STUDY OF WEIGHTED ELLIPTIC COMPOSITION OPERATORS ON THE UNIT BALL OF \mathbb{C}^N

L. OGER

ABSTRACT. We study the general properties, point spectrum and spectrum of a weighted composition operator $W_{m,\varphi}$ with elliptic symbol φ on the unit ball \mathbb{B}_N of \mathbb{C}^N , and general weight $m \in \operatorname{Hol}(\mathbb{B}_N)$. We give a complete description of the spectra in the vast majority of cases, and we provide inclusions in general.

Contents

1. Introduction	1
2. General properties	3
3. Vanishing weight at 0	5
4. Elliptic attractive symbols	6
4.1. Invertible Jacobian at 0	6
4.2. Non-invertible Jacobian at 0, with 0 as unique eigenvalue	11
4.3. General results	13
5. Bijective periodic symbols	15
6. Other results	18
6.1. Symbol bijective, non-periodic	18
6.2. Symbol elliptic non-attractive	19
References	24

1. INTRODUCTION

Let $N \geq 2$, $\mathbb{B}_N = \{z \in \mathbb{C}^N : |z| < 1\}$ be the unit ball of \mathbb{C}^N for the euclidean norm, and $\operatorname{Hol}(\mathbb{B}_N)$ be the set of all complex-valued holomorphic functions on \mathbb{B}_N . Consider $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ a holomorphic map, and $m \in \operatorname{Hol}(\mathbb{B}_N)$. The weighted composition operator, with symbol φ and weight m, denoted by $W_{m,\varphi}$, is defined on $\operatorname{Hol}(\mathbb{B}_N)$ by

$$W_{m,\varphi}(f) = m(f \circ \varphi).$$

It is a linear, multiplicative operator.

Theory of composition operators is a very popular subject. Most of the vast literature on this topic (see for example the monographs from Cowen, MacCluer in [9], Shapiro in

²⁰²⁰ Mathematics Subject Classification. 47B33, 32A10, 47A10.

Key words and phrases. weighted composition operator, spectrum, holomorphic functions in several variables, Fréchet space.

[20] or more recently, the articles [5, 7, 8]) considers these operators on Banach spaces of analytic functions, such as Hardy, Dirichlet, or Bergman spaces.

However, in recent years, W. Arendt et al. ([2, 3]) studied one-variable weighted composition operators directly on the Fréchet space $\operatorname{Hol}(\mathbb{D})$, where \mathbb{D} denotes the unit disc of \mathbb{C} . In this paper, we will only consider *elliptic* symbols, that is φ having a fixed point in the ball. Upon conjugating by some automorphism, we can assume that 0 is a fixed point of φ .

The results of [2, 3] for elliptic symbols are summarized in the following theorem. Denote by \mathbb{N}_0 the set of all non-negative integers, and $\mathbb{N} = \mathbb{N}_0 \setminus \{0\}$.

Theorem 1.1. Let φ be an elliptic self-map of \mathbb{D} such that $\varphi(0) = 0$, and $m \in \operatorname{Hol}(\mathbb{D})$. (i) If $\varphi \equiv 0$, then

$$\sigma_p(W_{m,\varphi}) = \{0, m(0)\} = \sigma(W_{m,\varphi}).$$

(ii) If m(0) = 0 and $\varphi \not\equiv 0$, then

$$\sigma_p(W_{m,\varphi}) = \emptyset, \qquad \sigma(W_{m,\varphi}) = \{0\}.$$

(iii) If $m(0) \neq 0$, $\varphi'(0) = 0$ and $\varphi \not\equiv 0$, then

$$\sigma_p(W_{m,\varphi}) = \{m(0)\}, \qquad \sigma(W_{m,\varphi}) = \{0, m(0)\}.$$

- (iv) If $m(0) \neq 0$ and $0 < |\varphi'(0)| < 1$, then $\sigma_p(W_{m,\varphi}) = \{m(0)\varphi'(0)^n : n \in \mathbb{N}_0\}, \qquad \sigma(W_{m,\varphi}) = \sigma_p(W_{m,\varphi}) \cup \{0\}.$
- (v) If $m(0) \neq 0$ and $\varphi(z) = \beta z$, $|\beta| = 1$, $\beta^p = 1$, then if we define the map m_p by $m_p(z) = m(z)m(\beta z)\cdots m(\beta^{p-1}z)$,

$$\sigma_p(W_{m,\varphi}) \neq \varnothing \iff \sigma_p(W_{m,\varphi}) = \{m(0)\beta^k : k \in \mathbb{N}_0\} \iff m_p \text{ is a nonzero constant.}$$

Moreover, $\sigma(W_{m,\varphi}) = \{\lambda \in \mathbb{C} : \lambda^p \in m_p(\mathbb{D})\}.$

This article can be considered as a sequel to [2], [3] and [15]. The aim is to construct a similar theorem in the multidimensional case. Note that the behaviour of the point spectrum $\sigma_p(W_{m,\varphi})$ and spectrum $\sigma(W_{m,\varphi})$ of composition operators strongly depends on the properties of the maps m and φ .

In order to study this function, we need a generalization of Denjoy-Wolff's theorem, by B. MacCluer in [14] and Y. Kubota in [12], presented here as a single result. Let $\varphi^{[n]}$ be the *n*-th iteration of φ .

Theorem 1.2. Let φ be a self-map of \mathbb{B}_N , and assume that φ has a fixed point in \mathbb{B}_N .

- (a) If a subsequence of $(\varphi^{[n]})_{n\geq 0}$ converges to a constant map $f \equiv z_0 \in \mathbb{B}_N$, then the whole sequence converges to z_0 . In this case, z_0 is the unique fixed point of φ .
- (b) Otherwise, upon conjugating, there exists a subsequence of $(\varphi^{[n]})$ that converges to a function h of the form

$$h(z) = (z_1, \cdots, z_r, 0, \cdots, 0), \quad with \quad r \in \{1, \cdots, N\}.$$

This theorem classifies the elliptic self-maps of \mathbb{B}_N into two categories.

Definition 1.3. Let φ be a self-map of \mathbb{B}_N . Assume that φ has a fixed point in \mathbb{B}_N .

- In the case (a) of Theorem 1.2, we say that φ is *elliptic attractive*, and the *Denjoy-Wolff point* of φ is defined as the z_0 .
- In the case (b) of Theorem 1.2, we say that φ is *elliptic non attractive*.

The paper is organized as follows.

First, in Section 2, we consider the general properties of weighted composition operators on the unit ball: continuity (Proposition 2.1), invertibility (Proposition 2.2), and compactness (Proposition 2.3). We also give a formula about the partial derivatives of composition of functions.

Then, in Section 3, we study the spectral properties of $W_{m,\varphi}$ if m(0) = 0. In particular, we prove that the point spectrum is empty (Proposition 3.1), and that the spectrum contains only 0 (Proposition 3.3).

Next, in Section 4, we focus on composition operators with non-vanishing weight at 0 and non-bijective symbol. We split the analysis into three cases. First, we consider symbols φ such that the Jacobian matrix at 0, $\varphi'(0)$, is invertible. In this case, the point spectrum is completely described (Proposition 4.5), as well as the spectrum if we assume moreover that $\varphi'(0)$ is diagonal (Proposition 4.10). Then, we focus on Jacobian matrices such that 0 is their only eigenvalue. In such case, the point spectrum is $\{m(0)\}$ or $\{0, m(0)\}$ (Proposition 4.11), and the spectrum is $\{0, m(0)\}$ (Theorem 4.12). Finally, we give general inclusions for the spectra of $W_{m,\varphi}$ (Propositions 4.14 and 4.15).

In Section 5, we consider non-vanishing weights and bijective periodic symbols. We give a characterization of when the point spectrum is non-empty (Proposition 5.3), and a description of the spectrum of $W_{m,\varphi}$ (Theorem 5.5).

Finally, in Section 6, we give results about the point spectrum in two cases: when the weight vanishes at some point in \mathbb{B}_N and the symbol is bijective aperiodic (Lemma 6.1), and when the symbol is elliptic non-attractive (Proposition 6.2).

2. General properties

In this section, we go along the same lines as [2]. We first focus on continuity.

Proposition 2.1 (Continuity). The operator $W_{m,\varphi}$ is continuous on $\mathcal{L}(\operatorname{Hol}(\mathbb{B}_N))$.

Proof. Let $k \in \mathbb{N}$. Denote by $\|\cdot\|_{\infty,k}$ the semi-norm on $\operatorname{Hol}(\mathbb{B}_N)$ defined by

$$\|f\|_{\infty,k} = \sup_{z \in K_k} |f(z)|, \quad \text{with} \quad K_k = \left(1 - \frac{1}{k}\right) \overline{\mathbb{B}_N}.$$

Since φ is continuous and K_k is compact, there exists $j \in \mathbb{N}$ such that $\varphi(K_k) \subset K_j$. Hence, for all $f \in \operatorname{Hol}(\mathbb{B}_N)$,

$$\|W_{m,\varphi}(f)\|_{\infty,k} = \sup_{z \in K_k} |m(z)f(\varphi(z))| \le \sup_{z \in K_k} |m(z)| \sup_{w \in K_j} |f(w)| \le \|m\|_{\infty,k} \|f\|_{\infty,j}. \quad \Box$$

We now study the invertibility of weighted composition operators.

Proposition 2.2 (Invertibility). The operator $W_{m,\varphi}$ is invertible if and only if m does not vanish on \mathbb{B}_N and φ is bijective.

Proof. If φ is bijective and m does not vanish on \mathbb{B}_N , as in [2], we consider the map

$$\eta = \frac{1}{m \circ \varphi^{-1}},$$

which satisfies $W_{\eta,\varphi^{-1}} \circ W_{m,\varphi} = W_{m,\varphi} \circ W_{\eta,\varphi^{-1}} = \text{Id.}$ Hence, $W_{m,\varphi}$ is invertible.

Conversely, if there exists $z_0 \in \mathbb{B}_N$ such that $m(z_0) = 0$, then for all $f \in Hol(\mathbb{B}_N)$,

$$(W_{m,\varphi}(f))(z_0) = 0,$$

so $W_{m,\varphi}$ is not invertible. Assume now that $W_{m,\varphi}$ is invertible. Then, for all $z \in \mathbb{B}_N$, we know that $m(z) \neq 0$. Let $g \in \operatorname{Hol}(\mathbb{B}_N)$. Then $h = mg \in \operatorname{Hol}(\mathbb{B}_N)$, and there exists $f \in \operatorname{Hol}(\mathbb{B}_N)$ such that

$$m(f \circ \varphi) = h = mg$$

Dividing this equality by m (since m does not vanish on \mathbb{B}_N), we obtain $f \circ \varphi = g$. Therefore, C_{φ} is invertible, so φ is bijective (see [15, Proposition 2.4]).

Finally, let us concentrate on the compactness of $W_{m,\varphi}$. Recall that for $f \in \text{Hol}(\mathbb{B}_N)$, the supremum norm of f is defined by $||f||_{\infty} = \sup\{f(z) : z \in \mathbb{B}_N\}$.

Proposition 2.3 (Compactness).

The operator $W_{m,\varphi}$ is compact if and only if m = 0 or $\|\varphi\|_{\infty} < 1$.

Proof. If m = 0, then $W_{m,\varphi} = 0$, so $W_{m,\varphi}$ is compact.

If $m \neq 0$ and $\|\varphi\|_{\infty} < 1$, then $W_{m,\varphi} = M_m C_{\varphi}$, where $M_m : f \mapsto mf$ is the multiplication operator by m, and $C_{\varphi} : f \mapsto f \circ \varphi$. Since $\|\varphi\|_{\infty} < 1$, using [15], the operator C_{φ} is compact. Hence, because the set of all compact operators is an ideal of $\mathcal{L}(\operatorname{Hol}(\mathbb{B}_N))$, the operator $W_{m,\varphi}$ is compact.

Conversely, if $m \neq 0$ and $\|\varphi\|_{\infty} = 1$, then for 0 < r < 1, we are able to choose $z_0 \in \mathbb{B}_N$ such that $|\varphi(z_0)| > r$ and $m(z_0) \neq 0$. The same proof as in the non-weighted case [15, Proposition 2.8], using Oka-Weil's theorem ([16, 21]) gives the result. \Box

Let us finish this section with a wonderful property concerning the partial derivatives of composed maps. We define two orders on \mathbb{N}_0^N . If $\vec{i}, \vec{j} \in \mathbb{N}_0^N$, set $|\vec{i}| = i_1 + \cdots + i_N$ and

$$\vec{i} \prec \vec{j} \iff |\vec{i}| < |\vec{j}| \text{ or } \begin{cases} |\vec{i}| = |\vec{j}| \\ \exists k \in \{1, \cdots, N\}, \ i_1 = j_1, \ \cdots, i_{k-1} = j_{k-1}, \ i_k < j_k. \end{cases}$$
$$\vec{i} \le \vec{j} \iff \forall k \in \{1, \cdots, N\}, \ i_k \le j_k.$$

We write $\vec{i} \preccurlyeq \vec{j}$ if $\vec{i} \prec \vec{j}$ or $\vec{i} = \vec{j}$. The order \preccurlyeq is a well-order. Hence, we can define the *predecessor* and the *successor* of a vector $\vec{j} \in \mathbb{N}_0^N$. We denote them respectively by \vec{j}_- and \vec{j}_+ . For $\vec{j} \in \mathbb{N}_0^N$, $f \in \text{Hol}(\mathbb{B}_N)$ and $z \in \mathbb{C}^N$, let us denote

$$z^{\vec{j}} = \prod_{k=1}^{N} z_k^{j_k}, \qquad f^{(\vec{j})} = \frac{\partial^{|\vec{j}|} f}{\partial z^{\vec{j}}}.$$

Moreover, we define $\operatorname{Hol}_{\vec{j}}(\mathbb{B}_N) = \{ f \in \operatorname{Hol}(\mathbb{B}_N) : \forall \vec{i} \preccurlyeq \vec{j}, f^{(\vec{i})}(0) = 0 \}.$

The following lemma, proved in [15] using Faà di Bruno's formula ([13]), will be crucial. Since unitary matrices are automorphisms of the ball fixing 0, using Schür

decomposition ([10]), we assume in the following that the Jacobian matrix of φ at 0 is a triangular matrix, with diagonal entries $\lambda_1, \dots, \lambda_N$.

Lemma 2.4. Let $\vec{j} \in \mathbb{N}_0^N$. If $f \in \operatorname{Hol}_{\vec{j}_-}(\mathbb{B}_N)$, then

(1)
$$(f \circ \varphi)^{(j)}(0) = \lambda^{j} f^{(j)}(0).$$

3. VANISHING WEIGHT AT 0

When the weight m satisfies m(0) = 0, the spectra of $W_{m,\varphi}$ can be completely described, as it is proved in the following two properties.

Proposition 3.1. Let φ be elliptic, such that $\varphi(0) = 0$. If m(0) = 0, then

 $\sigma_p(W_{m,\varphi}) \subset \{0\}.$

Proof. Let $\mu \in \mathbb{C}^*$. If $f \not\equiv 0$ satisfies $m(f \circ \varphi) = \mu f$, then

- First, $\mu f(0) = [m(f \circ \varphi)](0) = m(0)f(0) = 0$, so f(0) = 0 since $\mu \neq 0$.
- Assume that for all $\vec{i} \prec \vec{j}$, $f^{(\vec{i})}(0) = 0$. Then, by Lemma 2.4 and the Leibniz rule,

$$\mu f^{(j)}(0) = [m(f \circ \varphi)]^{(j)}(0) = m(0)(f \circ \varphi)^{(j)}(0) = 0.$$

Therefore, $f^{(j)}(0) = 0$.

Finally, $f \equiv 0$, which is impossible. Thus $\sigma_p(W_{m,\varphi}) \subset \{0\}$.

Remark 3.2. For instance, consider N = 2, $\varphi(z_1, z_2) = (0, z_2)$ and $m(z_1, z_2) = z_1$. Then, for $f(z_1, z_2) = z_1$, we obtain $m(f \circ \varphi)(z_1, z_2) = z_1 f(\varphi(z_1, z_2)) = z_1 f(0, z_2) = 0$. Hence, $0 \in \sigma_p(W_{m,\varphi})$.

Proposition 3.3. Let φ be elliptic non automorphic, such that $\varphi(0) = 0$ and $\varphi \not\equiv 0$. If m(0) = 0, then

$$\sigma(W_{m,\varphi}) = \{0\}.$$

Proof. The proof is exactly the same as in [2, Theorem 4.8].

Remark 3.4. If $\varphi \equiv 0$ and m(0) = 0, we easily show that

$$\sigma_p(W_{m,\varphi}) = \sigma(W_{m,\varphi}) = \{0\}.$$

Indeed, in this case, $W_{m,\varphi}(f) = f(0)m$. Thus, for all $g \in \operatorname{Hol}(\mathbb{B}_N)$ and $\mu \neq 0$, the map

$$h = -\frac{1}{\mu} \left[\frac{g(0)}{\mu} m + g \right]$$

satisfies $h(0)m - \mu h = g$, so $\mu \notin \sigma(W_{m,\varphi})$. In addition, if we denote $e_1(z) = z_1$, we have $e_1(0) = 0$. Hence, we obtain $W_{m,\varphi}(e_1) = 0$, so $0 \in \sigma_p(W_{m,\varphi})$.

$$\square$$

4. Elliptic attractive symbols

Throughout the rest of the paper we assume that $m(0) \neq 0$. When φ is elliptic attractive, by Denjoy-Wolff theorem, φ is not bijective. Moreover, using [15, Lemma 4.1], $\|\varphi'(0)\| < 1$. We begin with the two following results, proved in the one-dimensional case in [2]. The proofs are going along the same lines in our context, the notation $|\cdot|$ describing the euclidean norm on the ball instead of the modulus on the disc.

Lemma 4.1. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$. For all $r \in (0, 1)$, there exists $\delta = \delta(r) \in (0, 1)$ such that for all $|z| \leq r$ and $n \geq 0$,

 $\left|\varphi^{[n]}(z)\right| \le \delta^n \left|z\right|.$

Proposition 4.2. Let φ be an elliptic attractive map such that $\varphi(0) = 0$, and $m \in Hol(\mathbb{D})$ such that $m(0) \neq 0$. The sequence $(w_n)_{n\geq 1}$ defined by

$$w_n(z) = \frac{m_n(z)}{m(0)^n}, \qquad m_n(z) = \prod_{k=0}^{n-1} m(\varphi^{[k]}(z))$$

converges uniformly on all compact subsets of \mathbb{B}_N to a map w, which is the only one to satisfy

$$m(w \circ \varphi) = m(0)w, \qquad w(0) = 1.$$

The function w is called weighted Koenigs' map of φ and m.

We now consider different situations, depending on the behaviour of $\varphi'(0)$.

4.1. Invertible Jacobian at 0. Let us recall Koenigs' theorem in several variables ([6, 15, ?, 19]), generalization of the result proved in 1884 in [11]. Denote by $\lambda = (\lambda_1, \dots, \lambda_N)$ the diagonal of the matrix $\varphi'(0)$.

Definition 4.3. We say that the eigenvalues are *resonant* if there exist $j \in \{1, \dots, N\}$ and $k_1, \dots, k_N \in \mathbb{N}$ such that $k_1 + \dots + k_N \geq 2$ and

$$\lambda_1^{k_1} \times \cdots \times \lambda_N^{k_N} = \lambda_j.$$

Theorem 4.4. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map, such that $\varphi(0) = 0$ and $\varphi'(0)$ is invertible and the eigenvalues of $\varphi'(0)$ are **not** resonant. Then there exists a holomorphic function $\kappa : \mathbb{B}_N \to \mathbb{C}^N$ such that $\kappa'(0) = \text{Id}$ and

(2)
$$\kappa \circ \varphi = \varphi'(0)\kappa.$$

The map κ is called *Koenigs' function* of φ .

Changing the order of the eigenvalues of $\varphi'(0)$, this theorem allows us to find functions $\eta_1, \dots, \eta_N \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ such that

$$\eta_k \circ \varphi = \lambda_k \eta_k, \qquad k = 1, \cdots, N.$$

We obtain the following proposition.

Proposition 4.5. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map, such that $\varphi(0) = 0$ and $\varphi'(0)$ is invertible and the eigenvalues of $\varphi'(0)$ are **not** resonant. Let $m \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(0) \neq 0$. Then,

$$\sigma_p(W_{m,\varphi}) = \{ m(0)\lambda^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N \},\$$

where $\lambda = (\lambda_1, \cdots, \lambda_N)$ is $\varphi'(0)$ eigenvalues' vector.

Proof. Let $\vec{j} \in \mathbb{N}_0^N$. Consider $f = w\eta^{\vec{j}}$, with w defined in Proposition 4.2. Then

$$m(f \circ \varphi) = m(w \circ \varphi) \left(\prod_{k=1}^{N} (\eta_k \circ \varphi)^{j_k} \right)$$
$$= m(0)w \left(\prod_{k=1}^{N} (\lambda_k \eta_k)^{j_k} \right) = m(0)\lambda^{\vec{j}} w \eta^{\vec{j}} = m(0)\lambda^{\vec{j}} f.$$

Hence, for all $\vec{j} \in \mathbb{N}_0^N$, $m(0)\lambda^{\vec{j}} \in \sigma_p(W_{m,\varphi})$.

Conversely, if $\mu \notin \{m(0)\lambda^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N\}$, and if $f \in \operatorname{Hol}(\mathbb{B}_N)$ satisfies $f \not\equiv 0$ and $m(f \circ \varphi) = \mu f$, we show that for all $\vec{j} \in \mathbb{N}_0^N$, $f^{(\vec{j})}(0) = 0$.

- Note that $[m(f \circ \varphi)](0) = m(0)f(0) = \mu f(0)$. Since $\mu \neq m(0)$, we get f(0) = 0.
- Assume that for all $\vec{i} \prec \vec{j}$, $f^{(\vec{i})}(0) = 0$. Then, by Lemma 2.4 and the general Leibniz rule ([17]),

(3)
$$[m(f \circ \varphi)]^{(j)}(0) = \sum_{\vec{\alpha} \le \vec{j}} {\binom{\vec{j}}{\vec{\alpha}}} m^{(\vec{j} - \vec{\alpha})}(0) (f \circ \varphi)^{(\vec{\alpha})}(0) = m(0) (f \circ \varphi)^{(j)}(0) = m(0) \lambda^{\vec{j}} f^{(j)}(0).$$

Indeed, if $\vec{\alpha} \leq \vec{j}$, then $\vec{\alpha} \preccurlyeq \vec{j}$. Therefore, since $f \in \operatorname{Hol}_{\vec{j}_{-}}(\mathbb{B}_{N}) \subset \operatorname{Hol}_{\vec{\alpha}_{-}}(\mathbb{B}_{N})$, by Lemma 2.4, $(f \circ \varphi)^{(\vec{\alpha})}(0) = 0$, unless $\vec{\alpha} = \vec{j}$. Finally, $m(0)\lambda^{\vec{j}}f^{(\vec{j})}(0) = \mu f^{(\vec{j})}(0)$, and since $\mu \neq m(0)\lambda^{\vec{j}}$, we obtain $f^{(\vec{j})}(0) = 0$.

We deduce that
$$f \equiv 0$$
, a contradiction. Hence, $\sigma_p(W_{m,\varphi}) = \{m(0)\lambda^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N\}.$

If $\varphi'(0)$ is diagonal, the Koenigs' functions associated with φ satisfy

$$\eta_k \circ \varphi = \lambda_k \eta_k, \qquad \eta_k(0) = 0, \qquad \frac{\partial \eta_k}{\partial z_\ell}(0) = \begin{cases} 1 & \text{if } \ell > k \\ 0 & \text{if } \ell = k \end{cases}$$

Let us start by establishing a property on the maps η_k .

Lemma 4.6. If $\vec{i}, \vec{j} \in \mathbb{N}_0^N$ satisfy $\vec{i} \preccurlyeq \vec{j}$, then

$$(\eta^{\vec{j}})^{(\vec{i})}(0) = \begin{cases} 0 & \text{if } \vec{i} \prec \vec{j}, \\ \vec{j}! & \text{if } \vec{i} = \vec{j}. \end{cases}$$

Proof. Note that for all $k \in \{1, \dots, N\}$, the Maclaurin series of η_k is

$$\eta_k(z) = \sum_{\ell=1}^k \alpha_{k\ell} z_\ell + o(|z|), \quad \text{with} \quad \alpha_{k\ell} \in \mathbb{C}.$$

Hence, by the multinomial Theorem,

$$\eta^{\vec{j}}(z) = \prod_{k=1}^{N} \left(\sum_{\ell=1}^{k} \alpha_{k\ell} z_{\ell} \right)^{j_{k}} + o(|z|^{|\vec{j}|}) = \prod_{k=1}^{N} \left(\sum_{|\vec{p}_{k}|=j_{k}} {j_{k} \choose \vec{p}_{k}} (\alpha_{k} z)^{\vec{p}_{k}} \right) + o(|z|^{|\vec{j}|})$$
$$= \sum_{|\vec{p}_{1}|=j_{1}} \cdots \sum_{|\vec{p}_{N}|=j_{N}} \beta_{p} z^{\vec{r}} + o(|z|^{|\vec{j}|}),$$

with $\beta_p \in \mathbb{C}$, $p_{k\ell} = 0$ if $k < \ell$, and

$$\vec{r} = (p_{11} + \dots + p_{N1}, p_{22} + \dots + p_{N2}, \dots, p_{NN}).$$

However, for $\vec{p_1}, \dots, \vec{p_N}$ satisfying these assumptions, $|\vec{r}| = |\vec{j}|$. Also, note that $p_{11} = j_1$, so $\vec{r} \succeq \vec{j}$. This gives the result for $\vec{i} \prec \vec{j}$. Moreover, the only way to get $\vec{r} = \vec{j}$ is by taking $p_{k\ell} = j_k \mathbb{1}_{\{k=\ell\}}$. Hence, we conclude for the case $\vec{i} = \vec{j}$ since $\beta_p = 1$, because $\alpha_{kk} = 1$ for all k.

Hence, we get the following theorem. For $\vec{j} \in \mathbb{N}^N$, let us define

$$X_{\vec{j}} = \operatorname{Vect}(w\eta^{\vec{i}} : \vec{i} \preccurlyeq \vec{j}), \qquad \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N) = \{ f \in \operatorname{Hol}(\mathbb{B}_N) : \forall \vec{i} \preccurlyeq \vec{j}, f^{(\vec{i})}(0) = 0 \}.$$

Theorem 4.7. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$ and $\varphi'(0)$ is diagonal, invertible. If $m(0) \neq 0$ then

- (i) For all $\vec{j} \in \mathbb{N}_0^N$, $\operatorname{Hol}(\mathbb{B}_N) = X_{\vec{j}} \oplus \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$.
- (ii) For all $\vec{j} \in \mathbb{N}_0^N$, if we define the operators $P_{\vec{j}}$ and $Q_{\vec{j}}$ by

$$P_{\vec{0}}(f) = f(0)w, \qquad P_{\vec{j}}(f) = \frac{1}{\vec{j}!} [f - Q_{\vec{j}-}(f)]^{(\vec{j})}(0) \times w\eta^{\vec{j}}, \qquad Q_{\vec{j}}(f) = \sum_{\vec{\imath} \preccurlyeq \vec{j}} P_{\vec{\imath}}(f),$$

then $Q_{\vec{j}}$ is the projection on $X_{\vec{j}}$ in parallel to $\operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$. (iii) For all $\vec{j} \in \mathbb{N}_0^N$, $P_{\vec{j}} \circ W_{m,\varphi} = W_{m,\varphi} \circ P_{\vec{j}} = m(0)\lambda^{\vec{j}}P_{\vec{j}}$.

Proof. We prove most of the results by induction.

(i) First, we show that $X_{\vec{i}} \cap \operatorname{Hol}_{\vec{i}}(\mathbb{B}_N) = \{0\}$. Indeed, let

$$f = \sum_{\vec{\imath} \preccurlyeq \vec{\jmath}} c_{\vec{\imath}} w \eta^{\vec{\imath}} \in \operatorname{Hol}_{\vec{\jmath}}(\mathbb{B}_N).$$

Then, $c_{\vec{0}} = c_{\vec{0}}w(0) = f(0) = 0$. Let $\vec{k} \preccurlyeq \vec{j}$ such that for all $\vec{i} \prec \vec{k}$, $c_{\vec{i}} = 0$. By the general Leibniz rule,

$$f^{(\vec{k})}(0) = \sum_{\vec{k} \preccurlyeq \vec{\imath} \preccurlyeq \vec{j}} c_{\vec{\imath}} (w\eta^{\vec{\imath}})^{(\vec{k})}(0) = \sum_{\vec{k} \preccurlyeq \vec{\imath} \preccurlyeq \vec{\jmath}} \sum_{\vec{\alpha} \le \vec{k}} c_{\vec{\imath}} \binom{\vec{k}}{\vec{\alpha}} w^{(\vec{k} - \vec{\alpha})}(0) (\eta^{\vec{\imath}})^{(\vec{\alpha})}(0) = c_{\vec{k}} w(0) \vec{k}!.$$

Since $f \in \operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)$, we obtain $c_{\overline{k}} = 0$. Hence, $f \equiv 0$.

Now, let us show that $X_{\vec{j}} + \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N) = \operatorname{Hol}(\mathbb{B}_N).$

• The inclusion \subset is trivial.

• Note that $\operatorname{Im}(Q_{\vec{j}}) \subset X_{\vec{j}}$. Let $f \in \operatorname{Hol}(\mathbb{B}_N)$. Then,

 $[f - Q_{\vec{0}}(f)](0) = [f - P_{\vec{0}}(f)](0) = f(0) - f(0)w(0) = 0,$

because w(0) = 1. Hence, $f - Q_{\vec{0}}(f) \in \operatorname{Hol}_{\vec{0}}(\mathbb{B}_N)$, so $f \in W_{\vec{0}} + \operatorname{Hol}_{\vec{0}}(\mathbb{B}_N)$. Assume that $f - Q_{\vec{j}_-}(f) \in \operatorname{Hol}_{\vec{j}_-}(\mathbb{B}_N)$. Then,

$$Q_{\vec{j}}(f) = Q_{\vec{j}_{-}}(f) + P_{\vec{j}}(f) = Q_{\vec{j}_{-}}(f) + \frac{1}{\vec{j}!} [f - Q_{\vec{j}_{-}}(f)]^{(\vec{j})}(0) \times w\eta^{\vec{j}}.$$

Let $\vec{i} \preccurlyeq \vec{j}$. By definition of $Q_{\vec{j}}$,

$$[f - Q_{\vec{j}}(f)]^{(\vec{i})}(0) = [f - Q_{\vec{j}-}(f)]^{(\vec{i})}(0) - \frac{1}{\vec{j}!}[f - Q_{\vec{j}-}(f)]^{(\vec{j})}(0) \times (w\eta^{\vec{j}})^{(\vec{i})}(0).$$

If $\vec{i} \prec \vec{j}$, using the properties of η and the induction hypothesis, we get $[f - Q_{\vec{j}_{-}}(f)]^{(\vec{i})}(0) = (w\eta^{\vec{j}})^{(\vec{i})}(0) = 0$, so $[f - Q_{\vec{j}}(f)]^{(\vec{i})}(0) = 0$. If $\vec{i} = \vec{j}$, then

$$[f - Q_{\vec{j}}(f)]^{(\vec{j})}(0) = [f - Q_{\vec{j}_{-}}(f)]^{(\vec{j})}(0) - \frac{1}{\vec{j}!}[f - Q_{\vec{j}_{-}}(f)]^{(\vec{j})}(0) \times w(0)\vec{j}! = 0,$$

using Leibniz rule, and noticing that w(0) = 1.

Finally, $f - Q_{\vec{j}}(f) \in \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$, so $f \in X_{\vec{j}} + \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$.

(*ii*) Using (*i*), if $f \in Hol(\mathbb{B}_N)$, then we can write f as

$$f = g + h, \quad g \in X_{\vec{j}}, \quad h \in \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N),$$

where g and h are uniquely determined. Moreover, $Q_{\overline{j}}(f) = g$, so $Q_{\overline{j}}$ is indeed the projection on $X_{\overline{j}}$ in parallel to $\operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)$.

(*iii*) First, we show that for all $\vec{j} \in \mathbb{N}_0^N$, $W_{m,\varphi} \circ P_{\vec{j}} = m(0)\lambda^{\vec{j}}P_{\vec{j}}$. Indeed,

$$(W_{m,\varphi} \circ P_{\vec{j}})(f) = \frac{1}{\vec{j}!} \left[f - Q_{\vec{j}_{-}}(f) \right]^{(\vec{j})}(0) \times m(w \circ \varphi)(\eta^{\vec{j}} \circ \varphi) = \frac{1}{\vec{j}!} \left[f - Q_{\vec{j}_{-}}(f) \right]^{(\vec{j})}(0) \times (m(0)w)(\lambda^{\vec{j}}\eta^{\vec{j}}) = m(0)\lambda^{\vec{j}} P_{\vec{j}}(f).$$

Then, let us prove that for all $\vec{j} \in \mathbb{N}_0^N$, $Q_{\vec{j}} \circ W_{m,\varphi} = W_{m,\varphi} \circ Q_{\vec{j}}$. To do so, it suffices to show that $X_{\vec{j}}$ and $\operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$ are invariant by $W_{m,\varphi}$.

- Let $\vec{i} \preccurlyeq \vec{j}$. Since $m(w\eta^{\vec{i}} \circ \varphi) = m(0)\lambda^{\vec{i}}w\eta^{\vec{i}}$, we obtain $m(w\eta^{\vec{i}} \circ \varphi) \in X_{\vec{j}}$, and $W_{m,\varphi}(X_{\vec{j}}) \subset X_{\vec{j}}$.
- Let $f \in \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$. Then, $m(f \circ \varphi)(0) = m(0)f(0) = 0$. In addition, for all $0 \prec \vec{k} \preccurlyeq \vec{j}, f \in \operatorname{Hol}_{\vec{k}}(\mathbb{B}_N)$. Hence,

$$[m(f \circ \varphi)]^{(\vec{k})}(0) = m(0)\lambda^{\vec{k}}f^{(\vec{k})}(0) = 0.$$

Finally, $W_{m,\varphi}(f) \in \operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)$, so $W_{m,\varphi}(\operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)) \subset \operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)$. We deduce that for all $f \in \operatorname{Hol}(\mathbb{B}_N)$, there exist $g, h \in \operatorname{Hol}_{\overline{j}}(\mathbb{B}_N)$ such that

$$m(f\circ\varphi)=m(Q_{\overline{\jmath}}(f)\circ\varphi)+m(g\circ\varphi)=Q_{\overline{\jmath}}(m(f\circ\varphi))+h$$

However, all maps are written in a unique way in $X_{\vec{j}} \oplus \operatorname{Hol}_{\vec{j}}(\mathbb{B}_N)$, so

$$(Q_{\vec{j}} \circ W_{m,\varphi})(f) = Q_{\vec{j}}(m(f \circ \varphi)) = m(Q_{\vec{j}}(f) \circ \varphi) = (W_{m,\varphi} \circ Q_{\vec{j}})f)$$

Finally, we show that $P_{\vec{j}} \circ W_{m,\varphi} = W_{m,\varphi} \circ P_{\vec{j}}$. For $\vec{j} = \vec{0}$, it is trivial since $P_{\vec{0}} = Q_{\vec{0}}$. Otherwise, for $\vec{j} \in \mathbb{N}_0^N$, we write

$$P_{\vec{j}} \circ W_{m,\varphi} = (Q_{\vec{j}} - Q_{\vec{j}_{-}}) \circ W_{m,\varphi} = W_{m,\varphi} \circ (Q_{\vec{j}} - Q_{\vec{j}_{-}}) = W_{m,\varphi} \circ P_{\vec{j}}.$$

We now consider two auxiliary lemmas.

Lemma 4.8. Let φ be an elliptic attractive self-map of \mathbb{B}_N , such that $\varphi(0) = 0$. Let $g \in \operatorname{Hol}(\mathbb{B}_N)$, and $\lambda \neq 0$. If there exist $\varepsilon \in (0,1)$ and $f \in \operatorname{Hol}(B(0,\varepsilon))$ such that for all $|z| < \varepsilon$,

 $\lambda f(z) - m(z)f(\varphi(z)) = g(z),$

then there exists a function $\tilde{f} \in \operatorname{Hol}(\mathbb{B}_N)$ such that $\tilde{f}_{|B(0,\varepsilon)} = f$, and for all $z \in \mathbb{B}_N$,

$$\lambda f(z) - m(z)f(\varphi(z)) = g(z).$$

Proof. See [15, Lemma 4.7] or [4, Lemma 4.2], for instance. The only thing left is adding m everywhere.

Lemma 4.9. For all $\lambda_0 > 0$, there exist $0 < \varepsilon < 1$ and $p \in \mathbb{N}_0$ such that for all $|\lambda| > \lambda_0$ and $g \in \operatorname{Hol}_p(\mathbb{B}_N)$,

$$\sum_{n\geq 0} \frac{m_n(g\circ\varphi^{[n]})}{\lambda^n}$$

converges uniformly on $\overline{B(0,\varepsilon)}$.

Proof. Let $\nu > 1$ and $\|\varphi'(0)\| < \zeta < 1$. There exists $p \in \mathbb{N}_0$ such that $\nu |m(0)| \zeta^{p+1} < \lambda_0$. Moreover, we know that there exists $\varepsilon \in (0, 1)$ such that for all $|z| \leq \varepsilon$,

$$|\varphi(z)| \le \zeta |z| < \varepsilon$$
 and $|m(z)| \le \nu |m(0)|$.

Using Schwarz's lemma, for all $n \in \mathbb{N}_0$, $|\varphi^{[n]}(z)| \leq \zeta^n |z| < \varepsilon$, and since $g \in \operatorname{Hol}_p(\mathbb{B}_N)$, there exists C > 0 such that for $|z| \leq \varepsilon$, $|g(z)| \leq C |z|^{p+1}$. Finally, for $|z| \leq \varepsilon$,

$$\left|\frac{m_n(z)g(\varphi^{[n]}(z))}{\lambda^n}\right| \le \frac{C\nu^n |m(0)|^n}{|\lambda|^n} \left|\varphi^{[n]}(z)\right|^{p+1} \le \left(\frac{\nu |m(0)|\zeta^{p+1}}{\lambda_0}\right)^n C\varepsilon^{p+1}.$$

Because $\nu |m(0)| \zeta^{p+1} < \lambda_0$, the series converges normally on $B(0, \varepsilon)$.

We finally reach the following result.

Proposition 4.10. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map, such that $\varphi(0) = 0$ and $\varphi'(0)$ is diagonal, invertible and the eigenvalues $\lambda_1, \dots, \lambda_N$ of $\varphi'(0)$ are **not** resonant. Assume that $m \in \text{Hol}(\mathbb{D})$ satisfies $m(0) \neq 0$. Then

$$\sigma(W_{m,\varphi}) = \sigma_p(W_{m,\varphi}) \cup \{0\}.$$

Proof. The inclusion \supset is trivial, since $\varphi \notin \operatorname{Aut}(\mathbb{B}_N)$. Let us focus on the other one.

Let $\mu \notin \sigma_p(W_{m,\varphi}) \cup \{0\}$. By Lemma 4.9, there exist $0 < \varepsilon < 1$ and $p \in \mathbb{N}_0$ such that for all $g \in \operatorname{Hol}_p(\mathbb{B}_N)$,

$$\sum_{n\geq 0} \frac{m_n(g\circ\varphi^{[n]})}{\lambda^n}$$

converges uniformly on $B(0,\varepsilon)$.

In addition, in a same way as in Theorem 4.7, $\operatorname{Hol}(\mathbb{B}_N) = X_p \oplus \operatorname{Hol}_p(\mathbb{B}_N)$, with $X_p = \operatorname{Vect}(w\eta^{\vec{\imath}} : |\vec{\imath}| \leq p)$ and $\operatorname{Hol}_p(\mathbb{B}_N) = \{f \in \operatorname{Hol}(\mathbb{B}_N) : \forall |\vec{\imath}| \leq p, f^{(\vec{\imath})}(0) = 0\}$. The two subspaces are invariant by $W_{m,\varphi}$. Hence,

$$W_{m,\varphi} = \begin{pmatrix} S & 0\\ 0 & T \end{pmatrix},$$

with $S \in \mathcal{L}(X_p)$ and $T \in \mathcal{L}(\operatorname{Hol}_p(\mathbb{B}_N))$.

• If we consider the basis $(w\eta^{\vec{j}}: |\vec{j}| \leq p)$ of X_p and if we denote $\lambda = (\lambda_1, \cdots, \lambda_N)$,

$$S = \operatorname{diag}(m(0)\lambda^{j} : |j| \le p).$$

Since $\mu \notin \{m(0)\lambda^{\vec{j}} : |\vec{j}| \le p\}, S - \mu \text{Id is invertible.}$

• For all $g \in \operatorname{Hol}_p(\mathbb{B}_N)$, set

$$h = -\frac{1}{\mu} \sum_{n \ge 0} \frac{m_n(g \circ \varphi^{\lfloor n \rfloor})}{\lambda^n} \in \operatorname{Hol}(B(0, \varepsilon)).$$

Then, on $B(0,\varepsilon)$,

$$m(h \circ \varphi) - \mu h = \sum_{n \ge 0} \frac{m_n(g \circ \varphi^{[n]})}{\lambda^n} - \sum_{n \ge 0} \frac{m_{n+1}(g \circ \varphi^{[n+1]})}{\lambda^{n+1}} = m_0 g = g.$$

Hence, by Lemma 4.8, there exists $\tilde{h} \in \operatorname{Hol}(\mathbb{B}_N)$ such that

$$m(h \circ \varphi) - \mu h = g.$$

Moreover, $\tilde{h} \in \operatorname{Hol}_p(\mathbb{B}_N)$. Indeed, if we could write $\tilde{h} = s + t$, with $0 \neq s \in W_p$ and $t \in \operatorname{Hol}_p(\mathbb{B}_N)$, we would obtain

$$m(h \circ \varphi) - \mu h = (W_{m,\varphi}(s) - \mu s) + (W_{m,\varphi}(t) - \mu t) = g,$$

with $(W_{m,\varphi}(s) - \mu s) \neq 0$, since $s \neq 0$. This is impossible because $g \in \operatorname{Hol}_p(\mathbb{B}_N)$. Finally, $T - \mu \operatorname{Id}$ is bijective, and invertible.

We conclude that $W_{m,\varphi} - \mu Id$ is invertible.

4.2. Non-invertible Jacobian at 0, with 0 as unique eigenvalue. In this case, we can also describe the spectra of $W_{m,\varphi}$.

Proposition 4.11. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$, $\varphi \neq 0$, $\varphi'(0)$ is not invertible, and 0 is the only eigenvalue of $\varphi'(0)$. Let $m \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(0) \neq 0$. Then,

$$\{m(0)\} \subset \sigma_p(W_{m,\varphi}) \subset \{0, m(0)\}.$$

Proof. Let $\mu \notin \{m(0), 0\}$. If $f \not\equiv 0$ satisfies $m(f \circ \varphi) = \mu f$, then

• First, $\mu f(0) = [m(f \circ \varphi)](0) = m(0)f(0)$, so $(m(0) - \mu)f(0) = 0$. Since $\mu \neq m(0)$, we obtain f(0) = 0.

• Assume that for all $\vec{i} \prec \vec{j}$, $f^{(\vec{i})}(0) = 0$. Then,

$$\mu f^{(j)}(0) = [m(f \circ \varphi)]^{(j)}(0) = m(0)(f \circ \varphi)^{(j)}(0) = 0.$$

Hence, $f^{(j)}(0) = 0$, since $\mu \neq 0$.

Finally, $f \equiv 0$, which is impossible. Hence, $\sigma(W_{m,\varphi}) \subset \{m(0), 0\}$.

Conversely, the map w defined in Proposition 4.2 is an eigenvector of $W_{m,\varphi}$ for the eigenvalue m(0). Moreover, we give an example where $0 \in \sigma_p(W_{m,\varphi})$: assume that $\varphi_k = 0$ for some $k \in \{1, \dots, N\}$. Then, for $f(z) = z_k$, $f \circ \varphi = 0$, so $W_{m,\varphi}(f) = 0$. \Box

Theorem 4.12. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$ and $\varphi'(0)$ is not invertible. If $m(0) \neq 0$, and 0 is the only eigenvalue of $\varphi'(0)$, then

$$\sigma(W_{m,\varphi}) = \{0, m(0)\}$$

Proof. Note that the diagonal of $\varphi'(0)$ has only zeroes, so the matrix $\varphi'(0)$ is nilpotent. Hence, there exists $n_0 \in \mathbb{N}_0$ such that

$$(\varphi^{[n_0]})'(0) = (\varphi'(0))^{n_0} = 0.$$

Let $\mu \in \mathbb{C} \setminus \{0, m(0)\}$. We consider two types of functions.

• Let $c \in \mathbb{C}^*$. If w is the weighted Koenigs' map of φ and m, then

$$W_{m,\varphi}(w) - \mu w = (W_{m,\varphi}(w) - m(0)w) + (m(0)w - \mu w) = m(0)w - \mu w.$$

Thus, for all $c \in \mathbb{C}^*$, if we set $f_c = cw/(m(0) - \mu)$, we obtain $W_{m,\varphi}(f_c) - \mu f_c = cw$.

• Let $g \in \operatorname{Hol}(\mathbb{B}_N)$ such that g(0) = 0. We know that there exists $0 < \varepsilon < 1$ a constant d > 1 such that for all $|z| \leq \varepsilon$,

$$|g(z)| \le d |z|, \qquad |\varphi(z)| \le d |z|, \qquad |\varphi^{[n_0]}(z)| \le d |z|^2.$$

Using Schwarz's lemma, for all $k \in \mathbb{N}_0$, $k \ge 3$ and $|z| \le \varepsilon$,

$$|\varphi^{[kn_0]}(z)| \le d^k |z|^{2^k} \le d^k |z|^{2k+2}.$$

For all $n \in \mathbb{N}_0$, if $n \ge 3n_0$, we write $n = kn_0 + p$, with $k \ge 3$ and $0 \le p < n_0$. Hence, $k = (n-p)/n_0 \ge n/n_0 - 1$. If we set $\alpha = \sup(|m(z)| : |z| \le 1/2)$, we get

$$\left|\frac{m_n(z)g(\varphi^{[n]}(z))}{\mu^n}\right| \le \frac{d\alpha^n |\varphi^{[n]}(z)|}{|\mu|^n} \le \frac{d^{p+1}\alpha^n |\varphi^{[kn_0]}(z)|}{|\mu|^n} \le \frac{d^{k+p+1}\alpha^n |z|^{2k+2}}{|\mu|^n} \le d\frac{d^n\alpha^n |z|^{2n/n_0}}{|\mu|^n} = d\left(\frac{d\alpha |z|^{2/n_0}}{|\mu|}\right)^n.$$

We only have to choose $\tilde{\varepsilon} \in (0, \varepsilon)$, so that $d\alpha \tilde{\varepsilon}^{2/n_0} < |\mu|$, to have

$$h = -\frac{1}{\mu} \sum_{n \ge 0} \frac{m_n(z)g(\varphi^{[n]}(z))}{\mu^n} \in \operatorname{Hol}(B(0,\tilde{\varepsilon})).$$

Moreover, the same calculations as in Proposition 4.10 gives

$$m(h \circ \varphi) - \mu h = g \text{ on } B(0, \tilde{\varepsilon}).$$

Using Lemma 4.8, there exists $h \in Hol(\mathbb{B}_N)$ such that

$$m(\tilde{h}\circ\varphi)-\mu\tilde{h}=g.$$

If $\eta \in \operatorname{Hol}(\mathbb{B}_N)$, then $g = \eta - \eta(0)w$ satisfies g(0) = 0, and

$$m[(f_{\eta(0)} + h) \circ \varphi] - \mu(f_{\eta(0)} + h) = \eta(0)w + g = \eta.$$

Finally, $W_{m,\varphi} - \mu \text{Id}$ is invertible, and $\mu \notin \sigma(W_{m,\varphi})$, so $\sigma(W_{m,\varphi}) \subset \{0, m(0)\}$. To finish the proof, we use Proposition 4.11, and the fact that φ is not bijective.

Remark 4.13. If $\varphi \equiv 0$ and $m(0) \neq 0$, we show that

$$\sigma_p(W_{m,\varphi}) = \sigma(W_{m,\varphi}) = \{0, m(0)\}$$

Indeed, $W_{m,\varphi}(f) = f(0)m$. Hence, for all $g \in \operatorname{Hol}(\mathbb{B}_N)$ and $\mu \notin \{0, m(0)\}$, the map

$$h = \frac{1}{\mu} \left[\frac{g(0)}{m(0) - \mu} m - g \right]$$

satisfies $h(0)m - \mu h = g$, so $\mu \notin \sigma(W_{m,\varphi})$. Moreover,

- Denote $e_1(z) = z_1$. Then $e_1(0) = 0$, so $W_{m,\varphi}(e_1) = 0$, and $0 \in \sigma_p(W_{m,\varphi})$.
- Since $W_{m,\varphi}(m) m(0)m = m(0)m m(0)m = 0$, we get $m(0) \in \sigma_p(W_{m,\varphi})$.

4.3. General results. In general, we have the following results.

Proposition 4.14. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$ and $\varphi \not\equiv 0$. Let $\lambda_1, \dots, \lambda_p$ be the non-zero eigenvalues of $\varphi'(0)$. Let $m \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(0) \neq 0$. Then,

$$\{m(0)\} \subset \sigma_p(W_{m,\varphi}) \subset \left\{m(0)\prod_{k=1}^p \lambda_k^{j_k} : j_1, \cdots, j_p \in \mathbb{N}_0\right\} \cup \{0, m(0)\}.$$

Proof. We know that the map w defined in Proposition 4.2 satisfies $W_{m,\varphi}(w) = m(0)w$, so $m(0) \in \sigma_p(W_{m,\varphi})$. Moreover, in a same way as in Proposition 4.11, 0 can be an eigenvalue of $W_{m,\varphi}$.

Let $\mu \notin \{0\} \cup \{m(0)\lambda^{\vec{j}} : \vec{j} \in \mathbb{N}_0^p\}$. If $\mu \in \sigma_p(W_{m,\varphi})$, then there exists $f \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ such that $m(f \circ \varphi) = \mu f$. Once again by induction, using Lemma 2.4 and the general Leibniz rule, we prove that $f^{(\vec{j})}(0) = 0$ for all $\vec{j} \in \mathbb{N}_0^N$. Hence, $f \equiv 0$, a contradiction. Thus, $\mu \notin \sigma_p(W_{m,\varphi})$.

Proposition 4.15. Let $\varphi : \mathbb{B}_N \to \mathbb{B}_N$ be an elliptic attractive map such that $\varphi(0) = 0$ and $\varphi \not\equiv 0$. Let $m \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(0) \neq 0$. Then,

$$\{0, m(0)\} \subset \sigma(W_{m,\varphi}) \subset \overline{D(0, |m(0)| \|\varphi'(0)\|)} \cup \{m(0)\}.$$

Proof. Since $\varphi \notin \operatorname{Aut}(\mathbb{B}_N)$, $W_{m,\varphi}$ is not invertible. Hence, $0 \in \sigma(W_{m,\varphi})$.

In addition, $m(0) \in \sigma_p(W_{m,\varphi})$ by Proposition 4.14, so $m(0) \in \sigma(W_{m,\varphi})$.

Let $\mu > |m(0)| \|\varphi'(0)\|$, $\mu \neq m(0)$. Then, similarly to Lemma 4.9, there exists $\varepsilon > 0$ such that for all $h \in \operatorname{Hol}_0(\mathbb{B}_N)$, the series $\sum (h \circ \varphi^{[n]}) / \mu^n$ converges uniformly on $\overline{B(0,\varepsilon)}$. For $g \in \operatorname{Hol}(\mathbb{B}_N)$, let us define the functions h and f by

$$h(z) = g(z) - g(0)w(z), \qquad f(z) = \frac{g(0)w(z)}{m(0) - \mu} - \frac{1}{\mu} \sum_{n \ge 0} \frac{m_n(z)(h \circ \varphi^{[n]})(z)}{\mu^n}.$$

Thus, $f \in Hol(B(0,\varepsilon))$. The same calculations as in Theorem 4.12 gives

$$m(z)(f \circ \varphi)(z) - \mu f(z) = g(0)w(z) + h(z) = g(z), \qquad |z| < \varepsilon.$$

Hence, $W_{m,\varphi} - \mu \text{Id}$ is bijective, so $\mu \notin \sigma(W_{m,\varphi})$.

Example 4.16. Consider N = 2, $\varphi(z) = (z_1/3, z_1/3)$ et $m(z) = 2 + z_1$.

Point spectrum: Take
$$w$$
 the map defined in Proposition 4.2, and $f_k(z) = z_1^k$. Then
 $m(w \circ \varphi) = m(0)w = 2w, \qquad m((wf_k) \circ \varphi) = m(w \circ \varphi)(f_k \circ \varphi) = 2w \frac{f_k}{3^k} = \frac{2}{3^k}(wf_k).$

Hence, for all $k \in \mathbb{N}_0$, $2/3^k \in \sigma_p(W_{m,\varphi})$. Moreover, if $g(z) = z_1 - z_2$, then $g \circ \varphi = 0$, so $W_{m,\varphi}(g) = 0$. Thus, $0 \in \sigma_p(W_{m,\varphi})$. Finally, using Proposition 4.14,

$$\sigma_p(W_{m,\varphi}) = \left\{ 2/3^k : k \in \mathbb{N}_0 \right\} \cup \{0\}.$$

<u>Spectrum</u>: Let $\mu \notin \sigma_p(W_{m,\varphi})$, and $g \in \operatorname{Hol}(\mathbb{B}_2)$. We search for $f \in \operatorname{Hol}(\mathbb{B}_2)$ such that $m(f \circ \varphi) - \mu f = g$. Write $f = \sum a_{ij} z_1^i z_2^j$ and $g = \sum b_{ij} z_1^i z_2^j$. Then,

$$m(f \circ \varphi) = \sum_{i,j \ge 0} \frac{a_{ij}}{3^{i+j}} z_1^{i+j} (2+z_1) = \sum_{i,j \ge 0} (\mu a_{ij} + b_{ij}) z_1^i z_2^j = \mu f + g.$$

Note that there is no z_2 in $m(f \circ \varphi)$. Hence, if $j \ge 1$, since $\mu \ne 0$,

$$\mu a_{ij} + b_{ij} = 0 \iff a_{ij} = -\mu^{-1} b_{ij}.$$

It remains to consider the case j = 0. Remark that

$$\sum_{i\geq 0} \frac{a_{i0}}{3^i} z_1^i (2+z_1) = \sum_{i\geq 0} (\mu a_{i0} + b_{i0}) z_1^i$$
$$\iff 2a_{00} + \sum_{i\geq 1} \left(\frac{2a_{i0}}{3^i} + \frac{a_{i-1,0}}{3^{i-1}}\right) z_1^i = \mu a_{00} + b_{00} + \sum_{i\geq 1} (\mu a_{i0} + b_{i0}) z_1^i.$$

Thus, since $\mu \neq 2$, $a_{00} = b_{00}/(2-\mu)$, and for all $i \ge 1$, since $\mu \neq 2/3^i$,

$$a_{i0} = \frac{b_{i0} - 3^{1-i}a_{i-1,0}}{2/3^i - \mu}.$$

Denoting $C = \min(|2/3^i - \mu| : i \ge 0) > 0$, since $3^{i-1} \le 1$ for all $i \ge 1$, we obtain

$$|a_{i0}| \le \frac{|b_{i0}|}{C} + \frac{|a_{i-1,0}|}{C} \le \frac{|b_{i0}|}{C} + \frac{|b_{i-1,0}|}{C^2} + \frac{|a_{i-2,0}|}{C^2} \le \dots \le \frac{1}{C} \sum_{k=0}^{i} \frac{|b_{i-k,0}|}{C^k}.$$

However, the series $\sum \frac{1}{C^k} z_1^k$ has radius of convergence C, and the series $\sum |b_{k0}| z_1^k$ has radius of convergence 1, so the map f is defined on the ball B(0, C) by product series. Lemma 4.8 gives a function $\tilde{f} \in \text{Hol}(\mathbb{B}_2)$ such that $m(\tilde{f} \circ \varphi) - \mu \tilde{f} = g$, so $W_{m,\varphi} - \mu \text{Id}$ is invertible. We conclude that $\sigma(W_{m,\varphi}) = \sigma_p(W_{m,\varphi})$.

5. BIJECTIVE PERIODIC SYMBOLS

In this section, we consider φ a bijective elliptic map with fixed point at 0, that is to say, φ is a unitary matrix. Moreover, conjugating with an automorphism, it follows that

$$\varphi = D, \qquad D = \operatorname{diag}(e^{i\theta_1}, \cdots, e^{i\theta_N}).$$

Inspired by [3], we will focus on *periodic automorphisms*.

Definition 5.1. A unitary diagonal matrix $D = \text{diag}(e^{i\theta_1}, \cdots, e^{i\theta_N})$ is *periodic* if for all $k \in \{1, \cdots, N\}, \theta_k \in 2\pi\mathbb{Q}$.

If φ is a periodic automorphism, then there exists $p \in \mathbb{N}$ such that

$$D^p = \text{Id}, \text{ i.e. } W^p_{m,\varphi}(f) = m_p f, \text{ where } m_p = \prod_{k=0}^{p-1} (m \circ \varphi^{[k]}).$$

Note that if $g \in \operatorname{Hol}(\mathbb{B}_N)$ and $M_g(f) = gf$, then $\sigma(M_g) = g(\mathbb{B}_N)$. We start by the case where *m* vanishes on \mathbb{B}_N .

Lemma 5.2. If there exists $z_0 \in \mathbb{B}_N$ such that $m(z_0) = 0$, then $\sigma_p(W_{m,\varphi}) = \emptyset$.

Proof. First, note that m and φ are non-constant, so $0 \notin \sigma_p(W_{m,\varphi})$. Let $\lambda \in \mathbb{C}^*$. If there exists $f \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ such that $W_{m,\varphi}(f) = \lambda f$, then

$$W^p_{m,\varphi}(f) = m_p f = \lambda^p f.$$

Since f is not identically zero, there exists an open subset Ω of \mathbb{B}_N such that $f \neq 0$ on Ω . Thus, $m_p = \lambda^p$ on Ω , so on \mathbb{B}_N by uniqueness theorem. However, $m_p(z_0) = 0$, so $\lambda = 0$, which is impossible. Finally, $\sigma_p(W_{m,\varphi}) = \emptyset$.

We now characterize when the point spectrum of $W_{m,\varphi}$ is non-empty.

Proposition 5.3. Let φ be a periodic automorphism of \mathbb{B}_N , and $m \in \text{Hol}(\mathbb{B}_N)$. Denote by $e = (e^{i\theta_1}, \cdots, e^{i\theta_N})$ the eigenvalues of φ , and p the smallest positive integer such that for all $k \in \{1, \cdots, N\}$, $e^{ip\theta_k} = 1$. The following assertions are equivalent.

(i) $\sigma_p(W_{m,\varphi}) \neq \emptyset$.

- (ii) m_p is a constant map.
- (*iii*) $\sigma_p(W_{m,\varphi}) = \{m(0)e^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N\}.$

Proof. $(iii \Longrightarrow i)$ is trivial.

 $(i \implies ii)$: If $\sigma_p(W_{m,\varphi}) \neq \emptyset$, then *m* does not vanish on \mathbb{B}_N , by Lemma 5.2. Moreover, by functional calculus, $\sigma_p(W_{m,\varphi}^p) = (\sigma_p(W_{m,\varphi}))^p := \{\mu^p : \mu \in \sigma_p(W_{m,\varphi})\} \neq \emptyset$. Hence, there exist $f \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ and $\lambda \in \mathbb{C}$ such that $m_p f = \lambda f$. Since $f \neq 0$, the map $m_p = \lambda$ is constant, using uniqueness theorem. Finally, $\lambda \neq 0$ because $m(0) \neq 0$.

 $(ii \Longrightarrow iii)$: If m_p is constant, then $m_p \equiv m_p(0) = m(0)^p$. In addition,

$$W^p_{m,\varphi}(f) = m_p f = m(0)^p f.$$

Thus, $W_{m,\varphi}^p = m(0)^p \text{Id}$, so $\sigma_p(W_{m,\varphi}^p) = \{m(0)^p\}$. If $\sigma_p(W_{m,\varphi}) = \emptyset$, then $\sigma_p(W^p_{m,\varphi}) = (\sigma_p(W_{m,\varphi}))^p = \emptyset,$

which is not the case here. Therefore, $\sigma_p(W_{m,\varphi}) \neq \emptyset$.

We show that $\sigma_p(W_{m,\varphi}) = e^{\vec{j}}\sigma_p(W_{m,\varphi})$, for all $\vec{j} \in \mathbb{N}_0^N$.

• If $\mu \in \sigma_p(W_{m,\varphi})$, then there exists $f \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ such that $m(f \circ \varphi) = \mu f$. Hence, setting $f_{\vec{i}}(z) = z^{\vec{j}} f(z)$, we obtain, for $z \in \mathbb{B}_N$,

$$[m(f_{\vec{j}} \circ \varphi)](z) = m(z)\varphi^{\vec{j}}(z)f(\varphi(z)) = e^{\vec{j}}z^{\vec{j}}\mu f(z) = \mu e^{\vec{j}}f_{\vec{j}}(z).$$

Finally, $e^{\vec{j}}\mu \in \sigma_p(W_{m,\varphi})$, so $e^{\vec{j}}\sigma_p(W_{m,\varphi}) \subset \sigma_p(W_{m,\varphi})$. • Conversely, let $\vec{j} = (j_1, \cdots, j_N) \in \mathbb{N}_0^N$. We set, for $k \in \{1, \cdots, N\}$, $n_k = \lfloor j_k/p \rfloor$, and $\vec{\alpha} = (n_1p - j_1, \cdots, n_Np - j_N) \in \mathbb{N}_0^N$. Then

$$\vec{j} + \vec{\alpha} = (n_1 p, \cdots, n_N p),$$

so $e^{\vec{j}+\vec{\alpha}} = 1$. Finaly, if $\mu \in \sigma_p(W_{m,\varphi})$, then $e^{\vec{\alpha}}\mu \in \sigma_p(W_{m,\varphi})$, so

$$\mu = e^{\vec{j}}(e^{\vec{\alpha}}\mu) \in e^{\vec{j}}\sigma_p(W_{m,\varphi})$$

To finish, if $\mu \in \sigma_p(W_{m,\varphi})$, we know that $\mu^p = m(0)^p$. Thus, $m(0) = \mu \exp(2i\pi k/p)$, with $k \in \{0, \dots, p-1\}$. Using [15], there exists $\vec{j} \in \mathbb{N}_0^N$ such that $e^{\vec{j}} = \exp(2i\pi/p)$. We deduce that

$$m(0) = \mu \exp(2i\pi k/p) = \mu e^{k\vec{j}} \in e^{k\vec{j}}\sigma_p(W_{m,\varphi}) = \sigma_p(W_{m,\varphi}).$$

Finally, $\{m(0)e^{\vec{j}}: \vec{j} \in \mathbb{N}_0^N\} \subset \sigma_p(W_{m,\varphi})$, and if $\mu \in \sigma_p(W_{m,\varphi})$, then there exists $\ell \in \{1, \cdots, p\}$ such that $\mu = m(0) \exp(2i\pi\ell/p) \in \{m(0)e^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N\}$. We can conclude that

$$\sigma_p(W_{m,\varphi}) = \{ m(0)e^{\vec{j}} : \vec{j} \in \mathbb{N}_0^N \}.$$

To obtain the spectrum, we start by a useful lemma.

Lemma 5.4. Let φ be a periodic automorphism of \mathbb{B}_N , and $m \in Hol(\mathbb{B}_N)$. Then,

$$\forall \vec{k} \in \mathbb{N}_0^N, \qquad m(0)e^k \in \sigma(W_{m,\varphi}).$$

Proof. Consider $\vec{j} \neq \vec{0}$ the smallest vector (for the order \preccurlyeq) of \mathbb{N}_0^N such that $e^{\vec{j}} = 1$. We will show that for all $\vec{i} \prec \vec{j}$,

$$z^{\vec{\imath}} \notin (m(0)e^{\vec{\imath}} - W_{m,\varphi}) \operatorname{Hol}(\mathbb{B}_N).$$

 $\vec{i} = \vec{0}$: Note that for all $f \in \operatorname{Hol}(\mathbb{B}_N)$,

$$[m(0)f - W_{m,\varphi}(f)](0) = m(0)f(0) - m(0)f(\varphi(0)) = 0.$$

Hence, $1 \notin (m(0) - W_{m,\varphi})$ Hol (\mathbb{B}_N) , so $m(0) \in \sigma(W_{m,\varphi})$.

Now, assume that there exists $\vec{i} \prec \vec{j}$ such that $\vec{i} \neq \vec{0}$ and

$$m(0)e^{\vec{i}}f - m(f \circ \varphi) = z^{\vec{i}},$$

for a certain $f \in \operatorname{Hol}(\mathbb{B}_N), f \neq 0$.

- Note that $m(0)e^{\vec{i}}f(0) m(0)f(\varphi(0)) = [z^{\vec{i}}](0) = 0$. Moreover, $m(0) \neq 0, e^{\vec{i}} 1 \neq 0$. Hence, f(0) = 0.
- Assume that for all $\vec{\alpha} \prec \vec{\beta} \prec \vec{i}$, $f^{(\vec{\alpha})}(0) = 0$. Using the general Leibniz rule,

$$\begin{split} m(0)e^{\vec{i}}f^{(\vec{\beta})}(0) &- [m(f\circ\varphi)]^{(\vec{\beta})}(0) \\ &= m(0)e^{\vec{i}}f^{(\vec{\beta})}(0) - \sum_{\vec{\alpha}<\vec{\beta}} \binom{\vec{\beta}}{\vec{\alpha}} m^{(\vec{\beta}-\vec{\alpha})}(0)e^{\vec{\alpha}}f^{(\vec{\alpha})}(0) - m(0)e^{\vec{\beta}}f^{(\vec{\beta})}(0) \\ &= m(0)(e^{\vec{i}}-e^{\vec{\beta}})f^{(\vec{\beta})}(0) = [z^{\vec{i}}]^{(\vec{\beta})}(0) = 0. \end{split}$$

Since $e^{\vec{i}} - e^{\vec{\beta}} \neq 0$ (because \vec{j} is minimal), and $m(0) \neq 0$, we get $f^{(\vec{\beta})}(0) = 0$. • In a same way, for $\vec{\beta} = \vec{i}$, we obtain

$$m(0)e^{\vec{i}}f^{(\vec{i})}(0) - [m(f \circ \varphi)]^{(\vec{i})}(0) = m(0)(e^{\vec{i}} - e^{\vec{i}})f^{(\vec{i})}(0) = 0 = [z^{\vec{i}}]^{(\vec{i})}(0) = \vec{i}!.$$

Therefore, we get a contradiction. Finally, $z^{\vec{i}} \notin (m(0)e^{\vec{i}} - W_{m,\varphi})$ Hol (\mathbb{B}_N) , so we have proved that $m(0)e^{\vec{i}} \in \sigma(W_{m,\varphi})$. All that remains for us is to see that

$$\{m(0)e^{\vec{i}}:\mathbb{N}_{0}^{N}\} = \{m(0)e^{\vec{i}}:\vec{i}\prec\vec{j}\},\$$

because $e^{\vec{j}} = 1$. Thus, $\{m(0)e^{\vec{i}} : \mathbb{N}_0^N\} \subset \sigma(W_{m,\varphi})$.

Hence, we prove the following proposition.

Theorem 5.5. Let φ be a periodic automorphism of \mathbb{B}_N , and $m \in \text{Hol}(\mathbb{B}_N)$. If p is the smallest positive integer such that $\varphi^p = \text{Id}$, then

$$\sigma(W_{m,\varphi}) = \{\lambda \in \mathbb{C} : \lambda^p \in m_p(\mathbb{B}_N)\}\$$

Proof. First, we show that $\vec{j} \in \mathbb{N}_0^N$, $e^{\vec{j}}\sigma(W_{m,\varphi}) \subset \sigma(W_{m,\varphi})$. To do this, by multiplicativity, we only have to prove it for $\vec{j} = (0, \dots, 0, 1, 0, \dots, 0)$, the 1 being in position k. Note that if $k \in \{1, \dots, N\}$,

$$\Gamma_k : \begin{cases} \operatorname{Hol}(\mathbb{B}_N) & \to z_k \operatorname{Hol}(\mathbb{B}_N) \\ f & \mapsto z_k f, \end{cases}$$

then Γ_k is bijective. For all $f \in \operatorname{Hol}(\mathbb{B}_N)$ and $z \in \mathbb{B}_N$, if we set $T = (W_{m,\varphi})_{|z_k \operatorname{Hol}(\mathbb{B}_N)}$,

$$(\Gamma_k^{-1} \circ T \circ \Gamma_k)(f)(z) = \frac{m(z)\varphi_k(z)(f \circ \varphi)(z)}{z_k} = m(z)e^{i\theta_k}(f \circ \varphi)(z) = e^{i\theta_k}W_{m,\varphi}(f)(z).$$

Hence, $\sigma(T) = e^{i\theta_k}\sigma(W_{m,\varphi}).$

If $W_{m,\varphi} - \lambda \mathrm{Id}$ is bijective, then for all $g \in z_k \mathrm{Hol}(\mathbb{B}_N)$, there exists $f \in \mathrm{Hol}(\mathbb{B}_N)$ such that

$$m(f \circ \varphi) - \lambda f = g.$$

We prove that $f \in z_k \operatorname{Hol}(\mathbb{B}_N)$.

• First, $m(0)f(\varphi(0)) - \lambda f(0) = (m(0) - \lambda)f(0) = g(0) = 0$. Since $\lambda \neq m(0)$ using Lemma 5.4, we get f(0) = 0.

• Let $\vec{j} \in \mathbb{N}_0^N$ such that $j_k = 0$. Assume that for all $\vec{i} \prec \vec{j}$ satisfying $i_k = 0$, $f^{(\vec{i})}(0) = 0$. Then, by the general Leibniz rule,

$$[m(f \circ \varphi) - \lambda f]^{(j)}(0) = \sum_{\vec{\imath} < \vec{\jmath}} {\binom{\vec{j}}{\vec{\imath}}} m^{(\vec{\jmath} - \vec{\imath})}(0) e^{\vec{\imath}} f^{(\vec{\imath})}(0) + m(0) e^{\vec{\jmath}} f^{(\vec{\jmath})}(0) - \lambda f^{(\vec{\jmath})}(0).$$

But if $\vec{i} < \vec{j}$, we get $i_k < j_k = 0$, so $i_k = 0$, and $f^{(\vec{i})}(0) = 0$. Thus,

$$[m(f \circ \varphi) - \lambda f]^{(j)}(0) = (m(0)e^{j} - \lambda)f^{(j)}(0) = g^{(j)}(0) = 0.$$

Finally, by Lemma 5.4, $\lambda \neq m(0)e^{\vec{j}}$, so $f^{(\vec{j})}(0) = 0$.

We conclude that $f \in z_k \operatorname{Hol}(\mathbb{B}_N)$, so $T - \lambda \operatorname{Id}$ is bijective. Therefore,

$$\lambda \notin \sigma(W_{m,\varphi}) \Longrightarrow \lambda \notin \sigma(T) = e^{i\theta_k} \sigma(W_{m,\varphi}).$$

We deduce that $e^{i\theta_k}\sigma(W_{m,\varphi}) \subset \sigma(W_{m,\varphi})$. Using multiplicativity, for all $\vec{j} \in \mathbb{N}_0^N$,

$$e^{\vec{j}}\sigma(W_{m,\varphi}) \subset \sigma(W_{m,\varphi})$$

We can now show the main assertion of the proposition.

If $\lambda \in \sigma(W_{m,\varphi})$, then $\lambda^p \in \sigma(W_{m,\varphi})^p = \sigma(W_{m,\varphi}^p) = \sigma(M_{m_p}) = m_p(\mathbb{B}_N)$.

Conversely, if $\lambda^p \in m_p(\mathbb{B}_N)$, we get $\lambda^p \in \sigma(W_{m,\varphi})^p$, so there exists $\mu \in \sigma(W_{m,\varphi})$ such that $\lambda^p = \mu^p$, i.e. $\lambda = \mu \exp(2ik\pi/p)$, with $k \in \{0, \dots, p-1\}$. Moreover, it was shown in [15] that there exists $\vec{j} \in \mathbb{N}_0^N$ such that $\exp(2ik\pi/p) = e^{\vec{j}}$. Finally,

$$\lambda = \mu \exp\left(\frac{2ik\pi}{p}\right) = \mu e^{\vec{j}} \in e^{\vec{j}}\sigma(W_{m,\varphi}) \subset \sigma(W_{m,\varphi}).$$

6. Other results

In this last section, we concatenate all the other results about the spectra of $W_{m,\varphi}$ which do not fit in the cases studies above.

6.1. Symbol bijective, non-periodic. If φ is a *non-periodic* holomorphic self-map of \mathbb{B}_N , then for all $z \in \mathbb{B}_N$, at least one coordinate of $(D^n z)$ does not converge when n goes to infinity. We obtain the generalization of [3, Proposition 3.6] in the following result.

Lemma 6.1. If there exists $z_0 \in \mathbb{B}_N$ such that $m(z_0) = 0$, then $\sigma_p(W_{m,\varphi}) = \emptyset$.

Proof. First, note that m and φ are non-constant, so if $W_{m,\varphi}(f) = m(f \circ \varphi) = 0$, then $f \equiv 0$. Hence, $0 \notin \sigma_p(W_{m,\varphi})$.

Let $\lambda \in \mathbb{C}^*$ and $f \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(f \circ \varphi) = \lambda f$. Then,

$$f(z_0) = m(z_0)f(Dz_0) = 0,$$

so $m(D^{-1}z_0)f(z_0) = \lambda f(D^{-1}z_0) = 0$. Iterating this equation, for all $n \in \mathbb{N}_0$,

$$f(D^{-n}z_0)=0.$$

But $\{D^{-n}z_0 : n \in \mathbb{N}_0\}$ has an accumulation point. Thus, $f \equiv 0$, so $\lambda \notin \sigma_p(W_{m,\varphi})$. \Box

6.2. Symbol elliptic non-attractive. If φ is an elliptic non-attractive self-map of \mathbb{B}_N , then the iterates of φ do not converge to a point, but to a map $h : \mathbb{B}_N \to \mathbb{B}_N$. In this case, we have the following result.

Proposition 6.2. Let φ be an elliptic non attractive self-map of \mathbb{B}_N . Assume that $\varphi(0) = 0, \ \varphi \notin \operatorname{Aut}(\mathbb{B}_N)$ and $m(0) \neq 0$. Then, $\sigma_p(W_{m,\varphi}) \subset \overline{D(0, |m(0)|)}$.

Proof. Using the proof of Proposition 4.2, the sequence (w_n) defined by

$$w_n(z) = \frac{1}{m(0)^n} \prod_{k=0}^{n-1} m(\varphi^{[k]}(z))$$

converges uniformly on all compact subsets of \mathbb{B}_N to a map w.

Hence, if there exist $\lambda \in \mathbb{C}^*$ and $f \in \operatorname{Hol}(\mathbb{B}_N) \setminus \{0\}$ such that $m(f \circ \varphi) = \lambda f$, after *n* iterations,

$$w_n(f \circ \varphi^{[n]}) = \left(\frac{\lambda}{m(0)}\right)^n f.$$

Letting $n \to \infty$, there is a subsequence of the left side of this identity that goes to $w(f \circ h)$. If $|\lambda| > |m(0)|$, then the right side goes to ∞ at least at one point of \mathbb{B}_N , a contradiction.

As in [15], we now consider a particular case: assume that φ has « separable » variables, that is φ can be written as

$$\varphi(z) = (\varphi_1(z_1), \cdots, \varphi_N(z_N))$$

with $\varphi_k \in \operatorname{Hol}(\mathbb{D})$ elliptic such that $\varphi(0) = 0$.

Note that if φ is elliptic non attractive and not bijective, then by Theorem 1.2 and one-variable Denjoy-Wolff's theory, we will assume that some components will be rotations, and the other ones must be elliptic non invertible maps (in one variable) fixing 0. We obtain the following theorem.

Theorem 6.3. Let φ be an elliptic non attractive self-map of \mathbb{B}_N , such that φ is not invertible, $\varphi(0) = 0$, and

$$\varphi(z_1,\cdots,z_N)=(\varphi_1(z_1),\cdots,\varphi_p(z_p),\beta_{p+1}z_{p+1},\cdots,\beta_Nz_N),$$

with $\varphi_1, \dots, \varphi_p$ non bijective, $|\varphi'_1(0)|, \dots, |\varphi'_p(0)| < 1$, and $|\beta_{p+1}| = \dots = |\beta_N| = 1$. Then,

$$\{0\} \cup \left\{ m(0) \prod_{k=1}^{p} \varphi_{k}'(0)^{n_{k}} \times \prod_{k=p+1}^{N} \beta_{k}^{n_{k}} : n_{1}, \cdots, n_{N} \in \mathbb{N}_{0} \right\}$$
$$\subset \sigma(W_{m,\varphi}) \subset \left(\bigcup_{n_{1}, \cdots, n_{p} \ge 0} \left[\prod_{k=1}^{p} \varphi_{k}'(0)^{n_{k}} \right] m(0)\mathbb{T} \right) \cup \{0\}.$$

Note that if there exists $j \in \{1, \dots, n\}$ such that $\varphi'_i(0) = 0$, then all the terms

$$m(0)\prod_{k=1}^{p}\varphi_{k}^{\prime}(0)^{n_{k}}\times\prod_{k=p+1}^{N}\beta_{k}^{n_{k}}$$

with $n_k \neq 0$ vanish. Then, we will assume that $0 < |\varphi'_1(0)|, \cdots, |\varphi'_p(0)| < 1$.

The proof of this theorem has already been done without weight in [15]. In dimension 2, considering the map $\varphi : z \mapsto (\varphi_1(z_1), \beta_2 z_2)$, the author used the following decomposition of Hol(\mathbb{B}_2), valid for all $\ell \in \mathbb{N}$:

$$\operatorname{Hol}(\mathbb{B}_2) = W_{\ell} \oplus z_1^{\ell} \operatorname{Hol}(\mathbb{B}_2), \qquad W_{\ell} = \left\{ \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2) : f_q \in \operatorname{Hol}(\mathbb{D}) \right\}$$

We will consider an other decomposition of $\operatorname{Hol}(\mathbb{B}_2)$, using the Koenigs' function κ_1 and the weighted Koenigs' function w of φ_1 . The proof of the following property goes along the same lines as in [15], we write it here for sake of completeness.

Proposition 6.4. For all $\ell \in \mathbb{N}$, consider

$$\tilde{W}_{\ell} = \left\{ w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2) : f_q \in \operatorname{Hol}(\mathbb{D}) \right\}, \quad X_{\ell} = z_1^{\ell} \operatorname{Hol}(\mathbb{B}_2).$$

Then

- (i) $\operatorname{Hol}(\mathbb{B}_2) = W_{\ell} \oplus X_{\ell},$
- (ii) $C_{\varphi}(W_{\ell}) \subset W_{\ell}$ and $C_{\varphi}(X_{\ell}) \subset X_{\ell}$.

Proof. We prove (i) by induction, in a same way as in [15].

<u>m = 1</u>: We have to show that $Hol(\mathbb{B}_2) = W_1 \oplus X_1$.

Let $f \in Hol(\mathbb{B}_2)$. Using the Maclaurin coefficients of f, we may write

$$f(z) = \sum_{j \ge 0} \sum_{k \ge 0} a_{jk} z_1^j z_2^k = \underbrace{\sum_{k \ge 0} a_{0k} z_2^k}_{=f_0(z_2)} + \underbrace{z_1 \sum_{j \ge 1} \sum_{k \ge 0} a_{jk} z_1^{j-1} z_2^k}_{=F(z)}$$

Since w(0) = 1, we may write $w = 1 + \tilde{w}$, with $\tilde{w}(z_1) \in z_1 \operatorname{Hol}(\mathbb{D})$. Hence,

$$f(z) = \underbrace{w(z_1)f_0(z_2)}_{\in W_1} - \underbrace{\tilde{w}(z_1)f_0(z_2) + F(z)}_{\in X_1}.$$

Finally, we get $\operatorname{Hol}(\mathbb{B}_2) = W_1 + X_1$.

Now, assume that $f \in W_1 \cap X_1$. We can write

$$f(z) = w(z_1)f_0(z_2) = z_1F(z),$$

with $f_0 \in \operatorname{Hol}(\mathbb{D})$ and $F \in \operatorname{Hol}(\mathbb{B}_2)$. Once again using \tilde{w} , we get

$$f_0(z_2) = z_1 F(z) - \tilde{w}(z_1) f_0(z_2).$$

Since $\tilde{w}(0) = 0$, considering $z = (0, z_2)$, we obtain $f_1(z_2) = 0$ for all $z_2 \in \mathbb{D}$. Thus, $f \equiv 0$, so $\operatorname{Hol}(\mathbb{B}_2) = W_1 \oplus X_1$.

 $\underline{\ell} \to \underline{\ell} + \underline{1}$: Assume that $\operatorname{Hol}(\mathbb{B}_2) = W_{\ell} \oplus X_{\ell}$. Let $f \in \operatorname{Hol}(\mathbb{B}_2)$. By induction hypothesis,

$$f(z) = w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2) + z_1^\ell \tilde{f}(z),$$

with $f_0, \dots, f_{\ell-1} \in \operatorname{Hol}(\mathbb{D})$ and $\tilde{f} \in \operatorname{Hol}(\mathbb{B}_2)$. Using the same calculations as for $\ell = 1$, we may find $f_\ell \in \operatorname{Hol}(\mathbb{D})$ and $g \in \operatorname{Hol}(\mathbb{B}_2)$ such that

$$z_1^{\ell}\tilde{f}(z) = z_1^{\ell}f_{\ell}(z_2) + z_1^{\ell+1}g(z).$$

Moreover, since $\kappa_1(0) = 0$, $\kappa'_1(0) = 1$ and w(0) = 1, there exists $h \in \operatorname{Hol}(\mathbb{D})$ such that $w(z_1)\kappa_1^{\ell}(z_1) = z_1^{\ell} + z_1^{\ell+1}h(z_1).$

Therefore,

$$z_1^{\ell} \tilde{f}(z) = w(z_1) \kappa_1^{\ell}(z_1) f_{\ell}(z_2) + z_1^{\ell+1} \left(g(z) - h(z_1) f_{\ell}(z_2) \right)$$

Finally, we have

$$f(z) = \underbrace{w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2) + w(z_1) \kappa_1^\ell(z_1) f_\ell(z_2)}_{\in W_{\ell+1}} + \underbrace{z_1^{\ell+1} \left(g(z) - h(z_1) f_\ell(z_2)\right)}_{\in X_{\ell+1}}$$

so $\operatorname{Hol}(\mathbb{B}_2) = W_{\ell+1} + X_{\ell+1}.$

Now, assume that $f \in W_{\ell+1} \cap X_{\ell+1}$. Then,

$$f(z) = w(z_1) \sum_{q=0}^{\ell} \kappa_1^q(z_1) f_q(z_2) = z_1^{\ell+1} \tilde{f}(z),$$

with $f_0, \dots, f_\ell \in \operatorname{Hol}(\mathbb{D})$ and $\tilde{f} \in \operatorname{Hol}(\mathbb{B}_2)$. Once again writing $w\kappa_1^\ell = z_1^\ell + z_1^{\ell+1}h$, we obtain

$$w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2) = z_1^{\ell+1} \tilde{f}(z) - w(z_1) \kappa_1^\ell(z_1) f_\ell(z_2)$$

= $z_1^\ell(z_1 \tilde{f}(z) - f_\ell(z_2) - z_1 h(z_1) f_\ell(z_2)) \in W_\ell \cap X_\ell = \{0\}.$

Thus, $f(z) = w(z_1)\kappa_1^{\ell}(z_1)f_{\ell}(z_2) = z_1^{\ell+1}\tilde{f}(z)$, so $z_1^{\ell}f_{\ell}(z_2) = z_1^{\ell+1}(\tilde{f}(z) - h(z_1)f_{\ell}(z_2)).$

Denote by (c_{jk}) the Maclaurin coefficients of the map $z \mapsto z_1^{\ell} f_{\ell}(z_2)$, and (d_{jk}) those of the map $z \mapsto z_1^{\ell+1}(\tilde{f}(z) - h(z_1)f_{\ell}(z_2))$. Then,

$$j \neq \ell \Longrightarrow c_{jk} = 0$$
 and $j = \ell \Longrightarrow d_{jk} = 0.$

Finally, since $c_{jk} = d_{jk}$ for all $j, k \in \mathbb{N}_0$, we obtain

$$z_1^{\ell} f_{\ell}(z_2) = z_1^{\ell+1}(\tilde{f}(z) - h(z_1)f_{\ell}(z_2)) = 0.$$

Hence, $f_{\ell} \equiv 0$, so $f \equiv 0$. We proved that $\operatorname{Hol}(\mathbb{B}_2) = W_{\ell} \oplus X_{\ell}$.

To finish, we prove (*ii*). If $f \in W_{\ell}$, then

$$f = w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) f_q(z_2)$$

with $f_0, \cdots, f_{\ell-1} \in \operatorname{Hol}(\mathbb{D})$. Thus,

$$m(f \circ \varphi)(z) = m(0)w(z_1) \sum_{q=0}^{\ell-1} \varphi_1'(0)^q \kappa_1^q(z_1) f_q(\beta_2 z_2) = w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) \tilde{f}_q(z_2),$$

where $\tilde{f}_q(z_2) = m(0)\varphi'_1(0)^\ell f_q(\beta_2 z_2)$. Thus, $f \circ \varphi \in W_\ell$.

If $f \in X_{\ell}$, then $f(z) = z_1^{\ell} g(z)$, with $g \in \operatorname{Hol}(\mathbb{B}_2)$. Hence,

$$m(f \circ \varphi)(z) = m(z)\varphi_1(z_1)^{\ell}g(\varphi_1(z_1), \beta_2 z_2).$$

However, since $\varphi_1(0) = 0$, we may write $\varphi_1(z_1) = z_1 \psi(z_1)$, with $\psi \in Hol(\mathbb{D})$. Therefore,

$$(f \circ \varphi)(z) = z_1^{\ell} \psi(z_1) m(z) g(\varphi_1(z_1), \beta_2 z_2) \in X_{\ell}.$$

In order to prove the main theorem of this section, we use the two decompositions obtained above.

Proof of Theorem 6.3. Let $g \in \operatorname{Hol}(\mathbb{B}_N)$. For all $\ell \in \mathbb{N}$, using the fact that $\operatorname{Hol}(\mathbb{B}_2) = \tilde{W}_{\ell} \oplus X_{\ell}$, we may write

$$g(z) = w(z_1) \sum_{q=0}^{\ell-1} \kappa_1^q(z_1) g_q(\tilde{z}) + z_1^{\ell} G_1(z),$$

with $g_0, \dots, g_{\ell-1} \in \operatorname{Hol}(\mathbb{B}_{N-1})$ and $G_1 \in \operatorname{Hol}(\mathbb{B}_N)$. Now, since $\operatorname{Hol}(\mathbb{B}_2) = W_{\ell} \oplus X_{\ell}$, going from one coordinate to an other, for all $\ell_1, \dots, \ell_p \in \mathbb{N}$, we may write g as

$$g(z) = \sum_{q_1=0}^{\ell_1-1} \cdots \sum_{q_p=0}^{\ell_p-1} w(z_1) \left(\prod_{k=1}^p \kappa_k^{q_k}(z_k)\right) g_{q_1,\cdots,q_p}(z_{p+1},\cdots,z_N) + \sum_{k=1}^p z_k^{\ell_k} G_k(z),$$

with $g_{q_1,\dots,q_p} \in \operatorname{Hol}(\mathbb{B}_{N-p})$ and $G_k \in \operatorname{Hol}(\mathbb{B}_N)$. Denote $\tilde{G}_k = z_k^{\ell_k} G_k$.

Let $\lambda \in \mathbb{C}^*$ such that

$$|\lambda| \notin \left\{ m(0) \prod_{k=1}^{p} |\varphi'_{k}(0)|^{n_{k}} : n_{1}, \cdots, n_{p} \in \mathbb{N}_{0} \right\}$$

• For all $k \in \{1, \dots, p\}$ and for ℓ_k sufficiently large, the map

$$\tilde{F}_k = \sum_{n \ge 0} \frac{m_n(G_k \circ \varphi^{[n]})}{\lambda^n}$$

is a uniformly convergent series, and is holomorphic on a small ball $B(0,\varepsilon)$ (cf. Lemma 4.9). Moreover, it satisfies $m(\tilde{F}_k \circ \varphi) - \lambda \tilde{F}_k = \tilde{G}_k$. Lemma 4.8 gives $F_k \in \operatorname{Hol}(\mathbb{B}_N)$ such that $m(F_k \circ \varphi) - \lambda F_k = \tilde{G}_k$.

• Denote by ϕ the map defined as $\phi(z_{p+1}, \cdots, z_N) = (\beta_{p+1}z_{p+1}, \cdots, \beta_N z_N)$. Let $0 \leq q_1 \leq \ell_1 - 1, \cdots, 0 \leq q_p \leq \ell_p - 1$. Since $|\lambda| \neq m(0) \prod_{k=1}^p |\varphi'_k(0)|^{q_k}$ and ϕ is bijective, there exists $f_{q_1,\dots,q_p} \in \operatorname{Hol}(\mathbb{D})$ such that

$$m(0)\prod_{k=1}^{p}\varphi_{k}'(0)^{q_{k}}(f_{q_{1},\cdots,q_{p}}\circ\phi)-\lambda f_{q_{1},\cdots,q_{p}}=g_{q_{1},\cdots,q_{p}}$$

To summarise, the map f defined as

$$f(z) = \sum_{q_1=0}^{\ell_1-1} \cdots \sum_{q_p=0}^{\ell_p-1} w(z_1) \left(\prod_{k=1}^p \kappa_k^{q_k}(z_k)\right) f_{q_1,\cdots,q_p}(z_{p+1},\cdots,z_N) + \sum_{k=1}^p z_k^{\ell_k} F_k(z)$$

satisfies $m(f \circ \varphi) - \lambda f = g$, and is holomorphic on \mathbb{B}_N . Hence, $W_{m,\varphi} - \lambda$ Id is bijective.

Conversely, let $n_1 \in \mathbb{N}$, and $f_1, \dots, f_N : \mathbb{D} \to \mathbb{C}$ holomorphic maps such that

- $m(f_1 \circ \varphi_1) = m(0)\varphi'_1(0)^{n_1}f_1,$
- $f_k \circ \varphi_k = \varphi'_k(0)f_k$ $(2 \le k \le p),$ $f_k \circ \varphi_k = \beta_k f_k$ $(p+1 \le k \le N).$

Such maps exist using the results in one variable ([4, 2, 3]), since φ has separable variables. For $n_2, \dots, n_N \in \mathbb{N}_0$, consider $f : \mathbb{B}_N \to \mathbb{C}$ defined by

$$f(z) = f_1(z_1) \times \prod_{k=2}^{N} f_k(z_k)^{n_k}$$

Then,

$$[m(f \circ \varphi)](z) = m(z)(f_1 \circ \varphi_1)(z) \times \prod_{k=2}^p f_k(\varphi_k(z_k))^{n_k} \times \prod_{k=p+1}^N f_k(\beta_k z_k)^{n_k}$$

= $m(0)\varphi_1'(0)^{n_1}f_1(z) \times \prod_{k=2}^p \varphi_k'(0)^{n_k}f_k(z_k)^{n_k} \times \prod_{k=p+1}^N \beta_k^{n_k}f_k(z_k)^{n_k}$
= $\left(m(0)\prod_{k=1}^p \varphi_k'(0)^{n_k} \times \prod_{k=p+1}^N \beta_k^{n_k}\right)f(z).$
efore, $m(0)\prod_{k=1}^p \varphi_k'(0)^{n_k} \times \prod_{k=p+1}^N \beta_k^{n_k} \in \sigma_p(C_{\varphi}) \subset \sigma(C_{\varphi}).$

Therefore, $m(0) \prod_{k=1}^{P} \varphi'_k(0)^{n_k} \times \prod_{k=p+1}^{r} \beta_k^{r_k} \in \sigma_p(C_{\varphi}) \subset \sigma(C_{\varphi}).$

Conflict of interest: I hereby declare that I have no conflicts of interest to disclose.

Acknowledgments: This research is partly supported by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58. The author thanks the conference ACOTCA, held in June 2023 in Thessaloniki, where a part of this work was presented. The author wishes to thank the reviewers for their careful reading and helpful comments.

References

- M. Abate. Iteration theory of holomorphic maps on taut manifolds. Res. Lect. Notes Math. Commenda di Rende (Italy): Mediterranean Press, 1989.
- [2] W. Arendt, E. Bernard, B. Célariès, and I. Chalendar. Denjoy-Wolff theory and spectral properties of weighted composition operators on Hol(D). *Ill. J. Math.*, 66(4):463–489, 2022.
- [3] W. Arendt, E. Bernard, B. Célariès, and I. Chalendar. Spectral properties of weighted composition operators on Hol(D) induced by rotations. *Indiana Univ. Math. J.*, 72(5):1789-1820, 2021.
- [4] W. Arendt, B. Célariès, and I. Chalendar. In Koenigs' footsteps: diagonalization of composition operators. J. Funct. Anal., 278(2):24, 2020. Id/No 108313.
- [5] F. Bayart and S. Charpentier. Hyperbolic composition operators on the ball. Trans. Am. Math. Soc., 365(2):911–938, 2013.
- [6] F. Bracci. Local dynamics of holomorphic diffeomorphisms. Boll. Unione Mat. Ital., Sez. B, Artic. Ric. Mat. (8), 7(3):609–636, 2004.
- [7] P. S. Bourdon. Spectra of some composition operators and associated weighted composition operators. J. Oper. Theory, 67(2):537–560, 2012.
- [8] I. Chalendar, P. Gumenyuk and J. E. McCarthy. A note on composition operators on model spaces. 2023. https://arxiv.org/abs/2305.07526.
- [9] C. C. Cowen and B. D. MacCluer. Composition operators on spaces of analytic functions. Boca Raton, FL: CRC Press, 1995.
- [10] R. A. Horn and C. R. Johnson. *Matrix analysis*. Cambridge: Cambridge University Press, 2nd ed. edition, 2013.
- [11] G. Koenigs. Recherches sur les intégrales de certaines équations fonctionnelles. Annales Scientfiques de l'École Normale Supérieure, 3.1:3–41, 1884.
- [12] Y. Kubota. Iteration of holomorphic maps of the unit ball into itself. Proc. Am. Math. Soc., 88:476–480, 1983.
- [13] T. Ma. Higher chain formula proved by combinatorics. *Electron. J. Comb.*, 16(1):research paper n21, 7, 2009.
- [14] B. D. MacCluer. Iterates of holomorphic self-maps of the unit ball in \mathbb{C}^n . Mich. Math. J., 30:97–106, 1983.
- [15] L. Oger. Study of composition operators on the unit ball of \mathbb{C}^N . Submitted. 2023. https://hal.science/hal-04290257.
- [16] K. Oka. Sur les fonctions analytiques de plusieurs variables. I. Domaines convexes par rapport aux fonctions rationnelles. J. Sci. Hiroshima Univ., Ser. A, 6:245–255, 1936.
- [17] P. J. Olver. Applications of Lie groups to differential equations. Paperback ed. Vol 107. Grad. Texts Math. New York, NY:Springer, 2000.
- [18] H. Poincaré. Oeuvres, Tome I. Gauthier-Villard, Paris, 1928, pp. XXXVI-CXXIX.

- [19] J. Raissy. Linearization of holomorphic germs with quasi-Brjuno fixed points. Math. Z., 264(4):881-900, 2010.
- [20] J. H. Shapiro. Composition operators and classical function theory. Universitext. New York: Springer-Verlag, 1993.
- [21] A. Weil. L'intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann., 111:178–182, 1935.

LUCAS OGER, UNIVERSITÉ GUSTAVE EIFFEL, LAMA, (UMR 8050), UPEM, UPEC, CNRS, F-77454, MARNE-LA-VALLÉE (FRANCE)

Email address: lucas.oger@univ-eiffel.fr