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Abstract:  

Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower 

accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to 

improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D 

lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric 

manner, preserves skeleton links’ length, benefits from gait phases information that adds 

biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation 

of the proposed method shows that it reduces 12.6%-43.5% of root mean square error (RMSE) and 

significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the 

feasibility of more accurate lower limb kinematics calculation using a single (2.02°-7.57° RMSE) or 

dual RGB-D camera (1.66°-7.25° RMSE). Development of such algorithms could result in 

requirement of fewer cameras that deliver comparable or even superior measurement accuracy 

compared to multi-camera approaches. 

Keywords: Markerless gait analysis, Improved kinematics, Geometric lower limb model, Refined 
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1. Introduction:  

Gait analysis is a clinical assessment that provides quantitative data on various gait parameters, 

utilizable to diagnose walking impairments. Gold-standard systems for this purpose are 3D marker-

based motion analysis (3DMA) systems [1]. However, technological progression has led to the 

emergence and development of markerless approaches with fewer drawbacks compared to 3DMAs [2-

5]. Expensiveness, unportability, and large dedicated space requirement are drawbacks of 3DMAs, 

whereas the markerless systems do not offer them, which subsequently increases their deployment 

possibility in a broader array of clinics [6,7]. Nevertheless, a notable downside in them is their lower 

accuracy in estimating gait parameters when compared to 3DMAs. [8-11]. Depth sensing precision 

and pose estimation accuracy are the two main factors influencing the accuracy of markerless analysis. 

Commonly used cameras in markerless approaches utilize either stereoscopic algorithms, structured 

light, or time-of-flight (ToF) technologies for depth sensing [12-16]. Among them, ToF-based cameras 

present higher precision and outperform compared to other variants, hence, could perform better when 

utilized for movement analysis [17]. Nonetheless, there exist some noise origins affecting the 

generated point cloud by ToF-based cameras, which ultimately influence markerless analysis accuracy, 

including objects and ground reflectivity, room illumination, and clothes’ color [12]. The inaccuracy 

also originates from the human pose estimation algorithms utilized for body joints’ localization. Many 

approaches have already been developed to obtain a more realistic skeleton with more accurate joints’ 

position, which among them, artificial intelligence (AI)-based algorithms outperform the others [18-

26]. In them, a deep neural network is supervisory trained to track body joints on an image or in 3D 

[13,27]. Despite their efficiency, they do not conserve the skeleton links’ length when used on frame 

sequences and are prone to error. This is due to the exhibition of jitter between the frames, a 

consequence of inaccurate labeling when training the network [27].  

The inaccuracy of pose estimation algorithms coupled with the point clouds’ noise, affects both spatio-

temporal and kinematic measurements of the gait. To partially fulfill these gaps, many applications 

have been recently developed including Theia3D [2], KinaTrax [28], OpenCap [29], and Pose2Sim 

[30,31]. In the majority of them, the primary strategy to tackle the inaccuracy problem of markerless 



analysis has been refining the obtained AI-based skeletons with the aim of lengths preservation. 

Inaccurate rigid body lengths lead to errors in joints’ angle calculations and consequently affect the 

interpretation of motion patterns and their characteristics. Hence, length preservation plays a crucial 

role in the correct computation of biomechanical measurements and has proven to be the first effective 

strategy in enhancing pose estimation accuracy [32]. Accordingly, algorithms such as OpenCap and 

Pose2Sim have adopted this strategy by utilizing AI-driven skeletons to scale a generic body model 

and ensuring lengths’ preservation throughout the task [29-31]. Despite the advancements, markerless 

approaches still exhibit accuracy lacks compared to the 3DMAs, which highlights the necessity of 

integrating additional strategies alongside length preservation to further improve the accuracy. One 

such strategy could be incorporating task-related information when refining the skeletons, as for 

instance gait phases information when walking [33]. Additionally, it’s important to note that the 

advantages of body point clouds, even if are contaminated by noise, should not be overlooked. 

Benefiting from its advantages requires constructing geometric models that could facilitate length 

preservation and assist in refining the skeletons according to the orientation of the limbs’ point cloud 

data. Another advantage of utilizing body surface point clouds could be the facilitated elimination of 

the jitters that appear in AI-based skeleton trackers, which could result in stability of tracking over 

time and robustness to occlusions. 

Therefore, in this research, a novel approach is presented to improve the kinematic measurements’ 

accuracy in markerless gait analysis by combining both lengths’ preservation and utilization of gait 

phases information. In this approach, the body point clouds are employed and the AI-driven skeletons 

are refined with a geometric model of the lower limb. To address the effectiveness of such a 

combinatorial strategy with a geometric modelization, the obtained kinematics in pre- and post-

application of the proposed method are concurrently validated against a gold-standard system. 

 

2. Materials and methods:  

2.1. Subjects:  



Twelve healthy subjects were recruited to participate, each providing informed written consent before 

the testing (Age: 26.4±2 years old, weight: 71.2±9.2 kg, height: 171.3±7.5 cm). The study was 

approved by the local ethics committee and conducted according to the Declaration of Helsinki. 

 

2.2. Equipment:  

OptiTrack 3D motion capture system (NaturalPoint, Corvallis, OR, USA) equipped with 9 cameras 

(PrimeX13) and set at 120Hz, is used as the reference 3DMA. Besides, two Microsoft Azure Kinect 

cameras, in front and back, are utilized in two setups including single-camera setup (utilizing only the 

front camera) and dual-camera setup (Fig. 1 (a)). Azure Kinects were both placed at 80 cm height and 

9 meters apart (Resolution: 1920×1080, FPS: 30). To record simultaneously and prevent IR pulses 

interference, a synchronization device (eSync 2) was used. The back Azure Kinect was connected to 

the front one in daisy-chain configuration, and the front one was plugged into the eSync 2 device, 

which provided the triggering signal and enabled simultaneous recordings with OptiTrack and Azure 

Kinects without interference.  

 

2.3. Data acquisition:  

Thirty-two reflective markers were placed on each subject’s body landmarks using adhesive double-

sided tape. Then, the static pose, and 3 gait trials at a comfortable speed (toward the front camera) 

were captured with 3DMA and Azure Kinects. Afterward, markers’ trajectories were low-pass filtered 

using a 4th-order zero-lag Butterworth filter (Cut-off: 6 Hz). To calculate the kinematics with the 

3DMA, joints center for the knees, the ankles, and the toes, were obtained using the midpoint between 

their medial and lateral markers [2]. Hip joints center were obtained using regression equations 

utilizing pelvis width [34-36]. To find joints’ position on videos, first, an image segmentation algorithm 

(Pascalvoc model) is used to detect a 2D silhouette mask of the human body. The detected mask in 

each frame is utilized for surrounding elimination and creating a bounding box around the subject. The 

images inside the boxes were then used to estimate the joints’ position using OpenPose [37]. The joints’ 



position in all frames was smoothed using the Savitzky–Golay low pass filter and then were mapped 

on their corresponding point clouds to obtain their 3D position [6]. In single-camera setup, OpenPose 

results obtained from the front camera were used to calculate the kinematics. In dual-camera setup, 

first, the point clouds were merged. To do so, identical pixels in front and back view and their 

corresponding positions were identified. Then, the optimal rotation and translation matrices, used for 

point clouds’ merging, were computed through least-squares fitting of two data sets [38]. Afterward, 

position of the toes was obtained using the front camera, heels using the back camera, and other joints 

by finding the mid-point between their front and back positions, which were then used for kinematics 

calculation. Kinematics were calculated in the frontal plane (abduction-adduction) and the sagittal 

plane (flexion-extension), inside a 6-meter-long walking path (Fig. 1(a)). The static pose offsets were 

subtracted from the kinematics and all curves were time-normalized to 100% of the gait cycle. 

 

2.4. Proposed method:  

The proposed method is a combination of two algorithms. Using the intra-frame modelization, it 

refines lower limb skeletons estimated by AI-based algorithms in a subject-specific geometric manner 

and preserves skeleton links’ length when walking. Using the between-frames adjusting algorithm, it 

benefits from gait phases information and applies joints’ trajectory smoothing. This algorithm proceeds 

in 3 steps: (1) adaptive point cloud segmentation, (2) frame-by-frame optimization, and (3) whole video 

optimization. 

 

2.4.1. Point clouds segmentation:  

Point clouds are first cleared by eliminating the surroundings, and only data of the body is preserved. 

Within the pertinent data, the orthogonal projection of each point on each bone line is first calculated. 

Considering iP  a 3D point, its orthogonal projection on the bone line AB  is as follows: 

* i
i 2

2

AB AP
P = A+ AB

AB


                                                                                                                                                                               (1) 



Then, the shortest distance of iP  to the bone  AB  is calculated as follows: 

 

 

* *

i i i2

*

i i i2 2

P - P P AB
Shortest Distance=

min{ P - A , P - B } P AB

 




                                                                                                                    (2) 

Where 
2
 refers to the L2 norm. Afterward, a label is assigned to each point depending on the nearest 

bone (i.e. skeleton link), and the data are segmented [39]. Following segmentation, two adjustments 

were implemented as follows: Ⅰ) Only the data below the truncation planes positioned at the hips are 

utilized (Fig. 2(a)). Ⅱ) Data in the forefoot area are eliminated using the truncation planes positioned 

at the toes (Fig. 2(b,c)), due to possible deformation of the foot around the toes. In the segmentation 

process, utilizing imprecise joints’ positions will lead to inaccurate segments, and hence, segmentation 

should be done adaptively. Given that the joints’ position in each optimization iteration evolves, the 

segmentation starts with the joints obtained by the OpenPose in the first iteration and is repeated in 

each iteration using the updated joints’ position.  

 

Fig. 1. (a) Experimentation setups for markerless gait analysis, (b) the proposed geometric model for the lower limb, 

made transparent near the joints for a better illustration of the internal skeleton. [Single column] 

 

 



2.4.2 Intra-frame modelization:  

A 6-part geometric model is designed (Fig. 1(b)), in which the thighs and the shanks are modeled with 

a portion of a cone, truncated by two orthogonal planes to the axis (Fig. 2(a)), and feet are modeled 

with a section of such cones that are also truncated by a plane containing the axis (Fig. 2(b,c)). To 

obtain a human leg-like structure, the conic models in each leg should be connected as follows: thigh 

and shank cones’ axes always intersect each other at the knee joint, shank cone’s axis always intersects 

the surface of the foot model and provides the ankle joint. Additionally, to connect the legs, a length 

constraint between the hips is considered. Each model part has two radius values for the circles 

obtained on truncation planes, equal to the corresponding joints’ radii, and has its axis length equal to 

the corresponding body limb’s length. 

 

Fig. 2. (a) geometric model for the thighs and the shanks, (b) geometric model for the feet in single-camera setup, and (c) 

geometric model for the feet in dual-camera setup. [1.5 column] 

 



To fit the model to the data, the cones’ orientation relative to the data is considered and segment’s data 

are separated into different areas. Defining AN  and BN  as unit normal vectors of truncation planes in 

thigh or shank segments, where: 

A B A A B

2

A - B
N = , N = -N , R > R ;

A - B
                                                                                                                    (3) 

the areas in these segments (Fig. 2(a)) are defined as follows: 

i A

i A i B

i B

Area1 (P - A) N 0

Thigh or Shank : Area2 (P - A) N < 0 & (P - B) N < 0

Area3 (P - B) N 0

 


 
  

                                                                                                           (4) 

Also, defining unit normal vectors of truncation planes in feet models as Toe Ankle HeelN ,N ,N , where:  

Toe Heel Ankle Toe

2

Toe - Heel
N = , N = N = -N ;

Toe - Heel
                                                                                                                                            (5) 

the areas in feet segments (Fig. 2(b,c)) are defined as follows: 

i Toe i ShoeSole

i Toe i Ankle i ShoeSole

Single Camera i Ankle i ShoeSole

Dual Camera i Ankle

Area1 (P -Toe) N 0 & (P -Toe) N < 0

Area2 (P -Toe) N < 0 & (P - Ankle) N < 0 & (P -Toe) N < 0

Area3 (P - Ankle) N 0 & (P -Toe) N < 0

Foot : Area3 (P - Ankle) N 0 & (

  

  

  

  i Heel i ShoeSole

Single Camera i ShoeSole

Dual Camera i Heel i ShoeSole

i ShoeSole

P - Heel) N < 0 & (P -Toe) N < 0

Area4 (P -Toe) N 0

Area4 (P - Heel) N 0 & (P -Toe) N < 0

Area5 (P -Toe) N 0







 
  

   


 

                                   (6) 

After defining the areas, semi-opening angle 
Segment  and apex for each segment’s cone, the angle i  

between the axis line and the line connecting iP  to the apex, and the orthogonal projection of iP  on 

the corresponding truncation plane **

iP , should be calculated. These parameters, assuming a truncated 

cone between two joints (J1, J2) with radii of (RJ1, RJ2), where: 

J1 J2 J1 J2R ;,> R N = -N                                                                                                                                      (7) 

are calculated as follows: 



J1 J2
Segment

2

J1
Segment J2

Segment

Segment i Segment

i

Segment i Segment2 2

**

i i

R - R
= Arctan

J1 - J2

R
Apex = J1+ N

tan( )

( J1 - Apex ) ( P - Apex )
= Arccos

J1 - Apex P - Apex

(
P = P -







 
 
 
 

 
 
 
 

 
 
 
 

i J1
J12

J1 2

On truncation plane positioned at J1

P - J1) N
N

N

 
 
 
 

                                                                                                              (8) 

Afterward, the distance error for each point, in each area, is calculated. If the point iP  is in between 

two truncation planes, the orthogonal distance to the cone’s surface is calculated [40]. A penalty is also 

considered for those points falling inside the cone, to ensure fitting the model to the internal side of 

the point cloud. These areas include Area 2 of all parts, and Area 3 in dual-camera model of the foot, 

in which the error is calculated as follows: 

2
2 2

i Segment i Segment2

i Segment

i Segment

Error = P - Apex sin ( - )Penalty

Penalty = 1 if
where

Penalty = 10 if <

 

 

 





                                                                                                              (9) 

If iP  belongs to Area 1 in all models, or Area 3 in thighs or shanks or single-camera model of the foot, 

depending on whether its projection falls inside the circular shapes on the truncation planes or not, the 

shortest distance error is calculated as follows: 

2
** **

i i i Joint2 2

2
** ** 2 **

i i i Joint i Joint2 2 2

P - P if Joint - P R
Error =

P - P +( P - Joint - R ) if Joint - P > R

 




                                                                                  (10) 

For those Pi belonging to Area 4 in single-camera foot model, or Area 5 in dual-camera foot model, if 

Pi
** on the shoe sole plane is inside the trapezoid or hexagon, the distance between Pi and Pi

** is 

calculated. But, if the projection falls outside, minimum distance to the shape sides is computed. Sum 

of distance errors for all data points in segment s, and frame number f, provides 
f,sE_Geo , and sum of 

them in all segments provides the geometric error term as follows: 

f f,s

s=segment

Left & Right

Error_Geometric = E_Geo

segment {Thigh,Shank,Foot}


                                                                                                          (11) 



In addition, skeleton links’ lengths are also preserved in the proposed algorithm. Assuming 
f,mL  as the 

length of link m in frame number f, and *

mL  as its desired length, intended to be preserved while 

walking, the lengths’ error term is calculated as follows:  

 

 

* 2

f f,m m

m=link

Dual Camera Left & Right

Single Camera Left & Right

Error_Lengths = (L - L )

link HipToHip,{Thigh,Shank,MidFoot,RareFoot}

link HipToHip,{Thigh,Shank,MidFoot}







                                                                  (12) 

Sum of the geometric and the lengths’ errors, normalized with their initial value, yields the total intra-

frame error term as follows: 

f f

f

f(Initial) f(Initial)

Error_Geometric Error_Lengths
Error_Intra_Frame = +

Error_Geometric Error_Lengths
                                                                      (13) 

 

2.4.3 Between-frames adjusting algorithm:  

To connect each frame’s skeleton to its adjacent skeletons and perform a global optimization that adds 

dependency among the frames, between-frames’ adjustments are considered. The first consideration is 

the incorporation of gait phases information, which adds biomechanical awareness to the algorithm 

according to each subject’s walking pattern. In terms of gait events, the discriminative factor 

distinguishing between various walking patterns is the events’ temporal sequencing order. On this 

basis, walking patterns are classified into three categories including those contacting the ground on 

rearfoot, those with midfoot contact, and those contacting the ground on forefoot. The biomechanical 

error term is then considered such that it is applicable to diverse walking patterns by encompassing all 

aforementioned categories. To do so, first, gait events are detected for each leg [6]. Then, in each gait 

cycle represented by lower index c, the frame number in which heel contacts the ground Heel -On

cf , toe 

contacts the ground Toe-On

cf , heel goes off the ground Heel -Off

cf , and toe goes off the ground Toe-Off

cf , are 

extracted. Two events matrices (EM) are created for each leg, in which the rows represent the events’ 

frame numbers and the columns represent the cycle sequences with NC gait cycles, as follows: 



C

C

Heel -On Heel -On Heel -On

1 2 3

Heel Heel -Off Heel -Off Heel -Off

1 2 3 2×N

Toe-On Toe-On Toe-On

1 2 3

Toe Toe-Off Toe-Off Toe-Off

1 2 3 2×N

f f f ...
EM =

f f f ...

f f f ...
EM =

f f f ...

 
 
 

 
 
 

                                                                                                                       (14) 

Afterward, the midpoints among positions of each foot landmark in their corresponding frame intervals 

listed inside the EMs, are calculated as follows: 

Heel-Off
c

Heel-On
c

Toe-Off
c

Toe-On
c

Heel-Off Toe-Off
c c

Heel-On Toe-On
c c

f

f,c

f = f

c Heel -Off Heel -On

c c

f

f,c

f = f

c Toe-Off Toe-On

c c

min{f , f }

f,c

f =max{f , f }

c Heel -Off Toe-Off

c c

Heel

Heel =
f - f +1

Toe

Toe =
f - f +1

Ankle

Ankle =
min{ , f } - m






Heel -On Toe-On

c cax{ , f }+1

                                                                                                               (15) 

Then, the variation of each foot landmark from its midpoint in the corresponding frame interval is 

minimized as follows: 

Heel-Off Toe-Off Heel-Off Toe-Off
C c c c c

Heel-On Toe-On Heel-On Toe-On
c c c c

N f f min{f , f }
2 2 2

f,c c f,c c f,c c
2 2 2

c=1 f = f f = f f =max{f , f }

Left Right

E_Bio = Heel - Heel + Toe -Toe + Ankle - Ankle

Error_Biomechanical = E_Bio + E_Bio

 
 
 
 

                                            (16) 

The second consideration is obtaining smooth joints’ trajectories. To do so, a batch of W frames 

(Window size) and their corresponding time stamps are considered. Inside the window, 3 quadratic 

curves are fitted, each on one of the coordinates and their time stamps. Then, the trajectory samples’ 

errors with respect to their direct projection on the quadratic curves are calculated. Afterwards, the 

window is shifted by one frame to forward and the procedure is repeated till the moving window 

reaches the last frame. Considering ( )h, j h, j h, jx ,y ,z  the coordinates of sample number h in the trajectory of 

joint j, and ( )* * *

h, j h, j h, jx ,y ,z  as their direct projection on the quadratic curves fitted on each coordinate, the 

error h, jD  is calculated as follows: 

,

* 2 * 2 * 2

h, j h, j h, j h, j h, j h j h, jD = (x - x ) +(y - y ) +(z - z )                                                                                                                   (17) 

Considering the total number of frames as NF, the trajectory smoothing error term in joint j is calculated 

as follows: 



FN -W f +W

j h, j

f =1 h= f

Error_Smoothing = D
 
 
 

                                                                                                                               (18) 

Here, the window size is selected according to the FPS of the RGB-D cameras (
5 3

FPS FPS
W  ). The 

window size must be small enough to maintain fundamental information and meanwhile, large enough 

to remove redundant fluctuations and noise. 

 

2.4.4 Optimization:  

In this algorithm, obtaining the desired skeleton links’ lengths is an offline process. They are obtained 

by manually marking the joints on a single frame of the static pose, which are then utilized in the 

optimization of gait trials. Static pose optimization involves using intra-frame errors, with joints’ 

location and cones’ radii as optimization variables. It provides cones’ subject-specific radii and refined 

static skeleton. Gait trials optimization involves using both intra-frame and between-frames adjusting 

errors, with the joints’ location as optimization variables. Considering NJ as the number of joints and 

Qi as the weight coefficients for each error term, the total error functions are as follows: 

* 2
f,s f,m m

s=segment m=link
Static Pose 1 2

f(Initial) f(Initial)

f,s

s=segment

Gait Trial 1

f(Initial

E_Geo (L - L )

Total_Error = Q +Q
Error_Geometric Error_Lengths

E_Geo

Total_Error = Q
Error_Geometric

   
   
   
   
   

  

 


F

F F

N -W f +W

* 2
h, jN N f,m m

f =1 h= fm=link 3 F
2

f =1 f =1 j= joint) f(Initial) J j(Initial)

Left Right

4 F

D(L - L )
Q N

+Q +
Error_Lengths N Error_Smoothing

E_Bio + E_Bio
Q N

Error_Biomechan

     
     
      +    
          

 
  

Initial

Dual Camera Left & Right J

Single Camera Left & Right J

ical

joint {Hip,Knee,Ankle,Toe,Heel} , N = 10
where

joint {Hip,Knee,Ankle,Toe} , N = 8

 
 
 






   (19) 

To obtain the same scale errors in all terms, regularization parameters are added to the smoothing term 

(NF/NJ) and biomechanical term (NF) in Equation (19). Both static pose and gait trials were optimized 

using sequential quadratic programming (SQP) [41]. Following application of the proposed method in 

each setup, which some examples are shown in Fig. 3, the kinematics are calculated and used for 

comparison. 



 

 

Fig. 3. Frame examples extracted from a gait video representing the images, masks, bounding boxes, and the fitted 

geometric model on the lower limb point clouds in both setups. Thigh segments’ data are illustrated in blue, shanks data 

in red, and feet data are illustrated in green. [Double column] 

 

 

2.5 Statistical analysis:  

To assess ensemble angle curves’ similarities in identical gait cycles, Pearson correlation coefficient 

(R) and coefficient of multiple correlation (CMC) were used. Pearson correlation assesses linear 

relationship strength, whereas CMC takes into account correlation, gain, and offset, and is designed to 

compare different measurement methods [42]. CMCs are described as excellent similarity (0.95–1), 

very good (0.85–0.94), good (0.75–0.84), moderate (0.6–0.74), and poor (CMC<0.59). To compare 

the differences, root mean square error (RMSE) was calculated [31]. Significant differences were 

detected using either paired-samples t-test or Wilcoxon-signed rank test, following the normality check 

by Shapiro-Wilk test [29,31]. Also, to show the proposed method’s ability in reducing error, RMSE 

differences were expressed as percentages (Diff%). Additionally, the absolute error of the kinematics 

compared to the 3DMA were calculated to find the improved areas over the entire gait cycles. To do 

so, the normality was checked on the absolute errors and then, one-dimensional statistical parametric 

(SPM-1D) or nonparametric (SNPM-1D) mapping was used [43-45]. 

 



3. Results:  

Statistical results on the obtained kinematics are detailed in Table.1. The kinematic curves, absolute 

errors, and SPM results are illustrated in Fig. 4. As detailed in Table.1, the proposed method 

significantly reduced the kinematics error compared to 3DMA, in both setups. In single-camera setup, 

it significantly reduced the kinematics error in the ankle joint by 42.3% and 43.5% in the frontal 

(abduction-adduction) and sagittal (dorsi flexion-plantar flexion) planes respectively (P<0.001). In this 

setup, application of the proposed method resulted in 16.1% (P=0.003) and 36.4% (P<0.001) lesser 

error for the knee joint kinematics, and 12.6% (P=0.006) and 33.1% (P<0.001) lesser error for the hip 

joint kinematics in the frontal (abduction-adduction) and sagittal (flexion-extension) planes. 

In dual-camera setup, the proposed method significantly reduced the kinematics error in the ankle joint 

by 36% and 43%, in the frontal and sagittal planes respectively (P<0.001). Application of the proposed 

method in dual-camera setup resulted in 16.8% (P=0.005) and 28.3% (P<0.001) lesser error for the 

knee joint kinematics, and 14.9% (P=0.05) and 15.3% (P=0.012) lesser error for the hip joint 

kinematics in the frontal and sagittal planes (Table.1). 

As a consequence of reducing errors, the similarity of angle curves significantly improved in both 

setups compared to the 3DMA. Despite the effect of the proposed method on all joints’ kinematics 

(Fig. 4), it showed the biggest impacts on the ankle kinematics by turning the poor results of OpenPose 

(0.3≤CMC≤0.58) into moderate-to-good (0.7≤CMC≤0.81) results. For instance, in single-camera 

setup (Table.1), the similarity of the ankle’s flexion angle compared to the 3DMA, was poor with the 

OpenPose (R=0.56, CMC=0.55), while the proposed method improved it to good similarity (R=0.81, 

CMC=0.78). 

Comparing the setups revealed that having a second camera in the back of the subject improves only 

some of the kinematics obtained by the proposed method while affecting more joints’ kinematics when 

OpenPose is used. The main effect of having a second camera in the proposed method was mostly on 

the frontal plane kinematics, where it resulted in 17.86% (P<0.001) and 18.62% (P=0.011) lesser error 

for the hip and the knee abduction-adduction angle (Table.1). The proposed approach improved sagittal 

plane kinematics to the extent that utilizing a single-camera provides equal results to multi-camera 



utilization, without significant differences. The observed improvements in both sagittal and frontal 

plane kinematics are mostly spread throughout the entire gait cycle, as revealed by the SPM analysis 

(Fig. 4). Although the biomechanical errors constrain one leg during the stance phase in each gait cycle, 

their impact extends to the contralateral leg which is in the swing as well, due to skeleton lengths’ 

preservation in the algorithm. Hence, the whole gait cycles are impacted and improved. 

 

 

 

Table 1 

Statistical results for the OpenPose and the proposed method in single and dual-camera setups compared to 3DMA. Statistics include Pearson correlation coefficient 
(R), coefficient of multiple correlation (CMC), mean ± standard deviation for the root mean square error (RMSE), percentage of reduction in RMSE following 

application of the proposed method (Between methods Diff%), and following addition of the second camera to the setup (Between setups Diff%).  

 

Joint/Statistics Setup 

R CMC RMSE 

OpenPose 
Proposed 

method 
OpenPose 

Proposed 

method 
OpenPose 

Proposed 

method 

Between 

methods 

Diff% 

Between 

methods 

P-value 

Hip flexion-extension Single-camera setup 0.97 0.99 0.96 Excellent 0.99 Excellent 5.02 ± 2.88 3.36 ± 1.30 33.1% * <0.001 

Dual-camera setup 0.98 0.99 0.97 Excellent 0.99 Excellent 4.04 ± 3.25 3.42 ± 0.94 15.30%* 0.012 

Between setups Diff%          19.64% * -1.80%    

Between setups P-value      0.03 0.217   

Hip abduction-adduction Single-camera setup 0.76 0.82 0.74 Moderate 0.81 Good 2.31 ± 0.80 2.02 ± 0.70 12.6% * 0.006 

Dual-camera setup 0.87 0.92 0.82 Good 0.91 Very Good 1.95 ± 1.12 1.66 ± 0.49 14.9% * 0.05 

Between setups Diff%          15.89% * 17.86% *    

Between setups P-value      0.024 <0.001   

Knee flexion-extension Single-camera setup 0.93 0.98 0.91 Very Good 0.97 Excellent 9.46 ± 4.36 6.02 ± 2.02 36.4% * <0.001 

Dual-camera setup 0.94 0.99 0.93 Very Good 0.97 Excellent 7.38 ± 3.40 6.14 ± 1.42 16.8% * 0.005 

Between setups Diff%          22.01% * -1.94%    

Between setups P-value      0.045 0.093   

Knee abduction-adduction Single-camera setup 0.64 0.75 0.62 Moderate 0.71 Moderate 3.78 ± 1.47 3.17 ± 1.18 16.1% * 0.003 

Dual-camera setup 0.75 0.82 0.64 Moderate 0.8 Good 3.60 ± 1.96 2.58 ± 0.89 28.3% * <0.001 

Between setups Diff%          4.91% 18.62% *    

Between setups P-value      0.74 0.011   

Ankle dorsi/plantar flexion Single-camera setup 0.56 0.81 0.55 Poor 0.78 Good 13.40 ± 6.26 7.57 ± 3.08 43.5% * <0.001 

Dual-camera setup 0.60 0.84 0.58 Poor 0.81 Good 12.73 ± 5.15 7.25 ± 2.08 43% * <0.001 

Between setups Diff%          5.01% 4.24%    

Between setups P-value      0.62 0.8   

Ankle abduction-adduction Single-camera setup 0.40 0.74 0.3 Poor 0.7 Moderate 9.66 ± 3.95 5.57 ± 2.15 42.3% * <0.001 

Dual-camera setup 0.48 0.79 0.4 Poor 0.74 Moderate 7.96 ± 2.65 5.03 ± 2.46 36% * <0.001 

Between setups Diff%          17.62% * 9.75%    

Between setups P-value      0.002 0.28   



 

Fig. 4. Mean ± standard deviation for each joints’ kinematics obtained by the 3DMA (green), the OpenPose (red), and the 

proposed method (blue), absolute errors compared to the 3DMA, and SPM analysis showing the significantly improved 

areas (black) following application of the proposed method in each setup. [Double column] 

 

 



4. Discussion:  

The results of validations in this study confirmed that the combined application of length preservation 

and gait phases information significantly improves the accuracy of gait kinematics measurements in 

markerless analysis. The RMSEs obtained for the lower-limb kinematics following application of the 

proposed method are between 2.02°-7.57° and between 1.66°-7.25° in single and dual-camera setups, 

which outperform the RMSEs reported in the literature.  

In comparison to other research that established similar setups for gait kinematics calculation, Ma and 

her colleagues reported RMSEs between 12.5°-23° with a single camera, and 7.2°-15.1° using two 

cameras, for the lower limb kinematics during gait [46,47]. Another research utilized one camera and 

reported RMSEs of 11.7° and 28° for the hip and the knee flexion-extension respectively [48]. Yeung 

and his colleagues reported RMSEs between 4°-16.1° when utilizing a single Azure Kinect placed at 

0-degree viewing angle [49]. The higher errors obtained in [46,47,48,49] compared to the results of 

current research are due to the lack of lengths’ preservation or any other skeleton refining strategy in 

those studies. Meanwhile, it reveals the importance of such strategies to calculate joint kinematics with 

higher accuracy in markerless approaches.  

In comparison to the multi-camera approaches, Theia3D and KinaTrax, two commercially available 

markerless solutions utilizing 8 cameras, calculate hip kinematics with 11° and 2.6° RMSE error 

(Theia3D), and with 8.21° and 3.16° RMSE error (KinaTrax), in sagittal and frontal planes respectively 

[2,28]. However, the proposed method in this research showed superior results for hip kinematics by 

utilizing only one or two cameras, reflecting the efficiency of a correct modelization rather than 

utilizing more cameras. Results for the knee and the ankle joints are also similar to Theai3D and 

KinaTrax, with differences of about 1°-3°. Pose2Sim, a 4-camera-based algorithm, uses OpenPose 

skeletons as input and transfers them into OpenSim software to create physically consistent skeletons 

during movement and to compute joint angles through inverse kinematics [30,31]. It provides lower 

limb kinematics with 3.1°-5.6° RMSE, which is similar to the results of this research. Another 

algorithm is OpenCap, an open-source application for markerless movement analysis using two or 

more smartphones [29]. OpenCap algorithm is similar to Pose2Sim, and provides lower limb 



kinematics with 2°-10.2° RMSE, similar to the results of this research [29]. Even in some joints, the 

proposed approach showed lesser errors than the ones reported by OpenCap, as for instance in the hip 

joint kinematics. Developers of OpenCap have stated that their results did not improve significantly 

when utilizing more than two cameras [29]. In line with this statement, the results of the proposed 

method also indicate that utilizing a correct modelization could result in the sufficiency of only one 

camera to reach a certain accuracy in markerless gait analysis. 

There exist some differences between the proposed approach and existing algorithms including the 

lack of utilizing task-related information in the literature, different methods of skeleton refining, and 

lengths’ preservation strategy. For instance, Pose2Sim and OpenCap utilize AI-driven skeletons and 

preserve the lengths by scaling a generic human body model and utilizing it for the whole task [29-

31]. However, the proposed approach benefits from the advantages of the body point cloud and refines 

the AI-driven skeletons with a geometric model that takes into account the orientation of the limbs 

during the fitting process. Using the point cloud in refining AI-driven skeletons ensures eliminating 

possible jitters that appear in AI-based pose estimators and results in maintaining stable and reliable 

tracking over time. Additionally, it enhances robustness to occlusions, allowing for more consistent 

performance even if some part of a limb is temporarily obscured and only a portion of a limb’s point 

cloud is available. The proposed method can also be utilized in single-camera approaches by 

transferring the skeletons obtained on the surface of the body to the inside of the body and reducing 

the offsets in the joints’ position. In addition, the proposed approach utilizes gait phases information 

which combined with the length’s preservation leads to a better localization of the internal skeleton 

and consequently, more accurate computation of joint kinematics. 

This approach is not without limitations. Firstly, it is validated only on healthy subjects. Hence, future 

studies are required to validate such approaches on different pathologies and adapt them to diverse 

populations. Secondly, fitting shapes to point clouds involves computational complexities and may 

require substantial storage, especially for high-density point clouds. Hence, it is recommended that 

future studies consider the real-time applications of such geometric approaches for practical 

implementation. Lastly, due to the utilized conic shapes, the algorithm only provides frontal and 



sagittal plane kinematics, and not the coronal plane kinematics. However, considering more complex 

geometric shapes in future research that more accurately encompass the anatomical details of the bones 

and condyles, or limbs’ geometry, could resolve this limitation. 

 

5. Conclusion:  

In this research, an algorithm to improve the accuracy of lower limb kinematics in markerless gait 

analysis using a single or dual-camera is presented. This algorithm refines the skeletons obtained by 

AI-based pose estimation algorithms in a subject-specific geometric manner and utilizes gait phases 

information. Results of the study reveal that utilizing a proper modelization of the body with 

consideration of task-related constraints could improve the kinematics, resulting in the requirement of 

fewer cameras that perform equal or even better in terms of analysis accuracy compared to multi-

camera approaches. 
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