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Abstract. We study the general properties, point spectrum and spectrum of a
weighted composition operator Wm,φ with elliptic symbol φ on the unit ball BN of
CN , and general weight m ∈ Hol(BN ). We give a complete description of the spectra
in the vast majority of cases, and we provide inclusions in general.
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1. Introduction

Let N ≥ 2, BN = {z ∈ CN : |z| < 1} be the unit ball of CN for the euclidean norm,
and Hol(BN) be the set of all complex-valued holomorphic functions on BN . Consider
φ : BN → BN a holomorphic map, and m ∈ Hol(BN). The weighted composition
operator, with symbol φ and weight m, denoted by Wm,φ, is defined on Hol(BN) by

Wm,φ(f) = m(f ◦ φ).
It is a linear, multiplicative operator.
Theory of composition operators is a very popular subject. Most of the vast literature

on this topic (see for example the monographs from Cowen, MacCluer in [9], Shapiro in
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[20] or more recently, the articles [5, 7, 8]) considers these operators on Banach spaces
of analytic functions, such as Hardy, Dirichlet, or Bergman spaces.

However, in recent years, W. Arendt et al. ([2, 3]) studied one-variable weighted
composition operators directly on the Fréchet space Hol(D), where D denotes the unit
disc of C. In this paper, we will only consider elliptic symbols, that is φ having a fixed
point in the ball. Upon conjugating by some automorphism, we can assume that 0 is a
fixed point of φ.

The results of [2, 3] for elliptic symbols are summarized in the following theorem.
Denote by N0 the set of all non-negative integers, and N = N0\{0}.

Theorem 1.1. Let φ be an elliptic self-map of D such that φ(0) = 0, and m ∈ Hol(D).
(i) If φ ≡ 0, then

σp(Wm,φ) = {0,m(0)} = σ(Wm,φ).

(ii) If m(0) = 0 and φ ̸≡ 0, then

σp(Wm,φ) = ∅, σ(Wm,φ) = {0}.
(iii) If m(0) ̸= 0, φ′(0) = 0 and φ ̸≡ 0, then

σp(Wm,φ) = {m(0)}, σ(Wm,φ) = {0,m(0)}.
(iv) If m(0) ̸= 0 and 0 < |φ′(0)| < 1, then

σp(Wm,φ) = {m(0)φ′(0)n : n ∈ N0}, σ(Wm,φ) = σp(Wm,φ) ∪ {0}.
(v) If m(0) ̸= 0 and φ(z) = βz, |β| = 1, βp = 1, then if we define the map mp by

mp(z) = m(z)m(βz) · · ·m(βp−1z),

σp(Wm,φ) ̸= ∅ ⇐⇒ σp(Wm,φ) = {m(0)βk : k ∈ N0} ⇐⇒ mp is a nonzero constant.

Moreover, σ(Wm,φ) = {λ ∈ C : λp ∈ mp(D)}.

This article can be considered as a sequel to [2], [3] and [15]. The aim is to construct
a similar theorem in the multidimensional case. Note that the behaviour of the point
spectrum σp(Wm,φ) and spectrum σ(Wm,φ) of composition operators strongly depends
on the properties of the maps m and φ.

In order to study this function, we need a generalization of Denjoy-Wolff’s theorem,
by B. MacCluer in [14] and Y. Kubota in [12], presented here as a single result. Let
φ[n] be the n-th iteration of φ.

Theorem 1.2. Let φ be a self-map of BN , and assume that φ has a fixed point in BN .
(a) If a subsequence of (φ[n])n≥0 converges to a constant map f ≡ z0 ∈ BN , then the

whole sequence converges to z0. In this case, z0 is the unique fixed point of φ.
(b) Otherwise, upon conjugating, there exists a subsequence of (φ[n]) that converges to

a function h of the form

h(z) = (z1, · · · , zr, 0, · · · , 0), with r ∈ {1, · · · , N}.

This theorem classifies the elliptic self-maps of BN into two categories.

Definition 1.3. Let φ be a self-map of BN . Assume that φ has a fixed point in BN .
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• In the case (a) of Theorem 1.2, we say that φ is elliptic attractive, and the Denjoy-
Wolff point of φ is defined as the z0.

• In the case (b) of Theorem 1.2, we say that φ is elliptic non attractive.

The paper is organized as follows.
First, in Section 2, we consider the general properties of weighted composition oper-

ators on the unit ball: continuity (Proposition 2.1), invertibility (Proposition 2.2), and
compactness (Proposition 2.3). We also give a formula about the partial derivatives of
composition of functions.

Then, in Section 3, we study the spectral properties of Wm,φ if m(0) = 0. In particu-
lar, we prove that the point spectrum is empty (Proposition 3.1), and that the spectrum
contains only 0 (Proposition 3.3).

Next, in Section 4, we focus on composition operators with non-vanishing weight at
0 and non-bijective symbol. We split the analysis into three cases. First, we consider
symbols φ such that the Jacobian matrix at 0, φ′(0), is invertible. In this case, the
point spectrum is completely described (Proposition 4.5), as well as the spectrum if we
assume moreover that φ′(0) is diagonal (Proposition 4.10). Then, we focus on Jacobian
matrices such that 0 is their only eigenvalue. In such case, the point spectrum is {m(0)}
or {0,m(0)} (Proposition 4.11), and the spectrum is {0,m(0)} (Theorem 4.12). Finally,
we give general inclusions for the spectra of Wm,φ (Propositions 4.14 and 4.15).

In Section 5, we consider non-vanishing weights and bijective periodic symbols. We
give a characterization of when the point spectrum is non-empty (Proposition 5.3), and
a description of the spectrum of Wm,φ (Theorem 5.5).

Finally, in Section 6, we give results about the point spectrum in two cases: when
the weight vanishes at some point in BN and the symbol is bijective aperiodic (Lemma
6.1), and when the symbol is elliptic non-attractive (Proposition 6.2).

2. General properties

In this section, we go along the same lines as [2]. We first focus on continuity.

Proposition 2.1 (Continuity). The operator Wm,φ is continuous on L(Hol(BN)).

Proof. Let k ∈ N. Denote by ∥·∥∞,k the semi-norm on Hol(BN) defined by

∥f∥∞,k = sup
z∈Kk

|f(z)| , with Kk =

(
1− 1

k

)
BN .

Since φ is continuous and Kk is compact, there exists j ∈ N such that φ(Kk) ⊂ Kj.
Hence, for all f ∈ Hol(BN),

∥Wm,φ(f)∥∞,k = sup
z∈Kk

|m(z)f(φ(z))| ≤ sup
z∈Kk

|m(z)| sup
w∈Kj

|f(w)| ≤ ∥m∥∞,k ∥f∥∞,j . □

We now study the invertibility of weighted composition operators.

Proposition 2.2 (Invertibility). The operator Wm,φ is invertible if and only if m does
not vanish on BN and φ is bijective.
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Proof. If φ is bijective and m does not vanish on BN , as in [2], we consider the map

η =
1

m ◦ φ−1
,

which satisfies Wη,φ−1 ◦Wm,φ = Wm,φ ◦Wη,φ−1 = Id. Hence, Wm,φ is invertible.
Conversely, if there exists z0 ∈ BN such that m(z0) = 0, then for all f ∈ Hol(BN),

(Wm,φ(f))(z0) = 0,

so Wm,φ is not invertible. Assume now that Wm,φ is invertible. Then, for all z ∈ BN ,
we know that m(z) ̸= 0. Let g ∈ Hol(BN). Then h = mg ∈ Hol(BN), and there exists
f ∈ Hol(BN) such that

m(f ◦ φ) = h = mg.

Dividing this equality by m (since m does not vanish on BN), we obtain f ◦ φ = g.
Therefore, Cφ is invertible, so φ is bijective (see [15, Proposition 2.4]). □

Finally, let us concentrate on the compactness of Wm,φ. Recall that for f ∈ Hol(BN),
the supremum norm of f is defined by ∥f∥∞ = sup{f(z) : z ∈ BN}.

Proposition 2.3 (Compactness).
The operator Wm,φ is compact if and only if m = 0 or ∥φ∥∞ < 1.

Proof. If m = 0, then Wm,φ = 0, so Wm,φ is compact.
If m ̸= 0 and ∥φ∥∞ < 1, then Wm,φ =MmCφ, where Mm : f 7→ mf is the multiplica-

tion operator by m, and Cφ : f 7→ f ◦ φ. Since ∥φ∥∞ < 1, using [15], the operator Cφ

is compact. Hence, because the set of all compact operators is an ideal of L(Hol(BN)),
the operator Wm,φ is compact.

Conversely, if m ̸= 0 and ∥φ∥∞ = 1, then for 0 < r < 1, we are able to choose
z0 ∈ BN such that |φ(z0)| > r and m(z0) ̸= 0. The same proof as in the non-weighted
case [15, Proposition 2.8], using Oka-Weil’s theorem ([16, 21]) gives the result. □

Let us finish this section with a wonderful property concerning the partial derivatives
of composed maps. We define two orders on NN

0 . If ı⃗, ȷ⃗ ∈ NN
0 , set |⃗ı| = i1+ · · ·+ iN and

ı⃗ ≺ ȷ⃗ ⇐⇒ |⃗ı| < |⃗ȷ| or

{
|⃗ı| = |⃗ȷ|
∃k ∈ {1, · · · , N}, i1 = j1, · · · , ik−1 = jk−1, ik < jk.

ı⃗ ≤ ȷ⃗ ⇐⇒ ∀k ∈ {1, · · · , N}, ik ≤ jk.

We write ı⃗ ≼ ȷ⃗ if ı⃗ ≺ ȷ⃗ or ı⃗ = ȷ⃗. The order ≼ is a well-order. Hence, we can define
the predecessor and the successor of a vector ȷ⃗ ∈ NN

0 . We denote them respectively by
ȷ⃗− and ȷ⃗+. For ȷ⃗ ∈ NN

0 , f ∈ Hol(BN) and z ∈ CN , let us denote

z ȷ⃗ =
N∏
k=1

zjkk , f (ȷ⃗) =
∂ |⃗ȷ|f

∂z ȷ⃗
.

Moreover, we define Holȷ⃗(BN) = {f ∈ Hol(BN) : ∀⃗ı ≼ ȷ⃗, f (⃗ı)(0) = 0}.
The following lemma, proved in [15] using Faà di Bruno’s formula ([13]), will be

crucial. Since unitary matrices are automorphisms of the ball fixing 0, using Schür
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decomposition ([10]), we assume in the following that the Jacobian matrix of φ at 0 is
a triangular matrix, with diagonal entries λ1, · · · , λN .

Lemma 2.4. Let ȷ⃗ ∈ NN
0 . If f ∈ Holȷ⃗−(BN), then

(1) (f ◦ φ)(ȷ⃗)(0) = λȷ⃗f (ȷ⃗)(0).

3. Vanishing weight at 0

When the weight m satisfies m(0) = 0, the spectra of Wm,φ can be completely
described, as it is proved in the following two properties.

Proposition 3.1. Let φ be elliptic, such that φ(0) = 0. If m(0) = 0, then

σp(Wm,φ) ⊂ {0}.

Proof. Let µ ∈ C∗. If f ̸≡ 0 satisfies m(f ◦ φ) = µf , thenr First, µf(0) = [m(f ◦ φ)](0) = m(0)f(0) = 0, so f(0) = 0 since µ ̸= 0.r Assume that for all ı⃗ ≺ ȷ⃗, f (⃗ı)(0) = 0. Then, by Lemma 2.4 and the Leibniz rule,

µf (ȷ⃗)(0) = [m(f ◦ φ)](ȷ⃗)(0) = m(0)(f ◦ φ)(ȷ⃗)(0) = 0.

Therefore, f (ȷ⃗)(0) = 0.

Finally, f ≡ 0, which is impossible. Thus σp(Wm,φ) ⊂ {0}. □

Remark 3.2. For instance, consider N = 2, φ(z1, z2) = (0, z2) and m(z1, z2) = z1.
Then, for f(z1, z2) = z1, we obtain m(f ◦ φ)(z1, z2) = z1f(φ(z1, z2)) = z1f(0, z2) = 0.
Hence, 0 ∈ σp(Wm,φ).

Proposition 3.3. Let φ be elliptic non automorphic, such that φ(0) = 0 and φ ̸≡ 0. If
m(0) = 0, then

σ(Wm,φ) = {0}.

Proof. The proof is exactly the same as in [2, Theorem 4.8]. □

Remark 3.4. If φ ≡ 0 and m(0) = 0, we easily show that

σp(Wm,φ) = σ(Wm,φ) = {0}.

Indeed, in this case, Wm,φ(f) = f(0)m. Thus, for all g ∈ Hol(BN) and µ ̸= 0, the
map

h = − 1

µ

[
g(0)

µ
m+ g

]
satisfies h(0)m−µh = g, so µ ̸∈ σ(Wm,φ). In addition, if we denote e1(z) = z1, we have
e1(0) = 0. Hence, we obtain Wm,φ(e1) = 0, so 0 ∈ σp(Wm,φ).
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4. Elliptic attractive symbols

Throughout the rest of the paper we assume that m(0) ̸= 0. When φ is elliptic at-
tractive, by Denjoy-Wolff theorem, φ is not bijective. Moreover, using [15, Lemma 4.1],
∥φ′(0)∥ < 1. We begin with the two following results, proved in the one-dimensional
case in [2]. The proofs are going along the same lines in our context, the notation |·|
describing the euclidean norm on the ball instead of the modulus on the disc.

Lemma 4.1. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0. For
all r ∈ (0, 1), there exists δ = δ(r) ∈ (0, 1) such that for all |z| ≤ r and n ≥ 0,∣∣φ[n](z)

∣∣ ≤ δn |z| .

Proposition 4.2. Let φ be an elliptic attractive map such that φ(0) = 0, and m ∈
Hol(D) such that m(0) ̸= 0. The sequence (wn)n≥1 defined by

wn(z) =
mn(z)

m(0)n
, mn(z) =

n−1∏
k=0

m(φ[k](z))

converges uniformly on all compact subsets of BN to a map w, which is the only one to
satisfy

m(w ◦ φ) = m(0)w, w(0) = 1.

The function w is called weighted Koenigs’ map of φ and m.
We now consider different situations, depending on the behaviour of φ′(0).

4.1. Invertible Jacobian at 0. Let us recall Koenigs’ theorem in several variables
([6, 15, ?, 19]), generalization of the result proved in 1884 in [11]. Denote by λ =
(λ1, · · · , λN) the diagonal of the matrix φ′(0).

Definition 4.3. We say that the eigenvalues are resonant if there exist j ∈ {1, · · · , N}
and k1, · · · , kN ∈ N such that k1 + · · ·+ kN ≥ 2 and

λk11 × · · · × λkNN = λj.

Theorem 4.4. Let φ : BN → BN be an elliptic attractive map, such that φ(0) = 0 and
φ′(0) is invertible and the eigenvalues of φ′(0) are not resonant. Then there exists a
holomorphic function κ : BN → CN such that κ′(0) = Id and

(2) κ ◦ φ = φ′(0)κ.

The map κ is called Koenigs’ function of φ.
Changing the order of the eigenvalues of φ′(0), this theorem allows us to find functions

η1, · · · , ηN ∈ Hol(BN)\{0} such that

ηk ◦ φ = λkηk, k = 1, · · · , N.

We obtain the following proposition.



WEIGHTED ELLIPTIC COMPOSITION OPERATORS IN SEVERAL VARIABLES 7

Proposition 4.5. Let φ : BN → BN be an elliptic attractive map, such that φ(0) = 0
and φ′(0) is invertible and the eigenvalues of φ′(0) are not resonant. Let m ∈ Hol(BN)
such that m(0) ̸= 0. Then,

σp(Wm,φ) = {m(0)λȷ⃗ : ȷ⃗ ∈ NN
0 },

where λ = (λ1, · · · , λN) is φ′(0) eigenvalues’ vector.

Proof. Let ȷ⃗ ∈ NN
0 . Consider f = wηȷ⃗, with w defined in Proposition 4.2. Then

m(f ◦ φ) = m(w ◦ φ)

(
N∏
k=1

(ηk ◦ φ)jk
)

= m(0)w

(
N∏
k=1

(λkηk)
jk

)
= m(0)λȷ⃗wηȷ⃗ = m(0)λȷ⃗f.

Hence, for all ȷ⃗ ∈ NN
0 , m(0)λȷ⃗ ∈ σp(Wm,φ).

Conversely, if µ ̸∈ {m(0)λȷ⃗ : ȷ⃗ ∈ NN
0 }, and if f ∈ Hol(BN) satisfies f ̸≡ 0 and

m(f ◦ φ) = µf , we show that for all ȷ⃗ ∈ NN
0 , f (ȷ⃗)(0) = 0.r Note that [m(f ◦ φ)](0) = m(0)f(0) = µf(0). Since µ ̸= m(0), we get f(0) = 0.r Assume that for all ı⃗ ≺ ȷ⃗, f (⃗ı)(0) = 0. Then, by Lemma 2.4 and the general

Leibniz rule ([17]),

(3)
[m(f ◦ φ)](ȷ⃗) (0) =

∑
α⃗≤ȷ⃗

(
ȷ⃗

α⃗

)
m(ȷ⃗−α⃗)(0)(f ◦ φ)(α⃗)(0)

= m(0)(f ◦ φ)(ȷ⃗)(0) = m(0)λȷ⃗f (ȷ⃗)(0).

Indeed, if α⃗ ≤ ȷ⃗, then α⃗ ≼ ȷ⃗. Therefore, since f ∈ Holȷ⃗−(BN) ⊂ Holα⃗−(BN), by
Lemma 2.4, (f ◦φ)(α⃗)(0) = 0, unless α⃗ = ȷ⃗. Finally, m(0)λȷ⃗f (ȷ⃗)(0) = µf (ȷ⃗)(0), and
since µ ̸= m(0)λȷ⃗, we obtain f (ȷ⃗)(0) = 0.

We deduce that f ≡ 0, a contradiction. Hence, σp(Wm,φ) = {m(0)λȷ⃗ : ȷ⃗ ∈ NN
0 }. □

If φ′(0) is diagonal, the Koenigs’ functions associated with φ satisfy

ηk ◦ φ = λkηk, ηk(0) = 0,
∂ηk
∂zℓ

(0) =

{
1 if ℓ > k,

0 if ℓ = k.

Let us start by establishing a property on the maps ηk.

Lemma 4.6. If ı⃗, ȷ⃗ ∈ NN
0 satisfy ı⃗ ≼ ȷ⃗, then

(ηȷ⃗)(⃗ı)(0) =

{
0 if ı⃗ ≺ ȷ⃗,

ȷ⃗! if ı⃗ = ȷ⃗.

Proof. Note that for all k ∈ {1, · · · , N}, the Maclaurin series of ηk is

ηk(z) =
k∑

ℓ=1

αkℓzℓ + o(|z|), with αkℓ ∈ C.
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Hence, by the multinomial Theorem,

ηȷ⃗(z) =
N∏
k=1

(
k∑

ℓ=1

αkℓzℓ

)jk

+ o(|z||⃗ȷ|) =
N∏
k=1

 ∑
|p⃗k|=jk

(
jk
p⃗k

)
(αkz)

p⃗k

+ o(|z||⃗ȷ|)

=
∑

|p⃗1|=j1

· · ·
∑

|p⃗N |=jN

βpz
r⃗ + o(|z||⃗ȷ|),

with βp ∈ C, pkℓ = 0 if k < ℓ, and

r⃗ = (p11 + · · ·+ pN1, p22 + · · ·+ pN2, · · · , pNN).

However, for p⃗1, · · · , p⃗N satisfying these assumptions, |r⃗| = |⃗ȷ|. Also, note that
p11 = j1, so r⃗ ≽ ȷ⃗. This gives the result for ı⃗ ≺ ȷ⃗. Moreover, the only way to get r⃗ = ȷ⃗
is by taking pkℓ = jk1{k=ℓ}. Hence, we conclude for the case ı⃗ = ȷ⃗ since βp = 1, because
αkk = 1 for all k. □

Hence, we get the following theorem. For ȷ⃗ ∈ NN , let us define

Xȷ⃗ = Vect(wη ı⃗ : ı⃗ ≼ ȷ⃗), Holȷ⃗(BN) = {f ∈ Hol(BN) : ∀⃗ı ≼ ȷ⃗, f (⃗ı)(0) = 0}.

Theorem 4.7. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0 and
φ′(0) is diagonal, invertible. If m(0) ̸= 0 then
(i) For all ȷ⃗ ∈ NN

0 , Hol(BN) = Xȷ⃗ ⊕ Holȷ⃗(BN).
(ii) For all ȷ⃗ ∈ NN

0 , if we define the operators Pȷ⃗ and Qȷ⃗ by

P0⃗(f) = f(0)w, Pȷ⃗(f) =
1

ȷ⃗!
[f −Qȷ⃗−(f)]

(ȷ⃗)(0)× wηȷ⃗, Qȷ⃗(f) =
∑
ı⃗≼ȷ⃗

Pı⃗(f),

then Qȷ⃗ is the projection on Xȷ⃗ in parallel to Holȷ⃗(BN).
(iii) For all ȷ⃗ ∈ NN

0 , Pȷ⃗ ◦Wm,φ = Wm,φ ◦ Pȷ⃗ = m(0)λȷ⃗Pȷ⃗.

Proof. We prove most of the results by induction.
(i) First, we show that Xȷ⃗ ∩ Holȷ⃗(BN) = {0}. Indeed, let

f =
∑
ı⃗≼ȷ⃗

c⃗ıwη
ı⃗ ∈ Holȷ⃗(BN).

Then, c0⃗ = c0⃗w(0) = f(0) = 0. Let k⃗ ≼ ȷ⃗ such that for all ı⃗ ≺ k⃗, c⃗ı = 0. By the
general Leibniz rule,

f (k⃗)(0) =
∑
k⃗≼⃗ı≼ȷ⃗

c⃗ı(wη
ı⃗)(k⃗)(0) =

∑
k⃗≼⃗ı≼ȷ⃗

∑
α⃗≤k⃗

c⃗ı

(
k⃗

α⃗

)
w(k⃗−α⃗)(0)(η ı⃗)(α⃗)(0) = ck⃗w(0)k⃗!.

Since f ∈ Holȷ⃗(BN), we obtain ck⃗ = 0. Hence, f ≡ 0.

Now, let us show that Xȷ⃗ +Holȷ⃗(BN) = Hol(BN).r The inclusion ⊂ is trivial.
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r Note that Im(Qȷ⃗) ⊂ Xȷ⃗. Let f ∈ Hol(BN). Then,

[f −Q0⃗(f)](0) = [f − P0⃗(f)](0) = f(0)− f(0)w(0) = 0,

because w(0) = 1. Hence, f −Q0⃗(f) ∈ Hol⃗0(BN), so f ∈ W0⃗ +Hol⃗0(BN).
Assume that f −Qȷ⃗−(f) ∈ Holȷ⃗−(BN). Then,

Qȷ⃗(f) = Qȷ⃗−(f) + Pȷ⃗(f) = Qȷ⃗−(f) +
1

ȷ⃗!
[f −Qȷ⃗−(f)]

(ȷ⃗)(0)× wηȷ⃗.

Let ı⃗ ≼ ȷ⃗. By definition of Qȷ⃗,

[f −Qȷ⃗(f)]
(⃗ı)(0) = [f −Qȷ⃗−(f)]

(⃗ı)(0)− 1

ȷ⃗!
[f −Qȷ⃗−(f)]

(ȷ⃗)(0)× (wηȷ⃗)(⃗ı)(0).

If ı⃗ ≺ ȷ⃗, using the properties of η and the induction hypothesis, we get
[f −Qȷ⃗−(f)]

(⃗ı)(0) = (wηȷ⃗)(⃗ı)(0) = 0, so [f −Qȷ⃗(f)]
(⃗ı)(0) = 0. If ı⃗ = ȷ⃗, then

[f −Qȷ⃗(f)]
(ȷ⃗)(0) = [f −Qȷ⃗−(f)]

(ȷ⃗)(0)− 1

ȷ⃗!
[f −Qȷ⃗−(f)]

(ȷ⃗)(0)× w(0)ȷ⃗! = 0,

using Leibniz rule, and noticing that w(0) = 1.
Finally, f −Qȷ⃗(f) ∈ Holȷ⃗(BN), so f ∈ Xȷ⃗ +Holȷ⃗(BN).

(ii) Using (i), if f ∈ Hol(BN), then we can write f as

f = g + h, g ∈ Xȷ⃗, h ∈ Holȷ⃗(BN),

where g and h are uniquely determined. Moreover, Qȷ⃗(f) = g, so Qȷ⃗ is indeed the
projection on Xȷ⃗ in parallel to Holȷ⃗(BN).

(iii) First, we show that for all ȷ⃗ ∈ NN
0 , Wm,φ ◦ Pȷ⃗ = m(0)λȷ⃗Pȷ⃗. Indeed,

(Wm,φ ◦ Pȷ⃗)(f) =
1

ȷ⃗!

[
f −Qȷ⃗−(f)

](ȷ⃗)
(0)×m(w ◦ φ)(ηȷ⃗ ◦ φ)

=
1

ȷ⃗!

[
f −Qȷ⃗−(f)

](ȷ⃗)
(0)× (m(0)w)(λȷ⃗ηȷ⃗) = m(0)λȷ⃗Pȷ⃗(f).

Then, let us prove that for all ȷ⃗ ∈ NN
0 , Qȷ⃗ ◦Wm,φ = Wm,φ ◦ Qȷ⃗. To do so, it

suffices to show that Xȷ⃗ and Holȷ⃗(BN) are invariant by Wm,φ.r Let ı⃗ ≼ ȷ⃗. Since m(wη ı⃗ ◦ φ) = m(0)λı⃗wη ı⃗, we obtain m(wη ı⃗ ◦ φ) ∈ Xȷ⃗, and
Wm,φ(Xȷ⃗) ⊂ Xȷ⃗.r Let f ∈ Holȷ⃗(BN). Then, m(f ◦ φ)(0) = m(0)f(0) = 0. In addition, for all
0 ≺ k⃗ ≼ ȷ⃗, f ∈ Holk⃗−(BN). Hence,

[m(f ◦ φ)](k⃗)(0) = m(0)λk⃗f (k⃗)(0) = 0.

Finally, Wm,φ(f) ∈ Holȷ⃗(BN), so Wm,φ(Holȷ⃗(BN)) ⊂ Holȷ⃗(BN).
We deduce that for all f ∈ Hol(BN), there exist g, h ∈ Holȷ⃗(BN) such that

m(f ◦ φ) = m(Qȷ⃗(f) ◦ φ) +m(g ◦ φ) = Qȷ⃗(m(f ◦ φ)) + h.

However, all maps are written in a unique way in Xȷ⃗ ⊕ Holȷ⃗(BN), so

(Qȷ⃗ ◦Wm,φ)(f) = Qȷ⃗(m(f ◦ φ)) = m(Qȷ⃗(f) ◦ φ) = (Wm,φ ◦Qȷ⃗)f).
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Finally, we show that Pȷ⃗ ◦ Wm,φ = Wm,φ ◦ Pȷ⃗. For ȷ⃗ = 0⃗, it is trivial since
P0⃗ = Q0⃗. Otherwise, for ȷ⃗ ∈ NN

0 , we write

Pȷ⃗ ◦Wm,φ = (Qȷ⃗ −Qȷ⃗−) ◦Wm,φ = Wm,φ ◦ (Qȷ⃗ −Qȷ⃗−) = Wm,φ ◦ Pȷ⃗. □

We now consider two auxiliary lemmas.

Lemma 4.8. Let φ be an elliptic attractive self-map of BN , such that φ(0) = 0. Let
g ∈ Hol(BN), and λ ̸= 0. If there exist ε ∈ (0, 1) and f ∈ Hol(B(0, ε)) such that for all
|z| < ε,

λf(z)−m(z)f(φ(z)) = g(z),

then there exists a function f̃ ∈ Hol(BN) such that f̃|B(0,ε) = f , and for all z ∈ BN ,

λf̃(z)−m(z)f̃(φ(z)) = g(z).

Proof. See [15, Lemma 4.7] or [4, Lemma 4.2], for instance. The only thing left is adding
m everywhere. □

Lemma 4.9. For all λ0 > 0, there exist 0 < ε < 1 and p ∈ N0 such that for all |λ| > λ0
and g ∈ Holp(BN), ∑

n≥0

mn(g ◦ φ[n])

λn

converges uniformly on B(0, ε).

Proof. Let ν > 1 and ∥φ′(0)∥ < ζ < 1. There exists p ∈ N0 such that ν |m(0)| ζp+1 < λ0.
Moreover, we know that there exists ε ∈ (0, 1) such that for all |z| ≤ ε,

|φ(z)| ≤ ζ |z| < ε and |m(z)| ≤ ν |m(0)| .
Using Schwarz’s lemma, for all n ∈ N0,

∣∣φ[n](z)
∣∣ ≤ ζn |z| < ε, ans since g ∈ Holp(BN),

there exists C > 0 such that for |z| ≤ ε, |g(z)| ≤ C |z|p+1. Finally, for |z| ≤ ε,∣∣∣∣mn(z)g(φ
[n](z))

λn

∣∣∣∣ ≤ Cνn |m(0)|n

|λ|n
∣∣φ[n](z)

∣∣p+1 ≤
(
ν |m(0)| ζp+1

λ0

)n

Cεp+1.

Because ν |m(0)| ζp+1 < λ0, the series converges normally on B(0, ε). □

We finally reach the following result.

Proposition 4.10. Let φ : BN → BN be an elliptic attractive map, such that φ(0) =
0 and φ′(0) is diagonal, invertible and the eigenvalues λ1, · · · , λN of φ′(0) are not
resonant. Assume that m ∈ Hol(D) satisfies m(0) ̸= 0. Then

σ(Wm,φ) = σp(Wm,φ) ∪ {0}.

Proof. The inclusion ⊃ is trivial, since φ ̸∈ Aut(BN). Let us focus on the other one.
Let µ ̸∈ σp(Wm,φ) ∪ {0}. By Lemma 4.9, there exist 0 < ε < 1 and p ∈ N0 such that

for all g ∈ Holp(BN), ∑
n≥0

mn(g ◦ φ[n])

λn



WEIGHTED ELLIPTIC COMPOSITION OPERATORS IN SEVERAL VARIABLES 11

converges uniformly on B(0, ε).
In addition, in a same way as in Theorem 4.7, Hol(BN) = Xp ⊕ Holp(BN), with

Xp = Vect(wη ı⃗ : |⃗ı| ≤ p) and Holp(BN) = {f ∈ Hol(BN) : ∀ |⃗ı| ≤ p, f (⃗ı)(0) = 0}. The
two subspaces are invariant by Wm,φ. Hence,

Wm,φ =

(
S 0

0 T

)
,

with S ∈ L(Xp) and T ∈ L(Holp(BN)).r If we consider the basis (wηȷ⃗ : |⃗ȷ| ≤ p) of Xp and if we denote λ = (λ1, · · · , λN),

S = diag(m(0)λȷ⃗ : |⃗ȷ| ≤ p).

Since µ ̸∈ {m(0)λȷ⃗ : |⃗ȷ| ≤ p}, S − µId is invertible.r For all g ∈ Holp(BN), set

h = − 1

µ

∑
n≥0

mn(g ◦ φ[n])

λn
∈ Hol(B(0, ε)).

Then, on B(0, ε),

m(h ◦ φ)− µh =
∑
n≥0

mn(g ◦ φ[n])

λn
−
∑
n≥0

mn+1(g ◦ φ[n+1])

λn+1
= m0g = g.

Hence, by Lemma 4.8, there exists h̃ ∈ Hol(BN) such that

m(h̃ ◦ φ)− µh̃ = g.

Moreover, h̃ ∈ Holp(BN). Indeed, if we could write h̃ = s + t, with 0 ̸= s ∈ Wp

and t ∈ Holp(BN), we would obtain

m(h̃ ◦ φ)− µh̃ = (Wm,φ(s)− µs) + (Wm,φ(t)− µt) = g,

with (Wm,φ(s) − µs) ̸= 0, since s ̸= 0. This is impossible because g ∈ Holp(BN).
Finally, T − µId is bijective, and invertible.

We conclude that Wm,φ − µId is invertible. □

4.2. Non-invertible Jacobian at 0, with 0 as unique eigenvalue. In this case,
we can also describe the spectra of Wm,φ.

Proposition 4.11. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0,
φ ̸≡ 0, φ′(0) is not invertible, and 0 is the only eigenvalue of φ′(0). Let m ∈ Hol(BN)
such that m(0) ̸= 0. Then,

{m(0)} ⊂ σp(Wm,φ) ⊂ {0,m(0)}.

Proof. Let µ ̸∈ {m(0), 0}. If f ̸≡ 0 satisfies m(f ◦ φ) = µf , thenr First, µf(0) = [m(f ◦ φ)](0) = m(0)f(0), so (m(0)− µ)f(0) = 0.
Since µ ̸= m(0), we obtain f(0) = 0.
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r Assume that for all ı⃗ ≺ ȷ⃗, f (⃗ı)(0) = 0. Then,

µf (ȷ⃗)(0) = [m(f ◦ φ)](ȷ⃗)(0) = m(0)(f ◦ φ)(ȷ⃗)(0) = 0.

Hence, f (ȷ⃗)(0) = 0, since µ ̸= 0.
Finally, f ≡ 0, which is impossible. Hence, σ(Wm,φ) ⊂ {m(0), 0}.

Conversely, the map w defined in Proposition 4.2 is an eigenvector of Wm,φ for the
eigenvalue m(0). Moreover, we give an example where 0 ∈ σp(Wm,φ) : assume that
φk = 0 for some k ∈ {1, · · · , N}. Then, for f(z) = zk, f ◦ φ = 0, so Wm,φ(f) = 0. □

Theorem 4.12. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0 and
φ′(0) is not invertible. If m(0) ̸= 0, and 0 is the only eigenvalue of φ′(0), then

σ(Wm,φ) = {0,m(0)}.

Proof. Note that the diagonal of φ′(0) has only zeroes, so the matrix φ′(0) is nilpotent.
Hence, there exists n0 ∈ N0 such that

(φ[n0])′(0) = (φ′(0))n0 = 0.

Let µ ∈ C\{0,m(0)}. We consider two types of functions.r Let c ∈ C∗. If w is the weighted Koenigs’ map of φ and m, then

Wm,φ(w)− µw = (Wm,φ(w)−m(0)w) + (m(0)w − µw) = m(0)w − µw.

Thus, for all c ∈ C∗, if we set fc = cw/(m(0)−µ), we obtain Wm,φ(fc)−µfc = cw.

r Let g ∈ Hol(BN) such that g(0) = 0. We know that there exists 0 < ε < 1 a
constant d > 1 such that for all |z| ≤ ε,

|g(z)| ≤ d |z| , |φ(z)| ≤ d |z| ,
∣∣φ[n0](z)

∣∣ ≤ d |z|2 .
Using Schwarz’s lemma, for all k ∈ N0, k ≥ 3 and |z| ≤ ε,∣∣φ[kn0](z)

∣∣ ≤ dk |z|2
k

≤ dk |z|2k+2 .

For all n ∈ N0, if n ≥ 3n0, we write n = kn0 + p, with k ≥ 3 and 0 ≤ p < n0.
Hence, k = (n− p)/n0 ≥ n/n0 − 1. If we set α = sup(|m(z)| : |z| ≤ 1/2), we get∣∣∣∣mn(z)g(φ

[n](z))

µn

∣∣∣∣ ≤ dαn
∣∣φ[n](z)

∣∣
|µ|n

≤
dp+1αn

∣∣φ[kn0](z)
∣∣

|µ|n

≤ dk+p+1αn |z|2k+2

|µ|n
≤ d

dnαn |z|2n/n0

|µ|n
= d

(
dα |z|2/n0

|µ|

)n

.

We only have to choose ε̃ ∈ (0, ε), so that dαε̃2/n0 < |µ|, to have

h = − 1

µ

∑
n≥0

mn(z)g(φ
[n](z))

µn
∈ Hol(B(0, ε̃)).

Moreover, the same calculations as in Proposition 4.10 gives

m(h ◦ φ)− µh = g on B(0, ε̃).



WEIGHTED ELLIPTIC COMPOSITION OPERATORS IN SEVERAL VARIABLES 13

Using Lemma 4.8, there exists h̃ ∈ Hol(BN) such that

m(h̃ ◦ φ)− µh̃ = g.

If η ∈ Hol(BN), then g = η − η(0)w satisfies g(0) = 0, and

m[(fη(0) + h̃) ◦ φ]− µ(fη(0) + h̃) = η(0)w + g = η.

Finally, Wm,φ − µId is invertible, and µ ̸∈ σ(Wm,φ), so σ(Wm,φ) ⊂ {0,m(0)}. To finish
the proof, we use Proposition 4.11, and the fact that φ is not bijective. □

Remark 4.13. If φ ≡ 0 and m(0) ̸= 0, we show that

σp(Wm,φ) = σ(Wm,φ) = {0,m(0)}.

Indeed, Wm,φ(f) = f(0)m. Hence, for all g ∈ Hol(BN) and µ ̸∈ {0,m(0)}, the map

h =
1

µ

[
g(0)

m(0)− µ
m− g

]
satisfies h(0)m− µh = g, so µ ̸∈ σ(Wm,φ). Moreover,r Denote e1(z) = z1. Then e1(0) = 0, so Wm,φ(e1) = 0, and 0 ∈ σp(Wm,φ).r Since Wm,φ(m)−m(0)m = m(0)m−m(0)m = 0, we get m(0) ∈ σp(Wm,φ).

4.3. General results. In general, we have the following results.

Proposition 4.14. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0
and φ ̸≡ 0. Let λ1, · · · , λp be the non-zero eigenvalues of φ′(0). Let m ∈ Hol(BN) such
that m(0) ̸= 0. Then,

{m(0)} ⊂ σp(Wm,φ) ⊂

{
m(0)

p∏
k=1

λjkk : j1, · · · , jp ∈ N0

}
∪ {0,m(0)}.

Proof. We know that the map w defined in Proposition 4.2 satisfies Wm,φ(w) = m(0)w,
so m(0) ∈ σp(Wm,φ). Moreover, in a same way as in Proposition 4.11, 0 can be an
eigenvalue of Wm,φ.

Let µ ̸∈ {0}∪{m(0)λȷ⃗ : ȷ⃗ ∈ Np
0}. If µ ∈ σp(Wm,φ), then there exists f ∈ Hol(BN)\{0}

such that m(f ◦ φ) = µf . Once again by induction, using Lemma 2.4 and the general
Leibniz rule, we prove that f (ȷ⃗)(0) = 0 for all ȷ⃗ ∈ NN

0 . Hence, f ≡ 0, a contradiction.
Thus, µ ̸∈ σp(Wm,φ). □

Proposition 4.15. Let φ : BN → BN be an elliptic attractive map such that φ(0) = 0
and φ ̸≡ 0. Let m ∈ Hol(BN) such that m(0) ̸= 0. Then,

{0,m(0)} ⊂ σ(Wm,φ) ⊂ D(0, |m(0)| ∥φ′(0)∥) ∪ {m(0)}.

Proof. Since φ ̸∈ Aut(BN), Wm,φ is not invertible. Hence, 0 ∈ σ(Wm,φ).
In addition, m(0) ∈ σp(Wm,φ) by Proposition 4.14, so m(0) ∈ σ(Wm,φ).
Let µ > |m(0)| ∥φ′(0)∥, µ ̸= m(0). Then, similarly to Lemma 4.9, there exists ε > 0

such that for all h ∈ Hol0(BN), the series
∑

(h◦φ[n])/µn converges uniformly on B(0, ε).
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For g ∈ Hol(BN), let us define the functions h and f by

h(z) = g(z)− g(0)w(z), f(z) =
g(0)w(z)

m(0)− µ
− 1

µ

∑
n≥0

mn(z)(h ◦ φ[n])(z)

µn
.

Thus, f ∈ Hol(B(0, ε)). The same calculations as in Theorem 4.12 gives

m(z)(f ◦ φ)(z)− µf(z) = g(0)w(z) + h(z) = g(z), |z| < ε.

Hence, Wm,φ − µId is bijective, so µ ̸∈ σ(Wm,φ). □

Example 4.16. Consider N = 2, φ(z) = (z1/3, z1/3) et m(z) = 2 + z1.
Point spectrum : Take w the map defined in Proposition 4.2, and fk(z) = zk1 . Then,

m(w ◦ φ) = m(0)w = 2w, m((wfk) ◦ φ) = m(w ◦ φ)(fk ◦ φ) = 2w
fk
3k

=
2

3k
(wfk).

Hence, for all k ∈ N0, 2/3k ∈ σp(Wm,φ). Moreover, if g(z) = z1 − z2, then g ◦ φ = 0, so
Wm,φ(g) = 0. Thus, 0 ∈ σp(Wm,φ). Finally, using Proposition 4.14,

σp(Wm,φ) =
{
2/3k : k ∈ N0

}
∪ {0}.

Spectrum : Let µ ̸∈ σp(Wm,φ), and g ∈ Hol(B2). We search for f ∈ Hol(B2) such
that m(f ◦ φ)− µf = g. Write f =

∑
aijz

i
1z

j
2 and g =

∑
bijz

i
1z

j
2. Then,

m(f ◦ φ) =
∑
i,j≥0

aij
3i+j

zi+j
1 (2 + z1) =

∑
i,j≥0

(µaij + bij)z
i
1z

j
2 = µf + g.

Note that there is no z2 in m(f ◦ φ). Hence, if j ≥ 1, since µ ̸= 0,

µaij + bij = 0 ⇐⇒ aij = −µ−1bij.

It remains to consider the case j = 0. Remark that∑
i≥0

ai0
3i
zi1(2 + z1) =

∑
i≥0

(µai0 + bi0)z
i
1

⇐⇒ 2a00 +
∑
i≥1

(
2ai0
3i

+
ai−1,0

3i−1

)
zi1 = µa00 + b00 +

∑
i≥1

(µai0 + bi0)z
i
1.

Thus, since µ ̸= 2, a00 = b00/(2− µ), and for all i ≥ 1, since µ ̸= 2/3i,

ai0 =
bi0 − 31−iai−1,0

2/3i − µ
.

Denoting C = min(|2/3i − µ| : i ≥ 0) > 0, since 3i−1 ≤ 1 for all i ≥ 1, we obtain

|ai0| ≤
|bi0|
C

+
|ai−1,0|
C

≤ |bi0|
C

+
|bi−1,0|
C2

+
|ai−2,0|
C2

≤ · · · ≤ 1

C

i∑
k=0

|bi−k,0|
Ck

.

However, the series
∑

1
Ck z

k
1 has radius of convergence C, and the series

∑
|bk0| zk1 has

radius of convergence 1, so the map f is defined on the ball B(0, C) by product series.
Lemma 4.8 gives a function f̃ ∈ Hol(B2) such that m(f̃ ◦ φ)− µf̃ = g, so Wm,φ − µId
is invertible. We conclude that σ(Wm,φ) = σp(Wm,φ).
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5. Bijective periodic symbols

In this section, we consider φ a bijective elliptic map with fixed point at 0, that is
to say, φ is a unitary matrix. Moreover, conjugating with an automorphism, it follows
that

φ = D, D = diag(eiθ1 , · · · , eiθN ).
Inspired by [3], we will focus on periodic automorphisms.

Definition 5.1. A unitary diagonal matrix D = diag(eiθ1 , · · · , eiθN ) is periodic if for
all k ∈ {1, · · · , N}, θk ∈ 2πQ.

If φ is a periodic automorphism, then there exists p ∈ N such that

Dp = Id, i.e. W p
m,φ(f) = mpf, where mp =

p−1∏
k=0

(m ◦ φ[k]).

Note that if g ∈ Hol(BN) and Mg(f) = gf , then σ(Mg) = g(BN).
We start by the case where m vanishes on BN .

Lemma 5.2. If there exists z0 ∈ BN such that m(z0) = 0, then σp(Wm,φ) = ∅.

Proof. First, note that m and φ are non-constant, so 0 ̸∈ σp(Wm,φ).
Let λ ∈ C∗. If there exists f ∈ Hol(BN)\{0} such that Wm,φ(f) = λf , then

W p
m,φ(f) = mpf = λpf.

Since f is not identically zero, there exists an open subset Ω of BN such that f ̸= 0
on Ω. Thus, mp = λp on Ω, so on BN by uniqueness theorem. However, mp(z0) = 0, so
λ = 0, which is impossible. Finally, σp(Wm,φ) = ∅. □

We now characterize when the point spectrum of Wm,φ is non-empty.

Proposition 5.3. Let φ be a periodic automorphism of BN , and m ∈ Hol(BN).
Denote by e = (eiθ1 , · · · , eiθN ) the eigenvalues of φ, and p the smallest positive integer
such that for all k ∈ {1, · · · , N}, eipθk = 1. The following assertions are equivalent.
(i) σp(Wm,φ) ̸= ∅.
(ii) mp is a constant map.
(iii) σp(Wm,φ) = {m(0)eȷ⃗ : ȷ⃗ ∈ NN

0 }.

Proof. (iii =⇒ i) is trivial.

(i =⇒ ii) : If σp(Wm,φ) ̸= ∅, then m does not vanish on BN , by Lemma 5.2.
Moreover, by functional calculus, σp(W p

m,φ) = (σp(Wm,φ))
p := {µp : µ ∈ σp(Wm,φ)} ̸=

∅. Hence, there exist f ∈ Hol(BN)\{0} and λ ∈ C such that mpf = λf . Since
f ̸≡ 0, the map mp = λ is constant, using uniqueness theorem. Finally, λ ̸= 0 because
m(0) ̸= 0.

(ii =⇒ iii) : If mp is constant, then mp ≡ mp(0) = m(0)p. In addition,

W p
m,φ(f) = mpf = m(0)pf.
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Thus, W p
m,φ = m(0)pId, so σp(W p

m,φ) = {m(0)p}. If σp(Wm,φ) = ∅, then

σp(W
p
m,φ) = (σp(Wm,φ))

p = ∅,

which is not the case here. Therefore, σp(Wm,φ) ̸= ∅.
We show that σp(Wm,φ) = eȷ⃗σp(Wm,φ), for all ȷ⃗ ∈ NN

0 .r If µ ∈ σp(Wm,φ), then there exists f ∈ Hol(BN)\{0} such that m(f ◦ φ) = µf .
Hence, setting fȷ⃗(z) = z ȷ⃗f(z), we obtain, for z ∈ BN ,

[m(fȷ⃗ ◦ φ)](z) = m(z)φȷ⃗(z)f(φ(z)) = eȷ⃗z ȷ⃗µf(z) = µeȷ⃗fȷ⃗(z).

Finally, eȷ⃗µ ∈ σp(Wm,φ), so eȷ⃗σp(Wm,φ) ⊂ σp(Wm,φ).r Conversely, let ȷ⃗ = (j1, · · · , jN) ∈ NN
0 . We set, for k ∈ {1, · · · , N}, nk = ⌊jk/p⌋,

and α⃗ = (n1p− j1, · · · , nNp− jN) ∈ NN
0 . Then

ȷ⃗+ α⃗ = (n1p, · · · , nNp),

so eȷ⃗+α⃗ = 1. Finaly, if µ ∈ σp(Wm,φ), then eα⃗µ ∈ σp(Wm,φ), so

µ = eȷ⃗(eα⃗µ) ∈ eȷ⃗σp(Wm,φ).

To finish, if µ ∈ σp(Wm,φ), we know that µp = m(0)p. Thus, m(0) = µ exp(2iπk/p),
with k ∈ {0, · · · , p− 1}. Using [15], there exists ȷ⃗ ∈ NN

0 such that eȷ⃗ = exp(2iπ/p). We
deduce that

m(0) = µ exp(2iπk/p) = µekȷ⃗ ∈ ekȷ⃗σp(Wm,φ) = σp(Wm,φ).

Finally, {m(0)eȷ⃗ : ȷ⃗ ∈ NN
0 } ⊂ σp(Wm,φ), and if µ ∈ σp(Wm,φ), then there exists

ℓ ∈ {1, · · · , p} such that µ = m(0) exp(2iπℓ/p) ∈ {m(0)eȷ⃗ : ȷ⃗ ∈ NN
0 }. We can conclude

that
σp(Wm,φ) = {m(0)eȷ⃗ : ȷ⃗ ∈ NN

0 }. □

To obtain the spectrum, we start by a useful lemma.

Lemma 5.4. Let φ be a periodic automorphism of BN , and m ∈ Hol(BN). Then,

∀k⃗ ∈ NN
0 , m(0)ek⃗ ∈ σ(Wm,φ).

Proof. Consider ȷ⃗ ̸= 0⃗ the smallest vector (for the order ≼) of NN
0 such that eȷ⃗ = 1. We

will show that for all ı⃗ ≺ ȷ⃗,

z ı⃗ ̸∈ (m(0)eı⃗ −Wm,φ)Hol(BN).

ı⃗ = 0⃗ : Note that for all f ∈ Hol(BN),

[m(0)f −Wm,φ(f)](0) = m(0)f(0)−m(0)f(φ(0)) = 0.

Hence, 1 ̸∈ (m(0)−Wm,φ)Hol(BN), so m(0) ∈ σ(Wm,φ).

Now, assume that there exists ı⃗ ≺ ȷ⃗ such that ı⃗ ̸= 0⃗ and

m(0)eı⃗f −m(f ◦ φ) = z ı⃗,

for a certain f ∈ Hol(BN), f ̸= 0.
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r Note thatm(0)eı⃗f(0)−m(0)f(φ(0)) = [z ı⃗](0) = 0. Moreover, m(0) ̸= 0, eı⃗−1 ̸= 0.
Hence, f(0) = 0.r Assume that for all α⃗ ≺ β⃗ ≺ ı⃗, f (α⃗)(0) = 0. Using the general Leibniz rule,

m(0)eı⃗f (β⃗)(0)− [m(f ◦ φ)](β⃗)(0)

= m(0)eı⃗f (β⃗)(0)−
∑
α⃗<β⃗

(
β⃗

α⃗

)
m(β⃗−α⃗)(0)eα⃗f (α⃗)(0)−m(0)eβ⃗f (β⃗)(0)

= m(0)(eı⃗ − eβ⃗)f (β⃗)(0) = [z ı⃗](β⃗)(0) = 0.

Since eı⃗ − eβ⃗ ̸= 0 (because ȷ⃗ is minimal), and m(0) ̸= 0, we get f (β⃗)(0) = 0.r In a same way, for β⃗ = ı⃗, we obtain

m(0)eı⃗f (⃗ı)(0)− [m(f ◦ φ)](⃗ı)(0) = m(0)(eı⃗ − eı⃗)f (⃗ı)(0) = 0 = [z ı⃗](⃗ı)(0) = ı⃗!.

Therefore, we get a contradiction. Finally, z ı⃗ ̸∈ (m(0)eı⃗−Wm,φ)Hol(BN), so we have
proved that m(0)eı⃗ ∈ σ(Wm,φ). All that remains for us is to see that

{m(0)eı⃗ : NN
0 } = {m(0)eı⃗ : ı⃗ ≺ ȷ⃗},

because eȷ⃗ = 1. Thus, {m(0)eı⃗ : NN
0 } ⊂ σ(Wm,φ). □

Hence, we prove the following proposition.

Theorem 5.5. Let φ be a periodic automorphism of BN , and m ∈ Hol(BN). If p is the
smallest positive integer such that φp = Id, then

σ(Wm,φ) = {λ ∈ C : λp ∈ mp(BN)}.

Proof. First, we show that ȷ⃗ ∈ NN
0 , eȷ⃗σ(Wm,φ) ⊂ σ(Wm,φ). To do this, by multiplica-

tivity, we only have to prove it for ȷ⃗ = (0, · · · , 0, 1, 0 · · · , 0), the 1 being in position k.
Note that if k ∈ {1, · · · , N},

Γk :

{
Hol(BN) → zkHol(BN)

f 7→ zkf,

then Γk is bijective. For all f ∈ Hol(BN) and z ∈ BN , if we set T = (Wm,φ)|zkHol(BN ),

(Γ−1
k ◦ T ◦ Γk)(f)(z) =

m(z)φk(z)(f ◦ φ)(z)
zk

= m(z)eiθk(f ◦ φ)(z) = eiθkWm,φ(f)(z).

Hence, σ(T ) = eiθkσ(Wm,φ).

If Wm,φ − λId is bijective, then for all g ∈ zkHol(BN), there exists f ∈ Hol(BN) such
that

m(f ◦ φ)− λf = g.

We prove that f ∈ zkHol(BN).r First, m(0)f(φ(0)) − λf(0) = (m(0) − λ)f(0) = g(0) = 0. Since λ ̸= m(0) using
Lemma 5.4, we get f(0) = 0.
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r Let ȷ⃗ ∈ NN
0 such that jk = 0. Assume that for all ı⃗ ≺ ȷ⃗ satisfying ik = 0,

f (⃗ı)(0) = 0. Then, by the general Leibniz rule,

[m(f ◦ φ)− λf ](ȷ⃗)(0) =
∑
ı⃗<ȷ⃗

(
ȷ⃗

ı⃗

)
m(ȷ⃗−⃗ı)(0)eı⃗f (⃗ı)(0) +m(0)eȷ⃗f (ȷ⃗)(0)− λf (ȷ⃗)(0).

But if ı⃗ < ȷ⃗, we get ik < jk = 0, so ik = 0, and f (⃗ı)(0) = 0. Thus,

[m(f ◦ φ)− λf ](ȷ⃗)(0) = (m(0)eȷ⃗ − λ)f (ȷ⃗)(0) = g(ȷ⃗)(0) = 0.

Finally, by Lemma 5.4, λ ̸= m(0)eȷ⃗, so f (ȷ⃗)(0) = 0.
We conclude that f ∈ zkHol(BN), so T − λId is bijective. Therefore,

λ ̸∈ σ(Wm,φ) =⇒ λ ̸∈ σ(T ) = eiθkσ(Wm,φ).

We deduce that eiθkσ(Wm,φ) ⊂ σ(Wm,φ). Using multiplicativity, for all ȷ⃗ ∈ NN
0 ,

eȷ⃗σ(Wm,φ) ⊂ σ(Wm,φ).

We can now show the main assertion of the proposition.
If λ ∈ σ(Wm,φ), then λp ∈ σ(Wm,φ)

p = σ(W p
m,φ) = σ(Mmp) = mp(BN).

Conversely, if λp ∈ mp(BN), we get λp ∈ σ(Wm,φ)
p, so there exists µ ∈ σ(Wm,φ) such

that λp = µp, i.e. λ = µ exp(2ikπ/p), with k ∈ {0, · · · , p− 1}. Moreover, it was shown
in [15] that there exists ȷ⃗ ∈ NN

0 such that exp(2ikπ/p) = eȷ⃗. Finally,

λ = µ exp

(
2ikπ

p

)
= µeȷ⃗ ∈ eȷ⃗σ(Wm,φ) ⊂ σ(Wm,φ). □

6. Other results

In this last section, we concatenate all the other results about the spectra of Wm,φ

which do not fit in the cases studies above.

6.1. Symbol bijective, non-periodic. If φ is a non-periodic holomorphic self-map
of BN , then for all z ∈ BN , at least one coordinate of (Dnz) does not converge when
n goes to infinity. We obtain the generalization of [3, Proposition 3.6] in the following
result.

Lemma 6.1. If there exists z0 ∈ BN such that m(z0) = 0, then σp(Wm,φ) = ∅.

Proof. First, note that m and φ are non-constant, so if Wm,φ(f) = m(f ◦ φ) = 0, then
f ≡ 0. Hence, 0 ̸∈ σp(Wm,φ).

Let λ ∈ C∗ and f ∈ Hol(BN) such that m(f ◦ φ) = λf . Then,

f(z0) = m(z0)f(Dz0) = 0,

so m(D−1z0)f(z0) = λf(D−1z0) = 0. Iterating this equation, for all n ∈ N0,

f(D−nz0) = 0.

But {D−nz0 : n ∈ N0} has an accumulation point. Thus, f ≡ 0, so λ ̸∈ σp(Wm,φ). □
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6.2. Symbol elliptic non-attractive. If φ is an elliptic non-attractive self-map of
BN , then the iterates of φ do not converge to a point, but to a map h : BN → BN . In
this case, we have the following result.

Proposition 6.2. Let φ be an elliptic non attractive self-map of BN . Assume that
φ(0) = 0, φ ̸∈ Aut(BN) and m(0) ̸= 0. Then, σp(Wm,φ) ⊂ D(0, |m(0)|).

Proof. Using the proof of Proposition 4.2, the sequence (wn) defined by

wn(z) =
1

m(0)n

n−1∏
k=0

m(φ[k](z))

converges uniformly on all compact subsets of BN to a map w.
Hence, if there exist λ ∈ C∗ and f ∈ Hol(BN)\{0} such that m(f ◦ φ) = λf , after n

iterations,

wn(f ◦ φ[n]) =

(
λ

m(0)

)n

f.

Letting n → ∞, there is a subsequence of the left side of this identity that goes to
w(f ◦ h). If |λ| > |m(0)|, then the right side goes to ∞ at least at one point of BN , a
contradiction. □

As in [15], we now consider a particular case: assume that φ has « separable »
variables, that is φ can be written as

φ(z) = (φ1(z1), · · · , φN(zN)),

with φk ∈ Hol(D) elliptic such that φ(0) = 0.
Note that if φ is elliptic non attractive and not bijective, then by Theorem 1.2

and one-variable Denjoy-Wolff’s theory, we will assume that some components will be
rotations, and the other ones must be elliptic non invertible maps (in one variable)
fixing 0. We obtain the following theorem.

Theorem 6.3. Let φ be an elliptic non attractive self-map of BN , such that φ is not
invertible, φ(0) = 0, and

φ(z1, · · · , zN) = (φ1(z1), · · · , φp(zp), βp+1zp+1, · · · , βNzN),

with φ1, · · · , φp non bijective, |φ′
1(0)| , · · · ,

∣∣φ′
p(0)

∣∣ < 1, and |βp+1| = · · · = |βN | = 1.
Then,

{0} ∪

{
m(0)

p∏
k=1

φ′
k(0)

nk ×
N∏

k=p+1

βnk
k : n1, · · · , nN ∈ N0

}

⊂ σ(Wm,φ) ⊂

 ⋃
n1,··· ,np≥0

[
p∏

k=1

φ′
k(0)

nk

]
m(0)T

 ∪ {0}.
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Note that if there exists j ∈ {1, · · · , n} such that φ′
j(0) = 0, then all the terms

m(0)

p∏
k=1

φ′
k(0)

nk ×
N∏

k=p+1

βnk
k

with nk ̸= 0 vanish. Then, we will assume that 0 < |φ′
1(0)| , · · · ,

∣∣φ′
p(0)

∣∣ < 1.

The proof of this theorem has already been done without weight in [15]. In di-
mension 2, considering the map φ : z 7→ (φ1(z1), β2z2), the author used the following
decomposition of Hol(B2), valid for all ℓ ∈ N:

Hol(B2) = Wℓ ⊕ zℓ1Hol(B2), Wℓ =

{
ℓ−1∑
q=0

κq1(z1)fq(z2) : fq ∈ Hol(D)

}
We will consider an other decomposition of Hol(B2), using the Koenigs’ function κ1

and the weighted Koenigs’ function w of φ1. The proof of the following property goes
along the same lines as in [15], we write it here for sake of completeness.

Proposition 6.4. For all ℓ ∈ N, consider

W̃ℓ =

{
w(z1)

ℓ−1∑
q=0

κq1(z1)fq(z2) : fq ∈ Hol(D)

}
, Xℓ = zℓ1Hol(B2).

Then
(i) Hol(B2) = Wℓ ⊕Xℓ,
(ii) Cφ(Wℓ) ⊂ Wℓ and Cφ(Xℓ) ⊂ Xℓ.

Proof. We prove (i) by induction, in a same way as in [15].
m = 1: We have to show that Hol(B2) = W1 ⊕X1.
Let f ∈ Hol(B2). Using the Maclaurin coefficients of f , we may write

f(z) =
∑
j≥0

∑
k≥0

ajkz
j
1z

k
2 =

∑
k≥0

a0kz
k
2︸ ︷︷ ︸

=f0(z2)

+ z1
∑
j≥1

∑
k≥0

ajkz
j−1
1 zk2︸ ︷︷ ︸

=F (z)

.

Since w(0) = 1, we may write w = 1 + w̃, with w̃(z1) ∈ z1Hol(D). Hence,

f(z) = w(z1)f0(z2)︸ ︷︷ ︸
∈W1

− w̃(z1)f0(z2) + F (z)︸ ︷︷ ︸
∈X1

.

Finally, we get Hol(B2) = W1 +X1.

Now, assume that f ∈ W1 ∩X1. We can write

f(z) = w(z1)f0(z2) = z1F (z),

with f0 ∈ Hol(D) and F ∈ Hol(B2). Once again using w̃, we get

f0(z2) = z1F (z)− w̃(z1)f0(z2).

Since w̃(0) = 0, considering z = (0, z2), we obtain f1(z2) = 0 for all z2 ∈ D. Thus,
f ≡ 0, so Hol(B2) = W1 ⊕X1.
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ℓ→ ℓ+ 1: Assume that Hol(B2) = Wℓ ⊕Xℓ.
Let f ∈ Hol(B2). By induction hypothesis,

f(z) = w(z1)
ℓ−1∑
q=0

κq1(z1)fq(z2) + zℓ1f̃(z),

with f0, · · · , fℓ−1 ∈ Hol(D) and f̃ ∈ Hol(B2). Using the same calculations as for ℓ = 1,
we may find fℓ ∈ Hol(D) and g ∈ Hol(B2) such that

zℓ1f̃(z) = zℓ1fℓ(z2) + zℓ+1
1 g(z).

Moreover, since κ1(0) = 0, κ′1(0) = 1 and w(0) = 1, there exists h ∈ Hol(D) such that

w(z1)κ
ℓ
1(z1) = zℓ1 + zℓ+1

1 h(z1).

Therefore,
zℓ1f̃(z) = w(z1)κ

ℓ
1(z1)fℓ(z2) + zℓ+1

1 (g(z)− h(z1)fℓ(z2)) .

Finally, we have

f(z) = w(z1)
ℓ−1∑
q=0

κq1(z1)fq(z2) + w(z1)κ
ℓ
1(z1)fℓ(z2)︸ ︷︷ ︸

∈Wℓ+1

+ zℓ+1
1 (g(z)− h(z1)fℓ(z2))︸ ︷︷ ︸

∈Xℓ+1

,

so Hol(B2) = Wℓ+1 +Xℓ+1.

Now, assume that f ∈ Wℓ+1 ∩Xℓ+1. Then,

f(z) = w(z1)
ℓ∑

q=0

κq1(z1)fq(z2) = zℓ+1
1 f̃(z),

with f0, · · · , fℓ ∈ Hol(D) and f̃ ∈ Hol(B2). Once again writing wκℓ1 = zℓ1 + zℓ+1
1 h, we

obtain

w(z1)
ℓ−1∑
q=0

κq1(z1)fq(z2) = zℓ+1
1 f̃(z)− w(z1)κ

ℓ
1(z1)fℓ(z2)

= zℓ1(z1f̃(z)− fℓ(z2)− z1h(z1)fℓ(z2)) ∈ Wℓ ∩Xℓ = {0}.

Thus, f(z) = w(z1)κ
ℓ
1(z1)fℓ(z2) = zℓ+1

1 f̃(z), so

zℓ1fℓ(z2) = zℓ+1
1 (f̃(z)− h(z1)fℓ(z2)).

Denote by (cjk) the Maclaurin coefficients of the map z 7→ zℓ1fℓ(z2), and (djk) those of
the map z 7→ zℓ+1

1 (f̃(z)− h(z1)fℓ(z2)). Then,

j ̸= ℓ =⇒ cjk = 0 and j = ℓ =⇒ djk = 0.

Finally, since cjk = djk for all j, k ∈ N0, we obtain

zℓ1fℓ(z2) = zℓ+1
1 (f̃(z)− h(z1)fℓ(z2)) = 0.

Hence, fℓ ≡ 0, so f ≡ 0. We proved that Hol(B2) = Wℓ ⊕Xℓ.
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To finish, we prove (ii). If f ∈ Wℓ, then

f = w(z1)
ℓ−1∑
q=0

κq1(z1)fq(z2),

with f0, · · · , fℓ−1 ∈ Hol(D). Thus,

m(f ◦ φ)(z) = m(0)w(z1)
ℓ−1∑
q=0

φ′
1(0)

qκq1(z1)fq(β2z2) = w(z1)
ℓ−1∑
q=0

κq1(z1)f̃q(z2),

where f̃q(z2) = m(0)φ′
1(0)

ℓfq(β2z2). Thus, f ◦ φ ∈ Wℓ.

If f ∈ Xℓ, then f(z) = zℓ1g(z), with g ∈ Hol(B2). Hence,

m(f ◦ φ)(z) = m(z)φ1(z1)
ℓg(φ1(z1), β2z2).

However, since φ1(0) = 0, we may write φ1(z1) = z1ψ(z1), with ψ ∈ Hol(D). Therefore,

(f ◦ φ)(z) = zℓ1ψ(z1)m(z)g(φ1(z1), β2z2) ∈ Xℓ. □

In order to prove the main theorem of this section, we use the two decompositions
obtained above.

Proof of Theorem 6.3. Let g ∈ Hol(BN). For all ℓ ∈ N, using the fact that Hol(B2) =
W̃ℓ ⊕Xℓ, we may write

g(z) = w(z1)
ℓ−1∑
q=0

κq1(z1)gq(z̃) + zℓ1G1(z),

with g0, · · · , gℓ−1 ∈ Hol(BN−1) and G1 ∈ Hol(BN). Now, since Hol(B2) = Wℓ ⊕ Xℓ,
going from one coordinate to an other, for all ℓ1, · · · , ℓp ∈ N, we may write g as

g(z) =

ℓ1−1∑
q1=0

· · ·
ℓp−1∑
qp=0

w(z1)

(
p∏

k=1

κqkk (zk)

)
gq1,··· ,qp(zp+1, · · · , zN) +

p∑
k=1

zℓkk Gk(z),

with gq1,··· ,qp ∈ Hol(BN−p) and Gk ∈ Hol(BN). Denote G̃k = zℓkk Gk.

Let λ ∈ C∗ such that

|λ| ̸∈

{
m(0)

p∏
k=1

|φ′
k(0)|

nk : n1, · · · , np ∈ N0

}
.

r For all k ∈ {1, · · · , p} and for ℓk sufficiently large, the map

F̃k =
∑
n≥0

mn(G̃k ◦ φ[n])

λn

is a uniformly convergent series, and is holomorphic on a small ball B(0, ε) (cf.
Lemma 4.9). Moreover, it satisfies m(F̃k ◦ φ) − λF̃k = G̃k. Lemma 4.8 gives
Fk ∈ Hol(BN) such that m(Fk ◦ φ)− λFk = G̃k.
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r Denote by ϕ the map defined as ϕ(zp+1, · · · , zN) = (βp+1zp+1, · · · , βNzN). Let
0 ≤ q1 ≤ ℓ1 − 1, · · · , 0 ≤ qp ≤ ℓp − 1. Since |λ| ̸= m(0)

∏p
k=1 |φ′

k(0)|
qk and ϕ is

bijective, there exists fq1,··· ,qp ∈ Hol(D) such that

m(0)

p∏
k=1

φ′
k(0)

qk(fq1,··· ,qp ◦ ϕ)− λfq1,··· ,qp = gq1,··· ,qp .

To summarise, the map f defined as

f(z) =

ℓ1−1∑
q1=0

· · ·
ℓp−1∑
qp=0

w(z1)

(
p∏

k=1

κqkk (zk)

)
fq1,··· ,qp(zp+1, · · · , zN) +

p∑
k=1

zℓkk Fk(z)

satisfies m(f ◦φ)− λf = g, and is holomorphic on BN . Hence, Wm,φ − λId is bijective.

Conversely, let n1 ∈ N, and f1, · · · , fN : D → C holomorphic maps such thatr m(f1 ◦ φ1) = m(0)φ′
1(0)

n1f1,r fk ◦ φk = φ′
k(0)fk (2 ≤ k ≤ p),r fk ◦ φk = βkfk (p+ 1 ≤ k ≤ N).

Such maps exist using the results in one variable ([4, 2, 3]), since φ has separable
variables. For n2, · · · , nN ∈ N0, consider f : BN → C defined by

f(z) = f1(z1)×
N∏
k=2

fk(zk)
nk .

Then,

[m(f ◦ φ)](z) = m(z)(f1 ◦ φ1)(z)×
p∏

k=2

fk(φk(zk))
nk ×

N∏
k=p+1

fk(βkzk)
nk

= m(0)φ′
1(0)

n1f1(z)×
p∏

k=2

φ′
k(0)

nkfk(zk)
nk ×

N∏
k=p+1

βnk
k fk(zk)

nk

=

(
m(0)

p∏
k=1

φ′
k(0)

nk ×
N∏

k=p+1

βnk
k

)
f(z).

Therefore, m(0)
∏p

k=1 φ
′
k(0)

nk ×
∏N

k=p+1 β
nk
k ∈ σp(Cφ) ⊂ σ(Cφ). □
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