|, \quad \text { with } \quad K_{k}=\left(1-\frac{1}{k}\right) \overline{\mathbb{B}_{N}}
$$

Since φ is continuous and K_{k} is compact, there exists $j \in \mathbb{N}$ such that $\varphi\left(K_{k}\right) \subset K_{j}$. Hence, for all $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$,

$$
\left\|W_{m, \varphi}(f)\right\|_{\infty, k}=\sup _{z \in K_{k}}|m(z) f(\varphi(z))| \leq \sup _{z \in K_{k}}|m(z)| \sup _{w \in K_{j}}|f(w)| \leq\|m\|_{\infty, k}\|f\|_{\infty, j} .
$$

We now study the invertibility of weighted composition operators.
Proposition 2.2 (Invertibility). The operator $W_{m, \varphi}$ is invertible if and only if m does not vanish on \mathbb{B}_{N} and φ is bijective.

Proof. If φ is bijective and m does not vanish on \mathbb{B}_{N}, as in [2], we consider the map

$$
\eta=\frac{1}{m \circ \varphi^{-1}}
$$

which satisfies $W_{\eta, \varphi^{-1}} \circ W_{m, \varphi}=W_{m, \varphi} \circ W_{\eta, \varphi^{-1}}=$ Id. Hence, $W_{m, \varphi}$ is invertible.
Conversely, if there exists $z_{0} \in \mathbb{B}_{N}$ such that $m\left(z_{0}\right)=0$, then for all $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$,

$$
\left(W_{m, \varphi}(f)\right)\left(z_{0}\right)=0
$$

so $W_{m, \varphi}$ is not invertible. Assume now that $W_{m, \varphi}$ is invertible. Then, for all $z \in \mathbb{B}_{N}$, we know that $m(z) \neq 0$. Let $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. Then $h=m g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, and there exists $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that

$$
m(f \circ \varphi)=h=m g .
$$

Dividing this equality by m (since m does not vanish on \mathbb{B}_{N}), we obtain $f \circ \varphi=g$. Therefore, C_{φ} is invertible, so φ is bijective (see [15, Proposition 2.4]).

Finally, let us concentrate on the compactness of $W_{m, \varphi}$. Recall that for $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, the supremum norm of f is defined by $\|f\|_{\infty}=\sup \left\{f(z): z \in \mathbb{B}_{N}\right\}$.
Proposition 2.3 (Compactness).
The operator $W_{m, \varphi}$ is compact if and only if $m=0$ or $\|\varphi\|_{\infty}<1$.
Proof. If $m=0$, then $W_{m, \varphi}=0$, so $W_{m, \varphi}$ is compact.
If $m \neq 0$ and $\|\varphi\|_{\infty}<1$, then $W_{m, \varphi}=M_{m} C_{\varphi}$, where $M_{m}: f \mapsto m f$ is the multiplication operator by m, and $C_{\varphi}: f \mapsto f \circ \varphi$. Since $\|\varphi\|_{\infty}<1$, using [15], the operator C_{φ} is compact. Hence, because the set of all compact operators is an ideal of $\mathcal{L}\left(\operatorname{Hol}\left(\mathbb{B}_{N}\right)\right)$, the operator $W_{m, \varphi}$ is compact.

Conversely, if $m \neq 0$ and $\|\varphi\|_{\infty}=1$, then for $0<r<1$, we are able to choose $z_{0} \in \mathbb{B}_{N}$ such that $\left|\varphi\left(z_{0}\right)\right|>r$ and $m\left(z_{0}\right) \neq 0$. The same proof as in the non-weighted case [15, Proposition 2.8], using Oka-Weil's theorem ([16, 21]) gives the result.

Let us finish this section with a wonderful property concerning the partial derivatives of composed maps. We define two orders on \mathbb{N}_{0}^{N}. If $\vec{\imath}, \vec{\jmath} \in \mathbb{N}_{0}^{N}$, set $|\vec{\imath}|=i_{1}+\cdots+i_{N}$ and

$$
\begin{aligned}
& \vec{\imath} \prec \vec{\jmath} \Longleftrightarrow|\vec{\imath}|<|\vec{\jmath}| \quad \text { or } \quad\left\{\begin{array}{l}
|\vec{\imath}|=|\vec{\jmath}| \\
\exists k \in\{1, \cdots, N\}, i_{1}=j_{1}, \cdots, i_{k-1}=j_{k-1},
\end{array} i_{k}<j_{k} .\right. \\
& \vec{\imath} \leq \vec{\jmath} \Longleftrightarrow \forall k \in\{1, \cdots, N\}, i_{k} \leq j_{k} .
\end{aligned}
$$

We write $\vec{\imath} \preccurlyeq \vec{\jmath}$ if $\vec{\imath} \prec \vec{\jmath}$ or $\vec{\imath}=\vec{\jmath}$. The order \preccurlyeq is a well-order. Hence, we can define the predecessor and the successor of a vector $\vec{\jmath} \in \mathbb{N}_{0}^{N}$. We denote them respectively by $\vec{\jmath}_{-}$and $\vec{\jmath}_{+}$. For $\vec{\jmath} \in \mathbb{N}_{0}^{N}, f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ and $z \in \mathbb{C}^{N}$, let us denote

$$
z^{\vec{\jmath}}=\prod_{k=1}^{N} z_{k}^{j_{k}}, \quad f^{(\vec{\jmath})}=\frac{\partial^{|\vec{\jmath}| f}}{\partial z^{\vec{\jmath}}} .
$$

Moreover, we define $\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)=\left\{f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right): \forall \vec{\imath} \preccurlyeq \vec{\jmath}, f^{(\vec{\imath}}(0)=0\right\}$.
The following lemma, proved in [15] using Faà di Bruno's formula ([13]), will be crucial. Since unitary matrices are automorphisms of the ball fixing 0, using Schür
decomposition ([10]), we assume in the following that the Jacobian matrix of φ at 0 is a triangular matrix, with diagonal entries $\lambda_{1}, \cdots, \lambda_{N}$.

Lemma 2.4. Let $\vec{\jmath} \in \mathbb{N}_{0}^{N}$. If $f \in \operatorname{Hol}_{\vec{\jmath}_{-}}\left(\mathbb{B}_{N}\right)$, then

$$
\begin{equation*}
(f \circ \varphi)^{(\vec{\jmath})}(0)=\lambda^{\vec{\jmath}} f^{(\vec{\jmath})}(0) . \tag{1}
\end{equation*}
$$

3. VAnishing Weight at 0

When the weight m satisfies $m(0)=0$, the spectra of $W_{m, \varphi}$ can be completely described, as it is proved in the following two properties.

Proposition 3.1. Let φ be elliptic, such that $\varphi(0)=0$. If $m(0)=0$, then

$$
\sigma_{p}\left(W_{m, \varphi}\right) \subset\{0\}
$$

Proof. Let $\mu \in \mathbb{C}^{*}$. If $f \not \equiv 0$ satisfies $m(f \circ \varphi)=\mu f$, then

- First, $\mu f(0)=[m(f \circ \varphi)](0)=m(0) f(0)=0$, so $f(0)=0$ since $\mu \neq 0$.
- Assume that for all $\vec{\imath} \prec \vec{\jmath}, f^{(\vec{\imath})}(0)=0$. Then, by Lemma 2.4 and the Leibniz rule,

$$
\mu f^{(\vec{\jmath})}(0)=[m(f \circ \varphi)]^{(\vec{\jmath})}(0)=m(0)(f \circ \varphi)^{(\vec{\jmath})}(0)=0 .
$$

Therefore, $f^{(\vec{\jmath})}(0)=0$.
Finally, $f \equiv 0$, which is impossible. Thus $\sigma_{p}\left(W_{m, \varphi}\right) \subset\{0\}$.
Remark 3.2. For instance, consider $N=2, \varphi\left(z_{1}, z_{2}\right)=\left(0, z_{2}\right)$ and $m\left(z_{1}, z_{2}\right)=z_{1}$. Then, for $f\left(z_{1}, z_{2}\right)=z_{1}$, we obtain $m(f \circ \varphi)\left(z_{1}, z_{2}\right)=z_{1} f\left(\varphi\left(z_{1}, z_{2}\right)\right)=z_{1} f\left(0, z_{2}\right)=0$. Hence, $0 \in \sigma_{p}\left(W_{m, \varphi}\right)$.

Proposition 3.3. Let φ be elliptic non automorphic, such that $\varphi(0)=0$ and $\varphi \not \equiv 0$. If $m(0)=0$, then

$$
\sigma\left(W_{m, \varphi}\right)=\{0\} .
$$

Proof. The proof is exactly the same as in [2, Theorem 4.8].
Remark 3.4. If $\varphi \equiv 0$ and $m(0)=0$, we easily show that

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\sigma\left(W_{m, \varphi}\right)=\{0\} .
$$

Indeed, in this case, $W_{m, \varphi}(f)=f(0) m$. Thus, for all $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ and $\mu \neq 0$, the map

$$
h=-\frac{1}{\mu}\left[\frac{g(0)}{\mu} m+g\right]
$$

satisfies $h(0) m-\mu h=g$, so $\mu \notin \sigma\left(W_{m, \varphi}\right)$. In addition, if we denote $e_{1}(z)=z_{1}$, we have $e_{1}(0)=0$. Hence, we obtain $W_{m, \varphi}\left(e_{1}\right)=0$, so $0 \in \sigma_{p}\left(W_{m, \varphi}\right)$.

4. ELLIPTIC ATTRACTIVE SYMBOLS

Throughout the rest of the paper we assume that $m(0) \neq 0$. When φ is elliptic attractive, by Denjoy-Wolff theorem, φ is not bijective. Moreover, using [15, Lemma 4.1], $\left\|\varphi^{\prime}(0)\right\|<1$. We begin with the two following results, proved in the one-dimensional case in [2]. The proofs are going along the same lines in our context, the notation $|\cdot|$ describing the euclidean norm on the ball instead of the modulus on the disc.

Lemma 4.1. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$. For all $r \in(0,1)$, there exists $\delta=\delta(r) \in(0,1)$ such that for all $|z| \leq r$ and $n \geq 0$,

$$
\left|\varphi^{[n]}(z)\right| \leq \delta^{n}|z|
$$

Proposition 4.2. Let φ be an elliptic attractive map such that $\varphi(0)=0$, and $m \in$ $\operatorname{Hol}(\mathbb{D})$ such that $m(0) \neq 0$. The sequence $\left(w_{n}\right)_{n \geq 1}$ defined by

$$
w_{n}(z)=\frac{m_{n}(z)}{m(0)^{n}}, \quad m_{n}(z)=\prod_{k=0}^{n-1} m\left(\varphi^{[k]}(z)\right)
$$

converges uniformly on all compact subsets of \mathbb{B}_{N} to a map w, which is the only one to satisfy

$$
m(w \circ \varphi)=m(0) w, \quad w(0)=1
$$

The function w is called weighted Koenigs' map of φ and m.
We now consider different situations, depending on the behaviour of $\varphi^{\prime}(0)$.
4.1. Invertible Jacobian at 0. Let us recall Koenigs' theorem in several variables $([6,15, ?, 19])$, generalization of the result proved in 1884 in [11]. Denote by $\lambda=$ $\left(\lambda_{1}, \cdots, \lambda_{N}\right)$ the diagonal of the matrix $\varphi^{\prime}(0)$.

Definition 4.3. We say that the eigenvalues are resonant if there exist $j \in\{1, \cdots, N\}$ and $k_{1}, \cdots, k_{N} \in \mathbb{N}$ such that $k_{1}+\cdots+k_{N} \geq 2$ and

$$
\lambda_{1}^{k_{1}} \times \cdots \times \lambda_{N}^{k_{N}}=\lambda_{j}
$$

Theorem 4.4. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map, such that $\varphi(0)=0$ and $\varphi^{\prime}(0)$ is invertible and the eigenvalues of $\varphi^{\prime}(0)$ are not resonant. Then there exists a holomorphic function $\kappa: \mathbb{B}_{N} \rightarrow \mathbb{C}^{N}$ such that $\kappa^{\prime}(0)=\mathrm{Id}$ and

$$
\begin{equation*}
\kappa \circ \varphi=\varphi^{\prime}(0) \kappa \tag{2}
\end{equation*}
$$

The map κ is called Koenigs' function of φ.
Changing the order of the eigenvalues of $\varphi^{\prime}(0)$, this theorem allows us to find functions $\eta_{1}, \cdots, \eta_{N} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ such that

$$
\eta_{k} \circ \varphi=\lambda_{k} \eta_{k}, \quad k=1, \cdots, N .
$$

We obtain the following proposition.

Proposition 4.5. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map, such that $\varphi(0)=0$ and $\varphi^{\prime}(0)$ is invertible and the eigenvalues of $\varphi^{\prime}(0)$ are not resonant. Let $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m(0) \neq 0$. Then,

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) \lambda^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\}
$$

where $\lambda=\left(\lambda_{1}, \cdots, \lambda_{N}\right)$ is $\varphi^{\prime}(0)$ eigenvalues' vector.
Proof. Let $\vec{\jmath} \in \mathbb{N}_{0}^{N}$. Consider $f=w \eta^{\vec{\jmath}}$, with w defined in Proposition 4.2. Then

$$
\begin{aligned}
m(f \circ \varphi) & =m(w \circ \varphi)\left(\prod_{k=1}^{N}\left(\eta_{k} \circ \varphi\right)^{j_{k}}\right) \\
& =m(0) w\left(\prod_{k=1}^{N}\left(\lambda_{k} \eta_{k}\right)^{j_{k}}\right)=m(0) \lambda^{\vec{\jmath}} w \eta^{\vec{\jmath}}=m(0) \lambda^{\vec{\jmath}} f
\end{aligned}
$$

Hence, for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, m(0) \lambda^{\vec{\jmath}} \in \sigma_{p}\left(W_{m, \varphi}\right)$.
Conversely, if $\mu \notin\left\{m(0) \lambda^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\}$, and if $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ satisfies $f \not \equiv 0$ and $m(f \circ \varphi)=\mu f$, we show that for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, f^{(\vec{\jmath})}(0)=0$.

- Note that $[m(f \circ \varphi)](0)=m(0) f(0)=\mu f(0)$. Since $\mu \neq m(0)$, we get $f(0)=0$.
- Assume that for all $\vec{\imath} \prec \vec{\jmath}, f^{(\vec{\imath})}(0)=0$. Then, by Lemma 2.4 and the general Leibniz rule ([17]),

$$
\begin{align*}
{[m(f \circ \varphi)]^{(\vec{\jmath})}(0) } & =\sum_{\vec{\alpha} \leq \vec{\jmath}}\binom{\vec{\jmath}}{\vec{\alpha}} m^{(\vec{\jmath}-\vec{\alpha})}(0)(f \circ \varphi)^{(\vec{\alpha})}(0) \tag{3}\\
& =m(0)(f \circ \varphi)^{(\vec{\jmath})}(0)=m(0) \lambda^{\vec{\jmath}} f^{(\vec{\jmath})}(0) .
\end{align*}
$$

Indeed, if $\vec{\alpha} \leq \vec{\jmath}$, then $\vec{\alpha} \preccurlyeq \vec{\jmath}$. Therefore, since $f \in \operatorname{Hol}_{\vec{\jmath}_{-}}\left(\mathbb{B}_{N}\right) \subset \operatorname{Hol}_{\vec{\alpha}_{-}}\left(\mathbb{B}_{N}\right)$, by Lemma 2.4, $(f \circ \varphi)^{(\vec{\alpha})}(0)=0$, unless $\vec{\alpha}=\vec{\jmath}$. Finally, $m(0) \lambda^{\vec{\jmath}} f^{(\vec{\jmath})}(0)=\mu f^{(\vec{\jmath})}(0)$, and since $\mu \neq m(0) \lambda^{\vec{\jmath}}$, we obtain $f^{(\vec{\jmath})}(0)=0$.
We deduce that $f \equiv 0$, a contradiction. Hence, $\sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) \lambda^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\}$.
If $\varphi^{\prime}(0)$ is diagonal, the Koenigs' functions associated with φ satisfy

$$
\eta_{k} \circ \varphi=\lambda_{k} \eta_{k}, \quad \eta_{k}(0)=0, \quad \frac{\partial \eta_{k}}{\partial z_{\ell}}(0)= \begin{cases}1 & \text { if } \ell>k \\ 0 & \text { if } \ell=k\end{cases}
$$

Let us start by establishing a property on the maps η_{k}.
Lemma 4.6. If $\vec{\imath}, \vec{\jmath} \in \mathbb{N}_{0}^{N}$ satisfy $\vec{\imath} \preccurlyeq \vec{\jmath}$, then

$$
\left(\eta^{\vec{\jmath}}\right)^{(\vec{\imath})}(0)= \begin{cases}0 & \text { if } \vec{\imath} \prec \vec{\jmath}, \\ \vec{\jmath}! & \text { if } \vec{\imath}=\vec{\jmath} .\end{cases}
$$

Proof. Note that for all $k \in\{1, \cdots, N\}$, the Maclaurin series of η_{k} is

$$
\eta_{k}(z)=\sum_{\ell=1}^{k} \alpha_{k \ell} z_{\ell}+o(|z|), \quad \text { with } \quad \alpha_{k \ell} \in \mathbb{C} .
$$

Hence, by the multinomial Theorem,

$$
\begin{aligned}
\eta^{\vec{\jmath}}(z)=\prod_{k=1}^{N}\left(\sum_{\ell=1}^{k} \alpha_{k \ell} z_{\ell}\right)^{j_{k}}+o\left(|z|^{\mid \vec{\jmath}}\right) & =\prod_{k=1}^{N}\left(\sum_{\left|\vec{p}_{k}\right|=j_{k}}\binom{j_{k}}{\vec{p}_{k}}\left(\alpha_{k} z\right)^{\vec{p}_{k}}\right)+o\left(|z|^{|\vec{\jmath}|}\right) \\
& =\sum_{\left|\vec{p}_{1}\right|=j_{1}} \cdots \sum_{\left|\vec{p}_{N}\right|=j_{N}} \beta_{p} z^{\vec{r}}+o\left(|z|^{|\vec{\jmath}|}\right)
\end{aligned}
$$

with $\beta_{p} \in \mathbb{C}$, $p_{k \ell}=0$ if $k<\ell$, and

$$
\vec{r}=\left(p_{11}+\cdots+p_{N 1}, p_{22}+\cdots+p_{N 2}, \cdots, p_{N N}\right)
$$

However, for $\overrightarrow{p_{1}}, \cdots, \overrightarrow{p_{N}}$ satisfying these assumptions, $|\vec{r}|=|\vec{\jmath}|$. Also, note that $p_{11}=j_{1}$, so $\vec{r} \succcurlyeq \vec{\jmath}$. This gives the result for $\vec{\imath} \prec \vec{\jmath}$. Moreover, the only way to get $\vec{r}=\vec{\jmath}$ is by taking $p_{k \ell}=j_{k} \mathbb{1}_{\{k=\ell\}}$. Hence, we conclude for the case $\vec{\imath}=\vec{\jmath}$ since $\beta_{p}=1$, because $\alpha_{k k}=1$ for all k.

Hence, we get the following theorem. For $\vec{\jmath} \in \mathbb{N}^{N}$, let us define

$$
X_{\vec{\jmath}}=\operatorname{Vect}\left(w \eta^{\imath}: \vec{\imath} \preccurlyeq \vec{\jmath}\right), \quad \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)=\left\{f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right): \forall \vec{\imath} \preccurlyeq \vec{\jmath}, f^{(\vec{\imath}}(0)=0\right\} .
$$

Theorem 4.7. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$ and $\varphi^{\prime}(0)$ is diagonal, invertible. If $m(0) \neq 0$ then
(i) For all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, \operatorname{Hol}\left(\mathbb{B}_{N}\right)=X_{\vec{\jmath}} \oplus \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$.
(ii) For all $\vec{\jmath} \in \mathbb{N}_{0}^{N}$, if we define the operators $P_{\vec{\jmath}}$ and $Q_{\vec{\jmath}}$ by

$$
P_{\overrightarrow{0}}(f)=f(0) w, \quad P_{\vec{\jmath}}(f)=\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times w \eta^{\vec{\jmath}}, \quad Q_{\vec{\jmath}}(f)=\sum_{\vec{\imath} \preccurlyeq \vec{\jmath}} P_{\vec{\imath}}(f),
$$

then $Q_{\vec{\jmath}}$ is the projection on $X_{\vec{\jmath}}$ in parallel to $\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$.
(iii) For all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, P_{\vec{\jmath}} \circ W_{m, \varphi}=W_{m, \varphi} \circ P_{\vec{\jmath}}=m(0) \lambda^{\vec{\jmath}} P_{\vec{\jmath}}$.

Proof. We prove most of the results by induction.
(i) First, we show that $X_{\vec{\jmath}} \cap \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)=\{0\}$. Indeed, let

$$
f=\sum_{\vec{\imath} \preccurlyeq \vec{\jmath}} c_{\imath} w \eta^{\vec{\imath}} \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right) .
$$

Then, $c_{\overrightarrow{0}}=c_{\overrightarrow{0}} w(0)=f(0)=0$. Let $\vec{k} \preccurlyeq \vec{\jmath}$ such that for all $\vec{\imath} \prec \vec{k}, c_{\vec{\imath}}=0$. By the general Leibniz rule,

$$
f^{(\vec{k})}(0)=\sum_{\vec{k} \preccurlyeq \vec{\imath} \leqslant \vec{\jmath}} c_{\vec{\imath}}\left(w \eta^{\vec{\imath}}\right)^{(\vec{k})}(0)=\sum_{\vec{k} \preccurlyeq \vec{\imath} \preccurlyeq \vec{\jmath} \vec{\alpha} \leq \vec{k}} \sum_{\vec{\imath}}\binom{\vec{k}}{\vec{\alpha}} w^{(\vec{k}-\vec{\alpha})}(0)\left(\eta^{\vec{\imath}}\right)^{(\vec{\alpha})}(0)=c_{\vec{k}} w(0) \vec{k}!.
$$

Since $f \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$, we obtain $c_{\vec{k}}=0$. Hence, $f \equiv 0$.
Now, let us show that $X_{\vec{\jmath}}+\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)=\operatorname{Hol}\left(\mathbb{B}_{N}\right)$.

- The inclusion \subset is trivial.
- Note that $\operatorname{Im}\left(Q_{\vec{\jmath}}\right) \subset X_{\vec{\jmath}}$. Let $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. Then,

$$
\left[f-Q_{\overrightarrow{0}}(f)\right](0)=\left[f-P_{\overrightarrow{0}}(f)\right](0)=f(0)-f(0) w(0)=0,
$$

because $w(0)=1$. Hence, $f-Q_{\overrightarrow{0}}(f) \in \operatorname{Hol}_{\overrightarrow{0}}\left(\mathbb{B}_{N}\right)$, so $f \in W_{\overrightarrow{0}}+\operatorname{Hol}_{\overrightarrow{0}}\left(\mathbb{B}_{N}\right)$.
Assume that $f-Q_{\vec{\jmath}-}(f) \in \operatorname{Hol}_{\vec{\jmath}-}\left(\mathbb{B}_{N}\right)$. Then,

$$
Q_{\vec{\jmath}}(f)=Q_{\vec{\jmath}-}(f)+P_{\vec{\jmath}}(f)=Q_{\vec{\jmath}-}(f)+\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times w \eta^{\vec{\jmath}} .
$$

Let $\vec{\imath} \preccurlyeq \vec{\jmath}$. By definition of $Q_{\vec{\jmath}}$,

$$
\left[f-Q_{\vec{\jmath}}(f)\right]^{(\vec{\imath})}(0)=\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\imath})}(0)-\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times\left(w \eta^{\vec{\jmath}}\right)^{(\vec{\imath}}(0) .
$$

If $\vec{\imath} \prec \vec{\jmath}$, using the properties of η and the induction hypothesis, we get $\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\imath})}(0)=\left(w \eta^{\jmath}\right)^{(\vec{\imath})}(0)=0$, so $\left[f-Q_{\vec{\jmath}}(f)\right]^{(\vec{\imath})}(0)=0$. If $\vec{\imath}=\vec{\jmath}$, then $\left[f-Q_{\vec{\jmath}}(f)\right]^{(\vec{\jmath})}(0)=\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0)-\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times w(0) \vec{\jmath}!=0$,
using Leibniz rule, and noticing that $w(0)=1$.
Finally, $f-Q_{\vec{\jmath}}(f) \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$, so $f \in X_{\vec{\jmath}}+\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$.
(ii) Using (i), if $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, then we can write f as

$$
f=g+h, \quad g \in X_{\vec{\jmath}}, \quad h \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right),
$$

where g and h are uniquely determined. Moreover, $Q_{\vec{\jmath}}(f)=g$, so $Q_{\vec{\jmath}}$ is indeed the projection on $X_{\vec{\jmath}}$ in parallel to $\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$.
(iii) First, we show that for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, W_{m, \varphi} \circ P_{\vec{\jmath}}=m(0) \lambda^{\vec{\jmath}} P_{\vec{\jmath}}$. Indeed,

$$
\begin{aligned}
\left(W_{m, \varphi} \circ P_{\vec{\jmath}}\right)(f) & =\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times m(w \circ \varphi)\left(\eta^{\vec{\rho}} \circ \varphi\right) \\
& =\frac{1}{\vec{\jmath}!}\left[f-Q_{\vec{\jmath}-}(f)\right]^{(\vec{\jmath})}(0) \times(m(0) w)\left(\lambda^{\vec{\jmath}} \eta^{\vec{\jmath}}\right)=m(0) \lambda^{\vec{\jmath}} P_{\vec{\jmath}}(f) .
\end{aligned}
$$

Then, let us prove that for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}, Q_{\vec{\jmath}} \circ W_{m, \varphi}=W_{m, \varphi} \circ Q_{\vec{\jmath}}$. To do so, it suffices to show that $X_{\vec{\jmath}}$ and $\operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$ are invariant by $W_{m, \varphi}$.

- Let $\vec{\imath} \preccurlyeq \vec{\jmath}$. Since $m\left(w \eta^{\vec{\imath}} \circ \varphi\right)=m(0) \lambda^{\vec{\imath}} w \eta^{\vec{\imath}}$, we obtain $m\left(w \eta^{\vec{\imath}} \circ \varphi\right) \in X_{\vec{\jmath}}$, and $W_{m, \varphi}\left(X_{\vec{j}}\right) \subset X_{\vec{j}}$.
- Let $f \in \operatorname{Hol}_{j}\left(\mathbb{B}_{N}\right)$. Then, $m(f \circ \varphi)(0)=m(0) f(0)=0$. In addition, for all $0 \prec \vec{k} \preccurlyeq \vec{\jmath}, f \in \operatorname{Hol}_{\vec{k}_{-}}\left(\mathbb{B}_{N}\right)$. Hence,

$$
[m(f \circ \varphi)]^{(\vec{k})}(0)=m(0) \lambda^{\vec{k}} f^{(\vec{k})}(0)=0
$$

Finally, $W_{m, \varphi}(f) \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$, so $W_{m, \varphi}\left(\operatorname{Hol}_{\jmath}\left(\mathbb{B}_{N}\right)\right) \subset \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$.
We deduce that for all $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, there exist $g, h \in \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$ such that

$$
m(f \circ \varphi)=m\left(Q_{\vec{\jmath}}(f) \circ \varphi\right)+m(g \circ \varphi)=Q_{\vec{\jmath}}(m(f \circ \varphi))+h .
$$

However, all maps are written in a unique way in $X_{\vec{\jmath}} \oplus \operatorname{Hol}_{\vec{\jmath}}\left(\mathbb{B}_{N}\right)$, so

$$
\left.\left(Q_{\vec{\jmath}} \circ W_{m, \varphi}\right)(f)=Q_{\vec{\jmath}}(m(f \circ \varphi))=m\left(Q_{\vec{\jmath}}(f) \circ \varphi\right)=\left(W_{m, \varphi} \circ Q_{\vec{\jmath}}\right) f\right) .
$$

Finally, we show that $P_{\vec{\jmath}} \circ W_{m, \varphi}=W_{m, \varphi} \circ P_{\vec{\jmath}}$. For $\vec{\jmath}=\overrightarrow{0}$, it is trivial since $P_{\overrightarrow{0}}=Q_{\overrightarrow{0}}$. Otherwise, for $\vec{\jmath} \in \mathbb{N}_{0}^{N}$, we write

$$
P_{\vec{\jmath}} \circ W_{m, \varphi}=\left(Q_{\vec{\jmath}}-Q_{\vec{\jmath}-}\right) \circ W_{m, \varphi}=W_{m, \varphi} \circ\left(Q_{\vec{\jmath}}-Q_{\vec{\jmath}-}\right)=W_{m, \varphi} \circ P_{\vec{\jmath}} .
$$

We now consider two auxiliary lemmas.
Lemma 4.8. Let φ be an elliptic attractive self-map of \mathbb{B}_{N}, such that $\varphi(0)=0$. Let $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, and $\lambda \neq 0$. If there exist $\varepsilon \in(0,1)$ and $f \in \operatorname{Hol}(B(0, \varepsilon))$ such that for all $|z|<\varepsilon$,

$$
\lambda f(z)-m(z) f(\varphi(z))=g(z)
$$

then there exists a function $\tilde{f} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $\tilde{f}_{\mid B(0, \varepsilon)}=f$, and for all $z \in \mathbb{B}_{N}$,

$$
\lambda \tilde{f}(z)-m(z) \tilde{f}(\varphi(z))=g(z)
$$

Proof. See [15, Lemma 4.7] or [4, Lemma 4.2], for instance. The only thing left is adding m everywhere.

Lemma 4.9. For all $\lambda_{0}>0$, there exist $0<\varepsilon<1$ and $p \in \mathbb{N}_{0}$ such that for all $|\lambda|>\lambda_{0}$ and $g \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$,

$$
\sum_{n \geq 0} \frac{m_{n}\left(g \circ \varphi^{[n]}\right)}{\lambda^{n}}
$$

converges uniformly on $\overline{B(0, \varepsilon)}$.
Proof. Let $\nu>1$ and $\left\|\varphi^{\prime}(0)\right\|<\zeta<1$. There exists $p \in \mathbb{N}_{0}$ such that $\nu|m(0)| \zeta^{p+1}<\lambda_{0}$.
Moreover, we know that there exists $\varepsilon \in(0,1)$ such that for all $|z| \leq \varepsilon$,

$$
|\varphi(z)| \leq \zeta|z|<\varepsilon \quad \text { and } \quad|m(z)| \leq \nu|m(0)|
$$

Using Schwarz's lemma, for all $n \in \mathbb{N}_{0},\left|\varphi^{[n]}(z)\right| \leq \zeta^{n}|z|<\varepsilon$, ans since $g \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$, there exists $C>0$ such that for $|z| \leq \varepsilon,|g(z)| \leq C|z|^{p+1}$. Finally, for $|z| \leq \varepsilon$,

$$
\left|\frac{m_{n}(z) g\left(\varphi^{[n]}(z)\right)}{\lambda^{n}}\right| \leq \frac{C \nu^{n}|m(0)|^{n}}{|\lambda|^{n}}\left|\varphi^{[n]}(z)\right|^{p+1} \leq\left(\frac{\nu|m(0)| \zeta^{p+1}}{\lambda_{0}}\right)^{n} C \varepsilon^{p+1}
$$

Because $\nu|m(0)| \zeta^{p+1}<\lambda_{0}$, the series converges normally on $\overline{B(0, \varepsilon)}$.
We finally reach the following result.
Proposition 4.10. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map, such that $\varphi(0)=$ 0 and $\varphi^{\prime}(0)$ is diagonal, invertible and the eigenvalues $\lambda_{1}, \cdots, \lambda_{N}$ of $\varphi^{\prime}(0)$ are not resonant. Assume that $m \in \operatorname{Hol}(\mathbb{D})$ satisfies $m(0) \neq 0$. Then

$$
\sigma\left(W_{m, \varphi}\right)=\sigma_{p}\left(W_{m, \varphi}\right) \cup\{0\} .
$$

Proof. The inclusion \supset is trivial, since $\varphi \notin \operatorname{Aut}\left(\mathbb{B}_{N}\right)$. Let us focus on the other one.
Let $\mu \notin \sigma_{p}\left(W_{m, \varphi}\right) \cup\{0\}$. By Lemma 4.9, there exist $0<\varepsilon<1$ and $p \in \mathbb{N}_{0}$ such that for all $g \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$,

$$
\sum_{n \geq 0} \frac{m_{n}\left(g \circ \varphi^{[n]}\right)}{\lambda^{n}}
$$

converges uniformly on $\overline{B(0, \varepsilon)}$.
In addition, in a same way as in Theorem 4.7, $\operatorname{Hol}\left(\mathbb{B}_{N}\right)=X_{p} \oplus \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$, with $X_{p}=\operatorname{Vect}\left(w \eta^{\vec{\imath}}:|\vec{\imath}| \leq p\right)$ and $\operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)=\left\{f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right): \forall|\vec{\imath}| \leq p, f^{(\vec{\imath})}(0)=0\right\}$. The two subspaces are invariant by $W_{m, \varphi}$. Hence,

$$
W_{m, \varphi}=\left(\begin{array}{cc}
S & 0 \\
0 & T
\end{array}\right)
$$

with $S \in \mathcal{L}\left(X_{p}\right)$ and $T \in \mathcal{L}\left(\operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)\right)$.

- If we consider the basis $\left(w \eta^{\vec{\jmath}}:|\vec{\jmath}| \leq p\right)$ of X_{p} and if we denote $\lambda=\left(\lambda_{1}, \cdots, \lambda_{N}\right)$,

$$
S=\operatorname{diag}\left(m(0) \lambda^{\vec{\jmath}}:|\vec{\jmath}| \leq p\right) .
$$

Since $\mu \notin\left\{m(0) \lambda^{\vec{\jmath}}:|\vec{\jmath}| \leq p\right\}, S-\mu$ Id is invertible.

- For all $g \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$, set

$$
h=-\frac{1}{\mu} \sum_{n \geq 0} \frac{m_{n}\left(g \circ \varphi^{[n]}\right)}{\lambda^{n}} \in \operatorname{Hol}(B(0, \varepsilon))
$$

Then, on $B(0, \varepsilon)$,

$$
m(h \circ \varphi)-\mu h=\sum_{n \geq 0} \frac{m_{n}\left(g \circ \varphi^{[n]}\right)}{\lambda^{n}}-\sum_{n \geq 0} \frac{m_{n+1}\left(g \circ \varphi^{[n+1]}\right)}{\lambda^{n+1}}=m_{0} g=g
$$

Hence, by Lemma 4.8, there exists $\tilde{h} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that

$$
m(\tilde{h} \circ \varphi)-\mu \tilde{h}=g
$$

Moreover, $\tilde{h} \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$. Indeed, if we could write $\tilde{h}=s+t$, with $0 \neq s \in W_{p}$ and $t \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$, we would obtain

$$
m(\tilde{h} \circ \varphi)-\mu \tilde{h}=\left(W_{m, \varphi}(s)-\mu s\right)+\left(W_{m, \varphi}(t)-\mu t\right)=g
$$

with $\left(W_{m, \varphi}(s)-\mu s\right) \neq 0$, since $s \neq 0$. This is impossible because $g \in \operatorname{Hol}_{p}\left(\mathbb{B}_{N}\right)$. Finally, $T-\mu \mathrm{Id}$ is bijective, and invertible.
We conclude that $W_{m, \varphi}-\mu \mathrm{Id}$ is invertible.
4.2. Non-invertible Jacobian at $\mathbf{0}$, with $\mathbf{0}$ as unique eigenvalue. In this case, we can also describe the spectra of $W_{m, \varphi}$.
Proposition 4.11. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$, $\varphi \not \equiv 0, \varphi^{\prime}(0)$ is not invertible, and 0 is the only eigenvalue of $\varphi^{\prime}(0)$. Let $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m(0) \neq 0$. Then,

$$
\{m(0)\} \subset \sigma_{p}\left(W_{m, \varphi}\right) \subset\{0, m(0)\}
$$

Proof. Let $\mu \notin\{m(0), 0\}$. If $f \not \equiv 0$ satisfies $m(f \circ \varphi)=\mu f$, then

- First, $\mu f(0)=[m(f \circ \varphi)](0)=m(0) f(0)$, so $(m(0)-\mu) f(0)=0$.

Since $\mu \neq m(0)$, we obtain $f(0)=0$.

- Assume that for all $\vec{\imath} \prec \vec{\jmath}, f^{(\vec{\imath})}(0)=0$. Then,

$$
\mu f^{(\vec{\jmath})}(0)=[m(f \circ \varphi)]^{(\vec{\jmath})}(0)=m(0)(f \circ \varphi)^{(\vec{\jmath}}(0)=0 .
$$

Hence, $f^{(\overrightarrow{)}}(0)=0$, since $\mu \neq 0$.
Finally, $f \equiv 0$, which is impossible. Hence, $\sigma\left(W_{m, \varphi}\right) \subset\{m(0), 0\}$.
Conversely, the map w defined in Proposition 4.2 is an eigenvector of $W_{m, \varphi}$ for the eigenvalue $m(0)$. Moreover, we give an example where $0 \in \sigma_{p}\left(W_{m, \varphi}\right)$: assume that $\varphi_{k}=0$ for some $k \in\{1, \cdots, N\}$. Then, for $f(z)=z_{k}, f \circ \varphi=0$, so $W_{m, \varphi}(f)=0$.
Theorem 4.12. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$ and $\varphi^{\prime}(0)$ is not invertible. If $m(0) \neq 0$, and 0 is the only eigenvalue of $\varphi^{\prime}(0)$, then

$$
\sigma\left(W_{m, \varphi}\right)=\{0, m(0)\}
$$

Proof. Note that the diagonal of $\varphi^{\prime}(0)$ has only zeroes, so the matrix $\varphi^{\prime}(0)$ is nilpotent. Hence, there exists $n_{0} \in \mathbb{N}_{0}$ such that

$$
\left(\varphi^{\left[n_{0}\right]}\right)^{\prime}(0)=\left(\varphi^{\prime}(0)\right)^{n_{0}}=0 .
$$

Let $\mu \in \mathbb{C} \backslash\{0, m(0)\}$. We consider two types of functions.

- Let $c \in \mathbb{C}^{*}$. If w is the weighted Koenigs' map of φ and m, then

$$
W_{m, \varphi}(w)-\mu w=\left(W_{m, \varphi}(w)-m(0) w\right)+(m(0) w-\mu w)=m(0) w-\mu w
$$

Thus, for all $c \in \mathbb{C}^{*}$, if we set $f_{c}=c w /(m(0)-\mu)$, we obtain $W_{m, \varphi}\left(f_{c}\right)-\mu f_{c}=c w$.

- Let $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $g(0)=0$. We know that there exists $0<\varepsilon<1$ a constant $d>1$ such that for all $|z| \leq \varepsilon$,

$$
|g(z)| \leq d|z|, \quad|\varphi(z)| \leq d|z|, \quad\left|\varphi^{\left[n_{0}\right]}(z)\right| \leq d|z|^{2}
$$

Using Schwarz's lemma, for all $k \in \mathbb{N}_{0}, k \geq 3$ and $|z| \leq \varepsilon$,

$$
\left|\varphi^{\left[k n_{0}\right]}(z)\right| \leq d^{k}|z|^{2^{k}} \leq d^{k}|z|^{2 k+2}
$$

For all $n \in \mathbb{N}_{0}$, if $n \geq 3 n_{0}$, we write $n=k n_{0}+p$, with $k \geq 3$ and $0 \leq p<n_{0}$. Hence, $k=(n-p) / n_{0} \geq n / n_{0}-1$. If we set $\alpha=\sup (|m(z)|:|z| \leq 1 / 2)$, we get

$$
\begin{aligned}
\left|\frac{m_{n}(z) g\left(\varphi^{[n]}(z)\right)}{\mu^{n}}\right| & \leq \frac{d \alpha^{n}\left|\varphi^{[n]}(z)\right|}{|\mu|^{n}} \leq \frac{d^{p+1} \alpha^{n}\left|\varphi^{[k n o]}(z)\right|}{|\mu|^{n}} \\
& \leq \frac{d^{k+p+1} \alpha^{n}|z|^{2 k+2}}{|\mu|^{n}} \leq d \frac{d^{n} \alpha^{n}|z|^{2 n / n_{0}}}{|\mu|^{n}}=d\left(\frac{d \alpha|z|^{2 / n_{0}}}{|\mu|}\right)^{n}
\end{aligned}
$$

We only have to choose $\tilde{\varepsilon} \in(0, \varepsilon)$, so that $d \alpha \tilde{\varepsilon}^{2 / n_{0}}<|\mu|$, to have

$$
h=-\frac{1}{\mu} \sum_{n \geq 0} \frac{m_{n}(z) g\left(\varphi^{[n]}(z)\right)}{\mu^{n}} \in \operatorname{Hol}(B(0, \tilde{\varepsilon})) .
$$

Moreover, the same calculations as in Proposition 4.10 gives

$$
m(h \circ \varphi)-\mu h=g \text { on } B(0, \tilde{\varepsilon}) .
$$

Using Lemma 4.8 , there exists $\tilde{h} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that

$$
m(\tilde{h} \circ \varphi)-\mu \tilde{h}=g
$$

If $\eta \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, then $g=\eta-\eta(0) w$ satisfies $g(0)=0$, and

$$
m\left[\left(f_{\eta(0)}+\tilde{h}\right) \circ \varphi\right]-\mu\left(f_{\eta(0)}+\tilde{h}\right)=\eta(0) w+g=\eta
$$

Finally, $W_{m, \varphi}-\mu$ Id is invertible, and $\mu \notin \sigma\left(W_{m, \varphi}\right)$, so $\sigma\left(W_{m, \varphi}\right) \subset\{0, m(0)\}$. To finish the proof, we use Proposition 4.11, and the fact that φ is not bijective.

Remark 4.13. If $\varphi \equiv 0$ and $m(0) \neq 0$, we show that

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\sigma\left(W_{m, \varphi}\right)=\{0, m(0)\}
$$

Indeed, $W_{m, \varphi}(f)=f(0) m$. Hence, for all $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ and $\mu \notin\{0, m(0)\}$, the map

$$
h=\frac{1}{\mu}\left[\frac{g(0)}{m(0)-\mu} m-g\right]
$$

satisfies $h(0) m-\mu h=g$, so $\mu \notin \sigma\left(W_{m, \varphi}\right)$. Moreover,

- Denote $e_{1}(z)=z_{1}$. Then $e_{1}(0)=0$, so $W_{m, \varphi}\left(e_{1}\right)=0$, and $0 \in \sigma_{p}\left(W_{m, \varphi}\right)$.
- Since $W_{m, \varphi}(m)-m(0) m=m(0) m-m(0) m=0$, we get $m(0) \in \sigma_{p}\left(W_{m, \varphi}\right)$.
4.3. General results. In general, we have the following results.

Proposition 4.14. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$ and $\varphi \not \equiv 0$. Let $\lambda_{1}, \cdots, \lambda_{p}$ be the non-zero eigenvalues of $\varphi^{\prime}(0)$. Let $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m(0) \neq 0$. Then,

$$
\{m(0)\} \subset \sigma_{p}\left(W_{m, \varphi}\right) \subset\left\{m(0) \prod_{k=1}^{p} \lambda_{k}^{j_{k}}: j_{1}, \cdots, j_{p} \in \mathbb{N}_{0}\right\} \cup\{0, m(0)\}
$$

Proof. We know that the map w defined in Proposition 4.2 satisfies $W_{m, \varphi}(w)=m(0) w$, so $m(0) \in \sigma_{p}\left(W_{m, \varphi}\right)$. Moreover, in a same way as in Proposition 4.11, 0 can be an eigenvalue of $W_{m, \varphi}$.

Let $\mu \notin\{0\} \cup\left\{m(0) \lambda^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{p}\right\}$. If $\mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, then there exists $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ such that $m(f \circ \varphi)=\mu f$. Once again by induction, using Lemma 2.4 and the general Leibniz rule, we prove that $f^{(\vec{\jmath})}(0)=0$ for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}$. Hence, $f \equiv 0$, a contradiction. Thus, $\mu \notin \sigma_{p}\left(W_{m, \varphi}\right)$.
Proposition 4.15. Let $\varphi: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$ be an elliptic attractive map such that $\varphi(0)=0$ and $\varphi \not \equiv 0$. Let $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m(0) \neq 0$. Then,

$$
\{0, m(0)\} \subset \sigma\left(W_{m, \varphi}\right) \subset \overline{D\left(0,|m(0)|\left\|\varphi^{\prime}(0)\right\|\right)} \cup\{m(0)\}
$$

Proof. Since $\varphi \notin \operatorname{Aut}\left(\mathbb{B}_{N}\right), W_{m, \varphi}$ is not invertible. Hence, $0 \in \sigma\left(W_{m, \varphi}\right)$.
In addition, $m(0) \in \sigma_{p}\left(W_{m, \varphi}\right)$ by Proposition 4.14, so $m(0) \in \sigma\left(W_{m, \varphi}\right)$.
Let $\mu>|m(0)|\left\|\varphi^{\prime}(0)\right\|, \mu \neq m(0)$. Then, similarly to Lemma 4.9, there exists $\varepsilon>0$ such that for all $h \in \operatorname{Hol}_{0}\left(\mathbb{B}_{N}\right)$, the series $\sum\left(h \circ \varphi^{[n]}\right) / \mu^{n}$ converges uniformly on $\overline{B(0, \varepsilon)}$.

For $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, let us define the functions h and f by

$$
h(z)=g(z)-g(0) w(z), \quad f(z)=\frac{g(0) w(z)}{m(0)-\mu}-\frac{1}{\mu} \sum_{n \geq 0} \frac{m_{n}(z)\left(h \circ \varphi^{[n]}\right)(z)}{\mu^{n}} .
$$

Thus, $f \in \operatorname{Hol}(B(0, \varepsilon))$. The same calculations as in Theorem 4.12 gives

$$
m(z)(f \circ \varphi)(z)-\mu f(z)=g(0) w(z)+h(z)=g(z), \quad|z|<\varepsilon
$$

Hence, $W_{m, \varphi}-\mu$ Id is bijective, so $\mu \notin \sigma\left(W_{m, \varphi}\right)$.
Example 4.16. Consider $N=2, \varphi(z)=\left(z_{1} / 3, z_{1} / 3\right)$ et $m(z)=2+z_{1}$.
Point spectrum : Take w the map defined in Proposition 4.2, and $f_{k}(z)=z_{1}^{k}$. Then,

$$
m(w \circ \varphi)=m(0) w=2 w, \quad m\left(\left(w f_{k}\right) \circ \varphi\right)=m(w \circ \varphi)\left(f_{k} \circ \varphi\right)=2 w \frac{f_{k}}{3^{k}}=\frac{2}{3^{k}}\left(w f_{k}\right)
$$

Hence, for all $k \in \mathbb{N}_{0}, 2 / 3^{k} \in \sigma_{p}\left(W_{m, \varphi}\right)$. Moreover, if $g(z)=z_{1}-z_{2}$, then $g \circ \varphi=0$, so $W_{m, \varphi}(g)=0$. Thus, $0 \in \sigma_{p}\left(W_{m, \varphi}\right)$. Finally, using Proposition 4.14,

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\left\{2 / 3^{k}: k \in \mathbb{N}_{0}\right\} \cup\{0\} .
$$

$\underline{\text { Spectrum }: ~ L e t ~} \mu \notin \sigma_{p}\left(W_{m, \varphi}\right)$, and $g \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. We search for $f \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$ such that $m(f \circ \varphi)-\mu f=g$. Write $f=\sum a_{i j} z_{1}^{i} z_{2}^{j}$ and $g=\sum b_{i j} z_{1}^{i} z_{2}^{j}$. Then,

$$
m(f \circ \varphi)=\sum_{i, j \geq 0} \frac{a_{i j}}{3^{i+j}} z_{1}^{i+j}\left(2+z_{1}\right)=\sum_{i, j \geq 0}\left(\mu a_{i j}+b_{i j}\right) z_{1}^{i} z_{2}^{j}=\mu f+g
$$

Note that there is no z_{2} in $m(f \circ \varphi)$. Hence, if $j \geq 1$, since $\mu \neq 0$,

$$
\mu a_{i j}+b_{i j}=0 \Longleftrightarrow a_{i j}=-\mu^{-1} b_{i j} .
$$

It remains to consider the case $j=0$. Remark that

$$
\begin{aligned}
& \sum_{i \geq 0} \frac{a_{i 0}}{3^{i}} z_{1}^{i}\left(2+z_{1}\right)=\sum_{i \geq 0}\left(\mu a_{i 0}+b_{i 0}\right) z_{1}^{i} \\
\Longleftrightarrow & 2 a_{00}+\sum_{i \geq 1}\left(\frac{2 a_{i 0}}{3^{i}}+\frac{a_{i-1,0}}{3^{i-1}}\right) z_{1}^{i}=\mu a_{00}+b_{00}+\sum_{i \geq 1}\left(\mu a_{i 0}+b_{i 0}\right) z_{1}^{i} .
\end{aligned}
$$

Thus, since $\mu \neq 2, a_{00}=b_{00} /(2-\mu)$, and for all $i \geq 1$, since $\mu \neq 2 / 3^{i}$,

$$
a_{i 0}=\frac{b_{i 0}-3^{1-i} a_{i-1,0}}{2 / 3^{i}-\mu}
$$

Denoting $C=\min \left(\left|2 / 3^{i}-\mu\right|: i \geq 0\right)>0$, since $3^{i-1} \leq 1$ for all $i \geq 1$, we obtain

$$
\left|a_{i 0}\right| \leq \frac{\left|b_{i 0}\right|}{C}+\frac{\left|a_{i-1,0}\right|}{C} \leq \frac{\left|b_{i 0}\right|}{C}+\frac{\left|b_{i-1,0}\right|}{C^{2}}+\frac{\left|a_{i-2,0}\right|}{C^{2}} \leq \cdots \leq \frac{1}{C} \sum_{k=0}^{i} \frac{\left|b_{i-k, 0}\right|}{C^{k}} .
$$

However, the series $\sum \frac{1}{C^{k}} z_{1}^{k}$ has radius of convergence C, and the series $\sum\left|b_{k 0}\right| z_{1}^{k}$ has radius of convergence 1 , so the map f is defined on the ball $B(0, C)$ by product series. Lemma 4.8 gives a function $\tilde{f} \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$ such that $m(\tilde{f} \circ \varphi)-\mu \tilde{f}=g$, so $W_{m, \varphi}-\mu \operatorname{Id}$ is invertible. We conclude that $\sigma\left(W_{m, \varphi}\right)=\sigma_{p}\left(W_{m, \varphi}\right)$.

5. Bijective periodic symbols

In this section, we consider φ a bijective elliptic map with fixed point at 0 , that is to say, φ is a unitary matrix. Moreover, conjugating with an automorphism, it follows that

$$
\varphi=D, \quad D=\operatorname{diag}\left(e^{i \theta_{1}}, \cdots, e^{i \theta_{N}}\right)
$$

Inspired by [3], we will focus on periodic automorphisms.
Definition 5.1. A unitary diagonal matrix $D=\operatorname{diag}\left(e^{i \theta_{1}}, \cdots, e^{i \theta_{N}}\right)$ is periodic if for all $k \in\{1, \cdots, N\}, \theta_{k} \in 2 \pi \mathbb{Q}$.

If φ is a periodic automorphism, then there exists $p \in \mathbb{N}$ such that

$$
D^{p}=\mathrm{Id}, \quad \text { i.e. } \quad W_{m, \varphi}^{p}(f)=m_{p} f, \quad \text { where } \quad m_{p}=\prod_{k=0}^{p-1}\left(m \circ \varphi^{[k]}\right) .
$$

Note that if $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ and $M_{g}(f)=g f$, then $\sigma\left(M_{g}\right)=g\left(\mathbb{B}_{N}\right)$.
We start by the case where m vanishes on \mathbb{B}_{N}.
Lemma 5.2. If there exists $z_{0} \in \mathbb{B}_{N}$ such that $m\left(z_{0}\right)=0$, then $\sigma_{p}\left(W_{m, \varphi}\right)=\varnothing$.
Proof. First, note that m and φ are non-constant, so $0 \notin \sigma_{p}\left(W_{m, \varphi}\right)$.
Let $\lambda \in \mathbb{C}^{*}$. If there exists $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ such that $W_{m, \varphi}(f)=\lambda f$, then

$$
W_{m, \varphi}^{p}(f)=m_{p} f=\lambda^{p} f
$$

Since f is not identically zero, there exists an open subset Ω of \mathbb{B}_{N} such that $f \neq 0$ on Ω. Thus, $m_{p}=\lambda^{p}$ on Ω, so on \mathbb{B}_{N} by uniqueness theorem. However, $m_{p}\left(z_{0}\right)=0$, so $\lambda=0$, which is impossible. Finally, $\sigma_{p}\left(W_{m, \varphi}\right)=\varnothing$.

We now characterize when the point spectrum of $W_{m, \varphi}$ is non-empty.
Proposition 5.3. Let φ be a periodic automorphism of \mathbb{B}_{N}, and $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$.
Denote by $e=\left(e^{i \theta_{1}}, \cdots, e^{i \theta_{N}}\right)$ the eigenvalues of φ, and p the smallest positive integer such that for all $k \in\{1, \cdots, N\}$, $e^{i p \theta_{k}}=1$. The following assertions are equivalent.
(i) $\sigma_{p}\left(W_{m, \varphi}\right) \neq \varnothing$.
(ii) m_{p} is a constant map.
(iii) $\sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) e^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\}$.

Proof. $(i i i \Longrightarrow i)$ is trivial.
$(i \Longrightarrow i i):$ If $\sigma_{p}\left(W_{m, \varphi}\right) \neq \varnothing$, then m does not vanish on \mathbb{B}_{N}, by Lemma 5.2. Moreover, by functional calculus, $\sigma_{p}\left(W_{m, \varphi}^{p}\right)=\left(\sigma_{p}\left(W_{m, \varphi}\right)\right)^{p}:=\left\{\mu^{p}: \mu \in \sigma_{p}\left(W_{m, \varphi}\right)\right\} \neq$ \varnothing. Hence, there exist $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ and $\lambda \in \mathbb{C}$ such that $m_{p} f=\lambda f$. Since $f \not \equiv 0$, the map $m_{p}=\lambda$ is constant, using uniqueness theorem. Finally, $\lambda \neq 0$ because $m(0) \neq 0$.
$(i i \Longrightarrow i i i):$ If m_{p} is constant, then $m_{p} \equiv m_{p}(0)=m(0)^{p}$. In addition,

$$
W_{m, \varphi}^{p}(f)=m_{p} f=m(0)^{p} f
$$

Thus, $W_{m, \varphi}^{p}=m(0)^{p} \mathrm{Id}$, so $\sigma_{p}\left(W_{m, \varphi}^{p}\right)=\left\{m(0)^{p}\right\}$. If $\sigma_{p}\left(W_{m, \varphi}\right)=\varnothing$, then

$$
\sigma_{p}\left(W_{m, \varphi}^{p}\right)=\left(\sigma_{p}\left(W_{m, \varphi}\right)\right)^{p}=\varnothing
$$

which is not the case here. Therefore, $\sigma_{p}\left(W_{m, \varphi}\right) \neq \varnothing$.
We show that $\sigma_{p}\left(W_{m, \varphi}\right)=e^{\vec{\jmath}} \sigma_{p}\left(W_{m, \varphi}\right)$, for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}$.

- If $\mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, then there exists $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ such that $m(f \circ \varphi)=\mu f$. Hence, setting $f_{\vec{\jmath}}(z)=z^{\vec{\jmath}} f(z)$, we obtain, for $z \in \mathbb{B}_{N}$,

$$
\left[m\left(f_{\vec{\jmath}} \circ \varphi\right)\right](z)=m(z) \varphi^{\vec{\jmath}}(z) f(\varphi(z))=e^{\vec{\jmath}} z^{\vec{\jmath}} \mu f(z)=\mu e^{\vec{\jmath}} f_{\vec{\jmath}}(z) .
$$

Finally, $e^{\vec{\jmath}} \mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, so $e^{\vec{\jmath}} \sigma_{p}\left(W_{m, \varphi}\right) \subset \sigma_{p}\left(W_{m, \varphi}\right)$.

- Conversely, let $\vec{\jmath}=\left(j_{1}, \cdots, j_{N}\right) \in \mathbb{N}_{0}^{N}$. We set, for $k \in\{1, \cdots, N\}, n_{k}=\left\lfloor j_{k} / p\right\rfloor$, and $\vec{\alpha}=\left(n_{1} p-j_{1}, \cdots, n_{N} p-j_{N}\right) \in \mathbb{N}_{0}^{N}$. Then

$$
\vec{\jmath}+\vec{\alpha}=\left(n_{1} p, \cdots, n_{N} p\right),
$$

so $e^{\vec{\jmath}+\vec{\alpha}}=1$. Finaly, if $\mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, then $e^{\vec{\alpha}} \mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, so

$$
\mu=e^{\vec{\jmath}}\left(e^{\vec{\alpha}} \mu\right) \in e^{\vec{\jmath}} \sigma_{p}\left(W_{m, \varphi}\right) .
$$

To finish, if $\mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, we know that $\mu^{p}=m(0)^{p}$. Thus, $m(0)=\mu \exp (2 i \pi k / p)$, with $k \in\{0, \cdots, p-1\}$. Using [15], there exists $\vec{\jmath} \in \mathbb{N}_{0}^{N}$ such that $e^{\vec{\jmath}}=\exp (2 i \pi / p)$. We deduce that

$$
m(0)=\mu \exp (2 i \pi k / p)=\mu e^{k \vec{\jmath}} \in e^{k \vec{\jmath}} \sigma_{p}\left(W_{m, \varphi}\right)=\sigma_{p}\left(W_{m, \varphi}\right)
$$

Finally, $\left\{m(0) e^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\} \subset \sigma_{p}\left(W_{m, \varphi}\right)$, and if $\mu \in \sigma_{p}\left(W_{m, \varphi}\right)$, then there exists $\ell \in\{1, \cdots, p\}$ such that $\mu=m(0) \exp (2 i \pi \ell / p) \in\left\{m(0) e^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\}$. We can conclude that

$$
\sigma_{p}\left(W_{m, \varphi}\right)=\left\{m(0) e^{\vec{\jmath}}: \vec{\jmath} \in \mathbb{N}_{0}^{N}\right\} .
$$

To obtain the spectrum, we start by a useful lemma.
Lemma 5.4. Let φ be a periodic automorphism of \mathbb{B}_{N}, and $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. Then,

$$
\forall \vec{k} \in \mathbb{N}_{0}^{N}, \quad m(0) e^{\vec{k}} \in \sigma\left(W_{m, \varphi}\right)
$$

Proof. Consider $\vec{\jmath} \neq \overrightarrow{0}$ the smallest vector (for the order \preccurlyeq) of \mathbb{N}_{0}^{N} such that $e^{\vec{\jmath}}=1$. We will show that for all $\vec{\imath} \prec \vec{\jmath}$,

$$
z^{\vec{\imath}} \notin\left(m(0) e^{\vec{\imath}}-W_{m, \varphi}\right) \operatorname{Hol}\left(\mathbb{B}_{N}\right) .
$$

$\vec{\imath}=\overrightarrow{0}:$ Note that for all $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$,

$$
\left[m(0) f-W_{m, \varphi}(f)\right](0)=m(0) f(0)-m(0) f(\varphi(0))=0
$$

Hence, $1 \notin\left(m(0)-W_{m, \varphi}\right) \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, so $m(0) \in \sigma\left(W_{m, \varphi}\right)$.
Now, assume that there exists $\vec{\imath} \prec \vec{\jmath}$ such that $\vec{\imath} \neq \overrightarrow{0}$ and

$$
m(0) e^{\vec{\imath}} f-m(f \circ \varphi)=z^{\vec{\imath}}
$$

for a certain $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right), f \neq 0$.

- Note that $m(0) e^{\vec{\imath}} f(0)-m(0) f(\varphi(0))=\left[z^{\imath}\right](0)=0$. Moreover, $m(0) \neq 0, e^{\vec{\imath}}-1 \neq 0$. Hence, $f(0)=0$.
- Assume that for all $\vec{\alpha} \prec \vec{\beta} \prec \vec{\imath}, f^{(\vec{\alpha})}(0)=0$. Using the general Leibniz rule,

$$
\begin{aligned}
& m(0) e^{\vec{\imath}} f^{(\vec{\beta})}(0)-[m(f \circ \varphi)]^{(\vec{\beta})}(0) \\
= & m(0) e^{\vec{\imath}} f^{(\vec{\beta})}(0)-\sum_{\vec{\alpha}<\vec{\beta}}\binom{\vec{\beta}}{\vec{\alpha}} m^{(\vec{\beta}-\vec{\alpha})}(0) e^{\vec{\alpha}} f^{(\vec{\alpha})}(0)-m(0) e^{\vec{\beta}} f^{(\vec{\beta})}(0) \\
= & m(0)\left(e^{\vec{\imath}}-e^{\vec{\beta}}\right) f^{(\vec{\beta})}(0)=\left[z^{\vec{\imath}}\right]^{(\vec{\beta})}(0)=0 .
\end{aligned}
$$

Since $e^{\vec{\imath}}-e^{\vec{\beta}} \neq 0$ (because $\vec{\jmath}$ is minimal), and $m(0) \neq 0$, we get $f^{(\vec{\beta})}(0)=0$.

- In a same way, for $\vec{\beta}=\vec{\imath}$, we obtain

$$
m(0) e^{\vec{\imath}} f^{(\vec{\imath})}(0)-[m(f \circ \varphi)]^{(\vec{\imath})}(0)=m(0)\left(e^{\vec{\imath}}-e^{\vec{\imath}}\right) f^{(\vec{\imath})}(0)=0=\left[z^{\vec{\imath}}\right]^{(\vec{\imath})}(0)=\vec{\imath}!.
$$

Therefore, we get a contradiction. Finally, $z^{\vec{\imath}} \notin\left(m(0) e^{\vec{\imath}}-W_{m, \varphi}\right) \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, so we have proved that $m(0) e^{\vec{\imath}} \in \sigma\left(W_{m, \varphi}\right)$. All that remains for us is to see that

$$
\left\{m(0) e^{\vec{\imath}}: \mathbb{N}_{0}^{N}\right\}=\left\{m(0) e^{\vec{\imath}}: \vec{\imath} \prec \vec{\jmath}\right\},
$$

because $e^{\vec{\jmath}}=1$. Thus, $\left\{m(0) e^{\vec{\imath}}: \mathbb{N}_{0}^{N}\right\} \subset \sigma\left(W_{m, \varphi}\right)$.
Hence, we prove the following proposition.
Theorem 5.5. Let φ be a periodic automorphism of \mathbb{B}_{N}, and $m \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. If p is the smallest positive integer such that $\varphi^{p}=\mathrm{Id}$, then

$$
\sigma\left(W_{m, \varphi}\right)=\left\{\lambda \in \mathbb{C}: \lambda^{p} \in m_{p}\left(\mathbb{B}_{N}\right)\right\} .
$$

Proof. First, we show that $\vec{\jmath} \in \mathbb{N}_{0}^{N}, e^{\vec{\jmath}} \sigma\left(W_{m, \varphi}\right) \subset \sigma\left(W_{m, \varphi}\right)$. To do this, by multiplicativity, we only have to prove it for $\vec{\jmath}=(0, \cdots, 0,1,0 \cdots, 0)$, the 1 being in position k. Note that if $k \in\{1, \cdots, N\}$,

$$
\Gamma_{k}: \begin{cases}\operatorname{Hol}\left(\mathbb{B}_{N}\right) & \rightarrow z_{k} \operatorname{Hol}\left(\mathbb{B}_{N}\right) \\ f & \mapsto z_{k} f,\end{cases}
$$

then Γ_{k} is bijective. For all $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ and $z \in \mathbb{B}_{N}$, if we set $T=\left.\left(W_{m, \varphi}\right)\right|_{z_{k}} \operatorname{Hol}\left(\mathbb{B}_{N}\right)$,

$$
\left(\Gamma_{k}^{-1} \circ T \circ \Gamma_{k}\right)(f)(z)=\frac{m(z) \varphi_{k}(z)(f \circ \varphi)(z)}{z_{k}}=m(z) e^{i \theta_{k}}(f \circ \varphi)(z)=e^{i \theta_{k}} W_{m, \varphi}(f)(z) .
$$

Hence, $\sigma(T)=e^{i \theta_{k}} \sigma\left(W_{m, \varphi}\right)$.
If $W_{m, \varphi}-\lambda$ Id is bijective, then for all $g \in z_{k} \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, there exists $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that

$$
m(f \circ \varphi)-\lambda f=g
$$

We prove that $f \in z_{k} \operatorname{Hol}\left(\mathbb{B}_{N}\right)$.

- First, $m(0) f(\varphi(0))-\lambda f(0)=(m(0)-\lambda) f(0)=g(0)=0$. Since $\lambda \neq m(0)$ using Lemma 5.4, we get $f(0)=0$.
- Let $\vec{\jmath} \in \mathbb{N}_{0}^{N}$ such that $j_{k}=0$. Assume that for all $\vec{\imath} \prec \vec{\jmath}$ satisfying $i_{k}=0$, $f^{(\vec{\imath})}(0)=0$. Then, by the general Leibniz rule,

$$
[m(f \circ \varphi)-\lambda f]^{(\vec{\jmath})}(0)=\sum_{\vec{\imath}<\vec{\jmath}}\binom{\vec{\jmath}}{\vec{\imath}} m^{(\vec{\jmath}-\vec{\imath})}(0) e^{\vec{\imath}} f^{(\vec{\imath})}(0)+m(0) e^{\vec{\jmath}} f^{(\vec{\jmath})}(0)-\lambda f^{(\vec{\jmath})}(0)
$$

But if $\vec{\imath}<\vec{\jmath}$, we get $i_{k}<j_{k}=0$, so $i_{k}=0$, and $f^{(\vec{\imath})}(0)=0$. Thus,

$$
[m(f \circ \varphi)-\lambda f]^{(\vec{\jmath}}(0)=\left(m(0) e^{\vec{\jmath}}-\lambda\right) f^{(\vec{\jmath})}(0)=g^{(\vec{\jmath})}(0)=0
$$

Finally, by Lemma 5.4, $\lambda \neq m(0) e^{\vec{\jmath}}$, so $f^{(\vec{\jmath})}(0)=0$.
We conclude that $f \in z_{k} \operatorname{Hol}\left(\mathbb{B}_{N}\right)$, so $T-\lambda \mathrm{Id}$ is bijective. Therefore,

$$
\lambda \notin \sigma\left(W_{m, \varphi}\right) \Longrightarrow \lambda \notin \sigma(T)=e^{i \theta_{k}} \sigma\left(W_{m, \varphi}\right) .
$$

We deduce that $e^{i \theta_{k}} \sigma\left(W_{m, \varphi}\right) \subset \sigma\left(W_{m, \varphi}\right)$. Using multiplicativity, for all $\vec{\jmath} \in \mathbb{N}_{0}^{N}$,

$$
e^{\vec{\jmath}} \sigma\left(W_{m, \varphi}\right) \subset \sigma\left(W_{m, \varphi}\right) .
$$

We can now show the main assertion of the proposition.
If $\lambda \in \sigma\left(W_{m, \varphi}\right)$, then $\lambda^{p} \in \sigma\left(W_{m, \varphi}\right)^{p}=\sigma\left(W_{m, \varphi}^{p}\right)=\sigma\left(M_{m_{p}}\right)=m_{p}\left(\mathbb{B}_{N}\right)$.
Conversely, if $\lambda^{p} \in m_{p}\left(\mathbb{B}_{N}\right)$, we get $\lambda^{p} \in \sigma\left(W_{m, \varphi}\right)^{p}$, so there exists $\mu \in \sigma\left(W_{m, \varphi}\right)$ such that $\lambda^{p}=\mu^{p}$, i.e. $\lambda=\mu \exp (2 i k \pi / p)$, with $k \in\{0, \cdots, p-1\}$. Moreover, it was shown in [15] that there exists $\vec{\jmath} \in \mathbb{N}_{0}^{N}$ such that $\exp (2 i k \pi / p)=e^{\vec{\jmath}}$. Finally,

$$
\lambda=\mu \exp \left(\frac{2 i k \pi}{p}\right)=\mu e^{\vec{\jmath}} \in e^{\vec{\jmath}} \sigma\left(W_{m, \varphi}\right) \subset \sigma\left(W_{m, \varphi}\right)
$$

6. Other Results

In this last section, we concatenate all the other results about the spectra of $W_{m, \varphi}$ which do not fit in the cases studies above.
6.1. Symbol bijective, non-periodic. If φ is a non-periodic holomorphic self-map of \mathbb{B}_{N}, then for all $z \in \mathbb{B}_{N}$, at least one coordinate of $\left(D^{n} z\right)$ does not converge when n goes to infinity. We obtain the generalization of [3, Proposition 3.6] in the following result.

Lemma 6.1. If there exists $z_{0} \in \mathbb{B}_{N}$ such that $m\left(z_{0}\right)=0$, then $\sigma_{p}\left(W_{m, \varphi}\right)=\varnothing$.
Proof. First, note that m and φ are non-constant, so if $W_{m, \varphi}(f)=m(f \circ \varphi)=0$, then $f \equiv 0$. Hence, $0 \notin \sigma_{p}\left(W_{m, \varphi}\right)$.

Let $\lambda \in \mathbb{C}^{*}$ and $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m(f \circ \varphi)=\lambda f$. Then,

$$
f\left(z_{0}\right)=m\left(z_{0}\right) f\left(D z_{0}\right)=0
$$

so $m\left(D^{-1} z_{0}\right) f\left(z_{0}\right)=\lambda f\left(D^{-1} z_{0}\right)=0$. Iterating this equation, for all $n \in \mathbb{N}_{0}$,

$$
f\left(D^{-n} z_{0}\right)=0
$$

But $\left\{D^{-n} z_{0}: n \in \mathbb{N}_{0}\right\}$ has an accumulation point. Thus, $f \equiv 0$, so $\lambda \notin \sigma_{p}\left(W_{m, \varphi}\right)$.
6.2. Symbol elliptic non-attractive. If φ is an elliptic non-attractive self-map of \mathbb{B}_{N}, then the iterates of φ do not converge to a point, but to a map $h: \mathbb{B}_{N} \rightarrow \mathbb{B}_{N}$. In this case, we have the following result.

Proposition 6.2. Let φ be an elliptic non attractive self-map of \mathbb{B}_{N}. Assume that $\varphi(0)=0, \varphi \notin \operatorname{Aut}\left(\mathbb{B}_{N}\right)$ and $m(0) \neq 0$. Then, $\sigma_{p}\left(W_{m, \varphi}\right) \subset \overline{D(0,|m(0)|)}$.

Proof. Using the proof of Proposition 4.2, the sequence $\left(w_{n}\right)$ defined by

$$
w_{n}(z)=\frac{1}{m(0)^{n}} \prod_{k=0}^{n-1} m\left(\varphi^{[k]}(z)\right)
$$

converges uniformly on all compact subsets of \mathbb{B}_{N} to a map w.
Hence, if there exist $\lambda \in \mathbb{C}^{*}$ and $f \in \operatorname{Hol}\left(\mathbb{B}_{N}\right) \backslash\{0\}$ such that $m(f \circ \varphi)=\lambda f$, after n iterations,

$$
w_{n}\left(f \circ \varphi^{[n]}\right)=\left(\frac{\lambda}{m(0)}\right)^{n} f .
$$

Letting $n \rightarrow \infty$, there is a subsequence of the left side of this identity that goes to $w(f \circ h)$. If $|\lambda|>|m(0)|$, then the right side goes to ∞ at least at one point of \mathbb{B}_{N}, a contradiction.

As in [15], we now consider a particular case: assume that φ has «separable» variables, that is φ can be written as

$$
\varphi(z)=\left(\varphi_{1}\left(z_{1}\right), \cdots, \varphi_{N}\left(z_{N}\right)\right)
$$

with $\varphi_{k} \in \operatorname{Hol}(\mathbb{D})$ elliptic such that $\varphi(0)=0$.
Note that if φ is elliptic non attractive and not bijective, then by Theorem 1.2 and one-variable Denjoy-Wolff's theory, we will assume that some components will be rotations, and the other ones must be elliptic non invertible maps (in one variable) fixing 0 . We obtain the following theorem.

Theorem 6.3. Let φ be an elliptic non attractive self-map of \mathbb{B}_{N}, such that φ is not invertible, $\varphi(0)=0$, and

$$
\varphi\left(z_{1}, \cdots, z_{N}\right)=\left(\varphi_{1}\left(z_{1}\right), \cdots, \varphi_{p}\left(z_{p}\right), \beta_{p+1} z_{p+1}, \cdots, \beta_{N} z_{N}\right)
$$

with $\varphi_{1}, \cdots, \varphi_{p}$ non bijective, $\left|\varphi_{1}^{\prime}(0)\right|, \cdots,\left|\varphi_{p}^{\prime}(0)\right|<1$, and $\left|\beta_{p+1}\right|=\cdots=\left|\beta_{N}\right|=1$. Then,

$$
\begin{aligned}
& \{0\} \cup\left\{m(0) \prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}}: n_{1}, \cdots, n_{N} \in \mathbb{N}_{0}\right\} \\
& \subset \sigma\left(W_{m, \varphi}\right) \subset\left(\bigcup_{n_{1}, \cdots, n_{p} \geq 0}\left[\prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{n_{k}}\right] m(0) \mathbb{T}\right) \cup\{0\} .
\end{aligned}
$$

Note that if there exists $j \in\{1, \cdots, n\}$ such that $\varphi_{j}^{\prime}(0)=0$, then all the terms

$$
m(0) \prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}}
$$

with $n_{k} \neq 0$ vanish. Then, we will assume that $0<\left|\varphi_{1}^{\prime}(0)\right|, \cdots,\left|\varphi_{p}^{\prime}(0)\right|<1$.
The proof of this theorem has already been done without weight in [15]. In dimension 2, considering the map $\varphi: z \mapsto\left(\varphi_{1}\left(z_{1}\right), \beta_{2} z_{2}\right)$, the author used the following decomposition of $\operatorname{Hol}\left(\mathbb{B}_{2}\right)$, valid for all $\ell \in \mathbb{N}$:

$$
\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell} \oplus z_{1}^{\ell} \operatorname{Hol}\left(\mathbb{B}_{2}\right), \quad W_{\ell}=\left\{\sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right): f_{q} \in \operatorname{Hol}(\mathbb{D})\right\}
$$

We will consider an other decomposition of $\operatorname{Hol}\left(\mathbb{B}_{2}\right)$, using the Koenigs' function κ_{1} and the weighted Koenigs' function w of φ_{1}. The proof of the following property goes along the same lines as in [15], we write it here for sake of completeness.

Proposition 6.4. For all $\ell \in \mathbb{N}$, consider

$$
\tilde{W}_{\ell}=\left\{w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right): f_{q} \in \operatorname{Hol}(\mathbb{D})\right\}, \quad X_{\ell}=z_{1}^{\ell} \operatorname{Hol}\left(\mathbb{B}_{2}\right)
$$

Then
(i) $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell} \oplus X_{\ell}$,
(ii) $C_{\varphi}\left(W_{\ell}\right) \subset W_{\ell}$ and $C_{\varphi}\left(X_{\ell}\right) \subset X_{\ell}$.

Proof. We prove (i) by induction, in a same way as in [15].
$\underline{m=1}$: We have to show that $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{1} \oplus X_{1}$.
Let $f \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. Using the Maclaurin coefficients of f, we may write

$$
f(z)=\sum_{j \geq 0} \sum_{k \geq 0} a_{j k} z_{1}^{j} z_{2}^{k}=\underbrace{\sum_{k \geq 0} a_{0 k} z_{2}^{k}}_{=f_{0}\left(z_{2}\right)}+\underbrace{z_{1} \sum_{j \geq 1} \sum_{k \geq 0} a_{j k} z_{1}^{j-1} z_{2}^{k}}_{=F(z)} .
$$

Since $w(0)=1$, we may write $w=1+\tilde{w}$, with $\tilde{w}\left(z_{1}\right) \in z_{1} \operatorname{Hol}(\mathbb{D})$. Hence,

$$
f(z)=\underbrace{w\left(z_{1}\right) f_{0}\left(z_{2}\right)}_{\in W_{1}}-\underbrace{\tilde{w}\left(z_{1}\right) f_{0}\left(z_{2}\right)+F(z)}_{\in X_{1}} .
$$

Finally, we get $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{1}+X_{1}$.
Now, assume that $f \in W_{1} \cap X_{1}$. We can write

$$
f(z)=w\left(z_{1}\right) f_{0}\left(z_{2}\right)=z_{1} F(z)
$$

with $f_{0} \in \operatorname{Hol}(\mathbb{D})$ and $F \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. Once again using \tilde{w}, we get

$$
f_{0}\left(z_{2}\right)=z_{1} F(z)-\tilde{w}\left(z_{1}\right) f_{0}\left(z_{2}\right)
$$

Since $\tilde{w}(0)=0$, considering $z=\left(0, z_{2}\right)$, we obtain $f_{1}\left(z_{2}\right)=0$ for all $z_{2} \in \mathbb{D}$. Thus, $f \equiv 0$, so $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{1} \oplus X_{1}$.
$\ell \rightarrow \ell+1$: Assume that $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell} \oplus X_{\ell}$.
Let $f \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. By induction hypothesis,

$$
f(z)=w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right)+z_{1}^{\ell} \tilde{f}(z)
$$

with $f_{0}, \cdots, f_{\ell-1} \in \operatorname{Hol}(\mathbb{D})$ and $\tilde{f} \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. Using the same calculations as for $\ell=1$, we may find $f_{\ell} \in \operatorname{Hol}(\mathbb{D})$ and $g \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$ such that

$$
z_{1}^{\ell} \tilde{f}(z)=z_{1}^{\ell} f_{\ell}\left(z_{2}\right)+z_{1}^{\ell+1} g(z)
$$

Moreover, since $\kappa_{1}(0)=0, \kappa_{1}^{\prime}(0)=1$ and $w(0)=1$, there exists $h \in \operatorname{Hol}(\mathbb{D})$ such that

$$
w\left(z_{1}\right) \kappa_{1}^{\ell}\left(z_{1}\right)=z_{1}^{\ell}+z_{1}^{\ell+1} h\left(z_{1}\right) .
$$

Therefore,

$$
z_{1}^{\ell} \tilde{f}(z)=w\left(z_{1}\right) \kappa_{1}^{\ell}\left(z_{1}\right) f_{\ell}\left(z_{2}\right)+z_{1}^{\ell+1}\left(g(z)-h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right)
$$

Finally, we have

$$
f(z)=\underbrace{w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right)+w\left(z_{1}\right) \kappa_{1}^{\ell}\left(z_{1}\right) f_{\ell}\left(z_{2}\right)}_{\in W_{\ell+1}}+\underbrace{z_{1}^{\ell+1}\left(g(z)-h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right)}_{\in X_{\ell+1}},
$$

so $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell+1}+X_{\ell+1}$.
Now, assume that $f \in W_{\ell+1} \cap X_{\ell+1}$. Then,

$$
f(z)=w\left(z_{1}\right) \sum_{q=0}^{\ell} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right)=z_{1}^{\ell+1} \tilde{f}(z)
$$

with $f_{0}, \cdots, f_{\ell} \in \operatorname{Hol}(\mathbb{D})$ and $\tilde{f} \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. Once again writing $w \kappa_{1}^{\ell}=z_{1}^{\ell}+z_{1}^{\ell+1} h$, we obtain

$$
\begin{aligned}
w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right) & =z_{1}^{\ell+1} \tilde{f}(z)-w\left(z_{1}\right) \kappa_{1}^{\ell}\left(z_{1}\right) f_{\ell}\left(z_{2}\right) \\
& =z_{1}^{\ell}\left(z_{1} \tilde{f}(z)-f_{\ell}\left(z_{2}\right)-z_{1} h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right) \in W_{\ell} \cap X_{\ell}=\{0\}
\end{aligned}
$$

Thus, $f(z)=w\left(z_{1}\right) \kappa_{1}^{\ell}\left(z_{1}\right) f_{\ell}\left(z_{2}\right)=z_{1}^{\ell+1} \tilde{f}(z)$, so

$$
z_{1}^{\ell} f_{\ell}\left(z_{2}\right)=z_{1}^{\ell+1}\left(\tilde{f}(z)-h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right)
$$

Denote by $\left(c_{j k}\right)$ the Maclaurin coefficients of the map $z \mapsto z_{1}^{\ell} f_{\ell}\left(z_{2}\right)$, and $\left(d_{j k}\right)$ those of the map $z \mapsto z_{1}^{\ell+1}\left(\tilde{f}(z)-h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right)$. Then,

$$
j \neq \ell \Longrightarrow c_{j k}=0 \quad \text { and } \quad j=\ell \Longrightarrow d_{j k}=0
$$

Finally, since $c_{j k}=d_{j k}$ for all $j, k \in \mathbb{N}_{0}$, we obtain

$$
z_{1}^{\ell} f_{\ell}\left(z_{2}\right)=z_{1}^{\ell+1}\left(\tilde{f}(z)-h\left(z_{1}\right) f_{\ell}\left(z_{2}\right)\right)=0 .
$$

Hence, $f_{\ell} \equiv 0$, so $f \equiv 0$. We proved that $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell} \oplus X_{\ell}$.

To finish, we prove (ii). If $f \in W_{\ell}$, then

$$
f=w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(z_{2}\right)
$$

with $f_{0}, \cdots, f_{\ell-1} \in \operatorname{Hol}(\mathbb{D})$. Thus,

$$
m(f \circ \varphi)(z)=m(0) w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \varphi_{1}^{\prime}(0)^{q} \kappa_{1}^{q}\left(z_{1}\right) f_{q}\left(\beta_{2} z_{2}\right)=w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) \tilde{f}_{q}\left(z_{2}\right)
$$

where $\tilde{f}_{q}\left(z_{2}\right)=m(0) \varphi_{1}^{\prime}(0)^{\ell} f_{q}\left(\beta_{2} z_{2}\right)$. Thus, $f \circ \varphi \in W_{\ell}$.
If $f \in X_{\ell}$, then $f(z)=z_{1}^{\ell} g(z)$, with $g \in \operatorname{Hol}\left(\mathbb{B}_{2}\right)$. Hence,

$$
m(f \circ \varphi)(z)=m(z) \varphi_{1}\left(z_{1}\right)^{\ell} g\left(\varphi_{1}\left(z_{1}\right), \beta_{2} z_{2}\right)
$$

However, since $\varphi_{1}(0)=0$, we may write $\varphi_{1}\left(z_{1}\right)=z_{1} \psi\left(z_{1}\right)$, with $\psi \in \operatorname{Hol}(\mathbb{D})$. Therefore,

$$
(f \circ \varphi)(z)=z_{1}^{\ell} \psi\left(z_{1}\right) m(z) g\left(\varphi_{1}\left(z_{1}\right), \beta_{2} z_{2}\right) \in X_{\ell}
$$

In order to prove the main theorem of this section, we use the two decompositions obtained above.
Proof of Theorem 6.3. Let $g \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. For all $\ell \in \mathbb{N}$, using the fact that $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=$ $\tilde{W}_{\ell} \oplus X_{\ell}$, we may write

$$
g(z)=w\left(z_{1}\right) \sum_{q=0}^{\ell-1} \kappa_{1}^{q}\left(z_{1}\right) g_{q}(\tilde{z})+z_{1}^{\ell} G_{1}(z)
$$

with $g_{0}, \cdots, g_{\ell-1} \in \operatorname{Hol}\left(\mathbb{B}_{N-1}\right)$ and $G_{1} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. Now, since $\operatorname{Hol}\left(\mathbb{B}_{2}\right)=W_{\ell} \oplus X_{\ell}$, going from one coordinate to an other, for all $\ell_{1}, \cdots, \ell_{p} \in \mathbb{N}$, we may write g as

$$
g(z)=\sum_{q_{1}=0}^{\ell_{1}-1} \cdots \sum_{q_{p}=0}^{\ell_{p}-1} w\left(z_{1}\right)\left(\prod_{k=1}^{p} \kappa_{k}^{q_{k}}\left(z_{k}\right)\right) g_{q_{1}, \cdots, q_{p}}\left(z_{p+1}, \cdots, z_{N}\right)+\sum_{k=1}^{p} z_{k}^{\ell_{k}} G_{k}(z)
$$

with $g_{q_{1}, \cdots, q_{p}} \in \operatorname{Hol}\left(\mathbb{B}_{N-p}\right)$ and $G_{k} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$. Denote $\tilde{G}_{k}=z_{k}^{\ell_{k}} G_{k}$.
Let $\lambda \in \mathbb{C}^{*}$ such that

$$
|\lambda| \notin\left\{m(0) \prod_{k=1}^{p}\left|\varphi_{k}^{\prime}(0)\right|^{n_{k}}: n_{1}, \cdots, n_{p} \in \mathbb{N}_{0}\right\} .
$$

- For all $k \in\{1, \cdots, p\}$ and for ℓ_{k} sufficiently large, the map

$$
\tilde{F}_{k}=\sum_{n \geq 0} \frac{m_{n}\left(\tilde{G}_{k} \circ \varphi^{[n]}\right)}{\lambda^{n}}
$$

is a uniformly convergent series, and is holomorphic on a small ball $B(0, \varepsilon)$ (cf. Lemma 4.9). Moreover, it satisfies $m\left(\tilde{F}_{k} \circ \varphi\right)-\lambda \tilde{F}_{k}=\tilde{G}_{k}$. Lemma 4.8 gives $F_{k} \in \operatorname{Hol}\left(\mathbb{B}_{N}\right)$ such that $m\left(F_{k} \circ \varphi\right)-\lambda F_{k}=\tilde{G}_{k}$.

- Denote by ϕ the map defined as $\phi\left(z_{p+1}, \cdots, z_{N}\right)=\left(\beta_{p+1} z_{p+1}, \cdots, \beta_{N} z_{N}\right)$. Let $0 \leq q_{1} \leq \ell_{1}-1, \cdots, 0 \leq q_{p} \leq \ell_{p}-1$. Since $|\lambda| \neq m(0) \prod_{k=1}^{p}\left|\varphi_{k}^{\prime}(0)\right|^{q_{k}}$ and ϕ is bijective, there exists $f_{q_{1}, \cdots, q_{p}} \in \operatorname{Hol}(\mathbb{D})$ such that

$$
m(0) \prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{q_{k}}\left(f_{q_{1}, \cdots, q_{p}} \circ \phi\right)-\lambda f_{q_{1}, \cdots, q_{p}}=g_{q_{1}, \cdots, q_{p}}
$$

To summarise, the map f defined as

$$
f(z)=\sum_{q_{1}=0}^{\ell_{1}-1} \cdots \sum_{q_{p}=0}^{\ell_{p}-1} w\left(z_{1}\right)\left(\prod_{k=1}^{p} \kappa_{k}^{q_{k}}\left(z_{k}\right)\right) f_{q_{1}, \cdots, q_{p}}\left(z_{p+1}, \cdots, z_{N}\right)+\sum_{k=1}^{p} z_{k}^{\ell_{k}} F_{k}(z)
$$

satisfies $m(f \circ \varphi)-\lambda f=g$, and is holomorphic on \mathbb{B}_{N}. Hence, $W_{m, \varphi}-\lambda$ Id is bijective.

Conversely, let $n_{1} \in \mathbb{N}$, and $f_{1}, \cdots, f_{N}: \mathbb{D} \rightarrow \mathbb{C}$ holomorphic maps such that

- $m\left(f_{1} \circ \varphi_{1}\right)=m(0) \varphi_{1}^{\prime}(0)^{n_{1}} f_{1}$,
- $f_{k} \circ \varphi_{k}=\varphi_{k}^{\prime}(0) f_{k} \quad(2 \leq k \leq p)$,
- $f_{k} \circ \varphi_{k}=\beta_{k} f_{k} \quad(p+1 \leq k \leq N)$.

Such maps exist using the results in one variable ([4, 2, 3]), since φ has separable variables. For $n_{2}, \cdots, n_{N} \in \mathbb{N}_{0}$, consider $f: \mathbb{B}_{N} \rightarrow \mathbb{C}$ defined by

$$
f(z)=f_{1}\left(z_{1}\right) \times \prod_{k=2}^{N} f_{k}\left(z_{k}\right)^{n_{k}}
$$

Then,

$$
\begin{aligned}
{[m(f \circ \varphi)](z) } & =m(z)\left(f_{1} \circ \varphi_{1}\right)(z) \times \prod_{k=2}^{p} f_{k}\left(\varphi_{k}\left(z_{k}\right)\right)^{n_{k}} \times \prod_{k=p+1}^{N} f_{k}\left(\beta_{k} z_{k}\right)^{n_{k}} \\
& =m(0) \varphi_{1}^{\prime}(0)^{n_{1}} f_{1}(z) \times \prod_{k=2}^{p} \varphi_{k}^{\prime}(0)^{n_{k}} f_{k}\left(z_{k}\right)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}} f_{k}\left(z_{k}\right)^{n_{k}} \\
& =\left(m(0) \prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}}\right) f(z)
\end{aligned}
$$

Therefore, $m(0) \prod_{k=1}^{p} \varphi_{k}^{\prime}(0)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}} \in \sigma_{p}\left(C_{\varphi}\right) \subset \sigma\left(C_{\varphi}\right)$.
Conflict of interest: I hereby declare that I have no conflicts of interest to disclose.
Acknowledgments: This research is partly supported by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58. The author thanks the conference ACOTCA, held in June 2023 in Thessaloniki, where a part of this work was presented. The author wishes to thank the reviewers for their careful reading and helpful comments.

References

[1] M. Abate. Iteration theory of holomorphic maps on taut manifolds. Res. Lect. Notes Math. Commenda di Rende (Italy): Mediterranean Press, 1989.
[2] W. Arendt, E. Bernard, B. Célariès, and I. Chalendar. Denjoy-Wolff theory and spectral properties of weighted composition operators on $\operatorname{Hol}(\mathbb{D})$. Ill. J. Math., 66(4):463-489, 2022.
[3] W. Arendt, E. Bernard, B. Célariès, and I. Chalendar. Spectral properties of weighted composition operators on $\operatorname{Hol}(\mathbb{D})$ induced by rotations. Indiana Univ. Math. J., 72(5):1789-1820, 2021.
[4] W. Arendt, B. Célariès, and I. Chalendar. In Koenigs' footsteps: diagonalization of composition operators. J. Funct. Anal., 278(2):24, 2020. Id/No 108313.
[5] F. Bayart and S. Charpentier. Hyperbolic composition operators on the ball. Trans. Am. Math. Soc., 365(2):911-938, 2013.
[6] F. Bracci. Local dynamics of holomorphic diffeomorphisms. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8), 7(3):609-636, 2004.
[7] P. S. Bourdon. Spectra of some composition operators and associated weighted composition operators. J. Oper. Theory, 67(2):537-560, 2012.
[8] I. Chalendar, P. Gumenyuk and J. E. McCarthy. A note on composition operators on model spaces. 2023. https://arxiv.org/abs/2305.07526.
[9] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic functions. Boca Raton, FL: CRC Press, 1995.
[10] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge: Cambridge University Press, 2nd ed. edition, 2013.
[11] G. Koenigs. Recherches sur les intégrales de certaines équations fonctionnelles. Annales Scientfiques de l'École Normale Supérieure, 3.1:3-41, 1884.
[12] Y. Kubota. Iteration of holomorphic maps of the unit ball into itself. Proc. Am. Math. Soc., 88:476-480, 1983.
[13] T. Ma. Higher chain formula proved by combinatorics. Electron. J. Comb., 16(1):research paper n21, 7, 2009.
[14] B. D. MacCluer. Iterates of holomorphic self-maps of the unit ball in \mathbb{C}^{n}. Mich. Math. J., 30:97-106, 1983.
[15] L. Oger. Study of composition operators on the unit ball of \mathbb{C}^{N}. Submitted. 2023. https://hal.science/hal-04290257.
[16] K. Oka. Sur les fonctions analytiques de plusieurs variables. I. Domaines convexes par rapport aux fonctions rationnelles. J. Sci. Hiroshima Univ., Ser. A, 6:245-255, 1936.
[17] P. J. Olver. Applications of Lie groups to differential equations. Paperback ed. Vol 107. Grad. Texts Math. New York, NY:Springer, 2000.
[18] H. Poincaré. Oeuvres, Tome I. Gauthier-Villard, Paris, 1928, pp. XXXVI-CXXIX.
[19] J. Raissy. Linearization of holomorphic germs with quasi-Brjuno fixed points. Math. Z., 264(4):881-900, 2010.
[20] J. H. Shapiro. Composition operators and classical function theory. Universitext. New York: Springer-Verlag, 1993.
[21] A. Weil. L'intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann., 111:178-182, 1935.

Lucas OGER, Université Gustave Eiffel, LAMA, (UMR 8050), UPEM, UPEC, CNRS,
F-77454, Marne-la-Vallée (France)
Email address: lucas.oger@univ-eiffel.fr

