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Abstract— Unlike whole-body action recognition, hand ges-
tures involve spatially closely distributed joints, promoting
stronger collaboration. This needs to be taken into account
in order to capture complex spatial and temporal features.
In response to these challenges, this paper presents a Spatio-
Temporal Sparse Graph Convolution Network (ST-SGCN) for
dynamic recognition of hand gestures. Based on decoupled
spatio-temporal processing, the ST-SGCN incorporates Graph
Convolutional Networks, attention mechanism and asymmet-
ric convolutions to capture the nuanced movements of hand
joints. The key novelty is the introduction of sparse spatio-
temporal directed interactions, overcoming the limitations as-
sociated with dense, undirected methods. The sparse aspect
models essential interactions between hand joints selectively,
improving computational efficiency and interpretability. Di-
rected interactions capture asymmetrical dependencies between
hand joints, improving discernment of joint influences. Exper-
imental evaluations on three benchmark datasets, including
Briareo, SHREC’17 and IPN Hand, demonstrate ST-SGCN’s
state-of-the-art performance for dynamic hand gesture recog-
nition. Codes are available at: https://github.com/
HichemSaoudi/ST-SGCN.

I. INTRODUCTION

In recent years, hand gesture recognition has become
a key focus of research, due to its crucial role in im-
proving video comprehension and supporting Natural User
Interfaces (NUI)[12]. NUIs represent a transformative ap-
proach to human-computer interaction, shifting the reliance
from traditional input devices, such as keyboards and mice,
to the user’s bodily expressions. In this context, accurate
recognition of dynamic hand gestures, encompassing the
fusion of poses and static hand movements, is of paramount
importance, especially when based on 3D skeleton data.

Various methods have been explored for dynamic ges-
ture recognition with skeletal data, including CNNs, RNNs,
LSTMs [15], and recently, GCN-based approaches [21],
[18], [5]. This shift towards GCN-based methods is largely
attributed to their ability to incorporate spatial connectivity
among hand joints, enhancing hand gesture recognition.

Spatio-temporal modeling has become increasingly im-
portant, particularly with Yan et al.’s Spatio-Temporal Con-
volutional Graph Networks (STGCNs) [21]. STCGN was
mainly introduced to learn spatial and temporal dependen-
cies between different body/hand joints within and between
different frames in a sequence. This pioneering work has
inspired subsequent advancements in the field of dynamic
hand gesture recognition [24], [11], [19]. In the other hand,
transformers, originally designed for NLP, have recently

shown promise in this task, by their application in dynamic
hand gesture recognition [24], [9]. Some approaches have
focused on learning spatial and temporal graph adjacencies
based on input graphs [2]. For example, in [1] authors
introduced physical constraints to alter joint connections, and
DG-STA [5] employed the attention mechanism to construct
dynamic graphs.

Most recent attention-based methods [20] often use dense
interaction to model interactions between hand joints, and
assume that each joint interacts with all others. These meth-
ods generally represent interactions as undirected, treating
interactions between joints as identical. However, we argue
that these dense, undirected approaches introduce irrelevant
interactions between different joints, ignoring the interlinked
spatial and temporal trajectories of hand joints. It is obvious
that conventional methods based on dense or undirected
interactions will fail to capture these nuanced interactions
effectively. To overcome these challenges, we propose a new
approach that incorporates sparse spatio-temporal directed
interactions, capturing both the directed sparse spatial and
temporal interactions of the hand joints.

In this paper, we present a compact approach for dy-
namic hand gestures recognition using skeletal data. Our
innovative approach called Spatio-Temporal Sparse Graph
Convolution Network (ST-SGCN) puts a strong emphasis
on the essential aspects of sparse and directed interactions
between hand joints in a dynamic sequence. Our ST-SGCN
initially employs a two-stream pipeline to process spatial and
temporal graphs independently, underlining the decoupled
aspect of our model. Subsequently, these streams merge
into an integrated representation, forming a unified sparse
and directed spatio-temporal graph that encompasses the
dynamics of the gesture sequence. This end-to-end pipeline
leverages attention mechanism, asymmetric convolutions and
the strengths of CGNs to significantly improve the robustness
of hand gesture recognition.

II. METHODOLOGY

In this section, we present our end-to-end ST-SGCN
pipeline, as illustrated in figure 1. The process flow com-
prises three main steps. First, our ST-SGCN engages in
decoupled learning of directed and sparse spatial and tem-
poral interactions from a provided skeleton data sequence,
using attention mechanism and asymmetric convolutions.
The second step consists in acquiring cross-spatial-temporal
graph representations for the given sequence, capturing both
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Fig. 1. The proposed ST-SGCN approach. Given a sequence of hand skeleton data extracted from RGB images, we initialize the spatial (As) and
temporal (At) adjacency matrices, then refine them into learned matrices (Âs and Ât) using directed sparse adjacency learning. Next, we introduce a
cross-spatio-temporal module to capture the spatio-temporal graph representation. Finally, the resulting representation is processed by an MLP to produce
the corresponding gesture.

Fig. 2. Spatial (top) and temporal (bottom) directed sparse adjacency matrix
learning process.

spatial-temporal and temporal-spatial interactions. Finally,
the resulting graph representation is processed by a Multi-
Layer Perceptron (MLP) to yield corresponding gesture. This
structured approach ensures in-depth exploration of spatial
and temporal dependencies, facilitating accurate and robust
dynamic prediction of hand gestures.

A. Directed Sparse Adjacency Learning

The process of learning directed sparse adjacency aims to
enhance the representation of interactions, encoded by the
adjacency matrices, among distinct hand joints, as shown
in Fig. 2. Both pipelines presented in Fig. 2 share a sim-
ilar structure, differing only in the input data (spatial and
temporal graphs) and the positional encoding applied to the
spatial and temporal streams. The following is an in-depth
explanation of the underlying process.

a) Spatial and Temporal Graphs: A 3D hand skeleton
sequence X is denoted by 3D coordinates for each hand joint
at each frame, represented as X ∈ RT×N×3. Here, T is the
number of frames, N indicates the number of joints in the

skeleton data, and 3 represents the (x, y, z) coordinates.
Given an input sequence X ∈ RT×N×3, we create

spatial (Gs) and temporal (Gt) graphs by performing axis
permutation on the input data, considering the first dimension
as the batch dimension, and the subsequent dimensions
corresponding to spatial/temporal and coordinates. Conse-
quently, Gs ∈ RT×N×3, and Gt ∈ RN×T×3. The former
emphasizes spatial interactions between hand joints (intra-
frame interactions), independent of time, while the latter
focuses on the temporal aspect, capturing the evolution of
a specific hand joint independently over the time axis (inter-
frame interactions).

An extra feature, incorporating joint connectivity infor-
mation, particularly the centrality encoding [23], indicating
the number of joints connected to a given joint, is added
to the feature vector of each node. This inclusion aims to
augment each node with its neighborhood information. A
scaling step is performed to prevent disproportionality with
regard to Euclidean coordinates (x, y, z).

b) Positional Encoding: Accurate positional informa-
tion, both in spatial and temporal dimensions, is crucial when
dealing with dynamic graphs encoded by skeletal data.

For spatial positional encoding, each joint is encoded with
an integer indicating its position in the hand skeleton. While
for temporal encoding, frames inherently lack attributes that
indicate their positions. To address this, we introduce a posi-
tional encoding designed to assign a unique marker to each
frame. Inspired by [17], we use sine and cosine functions
with distinct frequencies as encoding functions, ensuring that
joints in the same frame are identically encoded.

c) Directed Sparse Adjacency: In this stage, our ob-
jective is to introduce sparsity and directionality into the
interactions between nodes in both the spatial and temporal
graphs, where these interactions are represented by the
adjacency matrices. The goal is to transform these matrices
into directed and sparser forms.



We begin the process by binary initializing ({0, 1}) the
spatial (As) and temporal (At) adjacency matrices, each
following a distinct approach. The spatial matrix is initialized
based on the natural topology of the hand, while the temporal
matrix is initialized as an upper triangular matrix, signifying
that each frame influences its subsequent frames.

Next, we refine the initialized adjacency matrices in two
steps. Initially, a multi-head attention mechanism is em-
ployed to capture dense spatial (Is ∈ RN×N ) and temporal
(It ∈ RT×T ) interactions among the hand joints.

Driven by the intuition that the influence of a node i on a
node j differs from that of j on i when modeling gestures
dynamics, we choose asymmetric over symmetric convolu-
tion. Our ablation study empirically validates this choice.
Consequently, a series of asymmetric convolution kernels is
applied to both spatial (Gs) and temporal (Gt) graphs, along
with Is and It, yielding the corresponding directed spatial
(DAs) and temporal (DAt) adjacency matrices.

To further refine these interactions, we generate a binary
mask M by filtering out scores from DAs and DAt that
fall below a user-defined hyperparameter, represented as the
threshold ϵ ∈ [0, 1]. In both the spatial and temporal domains,
the masks, Ms and Mt, are defined as follows: Ms =
{1 | DAs > ϵ} and Mt = {1 | DAt > ϵ}, respectively.

In line with the recommendation in [16], we adopt the
Zero-Softmax activation function. This choice is motivated
by the propensity of Softmax to yield non-zero values for
zero inputs, which could counteract the sparsity achieved in
the adjacency matrices. The zero-softmax is defined as:

Zero-Softmax(x) =
(exp(x)− 1)

2∑
i (exp(xi)− 1)

2
+ ϵ

(1)

where x is an input value, ϵ is a small constant for stability.
Subsequently, we construct the sparse directed adjacency

matrices, Âs and Ât, as follows:

Âs = Zero-Softmax
(
(Ms +As)⊙ ˆDAs

)
(2)

Ât = Zero-Softmax
(
(Mt +At)⊙ ˆDAt

)
(3)

Here, As and At represent the initial spatial and temporal
adjacency matrices. ⊙ is the element-wise multiplication.

B. Cross Spatio-Temporal Graph Representation Learning

Having obtained the sparse spatial and temporal adjacency
matrices through learning, our objective is to construct
a comprehensive spatio-temporal graph representation for
the given skeleton sequence. This involves the utilization
of two separate yet parallel networks: the spatio-temporal
graph representation (STGR), which is dedicated to cap-
turing interaction-pattern features denoted as LIP , and the
temporal-spatial graph representation (TSGR), designed to
capture pattern-interaction features represented as LPI . The
implementations of STGR and TSGR are detailed as follows:

L
(l)
IP = δ

(
Ât · δ

(
ÂsL

(l−1)
PI Ws1

)
Wt1

)
(4)

L
(l)
PI = δ

(
Âs · δ

(
ÂtL

(l−1)
IP Wt2

)
Ws2

)
(5)

Here, Âs and Ât represent the learned spatial and temporal
adjacency matrices, while Ws1,Ws1,Wt1 ,Wt2 correspond
to the weights of the GCN. The variable l signifies the lth

layer of the GCN, and δ(·) denotes a non-linear activation
function. The learned STGR and TSGR representations are
merged to reconstruct the global spatio-temporal representa-
tion. The merging process consists of reshaping the spatial-
temporal graph representation and subsequently adding it to
the temporal-spatial graph representation.

C. Graph Classification and Loss Function

The resulting spatio-temporal graph representation cap-
tures crucial features from the input sequence. In the learning
process, this representation undergoes mean pooling along
the attention dimension followed by a classification head
represented by an MLP layer, enabling the model to cat-
egorize the sequence into distinct hand gestures. Training
is performed using the Cross-Entropy loss, and the model’s
performance is evaluated based on recognition accuracy.

III. EXPERIMENTAL RESULTS

In this section, we cover evaluation datasets, ablation
studies and comparison with state-of-the-art methods.

A. Datasets

a) SHREC’17 TRACK [6]: It contains sequences of 14
hand gestures performed in two ways: using one finger and
the whole hand. Each gesture is performed between 1 and
10 times by 28 participants resulting in 2800 sequences.

b) Briareo [13]: It includes 12 gestures performed by
40 subjects using their right hand, with each gesture repeated
thrice. The dataset comprises a total of 1440 sequences.
Subjects 1 to 26 are allocated for training, 27 to 32 for
validation, and 33 to 40 for testing.

c) IPN Hand [3]: It contains over 4,000 gesture in-
stances from 50 subjects. Each subject continuously per-
formed 21 gestures with three random breaks in a single
video. 13 gestures are defined to control the pointer and
actions focused on the interaction with touchless screens.

B. Implementation Details

In our experimental setup, we conducted our experiments
using two NVIDIA GeForce RTX 3090 GPUs. We employed
the AdamW optimizer. The hyperparameters include the
initial learning rate set at 0.001, which is adjusted gradually
during training. The training process lasted for 200 epochs
on all datasets. For the model architecture, we incorporated
6 asymmetric convolutions, a multi-head attention with 4
heads, set the dimensionality dmodel to 64, and applied a
mask threshold of 0.5. To prevent overfitting, we introduced
dropout with a rate of 0.5 as a regularization measure. The
choice of the sequences length is dataset-specific, with 60
frames used for SHREC’17 and Briareo and 80 frames for
the IPN Hand dataset. To enhance generalization, we imple-
mented data augmentation through random moving [21]. This
technique involves applying random affine transformations to
the sequence, simulating changes in viewpoint angles.



TABLE I
ACCURACY (%) COMPARISON WITH STATE-OF-THE-ART METHODS ON EVALUATION DATASETS.

BRIAREO DATASET.

Method Modality Accuracy

C3D-HG [13] ir 87.5%
TBN-HGR [7] ir + normals 97.2%

LSTM-HG [13] Skeleton 94.4%
3D-Jointsformer [25] Skeleton 95.4%

Ours Skeleton 98.0%

IPN HAND DATASET.

Method Modality Accuracy

ResNet-50 [3] RGB-Seg 75.1%
C3D [10] RGB 77.7%

ResNeXt-101 [3] RGB-Flow 86.3%

Dist-Time [8] Skeleton 87.5%
Ours Skeleton 89,0%

SHREC’17 DATASET (ONLY SKELETON).

Method Accuracy

STA-RES-TCN [9] 93.6%
ST-GCN [21] 92.7%
DG-STA [5] 94.4%

DD-NET [22] 94.6%
FPPR-PCD [4] 96.1%
DSTA-Net [17] 97.0%

Ours 92,9%

C. Ablation study

In our ablation study, conducted on the SHREC’17 dataset,
we aim to investigate the impact of different components
of our model, specifically focusing on the directed interac-
tions (DI) learned through asymmetric convolutions, and the
sparse interactions (SI). The results are provided in table II.

TABLE II
ABLATION STUDY ON DIRECTED INTERACTIONS (DI) AND SPARSE

INTERACTIONS (SI) ON SHREC’17 TRACK DATASET.

Method Accuracy

ST-SGCN w/o DI, w/o SI 91.3%
ST-SGCN w/o DI 92.3%
ST-SGCN 92.9%

As shown in table II, removing both directed and sparse
interactions (ST-SGCN w/o DI, w/o SI), i.e. using non-
directed dense interactions, leads to an accuracy of 91.3%.
When sparse interactions are incorporated without directed
interactions (ST-SGCN w/o DI), denoting the use of undi-
rected sparse interactions, the recognition accuracy rises to
92.3%. Finally, our full model incorporating both directed
and sparse interactions (ST-SGCN) achieves the highest
accuracy, at 92.9% underlining the valuable contribution of
these components to improving model’s performance.

D. Comparison with state-of-the-art and discussion

We conducted an extensive performance comparison of
our method against recent state-of-the-art methods based on
recognition accuracy and an in-depth performance analysis.

a) Recognition accuracy comparison: The results, pre-
sented in Table I, underline the potential of our method on
evaluation datasets. Our approach yields competitive results
on the SHREC’17 dataset and achieves an accuracy of 98.0%
on the Briareo dataset and 89.0% on the IPN Hand dataset,
outperforming state-of-the-art methods.

In the Briareo and IPN Hand datasets, our approach
demonstrates superior performance, relying exclusively on
3D coordinates of the hand joints (skeleton), compared to
methods using either 3D joints coordinates, or additional
modalities such as RGB, Flow or Depth.

The lower accuracy observed on the SHREC’17 dataset
can be attributed to the dataset’s mixed nature, featuring
both coarse and fine gestures. Our model faces challenges,

especially for gestures like Tap, Expand, and Pinch. Coarse
gestures like Tap may lack distinctive features for precise
differentiation within our spatio-temporal graph approach.
Additionally, fine gestures like Expand and Pinch involve
intricate hand movements, requiring precision in model-
ing sparse directed interactions. To enhance performance
on SHREC’17, further refinement in capturing fine-grained
details and improving the model’s ability to discern subtle
variations in hand dynamics is crucial.

b) Performance Analysis: We carried out a perfor-
mance analysis of our method in comparison with existing
state-of-the-art methods on the Briareo dataset. This analysis
covers key parameters such as the number of model param-
eters, inference time and video RAM (VRAM) demand on
the graphics card. The results are presented in Table III.

TABLE III
PERFORMANCE ANALYSIS ON BARIAREO DATASET.

Method Parameters(M) Inference(ms) VRAM(GB)

R3D-CNN [14] 38,0 30,0 1.3
C3D-HG [13] 26.7 55,0 1,0

TBN-HGR [7] 24.3 26.7 1.8
3D-Jointsformer [25] 8.8 16.4 -

Ours 10.4 12.5 0.1

Our model stands out in terms of efficiency, with the
lowest number of parameters (10.4 million), guaranteeing
high recognition accuracy in a lightweight design. It achieves
a fast inference time of 12.5 milliseconds, making it suitable
for real-time applications, and requires minimal VRAM
usage (0.1 gigabytes). This efficiency extends its deployment
compatibility to various hardware configurations, even those
with limited VRAM capacity.

IV. CONCLUSION AND FUTURE WORK
In this paper, we introduced an innovative approach for dy-

namic hand gesture recognition. Our approach incorporated
sparse spatio-temporal directed interactions, capturing both
the directed sparse spatial and temporal interactions of the
hand joints, effectively addressing the limitations of dense
undirected interaction methods. Our experiments demon-
strated the state-of-the-art performance of our approach on
benchmark datasets, including Briareo and IPN Hand.

In future work, we aimed to develop a real-time imple-
mentation of our model to support untrimmed sequences and
interactive applications in RA/RV context.
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